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COMPOSITION AND CONVOLUTION THEOREMS FOR

1~-STEPANOV PSEUDO ALMOST PERIODIC FUNCTIONS AND

APPLICATIONS TO FRACTIONAL INTEGRO-DIFFERENTIAL
EQUATIONS

EDGARDO ALVAREZ

ABSTRACT. In this article we establish new convolution and composition the-
orems for p-Stepanov pseudo almost periodic functions. We prove that the
space of vector-valued p-Stepanov pseudo almost periodic functions is a Ba-
nach space. As an application, we prove the existence and uniqueness of pu-
pseudo almost periodic mild solutions for the fractional integro-differential
equation

t
D%u(t) = Au(t) + /7 a(t — s)Au(s)ds + f(t, u(?)),

where A generates an a-resolvent family {Sa(t)};>0 on a Banach space X,
a€Ll

loc
Weyl and the nonlinearity f is a u-Stepanov pseudo almost periodic function.

(R4), @ > 0, the fractional derivative is understood in the sense of

1. INTRODUCTION

Ezzinbi et al. [I] defined the space of pu-SP-pseudo almost periodic functions.
This space contains the space of Stepanov-like weighted pseudo almost periodic
functions (see [8 [I1]) and the space of p-pseudo almost periodic functions (see [5]).
Several composition theorems and their applications in the context of Stepanov-like
almost periodic, Stepanov-like pseudo almost periodic and Stepanov-like weighted
pseudo almost periodic functions appear for example in [2, 9, [10, 12] [T4]. Here we
generalize the composition theorem given by Zhao et al. for the space of Stepanov-
like weighted pseudo almost periodic functions (see [I4, Th. 2.15]). Also, we recover
the composition result given by Ezzinbi et al. for pu-SP-pseudo almost periodic
functions (see [I, Th. 2.29]). Moreover, we establish another composition theorem
that does not require Lipschitzian nonlinearities (Theorem and Theorem |3.8)).

In Theorem [3.10| we prove that the convolution of a strongly continuous family
{S(t)}+>0 with a u-SP-pseudo almost periodic function F, (S f)(t) = fjoo S(t—
s)F(s)ds, is a p-pseudo almost periodic function. We prove that the collection
of p-SP-pseudo almost periodic functions is a Banach space with a natural norm
(Theorem , and combine our results to prove the existence and uniqueness
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of p-pseudo almost periodic solutions to a class of abstract fractional differential

equations
t

Du(t) = Au(t) + / a(t — s)Au(s)ds + f(t,u(t)), (1.1)
where A generates an a-resolvent family {S,(t)}i>0 on a Banach space X, a €
Li (Ry), a > 0, the fractional derivative is understood in the sense of Weyl and
provided that the nonlinear term f is pu-Stepanov pseudo almost periodic.

2. PRELIMINARIES

Throughout this article (X, || || x) and (Y,] - ||y) denote complex Banach spaces
and B(X,Y) the Banach space of bounded linear operators from X to Y; when
X =Y we write B(X).

We denote by BC(R, X) the Banach space of X-valued bounded and continuous
defined functions on R, with norm

[fIF = sup{l[[f(#)l|x : t € R}. (2.1)

Definition 2.1 ([6]). A function f € C(R, X) is called (Bohr) almost periodic if
for each € > 0 there exists [ = I(e) > 0 such that every interval of length [ contains
a number 7 with the property that

IfE+7) = fOl <e (tER).
The collection of all such functions will be denoted by AP(R, X).

This definition is equivalent to the so-called Bochner’s criterion, namely, f €
AP(R, X) if and only if for every sequence of reals (s!,) there exists a subsequence
(spn) such that (f(- + s,)) is uniformly convergent on R.

Definition 2.2 ([6]). A function f € C(R x Y, X) is called (Bohr) almost periodic
in ¢t € R uniformly in y € K where K C Y is any compact subset if for each € > 0
there exists [ = [(€) > 0 such that every interval of length I contains a number 7
with the property that

[ft+7y) = fty)ll <e (tER,yeK).
The collection of such functions will be denoted by AP(R x Y, X).

Let B denote the Lebesgue o-field of R, see [4]. Let M stand for the set of all
positive measures v on B satisfying u(R) = oo and u([a,b]) < oo for all a,b € R.
Throughout this paper will consider the following hypotheses:

(H1) For all a,b and ¢ € R, such that 0 < a < b < ¢, there exist 79 > 0 and

ag > 0 such that

7] <70 = p((a+7,047)) = aop([r,c + 7).
(H2) For all 7 € R, there exist 5 > 0 and a bounded interval I such that

u{a+7,a € A}) < Bu(A) if A € B satisfies ANT = 0.

Note that Hypothesis (H2) implies (H1), see [5, Lemma 2.1].
Definition 2.3 ([4]). Let u € M. A function f € BC(R, X) is said to be p-ergodic

if .
lim 7/ F()||du(t) = 0.
P T ) Sy 1T O10
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We denote by E(R, X, 1) the set of such functions. A function f € BC(R x X, X)
is said to be p-ergodic if
1

T g MERN0 =0

uniformly in € X. Denote by E(R x X, X, 1) the set of such functions.

Definition 2.4 ([5]). Let u € M. A function f € C(R, X) is said to be u-pseudo
almost periodic if it can be decomposed as f = g + ¢, where g € AP(R, X) and
v € E(R, X, ). Denote by PAP(R, X, 11) the collection of such functions.

Definition 2.5 ([I1]). The Bochner transform f*(¢,s) with ¢t € R,s € [0,1] of a
function f : R — X is defined by

fo(t,s) == f(t+s).

Definition 2.6 ([I1]). The Bochner transform f°(¢,s,u) with t € R, s € [0,1],
u € X of a function f: R x X — X is defined by

fo(t,s,u) == f(t +s,u) foralluc X.

Definition 2.7 ([I1]). Let p € [1,00). The space BSP(R,X) of all Stepanov
bounded functions, with exponent p, consist of all measurable functions f: R — X
such that f* € L>°(R, L?(0,1; X)). This is a Banach space with the norm

t+1 1/p
i) = Ieminy =sup ([ 1@ ar) "
teR t

Definition 2.8 ([8]). A function f € BSP(R, X) is called Stepanov almost periodic
if f® € AP(R,L?(0,1;X)). We denote the set of all functions by APS?(R, X).

Definition 2.9 ([§]). A function f: Rx X — Y with f(-,u) € BSP(R,Y), for each
u € X, is called Stepanov almost periodic function in ¢ € R uniformly for u € X
if, for each € > 0 and each compact set K C X there exists a relatively dense set
P = P(e, f,K) C R such that

! 1/p
sup (/ [f(t+s+7,u) —f(t+s,u)||ds> <e,
teR 0

for each 7 € P and each u € K. We denote by APSP(R x X,Y") the set of such
functions.

Definition 2.10 ([I]). Let u € M. A function f € BSP(R, X) is said p-Stepanov-
like pseudo almost periodic (or pu-SP-pseudo almost periodic) if it can be expressed
as f = g+ ¢, where g € APSP(R, X) and ¢* € £(R, LP(0,1; X), i1). In other words,
a function f € L} (R, X) is said p-SP-pseudo almost periodic relatively to measure
u, if its Bochner transform f* : R — LP(0,1;X) is u-pseudo almost periodic in
the sense that there exist two functions g, ¢ : R — X such that f = g + ¢, where
g € APSP(R, X) and ¢* € £(R, LP(0,1; X), i), that is ¢* € BC(R, LP(0,1; X)) and

: 1 o P 1/p _
Jim s /[m( / 16(s)[Pds) /P dpu(t) = 0.

We denote by PAPSP(R, X, i) the set of all such functions.
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Definition 2.11 ([I]). Let p € M. A function f : RxY — X with f(,u) €
P (R, X) for each u € Y, is said to be u-Stepanov-like pseudo almost periodic

loc

(or p-SP-pseudo almost periodic) if it can be expressed as f = g + ¢, where g €
APSP(R x Y, X) and ¢* € ER x Y, L?(0,1; X),u). We denote by PAPSP(R x
Y, X, u) the set of all such functions.

3. MAIN RESULTS
For 1 < p < oo, we define B: BSP(R, X) — L>*(R, L”(0,1; X)) by
f=(BNH)(s) = f(t,s) = f(t+5) (tER, se€0,1]),
see [2].
Remark 3.1. It follows from its definition that the operator B is a linear isometry
between BSP(R, X) and L*>(R, LP(0,1; X)). More precisely,
I1Bfll Lo~ ®, ey = | fll BSP (R x)-

Remark 3.2. The definition of u-Stepanov-like pseudo almost periodic functions
can be written using the preceding notation. Thus, for y € M, we say that a func-
tion f is said to be pu-Stepanov-like pseudo almost periodic (or p-SP-pseudo almost
periodic) if and only if f € B~1(AP(R, LP(0,1; X))) + B~YHE(R, LP(0,1; X), u)).
Thus,

PAPS"(R, X, ) = B~ (AP(R, L7(0, 1; X)) + B~ (E(R, L7(0, 1, X), ). (3.1)
Also, assume that p satisfies (H1). Since B is an isometry and AP(R, L?(0,1; X)) N
E(R,LP(0,1; X), ) = {0} by [B, Cor. 2.29] we have that the sum is direct, that is,

PAPSP(R, X, ) = B~ (AP(R, L*(0, 1; X))) & B~ (E(R, L* (0, 1; X), ).

Based on the definition of the operator B, next we prove that PAPSP(R, X, 1)

is a Banach space.

Theorem 3.3. If u € M satisfies (H1), then PAPSP(R, X, u) is a Banach space
with the norm

| fllpapse e x.u) = 9l Bsr®.x) + [Pl Bsr®.x)
where f = g+ h with g € B~1(AP(R, L?(0,1; X))), h € B~Y(E(R, LP(0,1; X), u)).
Proof. Let (f,) be a Cauchy sequence in PAPSP(R, X, ). Then

lfn = fmllpapsr(r,x,u) — 0 asn,m — oo.

Let .fn = gn + h, and fm = Ggm + hpm with InsGm € B_l(AP(Ra LP(O7 17X))) and
By b € B~HER, LP(0,1; X), u)). If n,m — oo, then

1Bgn — BgmllL~m®, ey = lgn — gmllBsr®,x) < [|fn = fmllPaPsr @, x,u) — 0,

|Bhn — Bh|lL®,zr) = |hn — himllBsr . x) < | fn — fllPaPsy @, x ) — O
This implies that (Bg,) and (Bh,,) are Cauchy sequences in AP(R, L?(0,1; X)) and
E(R, LP(0,1; X), u) respectively. Since AP(R, LP(0,1; X)) is a closed subspace of
BC(R, L?(0,1; X)) then it is a Banach space. Also, it follows from [5, Cor. 2.31]
that £(R, LP(0, 1; X), u) is a Banach space. Then there exist g € AP(R, LP(0, 1; X))
and h € E(R, LP(0,1; X), u) such that

1Bgn — gllL=@,ry = 0, ||Bhn — hl[po@,r) — 0 (n — 00).
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Let
fi=B""({g}) € B (AP(R, L*(0,1; X)))
fo =B~ ({h}) € BTHER, LP(0,1; X), ).

Note that f; and fo are well defined because B is injective. Let f := f1 + fo €
PAPSP(R, X, u). Thus

Ilfn = fllpapse @ x,u) = 1(gn + hn) — (f1 + fo)llpaPse @ x,0)

= llgn — fillBsr®,x) + [|hn — f2ll BsP (R, X)

= [|Bgn — Bfi| L= ,rr) + [|Bhn — Bf2| Lo (®,Lr)

= 1Bgn = gllLo= @ ey + | Bhn = | ®,Lr) — 0 (n — o0).
Hence PAPSP(R, X, 11) is a Banach space. O

The following theorem is taken from [7, Theorem 2.1].

Theorem 3.4. Let p € M and I be a bounded interval (eventually 0). Assume
that f(-) € BSP(R, X). Then the following assertions are equivalent.

(a) f°() € E(R, LP(0,1; X)), ).
(b)

) 1 t+1 . 1/p B
Jim s / ([_m])( / 1£(s)l7ds) " dut) = .

(¢) For any e >0,

-T, ([ s)||Pds 1/p €
(e ERTINT: (T I lrds) Y > o)

e PEARY) =0

The following theorem about composition of Stepanov-like type pseudo almost
periodic functions generalizes [14], Theorem 2.15].

Theorem 3.5. Let p € M and let f = g+ ¢ € PAPSP(R x X, X, ) with g €
B Y APR x X,LP(0,1;X))) and ¢ € B"H(E(R x X, LP(0,1; X)), ). Assume the
following conditions.
(a) f(t,x) is uniformly continuous in any bounded set K' C X wuniformly for
teR,
(b) g(¢t,z) is uniformly continuous in any bounded set K' C X wuniformly for
teR,
(c) for every bounded subset K' C X, the set {f(-,z) : x € K'} is bounded in
PAPSP(R x X, X, ).
Ifv = a+ 3 € PAPSP(R,X,u) N B(R, X), with « € B~Y(AP(R, L?(0,1; X))),
B € BTHEM,LP(0,1;X), 1)) and Q = {z(t):t e R}, Q1 = {a(t):t € R} are
compact, then f(-,x(-)) € PAPSP(R, X, p).

Proof. Let
[t x(t) = G(t) + H(t) + W(t),

where

G(t) =g(t,a(t)), H(t) = f(t,z(t)) - f(t,at), W(t) = ot at)).
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Since g satisfies condition (b) and Q1 = {«a(t) : t € R} is compact, by [3, Prop. 1]
we have G € B~1(AP(R, L?(0,1; X))). To show that f(-,z(-)) € PAPSP(R, X, u1)
it is sufficient to show that H, W € B~Y(£(R, L?(0,1; X))).

First, we see that H € B~1(E(R, L?(0,1; X))). Since x(-) and «(-) are bounded,
we can choose a bounded subset K’ C X such that z(R), «(R) C K’. By assumption
(¢) we have that H(-) € BSP(R,X) and by assumption (a) we obtain that f is
uniformly continuous on the bounded set K’ C X uniformly ¢ € R. Then, given
e > 0, there exists 6 > 0, such that u,v € K’ and ||lu — v|| < § imply that
| f(t,u) — f(t,v)|| <eforall t € R. Then, we have

(/tﬁ-l ||f(3,u) B f(57v)||pd8> 1/p <e

Hence, for each t € R, ||3(s)||psr(r,x) < 9, s € [t,t + 1] implies that for all ¢ € R,

Therefore,

u(te =110 (S (s a(s) = fls.als))lPds) " > )
W([=T,7))
p(te =1.1): ([ 180s)|Pds) " > o)
w([=T,T)

Since 8 € B~1(E(R, LP(0,1; X), 1)), then Theorem implies that for the above
mentioned § we have
t+1 1
i p(te =T1): (J 1 (s a(s) = fs,a(s)Pds) 7 > o) ;
im =

T—o0 /J,([—T, T])

By Theorem [3.4 we have that H € B~'(£(R, LP(0,1; X))).
Now, we prove that W € B~1(£(R, LP(0,1; X))). Since f and g satisfy (a) and

(b) respectively, then, given € > 0, exists § > 0, such that u,v € Qq, [[u —v| < ¢
imply that

<

t+1 » 1/]) €
_ <
([ W= reopras)” <G ter
t+1 l/p €
([ s, = gs.0las) " < 5. ter,
t 16

Let §p := min{e, 6}. Then
t+1 1/p
([ ot = ots.olas)

[ = seas) "+ ([ totow - ats,ipas) "

<

/N

€
< Q7
-8
for all t € R, and u,v € Q1, |Ju — v|| < Jo.
Since Q1 = {«(t) : t € R} is compact, there exist open balls Oy (k=1,2,...,m)
with center in u; € Q1 and radius Jp given above, such that {a(t) : t € R} C
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U7, Oy. Define and choose By, such that By := {t € R : [|a(t) — ug|| < do}, k =
1,2,...,m, R = U By and set Cy = By, Cx = By \ (USZ]B;) (k=2,3,...,m).
Then R = UP",Cy, where C; N C; =0, i # j, 1 < 4,5 < m. Let us define the
function @ : R — X by u(t) = uy for t € Cx, k = 1,...,m. Then |a(t) — | < do
for all ¢ € R and

3 » 1/p
(kz_1 /Cm[t,t+1] (s, a(s)) — (s, uk)| ds)

1/p €

- (/tt+1 (s, a(s)) — ¢(8,ﬂ(s))||”ds> < =

Since ¢ € B~HE(R x X, LP(0,1; X)), ), there exists Ty > 0 such that

m /[_T - (/:H (s, ur)|? da) v du(t) < 87;12’

for all T > Ty and 1 < k < m. Therefore,

m /[T,T] ( /:H HW(S)Ilpds)l/p du(t)
1 m
G /[_T’T] <; /C'kﬂ[t,t+1] é(s; a(s)) = é(s, ws)

+os,un)lPds) " dute
21t% T
: m /[T,T] (/Ckﬂ[t,tJrl] (s, a(s)) = o(s,uls))] ds) dp(t)
ity

S 1/p
M=) /[T,T] <;/Cm[t,t+1] ||¢(s,uk)||pds) dp(t)

€ 1/p_ €
< 2+m 5 < €.

Hence W € B~Y(&E(R, LP(0,1; X))). The conclusion follows. O
From Theorem [3.5| we obtain the following result of [1J.

Corollary 3.6. Let p € M andlet f =g+ ¢ € PAPSP(R x X, X, ) that satisfies
a Lipschitz condition in © € X wuniformly in t € R, that is, there is a constant
L > 0 such that ||f(t,x) — f(t,v)|| < L||lz — y||, for all z,y € X and t € R. If
x € PAP(R, X, 1), then f(-,x(-)) € PAPSP(R, X, u).

To prove the next composition theorem, we need the following lemma.

Lemma 3.7 ([9]). Suppose that

(a) fe APSP(RxX,X) withp > 1 and there exists o function Ly € BS™(R,R)
(r > max{p,p/p — 1}) such that

[t u) = &0 < Ly@)flu —of] t€R, w0 e X.
(b) z € APSP(R, X), and there exist a set E C R with meas(E) =0 such that
K={z(t):te R\ E}

18 compact in X.
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Then there exist q € [1,p) such that f(-,z(-)) € APSI(R, X).
The next result of composition is new.
Theorem 3.8. Let p € M, p > 1, f = g+ ¢ € PAPSP(R x X, X, u) with
g€ B Y APR x X,LP(0,1;X))) and ¢ € B~H(ER x X, LP(0,1; X), u)). Assume
that
(i) there exist nonnegative functions Ly, Ly in the space APS™(R,R), with r >
max{p,p/p — 1}, such that
1f(t,u) = ft o)l < Lp)llu—vll,  [lg(t,u) — g(t,v)l] < Lg(t)|lu — v]|
fort € R and u,v € X.
(i) h=a+ € PAPSP(R, X, 1) with
a € BTHAP(R, LP(0,1; X)), A€ B HER,LP(0,1;X), )
and there exist a set E C R with meas(E) = 0 such that the set K =
{a(t) : t e R\ E} is compact in X.
Then there exist g € [1,p) such that f(-,h(-)) € PAPSY(R, X, u).

Proof. We can decompose
[t (1) = g(t, alt) + f(t, k(1) — f(t at) + oL, aft)).
Set
F(t) :=g(t,a(t)), Gt):=f(t,h)) = f(t,at), H():= ot alt)).
Since r > p%l then there exists g € [1,p) such that r = %. Let p' = p/p — q and
¢ =p/q. Therefore i + L =1. Since « € APSP(R, X) and g € APSP(R x X, X)

qa
then by assumptions and Lemma we obtain that F € B~1(AP(R, L1(0,1; X))).
Next we show that G € B~Y(E(R, L4(0,1; X ), 1)). By Holder inequality we have

/ 6o do = / 1 F0.h(0)) = (o, al0))| do
t tt+1
<[ L@lho) - a1 do
tt+1
- / L(0)||8(0)]|* do
. (/tHlL‘J{p/(U)dU)l/p/(/ttH ||ﬁ(g)||‘1ql da)l/q,
- [( / o) / ") ds)"]

< ILflGsr [([H 18 do) )",

p/d

Then
m /[T,T] ( /+ o) do) " au(t

: m /[—T,T] (/ttﬂ Sl da)l/p d(t).
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Since 8 € B~ (E(R, LP(0,1; X), 1)) we obtain that G € B~1(E(R, LI(0,1; X), u1)).
Next, we prove that H € B~1(E(R, L4(0,1; X), u)).
Since ¢ € B71(E(R, LP(0,1; X), p)), for each € > 0 there exist Ty > 0 such that
T > Ty implies that

T o ([ 1ol a0) "t < e

Since K is compact, we can find finite open balls Oy (k = 1,2,3,...,m) with center
xy, such that K C U, Oy. Thus, for all u € K there exist x; such that

[t +o,u)l

< [lo(t + o,u) — d(t + o, zx)|| + ¢t + 0, zp) |

< f(E+ou) = fE+o,ze)l + gt +o0,u) — gt + o, zp) || + (|6t + 0, 21) |
<Li(t+o)e+ Lyt +o)e+ [|o(t +o0,25)]] (t€R, o€[0,1]).

Hence

sup [[¢(t + o, u)|| < Lt +0)e + Ly(t +o)e + Y o(t +o,a)].
uek k=1
Since r > p then Ly, L, € APS"(R,R) C APSP(R,R) C BSP(R,R).
By Minkowskii’s inequality, we obtain

1
[ (sup lote+ ol ao]
0 uekK
i 1 P N\1/p
s<||Lf||BSP+||Lg||BSP>e+I;( / (sup llott + )]} dor) ™

For T > T,y we have

,u([—lT,T])/{T’T] (/01 (SEE l6(t + o, u)||>pda)1/p du(t)

< (IL¢llBse + |LgllBse +m)e.

Hence

1 1 P 1/p
lim 7/ / sup ||o(t + o, u do du(t) = 0.
Jim [_T,T]( (s llott+aw)l) do) ™ dutt)
On the other hand

_ v ,

u([=T, 1)) /[T,T] 1H®(t)llg du(t)
_ 1 ,

= WCTT) /[_Tﬂ [ H° () lp dp(t)

1/
Pdo) " du(t)

1
- T /[T,T] ([ 1ot+ea+o

) m /[_T,T] ( /01<jg;; l6(t + o))" dor) Y dute) 0

as T — oo. Hence H € B~ (E(R,L9(0,1;X),p)). It proves that f(, k("))
F()+[G()+ H(-)] € PAPSI(R, X, 1).

ol
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We recall the following convolution theorem.

Theorem 3.9 ([2, Theorem 3.1]). Let S : R — B(X) be strongly continuous.
Suppose that there exists a function ¢ € L'(R) such that

(a) SO < o(t), teR;

(b) ¢(t) is nonincreasing;
(€) onty d(n) < oo
If g € APSP(R, X), then

(S *g)(t / S(t—s)g(s)ds € AP(R, X).

The next result is one of the original contributions of this work.

Theorem 3.10. Let yn € M be given and let S : R — B(X) be strongly continuous.
Suppose that there ezists a function ¢ € L' (R) such that

(@) SO < o(t) teR;
(b) ¢(t) is nonincreasing;
(€) Yoney d(n) < oo
If f =g+ h € PAPSP(R, X, u) with g € B"Y(AP(R,LP(0,1;X))) and h €
B~1(E(R, LP(0,1; X))), then

(S = f)(t) ::/ S(t—s)f(s)ds € PAP(R, X, p).

—0o0

Proof. Since

= /_too S(t—s)f(s)ds = /_; S(t—s)g(s)ds+ /_; S(t — s)h(s)ds

and, from Theorem (S xg) € AP(R,X) it remains to show that (S % h) €
E(R, X, ). Set

H(t) := / S(t—s)h(s)ds = / S(s)h(t — s)ds,

and
t—n—+1
H,(t) ::/ S(t—o)h(o)do, n=1,2,....
t

—n

Note that H,(t) is continuous and

t—m+1
[Hn ()] < / 15t = a)lllh(o)|| do

t—n

= [ Ist@linte - o)l do

/ 6(3)[1h(t — o) | do
< é(n — 1)(/:1 I1h(t — g)||PdU)1/1’.

Hence, for T' > 0,
1

T /[_T,T] L (0)]] dpt)
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Using the fact that the space £(R, X, ) is translation invariant, it follows that
t — h(t — o) belongs to £(R, X, u). The above inequality leads to H, € E(R, X, i)
for each n =1,2,.... The above estimate implies

[Hn (0] < ¢(n = DAl pse @.x)-
By hypothesis we have

SIHL@ <Y dn = Dlhlsse@.x) < Cllhllpse@.x) < oo
n=1 n=1

It follows from Weierstrass test that the series >~ | H,(¢) is uniformly convergent
on R. Moreover

H(t) = / S(t— $)h(s)ds = 3 Ha(t).
-0 n=1

Since H € C(R, X) and
IE®O] < Y 1HL @) < Cllkllpsr @ x),
n=1

we have

1 1
ST g 1HONO < g [0 =3 0t

k=1

n

n

1
+§:MFﬂﬂLAT

[ Hy(2)] dp(t).
k=1 T

)

Since Hy(t) € E(R, X, pu) and >_7_, H,(t) converges uniformly to H(t), it follows
that

i 1
fin, e [ H@)du(t) = o
[_TvT]

A T )
Hence H(:) = Y02 | Hy(t) € E(R, X, pu). Therefore, (S*f)(t) = fjoo S(t—s)f(s)ds
is p-pseudo almost periodic. O

4. AN APPLICATION TO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

Given a function g : R — X, the Weyl fractional integral of order @ > 0 is
defined by

1 t
D™%(t) == =— t—s)*"'g(s)ds, teR
o) = gy | (=" gle)s, e,
when this integral is convergent. The Weyl fractional derivative D*g of order a > 0
is defined by

dn
D%g(t) := dt—nD_("_o‘)g(t)7 t eR,
where n = [a] + 1. It is known that D*D~%g = ¢ for any o > 0, and D" = jTT;

holds with n € N.
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Definition 4.1 ([I3]). Let A be a closed and linear operator with domain D(A)
defined on a Banach space X, and a > 0. Given a € L{ (R} ), we say that A is the
generator of an a-resolvent family if there exist w > 0 and a strongly continuous

family Sy, : [0, 00) — B(X) such that {H_)‘Ta@\) :ReA > w} C p(A) and for all x € X,
(A — (1 +a\)A) e = ( A A>_1x - /Oo e M, (t)z dt
L+a(N)\1+a(N) 0 “ ’

for Re A > w. In this case, {Sq(t)}i>0 is called the a-resolvent family generated by
A.

Next, we consider the existence and uniqueness of p-pseudo almost periodic mild
solutions for the fractional integro-differential equations
t

D%u(t) = Au(t) + / a(t — s)Au(s) ds + f(t,u(t)), (4.1)

where A generates an a-resolvent family {S,(¢)}+>0 on a Banach space X, a €
Ll (R;) and f € PAPSP(R x X, X, u) satisfies the Lipschitz condition.

Definition 4.2. A function u: R — X is said to be a mild solution of (4.1)) if

¢
ut)= [ Salt= )i ule)ds (teR)

where {S,(t)}+>0 is the a-resolvent family generated by A.

Theorem 4.3. Let u € M, and assume (H2) holds. Letp > 1 and f € PAPSP(Rx

X, X, u) be given. Suppose that
(H3) There exists Ly > 0 such that

f(t,u) — ft,v)|| < Lgllu—v|], teR, uvelX.

(H4) Operator A generates an c-resolvent family {Sq (t) }e>0 such that ||Sqo(t)] <
0a(t), for all t > 0, where po(-) € L'(Ry) is nonincreasing such that
wo = Zf:o a(n) < oo.
If Ly < |palli’, then has a unique mild solution in PAP(R, X, ).

Proof. Consider the operator @ : PAP(R, X, u) — PAP(R, X, ) defined by

(Qu)(t) ::/_ S(t— ) f(s,u(s))ds, teR.

First, we show that Q(PAP(R,X,u)) C PAP(R,X,u). Let u € PAP(R, X, u).
Since f € PAPSP(R x X, X, ) and satisfy (H3) we have from Corollary that
f(,u()) € PAPSP(R, X, ). Then, by assumption (h4) we obtain from Theorem

that Qu € PAP(R, X, u).
Let u,v € PAP(R, X, ut). By conditions (H3) and (H4) we have

[Qu — Qvlloc = sup [[(Qu)(t) — (Qu)(®)]|
teR

=sup| [ S(t—s)[f(s,uls)) — f(s,0(s))]ds|

teR —00

SLfsup/ 1S(s)[[[u(t — ) —v(t = s)|| ds
teR JO
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<Lilevl [ gals)ds
0

= Lylleall1]lu = v]loo-
This proves that @ is a contraction, so by the Banach Fixed Point Theorem we
conclude that @ has unique fixed point. It follows that Qu = uw € PAP(R, X, u)
and it is unique. Hence w is the unique mild solution of (4.1) which belongs to
PAPR, X, p). O

Theorem 4.4. Let p € M. Assume that (H2) holds. Let p > 1 and f =g+ h €
PAPSP(R x X, X, i) be given. Suppose that:
(H5) There exist nonnegative functions L¢(-),Lg(-) € APS"(R,R) with r >
max{p, p%} such that

[t u) = F(E ) < Lp@)llw—oll, gt w) = gt v)l| < Lo () |lu = vll,

fort eR and u,v € X.
(H6) Operator A generates an a-resolvent family {Sqa(t) }e>0 such that ||Sa(t)] <
Me=%t for allt > 0 and

1—e¥ wro

1/7'0
M (1 — e—“”“o)

ILsllBs <

where % + % =1.
Then (4.1) has a unique mild solution in PAP(R, X, u).

Proof. Let u = u1+us € PAP(R, X, 1) where u; € AP(R, X) and up € E(R, X, ).
Thenu € PAPSP(R, X, ). Since the range of almost periodic functions is relatively
compact set, then K = {u;(t) : t € R} is compact in X. Thus, by conditions (H5)
and (H6) we have that all the hypotheses of Theorem [3.§| fulfilled, then there exists
q € [1,p) such that f(-,u(:)) € PAPSI(R, X, u).

Consider the operator @ : PAP(R, X, u) — PAP(R, X, i) such that

(Qu)(®) ::/_ S(t— s)f(s,u(s))ds, (¢ € R).

Since f(-,u(-)) € PAPSYR, X, u) it follows from Theorem that @ maps
PAPR, X, 1) into PAP(R, X, u).
For any u,v € PAP(R, X, i1) we have
¢

[(Qu)(t) = (Qu)(1)|| < / 1S = $)I1f (s, uls) = f(s,v(s)))ll ds

— 00

< [ ML) uts) ~ ol ds

t—k+1

Sl Y [ ML () ds
k=1 t—k

t—k+1

0 1/’(‘0
fu=ol > (f M) T L s) s
k=1 Yt~

M (1—6*“””0
T l—ew

IN

1/7‘0 L
o) el L) s
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From Banach contraction mapping principle we have that ¢ has a unique fixed
point in PAP(R, X, 1) which is the unique mild solution of Equation (4.1J). O

tn—l

Example 4.5. Weput A = —pin X =R, a(t) = gr(a

ft,u) = g(t,u) + h(t,u) where
g(t,u(t,x)) = [sint + sin(v2t)] sin(u(t, z)), h(t,u(t,z)) = ¢(t) sin(u(t, z)),

and ¢(t) is such that |¢(t)e’| < K with K > 0.

Consider the measure y whose Radon-Nikodym derivative is p(t) = e'. Then u €
M and satisfies the (H2) (see [5, Ex. 3.6]). Note that g € B~*(AP(R, LP(0,1; X)))
and h € B~1(E(R, LP(0,1; X), u)). Hence f € PAPSP(R x X, X, p1). Furthermore,

‘f(t’u) —f(t,’l})| < L|u—v|,

where L := max{2, K'}. Therefore f satisfies (C1).
Now, note that Equation (4.1]) takes the form

,0>0,0<a<1,and

Z

o [t (t—9)!
D%u(t) = —ou(t) — y Lm Wu(s)ds + f(t,u(t)), teR. (4.2)
It follows from [I3] Example 4.17] that A generates an a-resolvent family {S,(t)}i>0
such that
. P ra—a/2 \a—a/2
Sa(N) = 3 5 5 -
(A*+2/0)* (A*+2/0)* (A*+2/0)

Thus, we obtain explicitly

Sa(t)=(r=xr)(t) t>0,

with r(t) = tgflEa,%(—gto‘), and where E, o (-) is the Mittag-Leffler function.
By properties of the Mittag-Leffler function we obtain that (H4) holds. Then,
by Theorem (4.2) has a unique mild solution u € PAP(R, X, u) provided

[|Sall < 3. Finally we note that, for 0 < a < 1, ¢ > 0 may be chosen so that

[|Sall < % as in the proof of [I3, Lemma 3.9].
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