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LOCAL EXTREMA OF POSITIVE SOLUTIONS OF NONLINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

GEORGE E. CHATZARAKIS, LANA HORVAT DMITROVIĆ, MERVAN PAŠIĆ

Abstract. We study the positive solutions of a general class of second-order

functional differential equations, which includes delay, advanced, and delay-

advanced equations. We establish integral conditions on the coefficients on a
given bounded interval J such that every positive solution has a local maxi-

mum in J . Then, we use the connection between that integral condition and

Rayleigh quotient to get a sufficient condition that is easier to be applied.
Several examples are provided to demonstrate the importance of our results.

1. Introduction

We consider the functional differential equations of the second-order,(
r(t)x′(t)

)′ + n∑
i=1

pi(t)f(x(hi(t)) +
m∑
j=1

qj(t)|x(τj(t))|αj−1x(τj(t)) = e(t), (1.1)

where r(t) ∈ C1(R), n,m ∈ N and pi(t), hi(t), qj(t), τj(t), e(t) ∈ C(R).
Two auxiliary functions Mmin(t) and Mmax(t) are associated to the functional

terms hi(t) and τj(t):

Mmin(t) = min{h1(t), . . . , hn(t), τ1(t), . . . , τm(t)},
Mmax(t) = max{h1(t), . . . , hn(t), τ1(t), . . . , τm(t)}.

For a < b, let Ja,b ⊆ R denote the open interval,

Ja,b =
(

min{a,Mmin(a)},max{b,Mmax(b)}
)
.

In particular,

Ja,b =

{(
Mmin(a), b

)
, if hi(t) ≤ t and τj(t) ≤ t on [a, b],(

a,Mmax(b)
)
, if hi(t) ≥ t and τj(t) ≥ t on [a, b],

(1.2)

for all i ∈ [1, n]N := {1, . . . , n} and j ∈ [1,m]N := {1, . . . ,m}.
The main coefficients in (1.1) satisfy

r(t) > 0, t ∈ R and e(t) ≤ 0, t ∈ Ja,b,
pi(t) ≥ 0 and qj(t) ≥ 0, t ∈ Ja,b, i ∈ [1, n]N, j ∈ [1,m]N,

∃i0, j0 such that pi0(t) > 0 if e(t) ≡ 0, otherwise qj0(t) > 0.
(1.3)
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For each i ∈ [1, n]N and j ∈ [1,m]N let exist functions Rhi
(t) and Rτj

(t) (depend-
ing on hi(t) and τj(t), respectively) such that for any x ∈ C2(Ja,b) and x(t) > 0,
t ∈ Ja,b, we have

if
(
r(t)x′(t)

)′ ≤ 0 in Ja,b, then

{x(hi(t))
x(t) ≥ Rhi

(t) in (a, b), i ∈ [1, n]N,
x(τj(t))
x(t) ≥ Rτj (t) in (a, b), j ∈ [1,m]N.

(1.4)

The so-called generalized concave condition (1.4) is more natural than restrictive,
because it is fulfilled in the two most important functional cases, delay and advance:

Rg(t) =

{ g(t)−g(a)
t−g(a) , if g(t) ≤ t and r(t) is non-decreasing,
g(b)−g(t)
g(b)−t , if g(t) ≥ t and r(t) is non-increasing,

(1.5)

where g(t) is an arbitrary continuous functional term (see Proposition 5.1 in the
appendix).

The nonlinear terms in (1.1) satisfy

∃f0 > 0, f(x) ≥ f0x for all x ≥ 0, (1.6)

and
αj ≥ 0, j ∈ [1,m]N,

there exists (η0, η1, η2, . . . , ηm), ηj > 0, j ∈ [1,m]N

such that
m∑
j=0

ηj = 1 and
m∑
j=1

αjηj = 1.
(1.7)

If qj(t) ≡ 0 for all j ∈ [1,m]N, then the assumption (1.7) is not required. As to
the existence of an (m+ 1)-tuple (η0, η1, η2, . . . , ηm) satisfying (1.7) with respect to
a given m-tuple (α1, α2, . . . , αm) such that α1 > · · · > αj0 > 1 > αj0+1 > . . . . >
αm > 0 for some j0, we refer the reader to [18]. Also, if m = 1 and α1 > 1, then
η1 = 1/α1 and η0 = 1− 1/α1 satisfy the required conditions in (1.7): η0 + η1 = 1,
α1η1 = 1 and ηj > 0.

Note that (1.1) contains several types of nonlinear functional differential equa-
tions. Here we consider several special cases.

(i) If qj(t) ≡ 0 for all j ∈ [1,m]N, f(x) = x and e(t) ≡ 0, then (1.1) is a linear
differential equation with several functional arguments.

(ii) If hi(t) ≤ t and τj(t) ≤ t (resp. hi(t) ≥ t and τj(t) ≥ t) for all i ∈ [1, n]N,
j ∈ [1,m]N, then (1.1) is a nonlinear delay (resp. advance) differential
equation with several arguments.

(iii) If hi(t) ≤ t and τj(t) ≤ t for all i ∈ [1, i0]N, j ∈ [1, j0]N as well as hi(t) ≥ t
and τj(t) ≥ t for all i ∈ [i0 + 1, n]N, j ∈ [j0 + 1,m]N and t ∈ R, then (1.1) is
a nonlinear delayed-advanced differential equation with several arguments.

(iv) If f(x) ≡ 0 and α1 > · · · > αj0 > 1 > αj0+1 > · · · > αm > 0 for some j0,
then (1.1) is a functional differential equation with mixed nonlinearities.

As can be seen from the preceding comments, (1.1) includes several types of
functional differential equations.

Definition 1.1. A function x ∈ C1(a, b) is non-monotonic in (a, b), if there exists
t∗ ∈ (a, b) such that x′(t∗) = 0 and x′(t) changes sign at t = t∗.
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Recently, in [8], the authors have studied the non-monotonicity of the solutions
of the delay differential equation

(r(t)x′(t))′ + f(x(τ(t)) = 0,

which is a special case of (1.1). That study used the zero-point analysis of the corre-
sponding dual equation. In the present paper, we follow a different approach. More-
over, we obtain an integral criterion, for the non-monotonicity of solutions, which
is a different type of conditions than the point-wise criterion presented in [8]. This
aspect will be explained in more detail, in the following sections. For some results
on the classic oscillations as a particular case of the non-monotonic behaviour of the
functional differential equations, we refer the reader to [4, 5, 9, 12, 19, 20]. About
the importance of non-monotonic behaviour of some modern mathematical models
in applied science, see for instance in [13, 14, 21]. The global non-monotonicity
(case where (a, b) = (a,∞)) of the second-order differential equation

(r(t)x′(t))′ + q(t)f(x(t)) = e(t),

with possible non-homogeneous term and without functional terms, has been re-
cently considered in [15, 16]. Furthermore, in [7], for a nonlinear functional differ-
ential equation

(r(t)h(x)x′(t))′ + q(t)f(x(g(t)) = 0,

the global non-monotonicity of solutions was considered in the form of weakly
oscillatory solutions.

2. Main results

Theorem 2.1. Let a < b and (1.3), (1.4), (1.6) and (1.7) hold. Let Θ(t) be a
function defined as

Θ(t) = f0

n∑
i=1

pi(t)Rhi
(t) +

( |e(t)|
η0

)η0 m∏
j=1

(qj(t)
ηj

)ηj

[Rτj
(t)]ηjαj , (2.1)

where Rhi
(t), Rτj

(t), f0, and ηj are defined in (1.4) (1.6) and (1.7), respectively.
If a < a′ < b′ < b and there exists a test function ϕ ∈ C([a′, b′]) ∩ C1(a′, b′),
ϕ(a′) = ϕ(b′) = 0 such that∫ b′

a′

ϕ2(t)
r(t)

dt >

∫ b′

a′

1
Θ(t)

(dϕ
dt

)2

dt, (2.2)

then every positive solution x(t) of (1.1) has a local maximum in (a, b) and is
non-monotonic in (a, b).

Remark 2.2. (i) The restriction from (a, b) to (a′, b′) in (2.2) is necessary, because
often Rhi

(a) = 0 or Rhi
(b) = 0 (resp., Rτj

(a) = 0 or Rτj
(b) = 0), see for instance

(1.5). In such a case, Θ(a) = 0 or Θ(b) = 0; hence, to avoid any singular behaviour
in the right integral in (2.2), we use [a′, b′] for the domain of integration, where
a < a′ < b′ < b.

(ii) If e(t) ≡ 0, then Θ(t) is reduced to the first sum. Hence in (1.3), we assume
the existence of a number k such that pk(t) > 0, in order to avoid Θ(t) = 0, for
some t ∈ (a, b).
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In the Sturm-Liouville theory and the variational characterization of lowest
eigenvalues, the next Rayleigh quotient plays a crucial role,

R(ϕ) =

∫ b′
a′

(
dϕ
dt

)2
dt∫ b′

a′
ϕ2(t)dt

, ϕ ∈ C1(a′, b′), ϕ 6≡ 0.

It is not difficult to see that if a < a′ < b′ < b and there exists a test function
ϕ ∈ C([a′, b′]) ∩ C1(a′, b′), ϕ(a′) = ϕ(b′) = 0 such that

mint∈[a′,b′] Θ(t)
maxt∈[a′,b′] r(t)

> R(ϕ), (2.3)

then (2.2) holds. Hence, Theorem 2.1 takes the simple form:

Theorem 2.3. Let a < b and (1.3), (1.4), (1.6) and (1.7) hold. Let Θ(t) be the
function defined by (2.1). If a < a′ < b′ < b and there exists a test function
ϕ ∈ C([a′, b′]) ∩ C1(a′, b′), ϕ(a′) = ϕ(b′) = 0 such that (2.3) holds, then every
positive solution x(t) of (1.1) is non-monotonic in (a, b), having a local maximum
in (a, b).

The well-known variational principle (see [2, 11, 17]), which has been formulated
in a higher dimensional case and is also known as the Courant-Fisher formula
(see [3]) or the Rayleigh-Ritz variational formula (see [6]), says that for a set of
eigenvalues λ of the second-order Dirichlet problem ϕ′′+λϕ = 0, ϕ(a′) = ϕ(b′) = 0
which consists of a sequence (λn)n∈N satisfying 0 < λ1 < λ2 . . . . < λn < . . . . and
limn→∞ λn =∞, we have that

λ1 = min
{
R(ϕ) : ϕ ∈ C2

0 (a′, b′), ϕ 6≡ 0
}

= R(ϕ1),

where ϕ1(t) = sin
(
π(t − a′)/(b′ − a′)

)
is the eigenvector which corresponds to

eigenvalue λ1. Hence, λ1 =
(
π/(b′−a′)

)2. Now we can use this formula to simplify
inequality (2.3) which lead us to a more applicable result, stated in the following
theorem.

Theorem 2.4. Let a < b and (1.3), (1.4), (1.6) and (1.7) hold. Let Θ(t) be the
function defined by (2.1) and let a < a′ < b′ < b. If the inequality

mint∈[a′,b′] Θ(t)
maxt∈[a′,b′] r(t)

>
( π

b′ − a′
)2

(2.4)

holds, then every positive solution x(t) of (1.1) is non-monotonic in (a, b), having
a local maximum in (a, b).

Furthermore, it is known that the previous observation can be generalized to
the Rayleigh quotient and the corresponding eigenvalue problem, using the weight
ω(t) = 1/r(t). In that case, we have

R1/r(ϕ) =

∫ b′
a′

(
dϕ
dt

)2
dt∫ b′

a′
ϕ2(t)
r(t) dt

, ϕ ∈ C1(a′, b′), ϕ 6≡ 0,

ϕ′′ +
λ

r(t)
ϕ = 0, ϕ(a′) = ϕ(b′) = 0.

Then the set of all eigenvalues λ is represented by the sequence (λn)n∈N satisfying:
0 < λ1 < λ2 · · · < λn < . . . , limn→∞ λn =∞ and

λ1 = min
{
R1/r(ϕ) : ϕ ∈ C2

0 (a′, b′), ϕ 6≡ 0
}

= R1/r(ϕ1), (2.5)
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where ϕ1(t) is the eigenvector which corresponds to the eigenvalue λ1. Hence,
each of the following two conditions (C1) and (C2) implies the inequality which
constitutes the main assumption (2.2), in Theorem 2.1.

(C1) There exists a test function ϕ ∈ C([a′, b′]) ∩ C1(a′, b′), ϕ(a′) = ϕ(b′) = 0
such that mint∈[a′,b′] Θ(t) > R1/r(ϕ).

(C2) It holds that mint∈[a′,b′] Θ(t) > λ1, where λ1 is given by (2.5).
Consequently, we have the following theorem.

Theorem 2.5. Let a < b and (1.3), (1.4), (1.6) and (1.7) hold. Let Θ(t) be the
function defined by (2.1) and a < a′ < b′ < b. If either (C1) or (C2) holds,
then every positive solution x(t) of (1.1) is non-monotonic in (a, b), having a local
maximum in (a, b).

3. Proofs of the main results

First, we postulate three lemmas which we will use to prove Theorem 2.1.

Lemma 3.1. If (1.3) and (2.2) hold, then the differential inequality

dw

dt
≥ 1
r(t)

+ Θ(t)w2, t ∈ (a, b), (3.1)

does not allow any solution w ∈ C1(a, b), where Θ(t) is defined by (2.1).

Proof. Assume the opposite of the lemma’s conclusion, namely that there exists a
function w ∈ C1(a, b) satisfying the differential inequality (3.1). Multiplying (3.1)
with ϕ2(t) where ϕ is a test function ϕ ∈ C0([a′, b′])∩C1(a′, b′) and a < a′ < b′ < b
and then integrating the resulting inequality on [a′, b′], we obtain∫ b′

a′

ϕ2(t)
r(t)

dt ≤ −
∫ b′

a′
Θ(t)w2(t)ϕ2(t)dt+

∫ b′

a′

dw

dt
ϕ2(t)dt

= −
∫ b′

a′
Θ(t)w2(t)ϕ2(t)dt− 2

∫ b′

a′
w(t)ϕ(t)ϕ′(t)dt

= −
∫ b′

a′

[(
w(t)ϕ(t)

√
Θ(t)

)2 + 2w(t)ϕ(t)
√

Θ(t)
ϕ′(t)√

Θ(t)

]
dt

= −
∫ b′

a′

(
w(t)ϕ(t)

√
Θ(t) +

ϕ′(t)√
Θ(t)

)2

dt+
∫ b′

a′

ϕ′2(t)
Θ(t)

dt

≤
∫ b′

a′

ϕ′2(t)
Θ(t)

dt,

which is a contradiction to assumption (2.2). Thus, (3.1) does not allow any solution
w ∈ C1(a, b), which proves this lemma. �

Lemma 3.2. Let (1.3), (1.4), (1.6) and (1.7) hold. If the differential inequality

dw

dt
≥ 1
r(t)

+ Θ(t)w2, t ∈ (a, b), (3.2)

does not allow any solution w ∈ C1(a, b), then every positive solution x(t) of (1.1)
has a stationary point in (a, b).
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Proof. Suppose to the contrary that x(t) is a positive solution of (1.1), having no
stationary point on (a, b), that is,

x′(t) 6= 0 on (a, b). (3.3)

According to (3.3), the function

w(x) =
x(t)

r(t)x′(t)
, t ∈ (a, b), (3.4)

is well defined and w ∈ C1(a, b). Now, we recall the well-known arithmetic-
geometric mean inequality (see [10]),

if Aj ≥ 0, ηj > 0 and
m∑
j=0

ηj = 1, then
m∑
j=0

ηjAj ≥
m∏
j=0

A
ηj

j

and use that inequality, taking

A0 =
|e(t)|
η0

and Aj =
qj(t)|x(τj(t))|αj

ηj
, j ∈ [1,m]N.

Note that we can use (1.4), because from (1.1), (1.3) and x(t) ≥ 0, we have
(r(t)x′(t))′ ≤ 0 in Ja,b. Then by means of (1.3), (1.4), (1.6) and (1.7), we have

dω

dt

=
1
r(t)
− x(t)

(r(t)x′(t))2
(r(t)x′(t))′

=
1
r(t)

+
x(t)

(r(t)x′(t))2

[ n∑
i=1

pi(t)f(x(hi(t)) +
m∑
j=1

qj(t)|x(τj(t))|αj−1x(τj(t))− e(t)
]

=
1
r(t)

+ ω2(t)
{ n∑
i=1

pi(t)
f(x(hi(t))

x(t)
+

1
x(t)

[ m∑
j=1

qj(t)|x(τj(t))|αj + e(t)
]}

≥ 1
r(t)

+ ω2(t)
{
f0

n∑
i=1

pi(t)Rhi
(t) +

1
x(t)

[ m∑
j=1

ηj

(qj(t)|x(τj(t))|αj

ηj

)
+ η0

( |e(t)|
η0

)]}
≥ 1
r(t)

+ ω2(t)
{
f0

n∑
i=1

pi(t)Rhi
(t) +

1
x(t)

( |e(t)|
η0

)η0 m∏
j=1

(qj(t)
ηj

)ηj

|x(τj(t))|ηjαj

}
=

1
r(t)

+ ω2(t)
{
f0

n∑
i=1

pi(t)Rhi
(t) +

( |e(t)|
η0

)η0 m∏
j=1

(qj(t)
ηj

)ηj
( |x(τj(t))|

x(t)

)ηjαj
}

≥ 1
r(t)

+ ω2(t)
{
f0

n∑
i=1

pi(t)Rhi
(t) +

( |e(t)|
η0

)η0 m∏
j=1

(qj(t)
ηj

)ηj

[Rτj
(t)]ηjαj

}
=

1
r(t)

+ Θ(t)w2, t ∈ (a, b).

Thus, the function w defined in (3.4) satisfies the differential inequality (3.1), which
contradicts the main assumption of this lemma. Therefore, every positive solution
x(t) of (1.1) has a stationary point in (a, b). �
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Lemma 3.3. Let (1.3) and (1.6) hold and x(t) be a solution of (1.1) such that
x(t) > 0 on [a, b]. If t∗ ∈ (a, b) is a stationary point of x(t), then x(t) attains a
local maximum at t∗.

Proof. Let t∗ ∈ (a, b) be a point such that x′(t∗) = 0. Integrating (1.1) over [t∗, t]
for all t ∈ (a, b), we obtain

x′(t) =
−1
r(t)

∫ t

t∗

[ n∑
i=1

pi(t)f(x(hi(t)) +
m∑
i=j

qj(t)|x(τj(t))|αj−1x(τj(t))− e(t)
]
. (3.5)

According to (1.3), (1.6) and x(t) > 0, the integral function in (3.5) is positive in
(a, b) and hence, the right hand-side in (3.5) is negative for t > t∗ and positive for
t < t∗. That shows that t∗ is a point of local maximum of x(t). �

Note that the statements in lemmas 3.2 and 3.3 are mutually independent.

Proof of Theorem 2.1. It follows the assumptions of theorem and Lemma 3.1 that
the differential inequality (3.1) does not have any solution. Now, from Lemma 3.2
we get that every positive solution has a stationary point and by Lemma 3.3 we
have that this stationary point has to be a maximum. �

Proof of Theorem 2.3. It can be shown by a straightforward calculation that in-
equality (2.2) follows from inequality (2.3). �

Proof of Theorem 2.4. We can construct a test function ϕ ∈ C([a′, b′])∩C1(a′, b′),
ϕ(a′) = ϕ(b′) = 0 such that ∫ b′

a′
ϕ′2(t)dt∫ b′

a′
ϕ2(t)dt

=
( π

b′ − a′
)2

. (3.6)

It is easy to show that the function ϕ(t) = A sin
(
π t−a′
b′−a′

)
is such a test function.

Now, the statement follows from Theorem 2.3. �

4. Examples

In this section, we illustrate our main results, trough two simple examples.

Example 4.1. Consider the differential equation

x′′ +A sin(ωt)x(t− τ) = e(t), (4.1)

where A > 0, ω > 0, τ ≥ 0 and e(t) is an arbitrary continuous function. The above
equation is of the type of (1.1) with r(t) ≡ 1, n = 1, p1(t) = A sin(ωt), f(x) = x,
h1(t) = t− τ , m = 1 and q1(t) ≡ 0. Let (a, b) ⊂ (τ, π/ω) be an open interval such
that

τ < a <
π

6ω
, A >

9ω2
(
π
6ω − a+ τ

)
2
(
π
6ω − a

) ,
5π
6ω

< b <
π

ω
, e(t) ≤ 0 in (a, b). (4.2)

If especially, τ < a ≤ π
12ω and A ≥ 9ω2, we can easily see the first two inequalities

in (4.2) are satisfied, because

A ≥ 9ω2 =
9ω2

2
2 ≥

9ω2
(
π
6ω

)
2
(
π
6ω − a

) > 9ω2
(
π
6ω − a+ τ

)
2
(
π
6ω − a

) .

We claim that every positive solution of equation (4.1) has a local maximum in
(a, b), provided (4.2) holds. Note that this statement cannot easily be derived,
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even in the homogeneous case (e(t) ≡ 0). In that case, from (4.1), we have x′′ =
−A sin(ωt)x(t−τ). If x(t) is a positive solution, the preceding equality implies that
x′′(t) is sign-changing, but in general, does not imply that x′(t) is sign-changing.

To show the above statement, we use Theorem 2.4. At first, we see that the set
Ja,b defined in (1.2) satisfies Ja,b = (a− τ, b) ⊂ (0, π/ω), which implies

p1(t) = A sin(ωt) > 0, t ∈ Ja,b.

Hence, (1.3) is satisfied. Since h1(t) = t− τ ≤ t and r(t) = 1 is non-decreasing, it
follows that (1.4) holds because of (1.5), where

Rh1(t) =
h1(t)− h1(a)
t− h1(a)

=
t− a

t− a+ τ
, t > a.

From Rh1(t) being an increasing function, we have that in any [a′, b′] ⊂ (0,∞),

min
t∈[a′,b′]

Rh1(t) = Rh1(a′). (4.3)

Since f(x) = x, we have that (1.6) holds with f0 = 1. Since qj(t) ≡ 0 for all
j ∈ [1,m]N, we do not need assumption (1.7).

Now, let [a′, b′] = [ π6ω ,
5π
6ω ]. Since r(t) = 1, from (2.1), (4.2) and (4.3), we derive

that a < a′ < b′ < b and

mint∈[a′,b′] Θ(t)
maxt∈[a′,b′] r(t)

= min
t∈[a′,b′]

[
A sin(t)Rh1(t)

]
=
A

2

π
6ω − a

π
6ω − a+ τ

>
9ω2

4
=
( π

b′ − a′
)2

.

Therefore, (2.4) is satisfied. Consequently, all conditions of Theorem 2.4 are ful-
filled, thus establishing the main statement of this example.

Example 4.2. Consider the special case of the Duffing equation with time delay
feedback,

x′′ + ω0x+ βx3 + λ sin(t)x(t− τ) = − cos(t/2), (4.4)

where ω0 > 0 is natural frequency, β > 0, λ > 0 is the gain parameter and τ ≥ 0.
Equation (4.4) is a particular case of the main equation (1.1) with

r(t) = 1, n = 2, p1(t) = ω0, h1(t) = t, p2(t) = λ sin(t), h2(t) = t− τ,
f(x) = x, m = 1, q1(t) = β, τ1(t) = t, α1 = 3, e(t) = − cos(t/2).

(4.5)
Note that the cubic term βx3, introducing a strong nonlinearity into the equa-
tion, cannot be considered as part of the linear term

∑n
i=1 pi(t)f(x(hi(t)), because

f(x) = βx3 does not satisfy the required condition (1.6). Let (a, b) be an open
interval such that

τ < a <
π

3
,

2π
3
< b < π and [a′, b′] =

[π
3
,

2π
3

]
.

Since m = 1, condition (1.7) is always satisfied, because for α1 = 3, the system

η0 + η1 = 1 and η1α1 = 1, ηj > 0,

imply η0 = 2/3 and η1 = 1/3. Hence, from (1.5), (2.1) and (4.5), we have Rh1(t) =
1, Rτ1(t) = 1,

Rh2(t) =
t− a

t− a+ τ
Θ(t) = ω0 + λ sin(t)Rh2(t) +

3
22/3

β1/3| cos(t/2)|2/3. (4.6)
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Note that sin(t) > 0 and − cos(t/2) ≤ 0 on [a− τ, b] as well as Rh2(a′) ≤ Rh2(t) for
all t ∈ [a′, b′]. Hence from (4.6), we obtain

mint∈[a′,b′] Θ(t)
maxt∈[a′,b′] r(t)

= min
t∈[a′,b′]

Θ(t) = ω0 +
√

3λ
2

π − 3a
π − 3a+ 3τ

+
3

22/3
β1/3(1/2)1/3

≥ min{ω0, λ, β
1/3}

(5
2

+
√

3
2

π − 3a
π − 3a+ 3τ

)
> 9 =

( π

b′ − a′
)2

,

provided

min{ω0, λ, β
1/3} > 18(π − 3a+ 3τ)

(5 +
√

3)(π − 3a) + 15τ
. (4.7)

Now, by Theorem 2.4, if (4.7) is true, then every positive solution of equation (4.4)
has a local maximum in (a, b).

5. Appendix

In this section, we state a proposition that justifies why the generalized condition
(1.4) is fulfilled both in the delay and the advanced cases, for any functional term
g(t), satisfying (1.5). Below, we show this proposition, for the delay case where
Rg(t) is defined by the upper branch of (1.5), i.e.,

g(a) < g(t) ≤ t, t ∈ (a, b). (5.1)

Note that condition (5.1) holds especially, for the standard delay term g(t) = t− τ ,
τ > 0. The proposition can be stated in a corresponding manner, for the advanced
case and has a similar proof, for that case.

Proposition 5.1. Let the functional term g(t) satisfy (5.1), Ja,b := (g(a), b) and
r(t) be a non-decreasing positive function on Ja,b. If x ∈ C2(Ja,b), x(s) > 0,
s ∈ Ja,b and (

r(s)x′(s)
)′ ≤ 0, s ∈ Ja,b, (5.2)

then

x(g(t))
x(t)

≥ g(t)− g(a)
t− g(a)

, t ∈ (a, b). (5.3)

Proof. We will proceed by showing that assumption (5.2) implies

x′(s)
x(s)

≤ 1
s− g(a)

, s ∈ Ja,b. (5.4)

Since (g(t), t) ⊆ Ja,b for any t ∈ (a, b), integrating (5.4) over [g(t), t], we obtain

ln
x(t)
x(g(t))

≤ ln
t− g(a)
g(t)− g(a)

,

which proves the desired inequality (5.3). Thus, the proof of the proposition reduces
to establishing that assumption (5.2) implies (5.4).

Since x(s) > 0 on Ja,b, let us remark that (5.4) is trivially satisfied for all s ∈ Ja,b
such that x′(s) ≤ 0. Hence, let s ∈ Ja,b be such that x′(s) ≥ 0. Now, integrating
(5.2) over (σ, s) for every σ ∈ Ja,b such that σ < s, we have

0 ≤ r(s)x′(s) ≤ r(σ)x′(σ). (5.5)
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Since r(t) is non-decreasing, we have r(σ) ≤ r(s), which together with (5.5), imply

x′(s) ≤ r(σ)
r(s)

x′(σ) ≤ x′(σ), for all σ ∈ Ja,b such that σ < s.

Now, by the Lagrange mean value theorem on (g(a), s), there exists a σ ∈ (g(a), s)
such that x(s)− x(g(a)) = x′(σ)(s− g(a)). Since x(g(a)) ≥ 0, we have that

x(s) ≥ x′(σ)(s− g(a)) ≥ x′(s)(s− g(a)),

which proves the required inequality (5.4). �

Acknowledgements. The authors would like to thank the anonymous referees for
their constructive remarks which improved this article.

References

[1] H. Akca, G. E. Chatzarakis, I. P. Stavroulakis; An oscillation criterion for delay differential
equations with several non-monotone arguments, Applied Mathematics Letters, 59 (2016),

101–108.

[2] J. Appel, E. De Pascale, A. Vignoli; Nonlinear Spectral Theory, de Gruyter Series in Nonlinear
Analysis and Applications 10, Walter de Gruyter, Berlin, 2004.

[3] H. Attouch, G. Buttazzo, M. Giuseppe, G. Michaille; Variational analysis in Sobolev and

BV spaces. Applications to PDEs and optimization. MPS/SIAM Series on Optimization, 6.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical

Programming Society (MPS), Philadelphia, PA, 2006.

[4] L. Berezansky, A. Domoshnitsky, M. Gitman, V. Stolbov; Exponential stability of a second
order delay differential equation without damping term. Appl. Math. Comput., 258 (2015),

483–488.

[5] E. Braverman, G. E. Chatzarakis, I. P. Stavroulakis; Iterative oscillation tests for differen-
tial equations with several non-monotone arguments, Adv. Differential Equations (2016), 18

pages.
[6] I. Birindelli, F. Camilli, D. Capuzzo; On the approximation of the principal eigenvalue for a

class of nonlinear elliptic operators, Commun. Math. Sci., 15 (2017), no. 1, 5–75.

[7] M. Cecchi, M. Marini; Oscillatory and nonoscillatory behavior of a second order functional
differential equation, Rocky Mountain J. Math., 22 (1992), 1259–1276.
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[13] M. Pašić; Sign-changing first derivative of positive solutions of forced second-order nonlinear
differential equations, Appl. Math. Lett., 40 (2015), 40–44.
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