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EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A
FRACTIONAL DIFFERENTIAL INCLUSION WITH

NON-SMOOTH POTENTIAL
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Communicated by Vicentiu Radulescu

Abstract. In this article, we use non-smooth critical point theory and varia-

tional methods to study the existence solutions for a fractional boundary-value

problem. We provide some intervals for positive parameters in which the prob-
lem possess infinitely many solutions.

1. Introduction

In this article, we consider the boundary-value problem

tD
α
T (0D

α
t u(t)) ∈ λ∂F (u(t)) + µ∂G(u(t)) a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where 0D
α
t and tD

α
T are the left and right Riemann-Liouville fractional derivatives

of order α with 0 < α ≤ 1, and where λ > 0 and µ ≥ 0 are two parameters. F,G :
R→ R are locally Lipschitz functions, where F (ω) =

∫ ω
0
f(s)ds, G(ω) =

∫ ω
0
g(s)ds,

ω ∈ R and f, g : R→ R are locally essentially bounded functions. ∂F (u(t)) denotes
the generalized Clarke gradient of the function F (u(t)) at u ∈ R.

We consider the following problem: Find u ∈ Eα0 [0, T ], called a weak solution of
(1.1), such that for any v ∈ Eα0 [0, T ], we have∫ T

0

[0Dα
t u(t) ·0 Dα

t v(t)]dt = λ

∫ T

0

u∗1(t)v(t)dt+ µ

∫ T

0

u∗2(t)v(t)dt, (1.2)

where u∗1(t) ∈ ∂F (u(t)) and u∗2(t) ∈ ∂G(u(t)). Fractional differential problems
were studied by many authors, see for example [11, 12, 17, 23]. Recently, fractional
differential inclusions were considered by many authors: Ahamd et al. [1] studied
the existence of solutions for impulsive fractional differential inclusions with anti-
periodic boundary conditions. Ntouyas et al. [15] studied the existence of solutions
for boundary value problems for nonlinear fractional differential inclusions with
mixed type integral boundary conditions. More recently, the study of differential
equations by variational method and critical point theory has attracted a lot of
attention; see for example [9, 18, 20, 21]. Variational-hemivariational inequalities
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have been extensively studied in recent years via variational methods; see [2, 3, 4,
5, 19].

Here, we investigate the existence of infinitely many solutions for a fractional
differential inclusion under some hypotheses on the behavior of the locally Lipschitz
functions F and G in theorem 3.1. We prove the existence of infinitely many
solutions for a variational-hemivariational inequality depending on two parameters.
Also, we list some consequences of theorem 3.1 and give an example. Finally, we
consider the uniform convergence of a sequence of solutions to zero in theorem 3.6.

2. Preliminaries

In this section, first we recall some basic definitions of fractional calculus and
locally Lipschitz functions.

Definition 2.1 ([8]). Let f be a function defined on [a, b]. The left and right
Riemann-Liouville fractional integrals of order α of f are denoted by aD

−α
t f(t)

and tD
−α
b f(t), respectively, and defined by

aD
−α
t f(t) =

1
Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫ b

t

(s− t)α−1f(s)ds, t ∈ [a, b], α > 0,

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the
gamma function.

Definition 2.2 ([8]). Let f be a function defined on [a, b]. For n − 1 ≤ α <
n (n ∈ N), the left and right Riemann-Liouville fractional derivatives of order α for
function f denoted by aD

α
t f(t) and tD

α
b f(t), respectively, are defined by

aD
α
t f(t) =

dn

dtn
aD

α−n
t f(t) =

1
Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1f(s)ds, t ∈ [a, b],

tD
α
b f(t) = (−1)n

dn

dtn
tD

α−n
b f(t) =

(−1)n

Γ(n− α)
dn

dtn

∫ t

a

(s− t)n−α−1f(s)ds, t ∈ [a, b].

Proposition 2.3 ([8, 22]). We have the following property of fractional integration∫ b

a

[aD−αt f(t)]g(t)dt =
∫ b

a

[tD−αb g(t)]f(t)dt, α > 0, (2.1)

provided that f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 +α

or p 6= 1, q 6= 1, 1
p + 1

q = 1 + α.

Definition 2.4 ([8, 16]). For n ∈ N, n − 1 ≤ α < n (n ∈ N) and a function
f ∈ ACn([a, b],RN ), we define

aD
α
t f(t) =

1
Γ(n− α)

∫ t

a

f (n)(s)
(t− s)α+1−n ds+ Σn−1

j=0

f j(a)
Γ(j − α+ 1)

(t− a)j−α,

tD
α
b f(t) =

1
Γ(n− α)

∫ b

t

f (n)(s)
(s− t)α+1−n ds+ Σn−1

j=0

(−1)jf j(b)
Γ(j − α+ 1)

(b− t)j−α,

where t ∈ [a, b].
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Definition 2.5 ([8, 16]). Let 0 < α ≤ 1. The fractional derivative space Eα0 [0, T ]
is defined as the closure of C∞0 ([0, T ],R) with respect to the norm

‖u‖α =
(∫ T

0

|0Dα
t u(t)|2dt+

∫ T

0

|u(t)|2dt
)1/2

, ∀u ∈ Eα0 [0, T ].

Clearly, the fractional derivative space Eα0 [0, T ] is the space of functions u ∈
L2[0, T ] having an α−order fractional derivative 0D

α
t u(t) ∈ L2[0, T ] and u(0) =

u(T ) = 0.

Proposition 2.6 ([6]). Let 0 < α ≤ 1. The fractional derivative space Eα0 [0, T ] is
reflexive and separable Banach space.

Proposition 2.7 ([6]). Let 0 < α ≤ 1. Then for all u ∈ Eα0 [0, T ],

‖u‖L2 ≤ Tα

Γ(α+ 1)
‖0Dα

t u(t)‖L2 , (2.2)

‖u‖∞ ≤
Tα−

1
2

Γ(α)(2(α− 1) + 1)1/2
‖0Dα

t u(t)‖L2 . (2.3)

According to (2.2), one can consider Eα0 [0, T ] with the equivalent norm

‖u‖α =
(∫ T

0

|0Dα
t u(t)|2dt

)1/2

= ‖0Dα
t u‖L2 , ∀u ∈ Eα0 [0, T ].

Definition 2.8. A function u : [0, T ]→ R is called a solution for (1.1) if

(1) tD
α−1
T (0D

α
t u(t)) and 0D

α−1
t u(t) exist for almost all t ∈ [0, T ];

(2) u satisfies in (1.1).

Definition 2.9. A function u ∈ Eα0 [0, T ] is called a weak solution of (1.1) if there
exist u∗1(x) ∈ ∂F (u), u∗2(x) ∈ ∂G(u), such that u∗1v, u

∗
1v ∈ L1[0, T ] and∫ T

0

[0Dα
t u(t) · 0Dα

t v(t)]dt = λ

∫ T

0

u∗1(x)v(x)dx+ µ

∫ T

0

u∗2(x)v(x)dx, (2.4)

for all v ∈ Eα0 [0, T ].

For α > 1/2, propositions 2.7 and 2.8, imply that

‖u‖∞ ≤M
(∫ T

0

|0Dα
t u(t)|2dt

)1/2

=M‖u‖α, u ∈ Eα0 [0, T ],

where

M =
Tα−

1
2

Γ(α)(2(α− 1) + 1)1/2
.

Here, we recall some definitions and basic notation of the theory of generalized
differentiation for locally Lipschitz functions. We refer the reader to [3, 4, 13, 14, 18]
for more details. Let X be a Banach space and X? its topological dual. By ‖ · ‖ we
denote the norm in X and by 〈·, ·〉X the duality brackets for the pair (X,X?). A
function h : X → R is said to be locally Lipschitz if for any x ∈ X there correspond
a neighborhood Vx of x and a constant Lx ≥ 0 such that

|h(z)− h(w)| ≤ Lx‖z − w‖,∀z, w ∈ Vx.
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For a locally Lipschitz function h : X → R, the generalized directional derivative
of h at u ∈ X in the direction γ ∈ X is defined by

h0(u; γ) = lim sup
w→u,t→0+

h(w + tγ)− h(w)
t

.

The generalized gradient of h at u ∈ X is

∂h(u) = {x? ∈ X? : 〈x?, γ〉X ≤ h0(u; γ), ∀γ ∈ X},
which is non-empty, convex and w?-compact subset of X?, where < ·, ·〉X is the
duality pairing between X? and X.

Proposition 2.10 ([4]). Let h, g : X → R be locally Lipschitz functionals. Then,
for any u, v ∈ X the following hold:

(1) h0(u; ·) is subadditive, positively homogeneous;
(2) ∂h is convex and weak∗ compact;
(3) (−h)0(u; v) = h0(u;−v);
(4) the set-valued mapping h : X → 2X

∗
is weak∗ u.s.c.;

(5) h0(u; v) = max{< ξ, v >: ξ ∈ ∂h(u)};
(6) ∂(λh)(u) = λ∂h(u) for every λ ∈ R;
(7) (h+ g)0(u; v) ≤ h0(u; v) + g0(u; v);
(8) the function m(u) = minν∈∂h(u) νX∗ exists and is lower semicontinuous;

i.e., lim infu→u0 m(u) ≥ m(u0);
(9) h0(u; v) = maxu∗∈∂h(u)〈u∗, v〉 ≤ L‖v‖.

Definition 2.11 ([5]). An element u ∈ X is called a critical point for functional h
if

h0(u; v − u) ≥ 0, ∀v ∈ X.

Let X be a reflexive real Banach space, Φ : X → R a sequentially weakly lower
semicontinuous and coercive, Υ : X → R a sequentially weakly upper semicontin-
uous, λ a positive real parameter. Moreover, assumeing that Φ and Υ are locally
Lipschitz functionals, we set Lλ := Φ− λΥ. For every r > infX Φ, we define

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(]−∞,r[) Υ(v)

)
−Υ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

First, we need to the following non-smooth version of a critical point theorem.

Theorem 2.12 ([10]). Under the assumptions stated for X, Φ and Υ, the following
statements hold:

(a) For any r > infX Φ and λ ∈ (0, 1
ϕ(r) ), the restriction of the functional

Lλ = Φ − λΥ to Φ−1(−∞, r) admits a global minimum which is a critical
point (local minimum) of Lλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1
γ ), the following alternative holds: either

(b1) Lλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Lλ such

that
lim

n→+∞
Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1
δ ), the following alternative holds: either
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(c1) there is a global minimum of Φ which is a local minimum of Lλ, or
(c2) there is a sequence {un} of pairwise distinct critical points (local min-

ima) of Lλ that converges weakly to a global minimum of Φ.

3. Main results

Set

C(T, α) =
16
T 2

(∫ T/4

0

t2(1−α)dt+
∫ 3T/4

T/4

(t1−α − (t− T

4
)1−α)2dt

+
∫ T

3T
4

(t1−α − (t− T

4
)1−α − (t− 3T

4
)1−α)2dt

)
.

and

A := lim inf
ω→+∞

max|x|≤ω F (x)
ω2

, B := lim sup
ω→+∞

F (ω)
ω2

.

Theorem 3.1. Let 1
2 < α ≤ 1. Assume

(i) that A < B
M2C(T,α) and f : R→ R is a locally essentially bounded function

such that F (t) =
∫ t

0
f(ξ)dξ for all t ∈ R.

then, for each λ ∈ (λ1, λ2), where

λ1 =
C(T, α)
BT

, λ2 =
1

M2TA
,

and for any locally essentially bounded function g : R→ R whose potential G(t) =∫ t
0
g(ξ)dξ for all t ∈ R is a non-negative function satisfying the condition

G∞ = lim sup
ω→+∞

max|x|≤ω G(x)
ω2

< +∞ (3.1)

and for any µ ∈ [0, µG,λ), where

µG,λ =
1

M2TG∞
(1− λM2TA).

Then problem (1.1) has a sequence of weak solutions for every µ ∈ [0, µG,λ).

Proof. Our purpose is to apply theorem 2.12(b). Fix λ̄ ∈ (λ1, λ2) and G satisfying
our assumptions. Since λ̄ < λ2, it implies that

µG,λ̄ =
1

M2TG∞
(1− λ̄M2TA) > 0.

Fix µ̄ ∈ [0, µG,λ̄) and define the functionals Φ,Υ : X → R for each u ∈ X as follows:

Φ(u) =
1
2
‖u‖2α (3.2)

Υ(u) =
∫ T

0

[F (u(t))]dt+
µ̄

λ̄

∫ T

0

[G(u(t))]dt. (3.3)

Put Lλ̄(u) := Φ(u)− λ̄Υ. The critical points of the functional Lλ̄ are the weak solu-
tions of problem (1.1). According to [6], Φ is continuous and convex, so it is weakly
sequentially lower semicontinuous, also Φ is continuously Gâteaux differentiable
and coercive. By standard argument, Υ is sequentially weakly continuous.
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First, we claim that λ̄ < 1/γ. Note that Φ(0) = Υ(0) = 0, then for n large
enoughlarge,

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(]−∞,r[) Υ(v)

)
−Υ(u)

r − Φ(u)

≤
supv∈Φ−1(]−∞,r[) Υ(v)

r
.

Let {ωn} be a sequence of positive numbers in X such that limn→+∞ ωn = +∞
and

A = lim
n→+∞

max|x|≤ωn
F (x)

ω2
n

.

Set

rn =
ω2
n

M2
, n ∈ N.

Hence,

ϕ(rn) ≤
max|x|≤ωn

T [F (x) + µ̄
λ̄
G(x)]

ω2
n

M2

≤M2T
max|x|≤ωn

[F (x) + µ̄
λ̄
G(x)]

ω2
n

≤M2T
[max|x|≤ωn

F (x)
ω2
n

+
µ̄

λ̄

max|x|≤ωn
G(x)

ω2
n

]
.

Moreover, from assumption (i) and the condition (3.1), it follows that

max|x|≤ωn
F (x)

ω2
n

+
µ̄

λ̄

max|x|≤ωn
G(x)

ω2
n

< +∞.

Then
γ ≤ lim inf

n→+∞
ϕ(rn) ≤M2T (A+

µ̄

λ̄
G∞) < +∞.

It is clear that, for any µ̄ ∈ [0, µG,λ̄),

γ ≤M2TA+
(1− λ̄M2TA)

λ̄
;

therefore,

λ̄ =
1

M2TA+ (1− λ̄M2A)/λ̄
<

1
γ
.

We claim that the functional Lλ̄ is unbounded from below. We can consider a
sequence {τn} of positive numbers such that τn → +∞. Let {ξn} be a sequence in
X for all n ∈ N, defined by

ξn(t) =


4Γ(2−α)τn

T t t ∈ [0, T4 ]
Γ(2− α)τn t ∈ [T4 ,

3T
4 ]

4Γ(2−α)τn

T (T − t) t ∈ [ 3T
4 , T ],

(3.4)

Clearly, ξn(0) = ξn(T ) = 0 and ξn ∈ L2[0, T ]. A direct calculation shows that

0D
α
t ξn(t) =


4τn

T t1−α t ∈ [0, T4 )
4τn

T (t1−α − (t− T
4 )1−α) t ∈ [T4 ,

3T
4 ]

4τn

T (t1−α − (t− T
4 )1−α − (t− 3T

4 )1−α) t ∈ ( 3T
4 , T ].

(3.5)
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Moreover, ∫ T

0

(0D
α
t ξn(t))2dt

=
∫ T/4

0

+
∫ 3T/4

T/4

+
∫ T

3T
4

(0D
α
t ξn(t))2dt

=
16τ2

n

T 2

(∫ T/4

0

t2(1−α)dt+
∫ 3T/4

T/4

(t1−α − (t− T

4
)1−α)2dt

+
∫ T

3T
4

(t1−α − (t− T

4
)1−α − (t− 3T

4
)1−α)2dt

)
= C(T, α)τ2

n,

(3.6)

for each n ∈ N. Thus, ξn ∈ Eα0 [0, T ].
Since G is non-negative and by the definition of Υ, we have

Υ(ξn) =
∫ T

0

[F (ξn(t)) +
µ̄

λ̄
G(ξn(t)]dt ≥

∫ T

0

F (ξn(t))dt

≥
∫ 3T/4

T/4

F (ξn(t))dt ≥ F (Γ(2− α)τn)
∫ 3T/4

T/4

dt.

(3.7)

Let

B = lim sup
ω→+∞

F (ω)
ω2

. (3.8)

If B < +∞, set ε ∈ (0, B − C(T,α)
λΓ2(2−α)T ). Then from 3.8 there exists N1 such that∫ 3T/4

T/4

F (Γ(2− α)τn)dt > (B − ε)Γ2(2− α)τ2
n

T

2
, ∀n > N1.

According to (3.6) and (3.7),

Lλ̄(ξn) ≤ 1
2
C(T, α)τ2

n − λ̄(B − ε)Γ2(2− α)τ2
n

T

2

= τ2
n(

1
2
C(T, α)− λ̄(B − ε)Γ2(2− α)

T

2
),

(3.9)

for n > N1. Choosing a suitable ε and limn→+∞ τn = +∞, it results that

lim
n→+∞

Lλ̄(ξn) = −∞.

If B = +∞, we fix ν > C(T,α)
λΓ2(2−α)T and from 3.8 there exists Nν such that∫ 3T/4

T/4

F (Γ(2− α)τn)dt > νΓ2(2− α)τ2
n

T

2
, ∀n > Nν .

Hence,

Lλ̄(ξn) ≤ 1
2
C(T, α)τ2

n − λ̄F (Γ(2− α)τn
∫ 3T/4

T/4

dt < τ2
n(

1
2
C(T, α)− λ̄νΓ2(2− α)

T

2
),

for all n > Nν . Taking into account the choice of ν, it leads to limn→+∞ Φ(un) −
λ̄Ψ(un) = −∞. Hence, the functional Lλ̄ is unbounded from below, and it follows
that Lλ̄ has no global minimum. Therefore, applying theorem (2.12) there exists a
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sequence {un} ∈ X of critical points of Lλ̄ such that limn→+∞ Φ(un) = +∞. From
(3.2) it follows that 2

√
Φ(un) = ‖un‖α such that limn→+∞ ‖un‖α = +∞. �

Lemma 3.2. Every critical point u ∈ Eα0 [0, T ] of Lλ is a solution of problem (1.1).

Proof. We suppose that u ∈ Eα0 [0, T ] is a critical point of Lλ. There exist u∗1 ∈
∂F (u) and u∗2 ∈ ∂G(u) satisfying∫ T

0

(0D
α
t u(t) · 0Dα

t v(t))dt− λ
∫ T

0

u∗1(t)v(t)dt− µ
∫ T

0

u∗2(t)v(t)dt = 0, (3.10)

for all v ∈ Eα0 [0, T ]. Since u∗1v, u
∗
2v ∈ L1([0, T ],RN ), it follows that tD

−α
T u∗1,

tD
−α
T u∗2 ∈ L1([0, T ],RN ).
Set k1(t) = tD

−α
T u∗1(t) and k2(t) = tD

−α
T u∗2(t), t ∈ [0, T ]. From the definition of

left and right Riemann-Liouville fractional derivatives∫ T

0

(k1(t) · 0Dα
t v(t))dt+

∫ T

0

(k2(t) · 0Dα
t v(t))dt

=
∫ T

0

(tD−αT u∗1(t) · 0Dα
t v(t))dt+

∫ T

0

(tD−αT u∗2(t) · 0Dα
t v(t))dt

=
∫ T

0

(u∗1(t) · 0D
−α
t ( 0D

α
t v(t)))dt+

∫ T

0

(u∗2(t) · 0D
−α
t ( 0D

α
t v(t)))dt

=
∫ T

0

(u∗1(t) · v(t))dt+
∫ T

0

(u∗2(t) · v(t))dt.

From (3.10),∫ T

0

(0D
α
t u(t)− λk1(t)− µk2(t)) ·0 Dα

t v(t))dt

=
∫ T

0

(
tD

α−1
T (0D

α
t u(t)− λk1(t)− µk2(t)) · v′(t)

)
dt = 0,

(3.11)

for all v ∈ C∞0 ([0, T ],RN ). Using the argument in [7] we obtain

tD
α−1
T (0D

α
t u(t)− λk1(t)− µk2(t)) = C, ∀t ∈ [0, T ].

In view of u∗1, u
∗
2 ∈ L1([0, T ],RN ), we identify the equivalence class tDα−1

T (0D
α
t u(t))

and its continuous representative

tD
α−1
T (0D

α
t u(t)) = λ

∫ T

t

u∗1(t)dt+ µ

∫ T

t

u∗2(t)dt+ C, ∀t ∈ [0, T ]. (3.12)

By properties of the left and right Riemann-Liouville fractional derivatives, we
have tD

α
T (0D

α
t u(t)) = −(tDα−1

T (0D
α
t u(t)))′ ∈ L1([0, T ],RN ). Hence, it follows

from (3.5), that

tD
α
T (0D

α
t u(t)) = λu∗1(t) + µu∗2(t), a.e. t ∈ [0, T ].

Moreover, u ∈ Eα0 [0, T ] implies that u(0) = u(T ) = 0. �

Remark 3.3. Under the following two conditions

lim inf
ω→+∞

max|x|≤ω F (x)
ω2

= 0, lim sup
ω→+∞

F (ω)
ω2

= +∞,
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according to Theorem 3.1, for each λ > 0 and each µ ∈ [0, 1
M2TG∞

[, problem (1.1)
admits infinitely many solutions in Eα0 [0, T ]. In addition, if G∞ = 0, the result
holds for every λ > 0 and µ ≥ 0.

Example. Let {an}n∈N and {bn}n∈N be sequences defined by

an = nen, bn = (n+ 1)en.

We define a sequence of non-negative functions

Fn(x) =

{
(|x|+ n)2 exp

(
− | 1

((|x|−nee−en)2−(e2n)) |
)

nen < |x| < (n+ 2)en

0 otherwise.
(3.13)

A direct computation shows that

lim
n→+∞

max|x|≤an
Fn(x)

a2
n

= 0, lim
n→+∞

Fn(bn)
b2n

< +∞.

Then Theorem 3.1, implies that for any non-negative function g : R → R, whose
potential G(ω) =

∫ ω
0
g(t)dt satisfies the condition (3.1), problem (1.1) possesses a

sequence of solutions.

An immediate consequence of theorem 3.1 is a special case when µ = 0.

Theorem 3.4. Assume that the assumptions in theorem 3.1 hold. Then, for each

λ ∈
] C(T, α)

T lim supω→+∞
F (ω)
ω2

,
1

M2T lim infω→+∞
max|x|≤ω F (x)

ω2

[
,

the problem

tD
α
T (0D

α
t u(t)) ∈ λ∂F (u(t)) a.e. t ∈ [0, T ],

has an unbounded sequence of solutions in Eα0 [0, T ].

Theorem 3.5. Let l1 : R→ R be a locally essentially bounded function and denote
L1(x) =

∫ x
0
l1(s)ds for all s ∈ R. Suppose that

(i1) lim infω→+∞
L1(ω)
ω2 < +∞,

(i2) lim supω→+∞
L1(ω)
ω2 = +∞.

Then, for any locally essentially bounded functions li : R → R for 2 ≤ i ≤ n such
that

(i3) max
{

supω∈R Li(ω); 2 ≤ i ≤ n
}
≤ 0 and

(i4) min
{

lim infω→+∞
Li(ω)
ω2 ; 2 ≤ i ≤ n

}
> −∞, where Li(x) =

∫ x
0
li(s)ds,

x ∈ R, 2 ≤ i ≤ n, for each

λ ∈
]
0,

1

M2T lim infω→+∞
L1(ω)
ω2

[
and for any locally essentially bounded function g : R→ R (whose potential
G(x) =

∫ x
0
g(s)ds for every x ∈ R) satisfying (3.1), and for every µ ∈

[0, µG,λ[, where

µG,λ =
1

M2TG∞
(1− λM2T lim inf

ω→+∞

L1(ω)
ω2

),
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then the problem

tD
α
T (0D

α
t u(t)) ∈ λ∂Σni=1Li(u(t)) + µ∂G(u(t)) a.e. t ∈ [0, T ], u(0) = u(T ) = 0,

admits an unbounded sequence of solutions in Eα0 [0, T ].

Proof. Set F (x) = Σni=1Li(x) for all x ∈ R. In view of (i2) and (i4),

lim sup
ω→+∞

F (ω)
ω2

= lim sup
ω→+∞

Σni=1Li(ω)
ω2

= +∞.

Conditions (i1) and (i3) imply that

lim inf
ω→+∞

max|x|≤ω F (x)
ω2

≤ lim inf
ω→+∞

L1(ω)
ω2

< +∞.

By using theorem 3.1, we complete the proof. �

Theorem 3.6. Let f be a locally essentially bounded function and suppose that

lim inf
ω→0+

F (ω)
ω2

<
1

M2C(T, α)
lim sup
ω→0+

F (ω)
ω2

. (3.14)

Then for any λ ∈ Λ1 :=]λ3, λ4[, where

λ3 =
C(T, α)

T lim supω→0+
F (ω)
ω2

, λ4 =
1

M2T lim infω→0+
F (ω)
ω2

,

and for any g : R→ R such that

G0 = lim sup
ω→0+

max|x|≤ω G(x)
ω2

< +∞ (3.15)

and

µ1
G,λ =

1
M2TG0

(1− λM2T lim inf
ω→0+

F (ω)
ω2

)

( µ1
G,λ = +∞, when G0 = 0). Problem 1.1 has a sequence of solutions, which

converges strongly to 0 in Eα0 [0, T ].

Proof. Fix λ ∈ Λ1 and pick µ ∈ [0, µ1
G,λ[. Suppose that Φ,Υ are the functionals

defined by (3.2) and (3.3). Let ln be a sequence of positive numbers such that
limn→∞ ln = 0 and

lim
n→∞

F (ln)
l2n

= lim inf
ω→0+

F (ω)
ω2

.

As in theorem 3.1, we set rn = l2n
M2 , n ∈ N. It follows that δ < +∞. First we show

that
Φ− λΥ does not have a local minimum at zero. (3.16)

Let {θn} be a sequence of positive numbers such that θn → 0 in ]0, θ[, θ > 0 and
{ξn} be the sequence defined in 3.4. According to the non-negativity of G it leads
that 3.7 satisfies. Using 3.14, λ3 < λ4. Let

B1 = lim sup
ω→0+

F (ω)
ω2

.

If B1 < +∞, then 3.9 holds. By the choice of ε,

lim
n→+∞

(Φ(ξn)− λΥ(ξn)) < 0 = Φ(0)− λΥ(0).
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Therefore, Φ − λΥ does not have a local minimum at zero, in view of fact that
‖ξn‖ → 0.

An argument similar to the one in the proof of theorem 3.1 ,for the case B1 = 0,
imply 3.16. Since minX Φ = Φ(0), in view of theorem 2.12(c) the consequence is
obtained. �

Next we show an application of theorem 3.1 for obtaining infinitely many solu-
tions. Consider

tD
α
T (0D

α
t u(t)) ∈ −λθ(t)∂F (u)− µϑ(t)∂G(u) t ∈ [0, T ]

u(0) = u(T ) = 0,
(3.17)

where λ, µ are real parameters, λ > 0, µ ≥ 0 and F,G : R→ R are locally Lipschitz
functions given by F (ω) =

∫ ω
0
f(t)dt, G(ω) =

∫ ω
0
g(t)dt, ω ∈ R such that f, g : R→

R are measurable (not necessarily continuous) functions. Moreover, θ, ϑ ∈ L1[0, T ]
and θ, ϑ ≥ 0 will given. Our result is stated as follows.

Theorem 3.7. Assume the following two conditions:
(i1’)

lim inf
ω→+∞

max|x|≤ω F (x)
ω2

<
θ∗ lim supω→+∞

F (ω)
ω2

M2C(T, α)
,

(i2’)

λ1 =
C(T, α)

Tθ∗ lim supω→+∞
F (ω)
ω2

, λ2 =
1

TM2 lim infω→+∞
max|x|≤ω F (x)

ω2

,

where θ∗ =
∫ T

0
θ(t)dt and ϑ∗ =

∫ T
0
ϑ(t)dt.

Then for any µ ∈ [0, µG,λ), problem (3.17) has an unbounded sequence of solutions
in Eα0 [0, T ].

Proof. Define the functionals Φ, E : X → R for each u ∈ X as follows:

Φ(u) =
1
2
‖u‖2α,

Υ(u) =
∫ T

0

θ(t)F (u(t))dt+
µ

λ

∫ T

0

ϑ(t)G(u(t))dt,

E(u) = Υ(u)− χ(u), Lλ(u) := Φ(u)− λE(u).

As in theorem 3.1, we show that λ̄ < 1
γ . Note that

ϕ(rn) ≤
max|x|≤ωn

[θ∗F (x) + µ̄
λ̄
ϑ∗G(x)]

ω2
n

M2

≤M2
max|x|≤ωn

[θ∗F (x) + µ̄
λ̄
ϑ∗G(x)]

ω2
n

≤M2
[max|x|≤ωn

θ∗F (x)
ω2
n

+
µ̄

λ̄

max|x|≤ωn
ϑ∗G(x)

ω2
n

]
,

Therefore,

γ ≤ lim inf
n→+∞

ϕ(rn) ≤M2(θ∗A+
µ̄

λ̄
ϑ∗G∞) < +∞.
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It is clear that, for every µ̄ ∈ [0, µG,λ̄),

γ ≤M2θ∗A+ ϑ∗
(1− λ̄M2TA)

T λ̄
.

Then

λ̄ =
1

M2θ∗A+ ϑ∗(1− λ̄M2TA)/T λ̄
<

1
γ
.

We claim that the functional Lλ̄ is unbounded from below.
Since G is non-negative, from the definition of Υ we have

Υ(u) =
∫ T

0

θ(t)F (u(t))dt+
µ

λ

∫ T

0

ϑ(t)G(u(t))dt

≥
∫ 3T/4

T/4

θ(t)F (ξn(t))dt

≥ F (Γ(2− α)τn)
∫ 3T/4

T/4

θ(t)dt = F (Γ(2− α)τn)θ′,

(3.18)

where θ′ =
∫ 3T/4

T/4
θ(t)dt. Set

B = lim sup
ω→+∞

F (ω)
ω2

. (3.19)

If B < +∞, let ε ∈ (0, B − C(T,α)
2λθ′Γ2(2−α) ), then from 3.19 there exists N1 such that

θ′F (Γ(2− α)τn) > θ′(B − ε)Γ2(2− α)τ2
n, ∀n > N1.

According to (3.18),

Lλ̄(ξn) ≤ 1
2
C(T, α)τ2

n − λ̄(β − ε)θ′Γ2(2− α)τ2
n

= τ2
n(

1
2
C(T, α)− λ̄(β − ε)θ′Γ2(2− α)),

(3.20)

for n > N1. Choosing a suitable ε and using that limn→+∞ τn = +∞, it results
that

lim
n→+∞

Lλ̄(ξn) = −∞.

If B = +∞, we fix ν > C(T,α)

2λ̄θ′Γ2(2−α)
and from 3.19, there exists Nν such that

θ′F (Γ(2− α)τn) > θ′νΓ2(2− α)τ2
n, ∀n > Nν .

Hence,

Lλ̄(ξn) ≤ 1
2
C(T, α)τ2

n − λ̄θ′F (Γ(2− α)τn) < τ2
n(

1
2
C(T, α)− λ̄θ′νΓ2(2− α)),

for all n > Nν . Taking into account the choice of ν, implies that limn→+∞ Φ(un)−
λ̄Ψ(un) = −∞. From theorem 2.12, there is a sequence {un} ∈ X of critical points
of Lλ̄ such that limn→+∞ Φ(un) = +∞. �
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