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ASYMPTOTIC SOLUTIONS OF FORCED NONLINEAR SECOND
ORDER DIFFERENTIAL EQUATIONS AND THEIR

EXTENSIONS

ANGELO B. MINGARELLI, KISHIN SADARANGANI

Abstract. Using a modified version of Schauder’s fixed point theorem, mea-

sures of non-compactness and classical techniques, we provide new general
results on the asymptotic behavior and the non-oscillation of second order

scalar nonlinear differential equations on a half-axis. In addition, we extend the

methods and present new similar results for integral equations and Volterra-
Stieltjes integral equations, a framework whose benefits include the unification

of second order difference and differential equations. In so doing, we enlarge

the class of nonlinearities and in some cases remove the distinction between
superlinear, sublinear, and linear differential equations that is normally found

in the literature. An update of papers, past and present, in the theory of

Volterra-Stieltjes integral equations is also presented.

1. Introduction

We present in this paper results pertaining to the nonlinear differential equation

y′′(x) + F (x, y(x)) = g(x), x ∈ I = [x0,∞), x0 ≥ 0, (1.1)
where F : R+ × R −→ R is a general nonlinearity on which we will impose mostly
criteria of integral type and g(x) is given. Our main interest lies in the formulation of
results regarding the non-oscillation and asymptotic behavior of its solutions. Some
of the results will then be formulated for pure integral equations and ultimately
for Volterra-Stieltjes integral equations (see (4.3)) and Volterra-Stieltjes integro-
differential equations, that is, in the linear case, equations of the form

y′(x) = y′(0)−
∫ x

0

y(t) dσ(t), (1.2)

and, in the nonlinear case, equations of the form

y′(x) = y′(0)−
∫ x

0

F (t, y(t)) dσ(t), (1.3)
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where σ is generally a function locally of bounded variation on I and the result-
ing integrals are understood in the Riemann-Stieltjes sense. An advantage of the
more general framework suggested by say, (1.2), above is that one can incorporate
corresponding theorems for three term linear recurrence relations such as

cnyn+1 + cn−1yn−1 + bnyn = 0, n ∈ N, (1.4)

and its nonlinear versions or, equivalently, second order linear difference equations
such as

∆2yn−1 + bnyn = 0, n ∈ N. (1.5)
and its nonlinear analogs, as corollaries so that no new proof is required to obtain
the discrete analogs.

We recall that a solution of a real second order differential equation is said to be
oscillatory on [x0,∞) provided it exists on a semi-axis and it has arbitrarily large
zeros on that semi-axis. If the equation has at least one non-trivial solution with
a finite number of zeros it is termed non-oscillatory. Recent work in asymptotics
of (1.1) has dealt primarily with pointwise criteria on both F and g sufficient for
the asymptotic linearity of at least one solution (e.g., [31, 85, 86, 119, 123]) On the
other hand, integral type criteria cover by their very nature a wider collection of
nonlinearities and we strive to obtain such criteria throughout. Thus, in Section 2.1
we give more general integral type criteria on F which are sufficient for the existence
of an uncoutable family of solutions of the unforced equation (1.1). This extends
the validity of the results presented in Dubé-Mingarelli [37]. In addition, we note
that our criteria of integral type such as (2.19) and (2.1) below are extended over
the whole half-line (that is we obtain global existence, see [85]) rather than local
existence or existence for sufficiently large values of the variable. In this regard, see
[84] for an extensive complete study of a specific nonlinear equation and [85] for a
bibliographical study of unforced equations of the form y′′(x)+F (x, y(x), y′(x)) = 0.
For results which compare the non-oscillatory behavior of forced equations of the
form (1.1) with those of the associated unforced equation, (1.6) below, and possible
equations with delays, we refer the reader to [1], [33] and [73].

One should not forget that even though the literature is filled with sufficient
criteria for oscillation/non-oscillation of unforced equations like

y′′(x) + F (x, y(x)) = 0, x ∈ I, (1.6)

in some cases, classical methods can actually be superior to the use of such fixed
point theorems for the determination of the oscillatory character of an equation.
For example, consider the equation

y′′ +
y cos 2y3

4(x + 1)2
= 0, x ∈ I,

whose nonlinearity fails to comply with the conditions of Nehari’s theorem [88],
Atkinson’s theorem [6], the Coffman and Wong results in [29, 30] and other more
recent theorems. However, every solution of this equation is non-oscillatory as
can be gathered by comparison with a non-oscillatory Euler equation (and use of
Sturm’s comparison theorem [103]).

Next, we note that the use of maximum principles allows for an easy under-
standing of the oscillatory nature of an equation like (1.6). For example, if in some
interval [a, b) (finite or not), we have y ∈ C2[a, b) and y′′(x) > 0 (or y′′(x) < 0)
then y(x) can have at most two zeros there. Thus, whenever a solution y ∈ C2 of
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(1.6) satisfies y′′(x) 6= 0, for x ∈ I, or, more generally, for all sufficiently large x,
then we have non-oscillation on I. This explains the non-oscillatory character of
equations like the Painlevé I, where F (x, y) = −6y2 + x, for x > 0 (see Hille [58]
or Ince [66]). It follows that if F is continuous and F (x, y) < 0 for all sufficiently
large x and all y, then we always non-oscillatory solutions on I (and only such
solutions). Thus, the only interesting cases with regards to oscillations are those
for which ultimately either F (x, y) > 0 on its domain or F (x, y) takes on both signs
there. This motivates the main assumptions we will be making throughout.

As can be expected, introduction of the forcing term g and its double primitive f ,
i.e., a function f such that g(x) = f ′′(x), can alter the original asymptotics. Loosely
speaking, the case where F dominates g at infinity leads to solutions asymptotic
to a double primitive of g (see Section 2.2). If g is small in comparison to F ,
itself sufficiently small at infinity, then asymptotically linear solutions persist (see
Section 3). Motivated by Atkinson [8] we introduce a novel necessary and sufficient
condition for the existence of a solution of an integral equation of the form

y(x) = f(x)−
∫ ∞

x

(t− x)F (t, y(t)) dt, x ≥ x0

in terms of associated solutions of differential inequalities (Theorem 3.1). Ramifi-
cations of this result are noted and classical methods are used to obtain criteria for
every solution of (1.1) to be non-oscillatory. We also present an extension of Ne-
hari’s necessary and sufficient condition for non-oscillation [[88], Theorem I], and
Coffman and Wong’s version [30] of the same in terms of solution asymptotics.
We then proceed to a corresponding study of Volterra-Stieltjes integro-differential
equations in Section 4 and give conditions similar but more general than those in
the previous sections. Finally, we apply this theory to obtain results for nonlinear
three-term recurrence relations (or nonlinear second order difference equations). In
addition, we give a long needed update of the theory of Volterra-Stieltjes integral
equations in our Introduction to Section 4. For the purpose of clarity of exposition,
we also proceed throughout the paper in order of increasing generality and leave
the proofs until the very last section.

2. Asymptotic results for nonlinear differential equations

2.1. Asymptotically linear solutions. The present technique invokes a version
of Schauder’s fixed-point theorem and measures of non-compactness and is based, as
in [37], on the simple premise that in the variables separable case, the nonlinearity
in the dependent variable y in (1.6) maps a given compact interval back into (and
not necessarily onto) itself. For the rudiments of the notions of a measure of non-
compactness and their applications, see the book by Banaś and Goebel [9].

In the sequel, the space BC(R+) represents the space of real bounded continuous
functions defined on R+. For given a ≥ 0, b > 0, we consider the space

Y = {u ∈ C[0,∞) : sup
t≥0

|u(t)|
at + b

< ∞}.

Obviously, Y is a vector space over R. Now, for u ∈ Y the quantity

‖u‖Y = sup
t≥0

|u(t)|
at + b
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is a norm on Y . Consideration of the mapping

Ψ : Y −→ BC(R+)
u 7→ Ψ(u)(t) = u(t)

at+b

shows that Ψ is a linear operator and, moreover, Ψ is an onto isometry. Conse-
quently, as BC(R+) is complete, Y is a Banach space isometric to BC(R+). More
generally, for a given positive continuous function p, the space, Cp, of all tem-
pered continuous functions (see [[9], p.45]) consisting of all real-valued functions
u ∈ C[0,∞) such that supt≥0 |u(t)|p(t) < ∞, is a Banach space.

Theorem 2.1. Let a ≥ 0, b > 0, and X = {u ∈ Y : 0 ≤ u(t) ≤ at + b, for all t ≥
0}. Assume that F : R+ × R+ → R+ is continuous and that for any u ∈ X,∫ ∞

0

t F (t, u(t)) dt ≤ b. (2.1)

In addition, we assume that there exists a function k : R+ → R+ with∫ 1

0

k(t) dt < ∞, (2.2)∫ 1

0

t k(t) dt < ∞, (2.3)∫ ∞

0

t2 k(t) dt < ∞. (2.4)

and such that for any u, v ∈ R+,

|F (t, u)− F (t, v)| ≤ k(t)|u− v|, t ≥ 0. (2.5)

Then (1.6) has a positive (and so non-oscillatory) asymptotically linear solution on
[0,∞), i.e., y(x) = ax + b + o(1), as x →∞.

Remark 2.2. Note that (2.4) does not necessarily imply neither (2.3) nor (2.2).
However (2.2), (2.3), and (2.4) together do imply that∫ ∞

0

t k(t) dt < ∞,

∫ ∞

0

k(t) dt < ∞,

conditions that are used in various places in the proof.

Remark 2.3. We note in passing that if a, b are chosen so that

1
b

max{a, b}
∫ ∞

0

t (t + 1) k(t) dt < 1, (2.6)

in the inequality (6.3), then T is a contraction on X and so the resulting fixed point
is unique in X.

2.2. Asymptotic solutions in the forced nonlinear case. In the sequel, the
space BC([1,∞)) represents the space of all real bounded continuous functions
defined on [1,∞). For a given function g in (1.6) we assume that it has a second
primitive f : [1,∞) → R, such that for some δ > 0

|f(x)| ≥ δ, x ∈ [1,∞) (2.7)

a condition that we will return to and discuss at various points. Of course, since
f is continuous it is clear that (2.7) implies that f is of one sign on [1,∞), but
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the sign itself is of no concern to us here. Now, consider the vector space over R
defined by

Y = {u ∈ C[1,∞) : sup
x≥1

|u(x)|
|f(x)|

< ∞}. (2.8)

Now, for u ∈ Y the quantity

‖u‖Y = sup
x≥1

|u(x)|
|f(x)|

(2.9)

is a norm on Y . Consideration of the mapping

Ψ : Y −→ BC([1,∞))
u 7→ Ψ(u)(x) = u(x)

|f(x)|

shows that Ψ is a linear operator and, moreover, Ψ is an onto isometry. Conse-
quently, as BC([1,∞)) is complete, Y is a Banach space isometric to BC([1,∞)).
More generally, for a given positive continuous function p, the space, Cp, of all tem-
pered continuous functions (see [[9], p.45]) consisting of all real-valued functions
u ∈ C[x0,∞) such that supx≥x0

|u(x)|p(x) < ∞, is a Banach space.
Let F : [1,∞)×R → R be continuous (not necessarily positive as in Section 2.1)

and assume that ∫ ∞

1

s |F (s, 0)| ds < ∞. (2.10)

With f as defined as in (2.7), we assume that there exists a function k : [1,∞) → R+

satisfying ∫ ∞

1

s |f(s)| k(s) ds < ∞. (2.11)

An an additional restriction on both F and k we assume that for any u, v ∈ R,

|F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ≥ 1. (2.12)

Given such functions F, k, f, g satisfying (2.7), (2.10), (2.11) and (2.12) we con-
sider the forced nonlinear equation (1.6) on the interval I = [x0,∞) where x0 is
chosen so large that x0 ≥ 1 and for x ≥ x0,

max
{∫ ∞

x

(s− x) |f(s)| k(s) ds,

∫ ∞

x

(s− x) |F (s, 0)| ds

}
≤ δ

4
, (2.13)

the finiteness of the integrals in (2.13) being ensured on account of (2.10) and
(2.11).

Theorem 2.4. Let the terms in (1.6) satisfy the conditions (2.7), (2.10), (2.11),
(2.12) and (2.13). Consider (1.6) on I = [x0,∞) where x0 is defined as in (2.13).
Then (1.6) has a solution y(x) satisfying

(1) y(x) ∼ f(x) as x →∞ and actually, y(x) = f(x) + o(1), as x →∞, and
(2)

sup
x∈I

|y(x)|
|f(x)|

≤ 2. (2.14)
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2.3. Discussion. Since the proof of Theorem 2.4 uses the contraction mapping
principle, it follows that one can approximate the actual solution in question arbi-
trarily closely using a standard iterative technique.

The upper bound appearing in (2.14) is by no means precise but will do for our
purposes of obtaining global existence of solutions. Indeed, it is easily seen that one
can modify the proof a little in order to find a non-uniform bound that depends on
x0.

The unforced case g(x) ≡ 0 is included in our theorem and is reflected in the
expression f(x) = ax + b above, that is we obtain the existence of asymptotically
linear solutions for (1.1). In this case Theorem 2.4 extends the main results of
Hallam [54] for n = 1, Dubé-Mingarelli [37], and Mustafa-Rogovchenko [85]. It
should be emphasized here that our conditions on the nonlinearity F (x, y) and the
forcing term g(x) are essentially of integral type and not pointwise criteria as in most
papers in the area, e.g., [85] is a recent one. In addition, Theorem 2.4 provides an
extension of some results in Atkinson [8] where, in addition, it is assumed that F
is positive and non-decreasing in its second variable (cf., also [49]), a condition we
will return to occasionally.

Of course, since f is continuous, (2.7) implies that f(x) is of one sign on the half-
line I. Theorem 2.4 then implies that the forced equation (1.6) is non-oscillatory.
If (2.7) is not satisfied then

lim inf
x→∞

|f(x)| = 0, (2.15)

a condition used often in many papers in conjunction with the questions under
investigation here ([8], [70], [71], . . . ). In this respect, the condition (2.15) is known
to furnish examples of oscillatory equations of the form (1.6), cf., [8], [71]. In
addition, necessary conditions for the existence of a positive solution of (1.6) under
the assumption f(x) > 0, yet more restrictive conditions on the nonlinearity, may
be found in [[8], Section 4]. We note that (2.7) and (2.11) together imply that∫ ∞

1

sk(s) ds < ∞, (2.16)

so that, as expected, one needs to ensure that the nonlinearity F decreases quickly
enough (see (2.12)) at infinity to ensure nonoscillation. Our results apply to lin-
ear problems with small forcing terms as well. The following example serves as
illustration.

Example 2.5. Let F (x, y) = (1 + y)/x5, g(x) = 1, x ≥ 1, in (1.6). Choosing the
double primitive f(x) = x2/2, we see that δ = 1/2 is a suitable lower bound for
f(x) in (2.7). Note that (2.10)-(2.12) are all satisfied with the choice k(x) = 1/x5.
In addition, (2.13) holds for all x ≥ x0 where x0 = 3. Theorem 2.4 now applies to
show that the equation

y′′ + (1 + y)/x5 = 1, x ≥ 3,

has a solution y(x) ∼ x2/2 as x → ∞, defined by solving (6.8) for its fixed point.
This solution can actually be calculated using Bessel functions but its exact form
is of no particular interest here. Successive approximations to it show that if we
define y0(x) = 1, then y1(x) = x2/2− 1/6x3, and

y2(x) =
x2

2
−

(
1
4x

+
1

12x3
− 1

252x6

)
, etc.,
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the asymptotic nature of y(x) can readily be ascertained.

A few more remarks on the case g(x) = 0 in (1.6) are in order. Our condition
(2.10) is compatible with Nehari’s [88] necessary and sufficient condition for the
existence of a bounded solution (albeit under additional assumptions on F (x, y)
such as positivity and monotonicity in its second variable). In this vein we can
formulate the following immediate corollary for asymptotically constant solutions
which does not assume neither the monotonicity nor the positivity of F .

Corollary 2.6. Consider the equation (1.6) for x ≥ 1. Let F, k, σ satisfy (2.10),
(2.12), (2.13) and (2.16), for some δ = M > 0 and for all x ≥ x0. Then (1.6) has
a solution satisfying y(x) → M as x →∞, and |y(x)| ≤ 2M for all x ≥ x0.

Similar additional results may be formulated for the case of asymptotically linear
solutions and so are left to the reader. For an excellent survey up to the mid-
seventies of nonlinear two term ordinary differential equations of Emden-Fowler
type, see [115].

Next, we consider

y′′(x) + F (x, y(x)) = g(x), x ≥ 0. (2.17)

where g(x) ≡ f ′′(x) and f : R+ → R is not necessarily of one sign (as opposed to
(2.7)) but f ′′ ∈ C(R+). Next, we seek to find asymptotic theorems for equations
of the form (2.17) which may violate (2.7). The trade-off here is that we need that
the nonlinearity be positive.

Theorem 2.7. Let f ∈ L∞(R+)
⋂

C2(R+). Suppose that F : R+ × R+ → R+ is
continuous and such that for some b > 0, (2.1) is satisfied for any u ∈ X where
X = {u ∈ BC(R+) : |u(x)| ≤ ‖f‖∞ + b, x ≥ 0}. Let F satisfy

|F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ≥ 0. (2.18)

for any u, v ∈ R, where k : R+ → R+ is such that∫ ∞

0

t k(t) dt < 1. (2.19)

Then (2.17) has a solution y(x) defined on R+ with |y(x) − f(x)| → 0 as x → ∞
and ‖y‖∞ ≤ ‖f‖∞ + b, x ≥ 0.

Remark 2.8. Uniqueness of the solution in Theorem 2.7 may be lost in case we
relax the requirement on k as given by (2.19) to the integral being merely finite. In
this case, a proof using measures of non-compactness such as the one in Theorem 2.4
may be used to prove

Theorem 2.9. Let f ∈ L∞(R+)
⋂

C2(R+) and suppose that F : R+ × R+ → R+

is continuous and such that for some b > 0, (2.1) is satisfied for any u ∈ X where
X = {u ∈ BC(R+) : |u(x)| ≤ ‖f‖∞ + b, x ≥ 0}. Let k : R+ → R+ satisfy (2.1),
(2.5) and ∫ ∞

0

t k(t) dt < ∞. (2.20)

Then (2.17) has at least one solution y(x) defined on R+ with |y(x)− f(x)| → 0 as
x →∞ and ‖y‖∞ ≤ ‖f‖∞ + b, x ≥ 0.
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2.4. Discussion. We make no claim as to positivity of the solution in question
in either of Theorems 2.7, 2.9, since f(x) may be of both signs, only that y(x) =
f(x) + o(1) as x →∞. The following example illustrates this.

Example 2.10. Consider the equation

y′′ + F (x, y) = − sinx, x ≥ 0,

with F (x, y) = λ(x + 1)−4 where λ > 0 is arbitrary but fixed and b ≥ λ/6, where
b is defined in (2.1). For any constants c1, c2, we can choose the double primitive
f(x) = sinx + c1x + c2. The assumptions of Theorem 2.7 are readily verified for
our choice of b and F . It follows that there is a solution of this equation such that
y(x) = f(x) + o(1) as x →∞. In fact the solution is given by

y(x) = f(x)− λ

6(x + 1)2
,

for every x, from which the asymptotic estimate follows, as well as the a priori
bound on the solution, namely, that ‖y‖∞ ≤ ‖f‖∞+b, valid for every x ≥ 0. Thus,
choosing c1 = 0, c2 = 0, we see that for large x the solution will generally have both
signs.

3. Asymptotics for solutions of integral equations

Motivated by Atkinson’s paper [8] we produce a sharpening of the results in [[8],
Section 3] by studying integral inequalities. Our purpose is now to provide a formu-
lations of some of the results of the previous sections to a wider framework, namely,
that of integral equations, and ultimately to Volterra-Stieltjes integral equations
with a view at obtaining discrete analogs for three-term recurrence relations.

Instead of beginning this study with a differential equation of the form (1.1) we
pass immediately to its integral equation counterpart, that is,

y(x) = f(x)−
∫ ∞

x

(t− x)F (t, y(t)) dt, x ≥ x0 (3.1)

under various assumptions on the terms involved (after all, all our preceding proofs
were of this nature). Once again we strive to minimize the requirements on the
forcing term, here, f(x). In [8] this term is assumed to be small at infinity in the
differential equation and differential inequality formulation. If f ∈ C2(I) we can
recover results for the nonlinear equation (1.1) by setting g = f ′′.

We will always assume that the “forcing term” f ∈ C(I) in (3.1) where I as
usual is of the form I = [x0,∞), x0 ≥ 0, and uniformly bounded there. This last
requirement will be denoted by the relation f ∈ L∞(I), a minor abuse of notation.
This is the only requirement we will impose upon f . The main result in this section
follows:

Theorem 3.1. Let f ∈ L∞(I) and suppose that the nonlinearity F in (3.1) satisfies

(1) F : I × R → R+ is continuous on this domain
(2) F (x, ·) is nondecreasing for every x ∈ I
(3) For every M > 0, ∫ ∞

0

t F (t, M) dt < ∞
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(4) For every y, z ∈ R and every x ∈ I,

|F (x, y)− F (x, z)| ≤ k(x)|y − z|
where

(5)
∫∞

x0
tk(t) dt < 1.

Then (3.1) has a (continuous) solution y ∈ L∞(I) if and only if there are two
(continuous) functions u, v ∈ L∞(I) such that u(x) ≤ v(x), x ∈ I,

u(x) ≤ f(x)−
∫ ∞

x

(t− x)F (t, v(t)) dt (3.2)

for x ≥ x0, and

v(x) ≥ f(x)−
∫ ∞

x

(t− x)F (t, u(t)) dt (3.3)

for x ≥ x0.

Remark 3.2. A corresponding result is valid for positive solutions y of (3.1). In
this case u(x) > 0 in Theorem 3.1 and the positivity assumption on F can be
restated as F (x, y) ≥ 0 for every y ≥ 0, the remaining assumptions being the same.

As a consequence we obtain a differential equations counterpart. Under the basic
assumptions (1)-(5) of Theorem 3.1, we obtain the following two theorems.

Theorem 3.3. Equation (1.1) with g = f ′′ has a solution y with y(x) = f(x)+o(1),
y′(x) = f ′(x)+o(1), as x →∞ if and only if there exists two functions u, v ∈ L∞(I)
such that u(x) ≤ v(x), x ∈ I, satisfying (3.2) and (3.3),

Theorem 3.4. Let u, v, f , u(x) ≤ v(x), for x ∈ I, be three twice continuously
differentiable functions satisfying the differential inequalities

u′′(x) + F (x, v(x)) ≤ g(x) ≤ v′′(x) + F (x, u(x)), x ∈ I,

where g = f ′′. If, in addition, u, u′, v, v′ have vanishing limits at infinity, then
(2.17) has a positive solution y ∈ L∞(I), with y(x) ∼ f(x) as x →∞.

Example 3.5. We consider the integral equation (3.1) with F (x, y) = y/x4 and
f(x) = 1 + 1/(6x2) on I = [1,∞). Note that y = 1 is a solution of (3.1) on I and
that for such x all the conditions of Theorem 3.1 and Remark 3.2 are satisfied with
the choice k(x) = 1/x4. The functions u, v, whose existence is guaranteed by this
result, are given by u(x) = 1/2 and v(x) = 2 for x ∈ I.

3.1. Discussion. Our result gives, for a given (akin to ‘superlinear’) nonlinearity,
a necessary and sufficient condition for the existence of asymptotic solutions of a
given type in terms of solutions to specific integral inequalities (according to [29]
a superlinear F is one which satisfies condition ‘2’ in Theorem 3.1). The stated
theorem gives uniqueness as well as uniform bounds for the required solution. It
is likely that hypotheses ‘4’ and ‘5’ in the theorem may be relaxed albeit at the
possible loss of uniqueness. Theorem 3.1 appears to be new even when considered
from the viewpoint of second order nonlinear differential equations (as in, e.g.,
Theorem 3.3).

As mentioned earlier, Nehari [88] gives a necessary and sufficient condition for
the existence of a non-oscillatory solution of an equation akin to (1.1) in terms of
the nonlinearity. Under a strong superlinear condition that is, for some ε > 0 there
holds

y−ε
2 F (x, y2) > y−ε

1 F (x, y1), (3.4)
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for 0 < y1 < y2 < ∞, he shows in [88] that if the nonlinear equation has the special
form

y′′ + yF (x, y2) = 0, x ≥ 0, (3.5)

then it has a bounded non-oscillatory solution if and only if, for some M > 0,∫ ∞
tF (t, M) dt < ∞, (3.6)

i.e., condition ‘3’ in Theorem 3.1 holds for some M > 0 (and x = 0).
His result was extended later by Wong [114] by relaxing the monotonicity condi-

tion on F somewhat and taken up again by Coffman-Wong [29], [30], where further
developments in a sublinear case were given (in particular, see the Table on p.123
in [114] for a useful visual display of known necessary and sufficient conditions for
non-oscillation). A more precise version of Nehari’s result can be found in the
strong superlinear case in [30], that is, (3.5) has a bounded asymptotically linear
solution (the special case f(x) = ax + b in our set up) if and only if (3.6) holds for
some M > 0.

Although we require that (3.1) be ‘superlinear’ (i.e., condition ‘2’ in Theorem 3.1)
it need not be strongly so. On the other hand, we require that (3.6) hold for every
M > 0, but then we are also strengthening the conclusion. Indeed, our result is
also valid for a wider class of equations, not only second order nonlinear differential
equations.

In a recent paper [86], the authors implicitly assume an integrability condition
on f and that this double primitive f(x) → 0 as x → ∞, in the spirit of [8] and
[70]. The nature of such a decay condition on the forcing term is that the basic
tenet underlying the asymptotic behavior of a given nonlinear differential equation
(1.1) appears to be the interplay between the rate of decay of the nonlinearity as
opposed to the rate of decay of the forcing term. For example, if the nonlinearity
is small in the sense of the applicability of conditions (3-5) in Theorem 3.1 and
the forcing term is not ( e.g., perhaps not integrable on I) then solutions may
be expected to be asymptotic to a double primitive of the forcing term. On the
other hand, if both forcing term and nonlinearity are “small” in some suitable
sense then the solutions of (1.1) may be expected to be asymptotically linear (or
asymptotic to the solutions of the same equation with nonlinearity and forcing term
omitted). This philosophy may be used in our basic understanding of nonlinear
equation asymptotics on a half-line on account of the following unpublished result,
reproduced here for completeness.

Theorem 3.6 (Atkinson-Mingarelli, 1976, unpublished). Let g : I → (0,∞) be
continuous and satisfy ∫ ∞

x0

ti g(t) dt < ∞ (3.7)

for i = 0, 1. We assume that G : I × R → R+ verifies assumptions (1-2) in
Theorem 3.1 (i.e., G is continuous on this domain and G(x, ·) is nondecreasing
for every x ∈ I). In addition, let Gx(x, y) ≡ ∂G/∂x exist, be continuous and
non-positive on the same domain. If∫ ∞

x0

t G(t, Kt) dt < ∞ (3.8)
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for every K > 0, then every solution y of

y′′ + yG(x, y) = g(x) (3.9)

is either asymptotically linear or y(x) < 0, y′(x) ≤ 0, y′′ ≥ 0 for all sufficiently
large x. Either way, every solution is nonoscillatory.

Remark 3.7. The double primitive of g does not enter the picture here as in
Theorem 3.1 since g is already itself small, as evidenced by (3.7). By a solution
y that is “asymptotically linear” we mean that the solution has the property that
y(x) = Ax + B + o(1) as x → ∞, for some constants A,B, where the cases A =
0, B > 0, A > 0, B = 0, A = B = 0 can all occur. This result is in the same spirit as
Theorem 3.1 above except for clear differences in the behavior of the nonlinearities
involved. Despite these differences, these nonlinearities are each small at infinity
thereby leading to the stated linear asymptotics. This theorem extends a theorem
of [Nehari [88], Theorem III]

The following complementary result to Theorem 3.6 is for the case where g is
not integrable at infinity. In this case the nonlinearity is still small in comparison
to the growth of g in (3.11) but now the forcing term is integrably large, so the
solutions are asymptotic to a double primitive of the forcing term.

Theorem 3.8 (Atkinson-Mingarelli, 1976, unpublished). Let g : I → (0,∞) be
continuous and satisfy ∫ ∞

x0

g(t) dt = +∞ (3.10)

for i = 0, 1. We assume that G : I × R → R+ verifies assumptions (1-2) in
Theorem 3.1 (i.e., G is continuous on this domain and G(x, ·) is nondecreasing for
every x ∈ I). In addition, let Gx(x, y) ≡ ∂G/∂x exist, be continuous and non-
positive on the same domain. If for some double primitive f (i.e., g = f ′′) and
some ε > 0 ∫ x

x0

sup
|u|≤(1+ε)f

|F (t, u)| dt = o

{∫ x

x0

g(t) dt

}
, (3.11)

as x →∞, then every solution y of

y′′ + yG(x, y) = g(x) (3.12)

is asymptotic to f(x) as x →∞.

3.2. Discussion. One of the advantages in using classical methods over fixed point
theorems is exhibited in Theorems 3.6 and 3.8 above. For example, it is difficult
to obtain a priori bounds such as (6.13) on the derivative or (6.15) on the solution
y(x) using fixed point theorems. Both techniques can be used interchangeably,
preference being only a function of the conclusion desired, and on the nature of the
hypotheses, nothing more.

Note, however, the absence of conditions such as (2.5) or (2.19) in these two
results, hypotheses that were deemed necessary in the proofs of most of the results
in this section. Conditions such as (2.5) and (2.19) could also be interpreted as being
conditions on the rate of growth of ∂G/∂y in the domain under consideration.



12 A. B. MINGARELLI AND K. SADARANGANI EJDE-2007/40

4. Asymptotic theory of nonlinear Volterra-Stieltjes integral
equations

We begin this section with a non-exhaustive review and update of the results over
the past 20 years in this fascinating area which can be used to unify discrete and
continuous phenomena. The unification allows for the simultaneous study of both
differential and difference equations of the second order and even includes equations
that are, in some sense, between these two as we gather from the discussion that
follows (and from the references). A Volterra-Stieltjes integral equation is basically
a Volterra integral operator on a space X of suitable functions in which the integral
appearing therein is a Stieltjes integral (in whatever sense it can be defined, more
on this below). The prototype (linear) Volterra-Stieltjes integral equation that we
use in this work is of the form I ≡ 0 ≤ x < b ≤ ∞,

y(x) = y(0) + xy′(0)−
∫ x

0

(x− t)y(t)dσ(t) x ∈ I, (4.1)

where σ : I → R is a function that is locally of bounded variation on I. A solution
of (4.1) is an absolutely continuous function with a right-derivative that exists for
each x ∈ I and is locally of bounded variation on I. In this case, the integral in
(4.1) can be understood in the Riemann-Stieltjes sense and we take this for granted
throughout this section. It is known that this formulation, which includes the use of
a simple Riemann-Stieltjes integral, is adequate (and sufficient) for the unification
purposes referred to above (see e.g., [82] among other possible references). Other
frameworks that can be used as a unification tool for discrete and continuous non-
linear equations include the theory of time scales. However, we do not entertain
these studies here (unless results overlap) and so refer the interested reader to e.g.,
[21, 41, 72, 74, 94], and the references therein for further information.

Associated with (4.1) is the Volterra-Stieltjes integro-differential equation

y′(x) = y′(0)−
∫ x

0

y(t)dσ(t) (4.2)

obtained by differentiating the equation (4.1). The derivative appearing in (4.2)
is now understood generally as a right-derivative and this function is locally of
bounded variation on I. Local existence and uniqueness of solutions of initial
value problems associated with either (4.1) or (4.2) and the basic theory of such
equations, as we define them, was developed by Atkinson [7], and also continued by
Mingarelli [82], Mingarelli and Halvorsen [83] among others. The reader may also
wish to consult the monographs of Corduneanu [32], Hönig [60], Schwabik et al.
[97] and [98] for different approaches and generalizations of both the method and
the context. We also refer the reader to Groh [50] for an extensive list of references
to this subject, some not included here.

Regarding the possible different interpretations of the nomenclature “Volterra-
Stieltjes integral equation” in the literature, the main ideas and developments de-
pend strongly on the definition of the particular Stieltjes integral being used. Once
this is in place, one can define a solution, develop a basic theory (ask about exis-
tence and uniqueness of solutions, continuous dependence on initial conditions, etc)
and suggest additional applications. Thus, studies which have depended upon the
use of the Kurzweil-Henstock integral in (4.1) and equations like it include, and are
not restricted to, Kurzweil [75], Schwabik [100], Tvrdý [108], Federson-Bianconi
[42]. One of the very first researchers in this area, Martin [80] uses the Cauchy
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right-integral while the Dushnik integral appears in the papers by Hönig [60], [62]
and Dzhgarkava [39]. The Stieltjes integral, when viewed as a Lebesgue-Stieltjes
integral, makes its appearance in Ding-Wang [34], [35] and Caizhong [24]. Finally,
but not exhaustively, Dressel [36] uses the Young integral. There may be overlap be-
tween some of these definitions as they have developed in the past century, but the
aim is to show that different integral definitions may produce different applications
and may account for the large literature on this subject.

Various abstract formulations of such equations can be found in the works of Hel-
ton [55] who considered such equations over rings, Ashordia [4], [5], Dzhgarkava [38],
Hönig [63],[64], Ryu [93], Schwabik [99], Travis [104] and Young [121]. Controllabil-
ity of equations of this general type has been studied by Barbanti [18], Dzhgarkava
[39], Groh [52], Yong [120], and Young [122]. Investigations related to systems of
equations include those of Gopalsamy et al. [48], Herod [56], Hildebrandt [57], Hin-
ton [59], Hönig [61], Schwabik [96], and Wheeler [111]. For the relationship between
Volterra-Stieltjes integral equations and their applications to difference equations
(or recurrence relations see Atkinson [7], Mingarelli [82], Mingarelli-Halvorsen [83],
Petrovanu [90], and Schwabik [100].

The study of scalar Volterra-Stieltjes integral equations and subsequent quali-
tative, quantitative, and spectral theory can be found in the works by Banas et
al [10, 11, 13, 14, 15, 16, 17], Caballero et al [23], Cao [25], Cerone-Dragomir [26],
Chen [27, 28], El-Sayed [40], Gibson [45], Gil’ and Kloeden [46, 47], Hu [65],
Jiang [68, 67], Lou [77], Marrah and Proctor [79], Mingarelli [81, 82], Mingarelli
and Halvorsen [83], Parhi [89], Randels [91], Schwabik [95], Spigler and Vianello
[101, 102], Tritjinsky [105], Wang [110], Wong and Yeh [112, 113].

Finally, there is a relationship which has seen little follow-through in the past 70
years or so since its beginnings. Basically, one asks about a relationship between
the notion of a generalized derivative ( à la Feller) of the form

−dy′

dσ
= f(x), x ∈ [0, b],

and the integro-differential equation (cf., (4.2) above),

y′(x) = c−
∫ x

0

f(t) dσ(t),

where c is a constant and σ is an non-decreasing (actually increasing) function
defined on [0, b] with an appropriate Stieltjes integral. This approach was pioneered
by the probabilist Feller [43] (see the references in [82, p.316]) and the resulting
theory, found in many papers in probability (not all quoted here) now includes
the keywords: Feller derivatives, Krein-Feller operators, Generalized differential
operators, etc., see Jiang [69], Albeverio-Nizhnik [2], Fleige [44], Mingarelli [82].

That there is an equivalence between these last two displays should not be sur-
prising yet the lines of development of the resulting theories seem to have diverged
over the years with each equation taking on a life of its own, so to speak. For pa-
pers dealing with generalized differential expressions see Groh [51], Jiang [69], Volk-
mer [109], and Mingarelli [82] among others. We emphasize here the importance of
the contributions of Kač, Krěin and Langer to the study of the spectral theory of the
operators associated with the generalized differential expressions above. Although
these references are not included here specifically for reasons of length, we refer the
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interested reader to the more than 80 historical references in Mingarelli [82], in ad-
dition to those in Atkinson [7, pp. 529-533], , the list of references in Fleige [44] and
the references contained within each of the articles mentioned in the bibliography
below. Altogether these should give the reader an essentially complete view of this
vast field as of today.

4.1. Asymptotically linear solutions of nonlinear equations. The asymp-
totic theory of solutions of equations of the form (4.1) or (4.2) is still in its infancy
with few basic results in existence in the literature. In the linear case (4.1) we
can cite Atkinson [7, Theorem 12.5.2]. Fewer are specific results dealing with the
nonlinear case (4.3) or (4.4). One such result may be found in [82, Theorem 2.3.1],
in the case where F (x, y) = p(x)q(y), a result which extends Butler’s necessary and
sufficient condition for non-oscillation [22]. In the remaining sections we produce
extensions of the results in the previous sections to this framework along with some
possible refinements.

y(x) = y(0) + xy′(0)−
∫ x

0

(x− t)F (t, y(t)) dσ(t) (4.3)

y′(x) = y′(0)−
∫ x

0

F (t, y(t)) dσ(t) (4.4)

Using the methods in Atkinson [7, Chapter 12], one can readily prove the existence
and uniqueness of solutions of initial value problems for equations of the form (4.3)
or (4.4) under a locally Lipschitz condition on the continuous nonlinearity F . Recall
that a solution of (4.3) (resp.(4.4)) is an absolutely continuous function such that its
right derivative exists at every point of I and y(x) (resp.y′(x)) satisfies the equation
(4.3) (resp.(4.4)) at every point in I. Unless otherwise specified we always assume
the minimum requirement that such solutions exist and are unique. In some cases
below we actually get existence, uniqueness and asymptotic limits as a by-product
of the techniques used.

For simplicity of notation we will assume hereafter, unless otherwise specified,
that the interval I in question is I = [0,∞), but it could well be any half-line, of
the form I = [x0,∞), with minor changes throughout (obtained by a change of
independent variable). Our first general result is a counterpart of Theorem 3.6 for
asymptotically linear solutions of (4.3).

Theorem 4.1. Let σ : I → R be right continuous and locally of bounded variation
on I. Suppose that the nonlinearity F in (4.3) satisfies

(1) F : I × R → R+ is continuous on this domain
(2) F (x, ·) is nondecreasing for every x ∈ I
(3) For some M > 1, ∫ ∞

0

F (t, Mt) |dσ(t)| < ∞

Then (4.3) has an asymptotically linear solution, viz., a solution y with y(x) =
Ax + B + o(1) as x →∞ for some appropriate choice of real numbers A,B.

Remark 4.2. The assumption that F is nondecreasing in its second variable may
be weakened at the expense of additional smoothness as a function of that variable
(e.g., a Lipschitz condition of type (2.5) and (2.20) as we have seen above) and use
of a fixed point theorem as the next result shows.
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Theorem 4.3. Let σ : I −→ R be a non-decreasing right-continuous function,
F : I × R+ −→ R+ be continuous such that for some M > 0,

(a)
∫∞
0

t F (t, y(t)) dσ(t) ≤ M , for y ∈ X,
where X = {y ∈ C(I) : 0 ≤ y(x) ≤ M, x ∈ I},

(b) |F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ∈ I, u, v ∈ R+

where k : I → R+ is continuous and
(c)

∫∞
0

t k(t) dσ(t) < ∞.
Then the Volterra-Stieltjes integro-differential equation (4.4) has a monotone in-
creasing solution y(x) with 0 ≤ y(x) ≤ M for x ∈ I and y(x) → M as x →∞.

It appears at first sight as if condition (a) in Theorem 4.3 may be difficult to
verify. However, the following simple corollary shows that pointwise estimates on
F (x, y) can be used to imply the same conclusion.

Corollary 4.4. Assume that F, σ are as in Theorem 4.3. Let M > 0 and let

F (x, y) ≤ p(x)q(y), x ≥ 0, y ∈ R+, (4.5)

for some function q, where q : [0,M ] → [0,M ] is continuous on [0,M ]. Let p ∈
C[0,∞) and suppose that ∫ ∞

0

t p(t) dσ(t) ≤ 1. (4.6)

Assume further that there exists a function k : R+ → R+ such that k is continuous
and ∫ ∞

0

t k(t) dσ(t) < 1

such that for any u, v ∈ R+, we also have

|F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ≥ 0 .

Then (4.4) has a positive (and so non-oscillatory) monotone solution on I such
that y(x) → M as x →∞.

4.2. Discussion. Note that if
∫∞
0

t F (t, 0) dσ(t) < ∞ then this condition, along
with assumptions (b) and (c) in the theorem together imply (a). In particular, (a)
is satisfied if F (x, 0) = 0 for every x ∈ I.

As in the differential equation case before, if
∫∞
0

t k(t) dσ(t) < 1 then relation
(6.29) in its proof gives us

‖Ay −Az‖∞ ≤ ‖x− y‖∞
∫ ∞

0

t k(t) dσ(t),

and the Banach contraction mapping theorem applies immediately to gives us ex-
istence and uniqueness of the solution of our integro-differential equation. Note
the similarity between hypothesis (3) in Theorem 4.1 and assumption (a) in Theo-
rem 4.3: In condition (a) the integrand involves a class of functions all bounded by
the constant M , whereas in hypothesis (3) the “class of functions” is replaced by
the class of linear functions of the form Mt. In the former case there are asymp-
totically constant solutions while, in the latter case, there are asymptotically linear
solutions. This is reflected in the form of the respective assumptions. Indeed, since
the constant function y(x) = M is in X, assumption (a) includes the condition∫ ∞

0

t F (t, M) dσ(t) ≤ M. (4.7)
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Next, Theorem 4.3 gives the existence of an asymptotically constant solution when-
ever there exists a constant M > 0 satisfying condition (a) (the other two assump-
tions being independent of M we assume as implicitly verified). Thus, if (a) is
assumed for each M > 0 then there is an asymptotically constant solution tending
to that limit, M . A similar observation appplies to Theorem 4.1. A moment’s
reflection shows that if, in addition, we assume that F (x, ·) is non-decreasing for
each x ∈ I, then the existence of a solution can be obtained satisfying the improved
estimate

M −
∫ ∞

0

t F (t, M) dσ(t) ≤ y(x) ≤ M

in Theorem 4.3. Since (4.7) holds for that M , the left hand side is non-negative.
Since (4.7) is reminiscent of Nehari’s criterion [88] for the existence of bounded
nonoscillatory solutions, it is of interest to investigate the validity of this criterion
in this more general setting and this is the subject of the next result.

Lemma 4.5. Let σ : I −→ R be a non-decreasing right-continuous function, F :
I × R+ −→ R+ be continuous and such that for some M > 0,∫ ∞

0

t F (t,M) dσ(t) < ∞. (4.8)

Then every eventually positive solution of the Volterra-Stieltjes integro differential
equation (4.4) is either of the form y(x) ∼ Ax as x →∞ for some constant A 6= 0
or y(x)/x → 0 as x →∞.

We now formulate an analog of Nehari’s necessary and sufficient criterion [88]
for the existence of a bounded nonoscillatory solution of our equation (recall that
a solution y of (4.3) or (4.4) is said to be nonoscillatory provided y(x) 6= 0 for all
sufficiently large x).

Theorem 4.6. Let σ : I −→ R be a non-decreasing right-continuous function,
F : I × R+ −→ R+ be continuous and non-decreasing in its second variable (i.e.,
F (x, y) is nondecreasing in y for y > 0, for each x ∈ I). Then (4.4) has bounded
eventually positive solutions if and only if (4.8) holds for some M > 0.

Corollary 4.7. Let σ be as in Theorem 4.6, G : I × R+ → R+ be continuous and
positive in I×R+. In addition, let G(x, y) be nondecreasing for every y > 0, x ∈ I.
Then

y′(x) = y′(0)−
∫ x

0

y(t)G(t, y2(t)) dσ(t) (4.9)

has bounded nonoscillatory solutions if and only if there holds∫ ∞

0

t G(t, c) dσ(t) < ∞, (4.10)

for some c > 0.

The proof of the next result is an immediate consequence of the theorem.

Corollary 4.8. Let σ, F be as in Theorem 4.6. Then (4.3) has asymptotically
constant positive solutions if and only if (4.8) holds for some M > 0.

Of course, Corollary 4.8 deals with bounded solutions of (4.3). An analogous
result for possibly unbounded solutions follows (although strong superlinearity (3.4)
is to be imposed).
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Theorem 4.9. Let σ be as in Theorem 4.6. Assume that F : I × R+ → R+ is
continuous and positive in I×R+. In addition, let F satisfy the strong superlinearity
condition (3.4) for ε = 0, as well as for some ε > 1. Then (4.3) has an eventually
positive solution if and only if (4.8) holds for some M > 0.

4.3. Discussion. Theorem 4.6 is an improvement of Nehari’s theorem [88] to the
framework of Volterra-Stieltjes integral equations (4.3), or Volterra-Stieltjes integro-
differential equations (4.4). Although Nehari’s theorem [88, Theorem I] was stated
for equations of the form (3.5), we choose the more general form stated here, with
an arbitrary nonlinearity (this explains the apparently odd restriction on ε > 1
rather than ε > 0 as in the original Nehari result). As pointed out in the proof
of Corollary 4.7 the form (3.5) is actually guided by the wish that both y and −y
be solutions of the same equation. Nehari’s theorem as such is actually a special
case of Corollary 4.7 with σ(t) = t throughout. The integral equation (4.9) then
produces a differential equation of the form (3.5) (since the indefinite integral is
continuously differentiable). Indeed, Corollary 4.8 (via the techniques in the proof
Corollary 4.7) also includes an extension of Nehari’s theorem by Coffman and Wong
[30], [29, Theorem E].

The Volterra-Stieltjes framework provides for recurrence relation (discrete) ana-
log or even intermediate mixed type integro differential equations as a direct con-
sequence (see the next Section for applications). In addition, Corollary 4.8 shows
that the sufficiency of the proof of Theorem 4.6 actually provides a criterion for the
existence of asymptotically constant solutions of either (4.3) or (4.4). As we gather
from the proof of said theorem, we can choose the asymptotic limit A appearing in
(6.38) to be any number between (0,M), where the M appears in (4.8). It follows
that if (4.8) is valid for every M > 0 then (4.3) has solutions whose limits can be
any prescribed positive number.

Theorem 4.9 includes a slight modification of an additional result of Coffman and
Wong [[30], Section 6]. Observe that, if the solution in the necessity of Theorem 4.9
is unbounded, then (4.8) must hold for every M > 0, just as in the case of ordinary
differential equations, cf., [30]. That is, the existence of at least one unbounded
eventually positive solution of (4.3) implies the convergence of the integral (4.8),
not only for the M in question, but for every M > 0 (see also Lemma 4.10 below
in this regard).

In order not to restrict ourselves only to the study of asymptotically constant
solutions of either (4.3) or (4.4), we now present further results relating to asymp-
totically linear solutions. Lemma 4.10 below complements Theorem 4.1 above.

Lemma 4.10. Let σ be right-continuous and nondecreasing on I, F : I×R+ → R+

be continuous and positive in I ×R+. In addition, let F (x, y) be nondecreasing for
every y > 0, x ∈ I. If either (4.3) or (4.4) has a solution y(x) ∼ Ax+B as x →∞,
where A > 0, B are constants, then∫ ∞

0

F (t, Mt) dσ(t) < ∞ (4.11)

for some M > 0.

Remark 4.11. Incidentally, this proof also shows that the existence of at least
one asymptotically linear solution with asymptotic slope A implies that (4.11) is
satisfied for every M , with 0 < M < A.
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Theorem 4.12. Let σ be right-continuous and nondecreasing on I, F : I ×R+ →
R+ be continuous and positive in I ×R+. In addition, let F (x, y) be nondecreasing
for every y > 0, x ∈ I. Then (4.4) has an asymptotically linear solution if and only
if (4.11) holds for some M > 0.

4.4. Discussion. The previous result extends another result of Nehari [88, Theo-
rem II] to this more general setting. Although we did not exhibit “Stieltjes analogs”
(i.e., for equations of the form (4.3) or (4.4)) of the results in the first few sections
for reasons of length, we do not foresee any difficulties in their respective formula-
tions and proofs. In this vein a Stieltjes analog of Theorem 4.3 is readily available,
the only major difference being the definition of the space which in this case is
L∞(I). The result is stated next and we leave the proof to the reader.

Theorem 4.13. Let f ∈ L∞(I), σ be right-continuous and non-decreasing on I,
and suppose that the nonlinearity F : I × R → R+ in

y(x) = f(x)−
∫ ∞

x

(t− x) F (t, y(t)) dσ(t), x ≥ x0 (4.12)

is continuous on this domain, that F (x, y) is nondecreasing in y for every x ∈ I,
y > 0 and for every M > 0, ∫ ∞

0

t F (t,M) dσ(t) < ∞.

In addition, we assume that for every y, z ∈ R and every x ∈ I,

|F (x, y)− F (x, z)| ≤ k(x)|y − z|

where ∫ ∞

x0

tk(t) dσ(t) < 1.

Then (4.12) has a solution y ∈ L∞(I) if and only if there are two functions u, v ∈
L∞(I) such that u(x) ≤ v(x), x ∈ I, and for x ≥ x0,

u(x) ≤ f(x)−
∫ ∞

x

(t− x)F (t, v(t)) dσ(t) (4.13)

and

v(x) ≥ f(x)−
∫ ∞

x

(t− x)F (t, u(t)) dσ(t) (4.14)

Finally, we give a result that completely parallels Theorem 2.4 above in this
wider setting.

Let f ∈ L∞[1,∞) with the usual essential supremum norm, ‖ · ‖, satisfy (2.7)
for some δ > 0. Define Y = {u ∈ L∞[1,∞) : ‖u(x)/f(x)‖ < ∞}.

The subset X = {u ∈ Y : ‖u(x)/f(x)‖ ≤ 2}, is a closed subset of Y . Let
F : [1,∞) × R → R be continuous (and not necessarily positive), and let σ be a
right-continuous non-decreasing function defined on [1,∞). In addition, let∫ ∞

1

s |F (s, 0)| dσ(s) < ∞. (4.15)

With f as above let there exist a function k : [1,∞) → R+ satisfying∫ ∞

1

s |f(s)| k(s) dσ(s) < ∞. (4.16)
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We assume the usual Lipschitz condition on F as before, that is, for any u, v ∈ R,

|F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ≥ 1. (4.17)

For such functions F, k, f, σ satisfying (2.7), (4.15), (4.16) and (4.17) we consider
the “forced” nonlinear equation defined by, for y ∈ X,

Ty(x) = f(x)−
∫ ∞

x

F (t, y(t)) dσ(t), x ≥ a. (4.18)

on the interval I = [a,∞) where a is chosen so large that a ≥ 1 and for x ≥ a,

max
{∫ ∞

x

(s− x) |f(s)| k(s) dσ(s),
∫ ∞

x

(s− x) |F (s, 0)| dσ(s)
}
≤ δ

4
. (4.19)

Fix such an a for the next result.

Theorem 4.14. Let f, F, k, σ defined above satisfy (2.7), (4.15), (4.16), (4.17)
and (4.19). Then the operator T has a unique fixed point in X, and this point
corresponds to a solution of the integral equation

y(x) = f(x)−
∫ ∞

x

F (t, y(t)) dσ(t), x ≥ a.

such that y ∈ X and y(x) ∼ f(x) as x →∞.

Remark 4.15. If f is, in addition, absolutely continuous on [a,∞), then so is y,
in which case its right derivative satisfies (4.4) for every x ≥ a.

5. Applications to differential and difference equations

The main reason for the developments of the previous sections to Volterra-
Stieltjes integral and integro-differential equations of the form (4.3), (4.4) is that
this wider framework can be used as a tool for unifying discrete and continuous
phenomena such as differential equations and difference equations (or recurrence
relations). This approach was emphasized by Atkinson [7], Hönig [60], Mingarelli
[82] and Mingarelli-Halvorsen [83] among the earliest such textual sources. See these
texts for basic terminology and other examples of theorems in this wider framework
along with their developments to discrete phenomena. Although such generaliza-
tions seem to be academic at best, their main thrust lies in their applicability to
cases that are not “continuous” as we see below.

The simplest of all applications of the results in Section 4 is to differential equa-
tions of the second order, linear or not. This is accomplished by choosing σ(t) = t
throughout that section. The correponding results for ordinary differential equa-
tions then arise as corollaries of the results therein. Thus, as pointed out in that
section the various theorems therein, some even new for the case of ordinary dif-
ferential equations, extend essential results in nonlinear theory due to Atkinson,
Nehari, Coffman and Wong, etc. to this wider framework.

In order to derive results for equations other than ordinary differential equations
we can choose σ(t) to be a function that is part step-function and part absolutely
continuous, or even all step-function or by the same token, all absolutely continuous.
The three different choices lead to three intrinsically different kinds of equations.
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5.1. The case of three-term recurrence relations. In order to derive the spe-
cial results in this case, we appeal to the methods described in [[82], Chapter 1].
Thus, starting from any infinite sequence of real numbers {bn}∞n=0 we produce an
absolutely continuous function b : N → R by simply joining the various points
(n, bn), n = 0, 1, 2, . . . in the plane by a line segment. The resulting polygonal
curve is clearly locally absolutely continuous on its domain (we call this curve
the polygonal extension of the the sequence of points to a curve). Next, we de-
fine a right-continuous step-function (or simple function) by defining its jumps to
be at the integers (or any other suitable countable set, [[82], xi]) of magnitude
σ(n)− σ(n− 0) = −bn, for n ≥ 0 (so σ(t) = constant in between any two consecu-
tive integers). Defining F (x, y) := y for simplicity of exposition, we can show that
(see [[82], pp.12-15]) the solution y(x) of the equation (4.4) with right-derivatives
has the property that

∆2yn−1 + bn yn = 0, n ∈ N,

where y(n) = yn for every n, and ∆ is the forward difference operator defined here
classically by ∆yn−1 = yn − yn−1. No more generality is gained by looking at the
three-term recurrence relation in standard form, that is,

cnyn+1 + cn−1yn−1 + bnyn = 0, n ∈ N, (5.1)

where cn 6= 0 for every n. The change of dependent variable yn = αnzn where the
αn satisfy the recurrence relation αn+1 = {cn−1/cn}αn−1, n ∈ N, brings (5.1) into
the form

∆2zn−1 + βn zn = 0, n ∈ N,

for some appropriately defined sequence βn. Conversely, every such second order
linear difference equation is equivalent to a three term recurrence relation of the
form (5.1) with yn = zn, cn = 1 and bn = βn − 2.

If F is defined generically as in Section 4 then the same choice of the step-function
σ in (4.4) produces the the second order difference equation

∆2yn−1 + bn F (n, yn) = 0, n ∈ N. (5.2)

The pure nonlinear difference equation

∆2yn−1 + F (n, yn) = 0, n ∈ N. (5.3)

is obtained by setting the bn = 1 and defining the resulting step-function σ as
above.

Conversely, starting with any nonlinear difference equation of the form (5.3)
we can produce a Volterra-Stieltjes integro-differential equation of the form (4.4)
by “extending” the domain of this discrete solution yn to a half axis by joining
the points (n, yn) by line segments. Call this new function y(x). Define the step-
function σ by jumps of magnitude σ(n) − σ(n − 0) = −1 and right-continuity,
and F (x, y), the polygonal extension of the sequence F (n, yn) to an absolutely
continuous function F (x, y) (obtained by joining the points (n, yn, F (n, yn)), (n +
1, yn+1, F (n + 1, yn+1)), n ∈ N, by a line segment). In this case, the Riemann-
Stieltjes integral appearing in (4.4) exists for each x. The resulting function y(x)
is locally absolutely continuous and its right-derivative exists at every point and is
locally of bounded variation on the half-axis. It can be shown that this new function
y(x), now satisfies (4.4) with right-derivatives. If more smoothness is required on
the function F we can use interpolating polynomials in R3 in lieu of the polygonal
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extension. . . . This duality between equations of the form (4.4) and (5.3) underlines
the importance of this approach.

With these facts in hand we formulate the recurrence relation corollary of The-
orem 4.1 above.

Theorem 5.1. Let F : I × R → R+ with values F (x, y), be continuous on this
domain, nondecreasing in its second variable for every x ∈ I and assume that for
some M > 1 and for some real sequence {bn}∞n=0, we have

∞∑
n=0

F (n, Mn) |bn| < ∞.

Then (5.2) has asymptotically linear solutions, that is solutions of the form yn ∼
An + B as n →∞ for some constants A,B.

Another such consequence is a discrete analog of Theorem 4.3.

Theorem 5.2. Let X = {y ∈ C(I) : 0 ≤ y(x) ≤ M, x ∈ I}, where M > 0 is given
and fixed. Let F : I × R+ −→ R+ be continuous on this domain, and {bn}∞n=0 a
given non-negative sequence such that

(a)
∑∞

n=0 n bn F (n, y(n)) ≤ M , for all y ∈ X,
(b) |F (x, u)− F (x, v)| ≤ k(x)|u− v|, x ∈ I, u, v ∈ R+

where k : I → R+ is continuous and for k(n) := kn,
(c)

∑∞
n=0 n kn bn < ∞.

Then the difference equation (5.2) has a monotone increasing solution yn satisfying
0 ≤ yn ≤ M for each n, and yn → M as n →∞.

Finally, we formulate a version of Nehari’s theorem [[88], Theorem I] for second
order difference equations as a result of our investigations. We leave the proof to
the reader (note that we use bn = 1 in this case).

Theorem 5.3. Let F : I × R+ −→ R+ be continuous on this domain and non-
decreasing in its second variable (i.e., F (x, y) is nondecreasing in y for y > 0, for
each x ∈ I). Then (5.3) has bounded eventually positive solutions if and only if

∞∑
n=0

n F (n, M) < ∞

holds for some M > 0.

This should convince the reader that difference equation analogs of Lemma 4.5,
Corollary 4.7, Corollary 4.8,Theorem 4.9, Theorem 4.14 can be formulated without
undue difficulty and their proof is simply a consequence of the results in the previous
section with the necessary choices of functions as detailed above.

Next, we note that equations intermediate between difference and differential
equations are also included in our framework of equations of the form (4.4). That
is, we can assume that our function σ consists of a discrete part and a part that
is possibly continuous and of bounded variation (but not necessarily absolutely
continuous). Indeed, on I = [0,∞) for a given p > 0 we define σ(t) by its jumps
on (0, p], so that σ(n) − σ(n − 1) = −bn, for n = 0, 1, 2, . . . , p where bn is a given
arbitrary sequence and σ is right-continuous at its jumps. Let σ(t) := h(t) where
h is a fixed function, right-continuous and locally of bounded variation on [p,∞).
In the framework of these equations, Nehari’s theorem takes the following form:
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Theorem 5.4. Let F : I × R+ −→ R+ be continuous on this domain and non-
decreasing in its second variable (i.e., F (x, y) is nondecreasing in y for y > 0, for
each x ∈ I). Then the integro-differential-difference equation of Stieltjes type,

y′(x) = y′(0)−
p∑

n=0

F (n, y(n))bn −
∫ x

p

F (t, y(t)) dh(t) (5.4)

for x > p, has bounded eventually positive solutions if and only if∫ ∞

p

t F (t, M) dh(t) < ∞

holds for some M > 0.

5.2. Discussion. A solution y of our equation (5.4) above is a polygonal curve
whenever 0 < x < p (since the integral term is absent in (5.4)) while for x > p
it is an absolutely continuous curve locally of bounded variation. Thus the values
y(n) := yn actually satisfy a second order difference equation for small x (x < p)
while for large x (x > p) this y(x) is the solution of a pure integral equation
of Volterra-Stieltjes type along with some discrete parts (as seen in (5.4)). The
special case h(t) = t is clearly included in this discussion. For this choice, (5.4)
takes the form

y′(x) = y′(0)−
p∑

n=0

F (n, y(n))bn −
∫ x

p

F (t, y(t)) dt, (5.5)

“almost” a second order differential equation except for the interface conditions at
a prescribed set of points in [0, p]. Under the usual conditions on F as required by
Theorem 4.6, (5.5) will have eventually positive solutions if and only if∫ ∞

p

t F (t, M) dt < ∞

holds for some M > 0 (which is precisely Nehari’s necessary and sufficient criterion
for second order nonlinear differential equations). For this choice of σ this result is
to be expected, in some sense, since we are dealing with large x anyhow and so the
equation (5.5) behaves very much like a differential equation. However, we could
spread the discrete part all over the interval I in which case this argument is no
longer tenable, as it is a priori conceivable that oscillations may occur therein (but
cannot by Theorem 4.6).

6. Proofs

Proof of Theorem 2.1. We note that X is a closed subset of the Banach space Y
above. This is most readily seen by writing the space X as X = {u ∈ Y | : 0 ≤
u(t)
at+b ≤ 1, for all t ≥ 0} and applying standard arguments. In addition, it is easy
to see that X is convex. Now we define a map T on X by setting

(Tu)(x) = ax + b−
∫ ∞

x

(t− x) F (t, u(t)) dt (6.1)

for u ∈ X. Note that the right-side of (6.1) converges for each x ≥ 0, because of
(2.1). Indeed, for u ∈ X, x ≥ 0,

0 ≤
∫ ∞

x

(t− x)F (t, u(t)) dt ≤
∫ ∞

0

t F (t, u(t)) dt ≤ b, (6.2)



EJDE-2007/40 ASYMPTOTIC SOLUTIONS 23

as F (t, u(t)) ≥ 0 for such u (which implies that (Tu)(x) ≤ ax+b) and the indefinite
integral is a non-increasing function of x on [0,∞). Since a ≥ 0, we get that
(Tu)(x) ≥ 0 for any x ≥ 0. On the other hand, it is easy to see that for u ∈ X, Tu
is a continuous function on [0,∞). So, TX ⊆ X.

Next, we prove that T is a continuous map on X. For u, v ∈ X,

|(Tu)(x)− (Tv)(x)| ≤
∫ ∞

x

(t− x)|F (t, u(t))− F (t, v(t))| dt

≤
∫ ∞

x

(t− x)k(t)|u(t)− v(t)| dt

≤ ‖u− v‖Y

∫ ∞

0

t k(t) (at + b) dt,

where we have used (2.5) and the fact that
∫∞

x
(t−x)k(t)(at+b) dt is a non-increasing

function of x for x ∈ [0,∞), since k(t)(at + b) ≥ 0. It follows that for x ≥ 0,

|Ψ(Tu)(x)−Ψ(Tv)(x)| ≤ 1
b
‖u− v‖Y max{a, b}

∫ ∞

0

t (t + 1) k(t) dt, (6.3)

from which we conclude that

‖Tu− Tv‖Y ≤ α ‖u− v‖Y ,

where α < ∞ on account of (2.4) and (2.3). It follows that T is continuous on X.
Next, we show that TX is compact, that is, T sends bounded subsets of X onto

relatively compact subsets. For M a subset of X we have that to prove that TM is
relatively compact. By virtue of the isometry Ψ, this is equivalent to proving that
Ψ(T (M)) is relatively compact. To this end, we use the measure of noncompactness
on BC(R+) defined for A ∈ BC(R+) by

µ(A) = lim
L→∞

(
lim
ε→0

wL(A, ε)
)

+ lim sup
t→∞

diam A(t),

see [[9], Theorem 9.1.1(d), p.46], where

diam A(t) = sup{|x(t)− y(t)| : x, y ∈ A},
and

wL(A, ε) = sup{wL(x, ε) : x ∈ A},
with

wL(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, L], |t− s| ≤ ε}.
We fix ε > 0, L > 0, u ∈ M ⊂ X and t1, t2 ∈ R+ with t2− t1 ≤ ε and, without loss
of generality t2 > t1. Then

|Ψ(Tu)(t2)−Ψ(Tu)(t1)|

=
∣∣∣ ∫ ∞

t2

(s− t2)F (s, u(s))
at2 + b

ds−
∫ ∞

t1

(s− t1)F (s, u(s))
at1 + b

ds
∣∣∣

≤
∣∣∣ ∫ ∞

t2

[
(s− t2)
at2 + b

− (s− t1)
at1 + b

]
F (s, u(s))ds−

∫ t2

t1

(s− t1)
at1 + b

F (s, u(s))ds
∣∣∣

≤
∫ ∞

t2

(as + b)(t2 − t1)
(at2 + b)(at1 + b)

F (s, u(s))ds +
∫ t2

t1

(s− t1)
at1 + b

F (s, u(s))ds

≤ ε

b2

∫ ∞

t2

(as + b)F (s, u(s))ds +
ε

b

∫ t2

t1

F (s, u(s))ds
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≤ aε

b
+

ε

b

∫ ∞

t1

F (s, u(s))ds,

by (2.1), since F ≥ 0 for u ∈ M . Combining these estimates we deduce that

|Ψ(Tu)(t2)−Ψ(Tu)(t1)| ≤
aε

b
+

ε

b

∫ ∞

t1

F (s, u(s))ds,

≤ aε

b
+

ε

b

{∫ t2

t1

F (s, u(s))ds +
∫ ∞

t2

F (s, u(s))ds

}
,

≡ aε

b
+

ε

b
{I1 + I2} .

(6.4)
We estimate the two integral quantities in (6.4) in turn. This said, use of (2.5) and
(2.1) for u ∈ M gives

I2 ≤
∫ ∞

t2

|F (s, u(s))− F (s, 0)|ds +
∫ ∞

t2

F (s, 0)ds

≤
∫ ∞

0

k(s)u(s)ds +
∫ 1

0

F (s, 0)ds +
∫ ∞

1

sF (s, 0)ds

≤ ‖u‖Y

∫ ∞

0

k(s)(as + b)ds + sup
s∈[0,1]

F (s, 0) +
∫ ∞

0

sF (s, 0)ds

≤ C2 ≡
∫ ∞

0

k(s)(as + b)ds + sup
s∈[0,1]

F (s, 0) + b

(6.5)

(since, for u ∈ M , ‖u‖Y ≤ 1), where C2 is finite and independent of ε, because of
(2.3) and (2.2). On the other hand, arguing as in (6.5), we obtain

I1 ≤
∫ t2

t1

|F (s, u(s))− F (s, 0)|ds +
∫ t2

t1

F (s, 0)ds

≤
∫ ∞

0

k(s)u(s)ds +
∫ ∞

0

F (s, 0)ds

≤ C2

. (6.6)

Combining (6.6), (6.5) and (6.4) we get finally,

|Ψ(Tu)(t2)−Ψ(Tu)(t1)| ≤
aε

b
+

2C2ε

b
. (6.7)

Passing to the supremum over u ∈ M ⊂ X we find that

lim
ε→0

wL(Ψ(TM), ε) = 0

Since L > 0 is arbitrary we deduce that

lim
L→∞

(
lim
ε→0

wL(Ψ(TM), ε)
)

= 0.

To complete the proof we need to analyze the term related to the diameter. Taking
u, v ∈ M and t ∈ R+ then, proceeding as in the continuity argument above leading
to (6.3), we see that

|Ψ(Tu)(t)−Ψ(Tv)(t)| ≤ ‖u− v‖Y

b

∫ ∞

t

s(as + b)k(s)ds

≤ ‖u− v‖Y

b

[
a

∫ ∞

t

s2k(s)ds + b

∫ ∞

t

sk(s)ds

]
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≤ 2
b

[
a

∫ ∞

t

s2k(s)ds + b

∫ ∞

t

sk(s)ds

]
,

since ‖u− v‖Y ≤ 2 for u, v ∈ M . Consequently

lim sup
t→∞

diam Ψ(TM)(t) ≤ 2
b

lim sup
t→∞

[
a

∫ ∞

t

s2k(s)ds + b

∫ ∞

t

sk(s)ds

]
= 0,

on account of (2.4) and Remark 2.2. Thus, µ(Ψ(TM)) = 0. This fact tells us
that Ψ(TM) is relatively compact in BC(R+) and, since Ψ is an isometry, TM is
relatively compact in Y . Hence, T is compact, and so Schauder’s theorem gives the
existence of a fixed point u ∈ X for T . This fixed point is necessarily a solution of
(1.1) asymptotic to the line ax + b as x →∞. This completes the proof. �

Proof of Theorem 2.4. Let Y be the Banach space defined in (2.8) with the norm
(2.9), where we replace the interval [1,∞) by x0,∞). Let X be the closed subset
defined by X = {u ∈ Y : supx≥x0

{|u(x)|/|f(x)|} ≤ 2}. Define a map T on X by
u ∈ X,

Tu(x) = f(x)−
∫ ∞

x

(s− x)F (s, u(s)) ds, x ≥ x0. (6.8)

Clearly, for u ∈ C(I) we have, because of our assumptions on F , Tu ∈ C(I). In
addition, (2.12) gives that for u ∈ X, |F (s, u(s))| ≤ k(s)|u(s)| + |F (s, 0)|. Com-
bining this with (6.8), dividing (6.8) throughout by f(x) a simple estimation gives
that for x ≥ x0,∣∣∣Tu(x)

f(x)

∣∣∣ ≤ 1+
1

|f(x)|

∫ ∞

x

(s−x)|k(s)f(s)|
∣∣∣u(s)
f(s)

∣∣∣ ds+
1

|f(x)|

∫ ∞

x

(s−x)|F (s, 0)| ds.

Now, the use of (2.7) shows that∣∣∣Tu(x)
f(x)

∣∣∣ ≤ 1 +
∥∥∥u

f

∥∥∥1
δ

∫ ∞

x

(s− x)|k(s)f(s)| ds +
1
δ

∫ ∞

x

(s− x)|F (s, 0)| ds, (6.9)

which, since u ∈ X and (2.13) is enforced, furnishes the bound∥∥∥Tu(x)
f(x)

∥∥∥ ≤ 1 + 2
1
δ

δ

4
+

1
δ

δ

4
=

7
4

< 2.

Thus T is a self-map on X. In order to show that T is a contraction on X, consider
the simple estimate derived from (6.8), namely, for x ≥ x0,

(2.12)

∣∣∣Tu(x)− Tv(x)
f(x)

∣∣∣ ≤ 1
|f(x)|

∫ ∞

x

(s− x)|F (s, u(s))− F (s, v(s))| ds,

≤ 1
|f(x)|

∫ ∞

x

(s− x)k(s)|u(s)− v(s)| ds, (by )

≤ 1
δ
‖u− v‖

∫ ∞

x

(s− x)k(s)|f(s)| ds, (by (2.7)).

(6.10)

Since the last display is valid for every x ≥ x0 it follows from (2.13) that,

‖Tu− Tv‖ ≤ (1/4) ‖u− v‖,

so that T is a contraction on X. It is easily seen that the subsequent fixed point,
say u(x), obtained by applying the classical fixed point theorem of Banach, is a



26 A. B. MINGARELLI AND K. SADARANGANI EJDE-2007/40

solution of (1.1) satisfying the conclusion (2) stated in the theorem, since u ∈ X.
On the other hand, since our fixed point u satisfies (6.8), we have

u(x)
f(x)

= 1− 1
f(x)

∫ ∞

x

(s− x)F (s, u(s)) ds.

An estimation of this integral similar to the one leading to the right-side of (6.9)
gives that

lim
x→∞

1
f(x)

∫ ∞

x

(s− x)F (s, u(s)) ds = 0,

on account of the finiteness of all the integrals involved. This shows that u(x) ∼
f(x) as x →∞. �

Proof of Theorem 2.7. Note that X is a closed subset of the Banach space BC(R+).
For u ∈ X we define a map T by setting

Tu(x) = f(x)−
∫ ∞

x

(t− x)F (t, u(t)) dt, x ≥ 0.

Then for u ∈ X it is clear that Tu ∈ C(R+) and since F (t, u(t)) ≥ 0 for such u and
all t ≥ 0, we have |Tu(x)| ≤ ‖f‖∞ + b, for every x ≥ 0, where we have used the
fact the integral in question is a non-increasing function of x for all x ≥ 0. Hence
T is a self-map on the ball X. Finally, an argument similar to the corresponding
one in Theorem 2.1 gives that T is a contraction on X provided there holds (2.19).
This completes the proof. �

Proof of Theorem 3.1. The necessity is simple. If y is such a solution then set
u = v = y throughout. For the sufficiency we appeal, as usual, to a fixed point
theorem. Consider the space BC(I) of (uniformly) bounded continuous functions
on I with the uniform norm. Since u, v are uniformly bounded by hypothesis, the
subset X defined by

X = {y ∈ BC(I) : u(x) ≤ y(x) ≤ v(x), x ∈ I}
with the induced metric, is complete. Define a map T on X by the usual

Ty(x) = f(x)−
∫ ∞

x

(t− x)F (t, y(t)) dt, x ∈ I

for y ∈ X. Since y ∈ X, then y ∈ L∞(I); it follows from hypotheses (2) and (3)
that the integral on the right is finite for every x ∈ I and this defines a continuous
function that is uniformly bounded on I. Thus, Ty is continuous and uniformly
bounded on I, since f is. Thus, T is well-defined. On the other hand, by hypothesis
(2), F (t, u(t)) ≤ F (t, y(t)) ≤ F (t, v(t)) for t ∈ I; it follows that, for x ∈ I,

Ty(x) ≤ f(x)−
∫ ∞

x

(t− x)F (t, u(t)) dt ≤ v(x)

≥ f(x)−
∫ ∞

x

(t− x)F (t, v(t)) dt ≥ u(x)

where we have used assumptions (b) and (c) in order to estimate the integrals.
Thus T is self-map on X. That T is a contraction on X follows the usual route.
Briefly, for x ∈ I, y, z ∈ X,

|Ty(x)− Tz(x)| ≤
∫ ∞

x

(t− x)|F (t, y(t))− F (t, z(t))| dt
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≤
∫ ∞

x

(t− x)k(t)|y(t)− z(t)| dt

≤
(∫ ∞

x0

tk(t) dt

)
‖y − z‖∞

and so,
‖Ty − Tz‖∞ ≤ α‖y − z‖∞,

where α < 1 is the integral in question (cf., assumption (5)). �

Proof of Theorem 3.3. This is clear since we can integrate the differential equation
(1.1) twice to obtain (3.1) and conversely, if we know that its solution is L∞, we
can differentiate (3.1) twice to recover (1.1). The result follows from an application
of the theorem. �

Proof of Theorem 3.4. We integrate the inequalities twice over the half line to ob-
tain both (4.13) and (4.14). An application of Theorem 3.1 gives that (3.1) has a
solution y(x) ∼ f(x), as x →∞. But the right side of (3.1) is twice differentiable,
consequently so is y(x), that is (2.17) is satisfied. �

Proof of Theorem 3.6. First, we show that solutions of (3.9) exist on the half-line,
I. Introduce the usual energy functional E(x) on solutions of (3.9) by

E(x) =
1
2
y′

2 +
∫ y

0

ηG(x, η) dη ≡ 1
2
y′

2 + I(x, y), (6.11)

where Ix(x, y) ≤ 0 by hypothesis. A glance at (3.9) shows that

E′ = y′g + Ix ≤ y′g ≤ g
√

2E.

So, E′E−1/2 ≤
√

2g whenever E > 0. It follows that if the solution y(x) exists for
x ∈ [a, b], a ≥ x0 and, at the same time, E(x) > 0 for such x, then√

E(b) ≤
√

E(a) +
√

2
2

∫ b

a

g(t) dt. (6.12)

Of course, (6.12) is also true for any interval [a, b] in which the solution exists. For
such an interval we have from (6.12)

|y′(b)| ≤
√

2E(a) +
∫ b

a

g(t) dt, (6.13)

so, if the solution exists on an interval [a, b) then it can be continued to x = b and
thus to a right-neighborhood of b. Thus, we see that for any x ≥ x0 a solution can
be continued throughout I.

We now claim that for a given solution y of (3.9) there is an X (depending on
y) such that we cannot have for

b > a ≥ X, y(a) = y(b) = 0, y(x) > 0, x ∈ (a, b). (6.14)

Note that by (3.7) and (6.13) we can suppose that X is such that X > 0 and such
that for some K > 0 we have

|y(x)| < Kx, x ≥ X. (6.15)

This already implies that all solutions are “sublinear” or cannot grow faster than
a linear function. We fix this K and consider the differential equation

z′′ + G(x,Kx)z = 0, x ≥ X.
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Since this is a linear equation it is well known that (e.g., [19]), assumption (3.8)
implies that this equation has a solution z(x) → 1 as x →∞. We choose X0 > X so
that z(x) > 0 for all x ≥ X0 and let b > a ≥ X0. Now, writing y = wz and making
use of the equation for z, we obtain the second order linear differential equation

w′′z + 2w′z′ = g + wz{G(x,Kx)−G(x, y)}. (6.16)

However, (6.14), (6.15) and G non-decreasing in its second variable, would imply
that the right of (6.16) is positive in (a, b) so that (w′z2)′ ≥ 0 on (a, b). Indeed,
(6.14) would also force w(a) = w(b) = 0 and w(x) > 0 in (a, b). On the other
hand, this leads to w′(a) ≥ 0, w′(b) ≤ 0. Since w′z2 is non-decreasing, this implies
that w′ = 0, i.e., w = 0 in (a, b) resulting in a contradiction. Thus, y(x) is either
ultimately positive or it is ultimately non-positive.

Now consider the case where y(x) is ultimately positive. We may suppose (see
(6.15)) that

0 < y(x) < Kx, x ≥ X. (6.17)
We modify the argument following (6.15) as follows: Consider the differential equa-
tion

z′′1 + G(x, y(x))z1 = 0, x ≥ X.

As before, the integrability condition (3.8) gives that this will have a solution z1(x)
with z1(x) → 1 as x → ∞. We can define w1 as before by y = w1z1 and find,
as before, that (w′1z1

2)′ = gz1. But (3.7) along with the fact that w′1z1
2 is non-

decreasing implies that w1
′ tends to a non-negative finite limit at infinity. The

possibility that w1
′(∞) > K is excluded on account of (6.17). Hence 0 ≤ w1

′(∞) ≤
K. If A ≡ w1

′(∞) > 0 then necessarily y(x) ∼ Ax as x →∞.
The other possibility is that (6.17) holds but that w1

′(∞) = 0. In this case, the
differential equation for w1 yields

w1
′(x) = −{z1(x)}−2

∫ ∞

x

g(t)z1(t) dt,

and since z1(x) → 1 as x →∞ we see that

w1
′(x) ∼ −

∫ ∞

x

g(t) dt (6.18)

as x → ∞. Note that if (3.7) were false (for i = 1) it would follow that (since
g(x) ≥ 0), w1(x) → −∞ as x → ∞ and this contradicts the positivity of y(x)
for all large x. Thus, (3.7) is actually a necessary condition. On the other hand,
the hypothesis (3.7) implies that B ≡ w1(∞) is finite and necessarily non-negative,
because of the positivity of y, i.e., y(x) ∼ B as x → ∞, where B ≥ 0. If y(x) is
ultimately non-positive, we can take it that y(x) ≤ 0 for x ≥ X, and that y(x) < 0
on some unbounded subset of x ≥ X. Since yG(x, y) ≤ 0 for y ≤ 0, we get from (3.9)
that y′′ ≥ 0. Applying Lemma 0 in [8] with z(x) ≡ −y(x) we see that y′(x) ≤ 0 for
x ≥ X. This, in conjunction with the fact that y(x) < 0 on some unbounded subset
implies that y(x) < 0 for all sufficiently large x. So, y(x) < 0, y′(x) ≤ 0, y′′ ≥ 0 for
all large x which leads to a counterpart of the positive solutions result. �

Proof of Theorem 3.8. As before we write F (x, y) = yG(x, y) and we proceed as
in the proof of Theorem 3.6 up to (6.13). The same argument therein gives that
solutions all exist on some half-axis. Indeed, since f ′(∞) = ∞, by assumption,
we can use (6.13) to derive that |y′(x)| ≤ (1 + ε)f ′(x) for all sufficiently large
x. In addition, another integration gives us a similar bound for y in the form
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|y(x)| ≤ (1 + ε)f(x) for all sufficiently large x, say x ≥ X0. Next, an integration of
(3.9) over [X0, x) and use of (3.10) and (3.11) shows that

y′(x) ∼
∫ x

x0

g(t) dt, x →∞.

Finally, one last integration of the preceding equation gives the desired asymptotic
estimate. �

Proof of Theorem 4.1. Consider the solution y whose initial conditions are y(a) =
a, y′(a) = M with right-derivatives, where a is to be chosen later. Since y′ is
right-continuous on I there is a b > a such that

M

2
< |y′(x)| < 2M, x ∈ [a, b) (6.19)

Since y is absolutely continuous on [a, b) it follows that

|y(x)| ≤ |y(a)|+ |
∫ x

a

y′(t) dt| ≤ a + M(x− a)

that is,
|y(x)| < Mx, x ∈ [a, b) (6.20)

since M > 1. Since y is continuous, (6.20) also holds at x = b. It follows from
(4.3), (4.4) that

y′(b) = y′(a)−
∫ b

a

F (t, y(t)) dσ(t) (6.21)

i.e.,

|y′(b)−M | ≤
∫ b

a

F (t, y(t)) |dσ(t)|. (6.22)

On the other hand, F is nondecreasing in its second variable by hypothesis, so
(6.20) and assumption (3) together yield

|y′(b)−M | ≤
∫ ∞

a

F (t, Mt) |dσ(t)|. (6.23)

Now, by assumption (3) again we can choose (and fix) a so large that∫ ∞

a

F (t, Mt) |dσ(t)| < M/4.

Then (6.19) holds for all b > a and, as a result, (6.20) holds for all x > a. From
this we see that for given ε > 0, we can choose X so large that for any c > b > X
we have ∫ c

b

F (t,Mt) |dσ(t)| < ε,

and a double application of (6.21) and the usual estimates, shows that

|y′(c)− y′(b)| <
∫ c

b

F (t, Mt) |dσ(t)| < ε,

for c > b > X. Hence y′(x) tends to a limit L, say, as x →∞, and L 6= 0 on account
of (6.19). From this it follows that y(x)/x = L+o(1), i.e., y is asymptotically linear
as x →∞. �
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Proof of Theorem 4.3. It suffices to show that the integral equation

y(x) = M −
∫ ∞

x

(t− x) F (t, y(t)) dσ(t), (6.24)

has a fixed point in X (since the resulting solution will be absolutely continuous,
with a derivative that is locally of bounded variation and satisfying (4.4)). So, we
define the operator A on X by

(Ay)(x) = M −
∫ ∞

x

(t− x)F (t, y(t)) dσ(t).

Since σ is non-decreasing and F ≥ 0, for y ∈ X, the function defined by∫ ∞

x

(t− x) F (t, y(t)) dσ(t)

is nonincreasing, hence

0 ≤
∫ ∞

x

(t− x) F (t, y(t)) dσ(t) ≤
∫ ∞

0

t F (t, y(t)) dσ(t) ≤ M,

by hypothesis (a). Consequently, for y ∈ X we have y

0 ≤ (Ay)(x) ≤ M, forx ∈ I. (6.25)

In order to show that for y ∈ X then Ay ∈ C(I), we note by Fubini’s theorem that
since ∫ ∞

x

(t− x)F (t, y(t)) dσ(t) =
∫ ∞

x

∫ ∞

t

F (s, y(s)) dσ(s) dt,

for every x ∈ I and the integral of a function that is locally of bounded variation is
locally absolutely continuous, it is in particular continuous and so, for y ∈ X, we
have Ay ∈ C(I). This, in combination with (6.25) shows that Ay ∈ X. Hence, the
operator A applies X into itself.

Now, we prove that A is continuous on X. Indeed,

|(Ayn)(x)− (Ay)(x)| =
∣∣∣ ∫ ∞

x

(t− x)[F (t, yn(t))− F (t, y(t))] dσ(t)
∣∣∣

≤
∫ ∞

x

(t− x)|F (t, yn(t))− F (t, y(t))| dσ(t)

≤ ‖yn − y‖∞
∫ ∞

x

(t− x)k(t) dσ(t)

≤ ‖yn − y‖∞
∫ ∞

0

t k(t) dσ(t).

It follows that A is continuous on X on account of assumption (c).
The proof that A is compact uses ideas from the theory of measures on non-

compactness. First, we introduce some terminology. Let us fix a nonempty bounded
subset X of C[0, a]. For ε > 0 and y ∈ X denote by w(y, ε) the modulus of continuity
of y defined by

w(y, ε) = sup{|y(t)− y(s)| : t, s ∈ [0, a], |t− s| ≤ ε}
Further, let us put

w(X, ε) = sup{w(y, ε) : y ∈ X}
w0(X) = lim

ε→0
w(X, ε),
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It can be shown (see [12]) that the function µ(X) = w0(X) is a regular measure
of noncompactness in the space C[0, a]. Now, let x1, x2 ∈ [0,∞) be such that
x2 − x1 ≤ ε and without loss of generality, x1 < x2. Then

|Ay(x2)−Ay(x1)| =
∣∣∣ ∫ ∞

x2

(t− x2)F (t, y(t))dσ(t)−
∫ ∞

x2

(t− x1)F (t, y(t))dσ(t)

+
∫ ∞

x2

(t− x1)F (t, y(t))dσ(t)−
∫ ∞

x1

(t− x1)F (t, y(t))dσ(t)
∣∣∣

≤
∣∣∣ ∫ ∞

x2

(x1 − x2)F (t, y(t))dσ(t) +
∫ x2

x1

(t− x1)F (t, y(t))dσ(t)
∣∣∣

≤
∫ x2

x1

(t− x1)F (t, y(t))dσ(t) +
∫ ∞

x2

(x2 − x1)F (t, y(t))dσ(t)

≤ (x2 − x1)
∫ ∞

x1

F (t, y(t))dσ(t).

(6.26)
Next, we note that for any x0 ≥ 0, y ∈ X,∫ ∞

x0

F (t, y(t)) dσ(t) ≤
∫ ∞

0

F (t, y(t)) dσ(t)

≤
∫ 1

0

F (t, y(t)) dσ(t) +
∫ ∞

1

t F (t, y(t)) dσ(t)

≤ ‖F‖[0,1]×[0,M ](σ(1)− σ(0)) + M,

(6.27)

by hypothesis (a) and since σ is nondecreasing. Thus, use of (6.27) and (6.26) give
us that

w(Ay, ε) ≤ ε[‖F‖[0,1]×[0,M ](σ(1)− σ(0)) + M ];
consequently,

w(AX, ε) ≤ ε[‖F‖[0,1]×[0,M ](σ(1)− σ(0)) + M ],

so that
w0(AX) = 0. (6.28)

Finally, let y, z ∈ X, x ≥ 0. Then the previous continuity argument also yields the
estimate

|(Ay)(x)− (Az)(x)| ≤ ‖y − z‖∞
∫ ∞

x

(t− x) k(t) dt (6.29)

On the other hand, for y, z ∈ X, ‖y − z‖∞ ≤ 2M and so

|(Ay)(x)− (Az)(x)| ≤ 2M

∫ ∞

x

(t− x)k(t) dσ(t) ≤ 2M

∫ ∞

x

t k(t) dσ(t),

since x ∈ I. It follows that the diameter of the set AX can be estimated by

diam AX(x) ≤ 2M

∫ ∞

x

sk(s)dσ(s),

and taking the limit as x →∞, we get

lim
x→∞

diam(AX)(x) = 0. (6.30)

Therefore, (6.28) and (6.30) give us that AX is compact. An application of
Schauder’s fixed point theorem now gives the desired conclusion. �
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Proof of Corollary 4.4. Observe that for y ∈ X, conditions (4.6) and (4.5) together
imply condition (a) of Theorem 4.3. �

Proof of Lemma 4.5. Since F ≥ 0 and σ is nondecreasing we see that y′(x) ≤ y′(0)
for every x ≥ 0 (by (4.4)). In addition, for x2 > x1 > 0,

y′(x2)− y′(x1) = −
∫ x2

x1

F (t, y(t)) dσ(t) ≤ 0,

and so y′(x) is nonincreasing. It follows that y′(x) → L where the limit L ≤ y′(0).
The possibility that −∞ ≤ L < 0 is excluded by the assumption that y(x) > 0 for
all large x. Hence L is finite and non-negative. Suppose that L 6= 0. Then, for ε > 0
we can choose X so large that L− ε < y′(x) < L + ε, for every x ≥ X. Integrating
this last expression over [X, x) we get the inequality y(X) + (x − X)(L − ε) <
y(x) < y(X) + (x−X)(L + ε). Dividing the latter by x and letting x →∞ we get
y(x) ∼ Lx as x →∞. On the other hand, if L = 0, then the same argument gives
us y(x)/x → 0 as x →∞. �

Proof of Theorem 4.6. Assume that (4.4) has a bounded eventually positive solu-
tion y(x), with y(x) > 0, for all x ≥ x0. An application of Lemma 4.5 gives that
y′(x) → L where L is finite (otherwise y(x) cannot remain bounded at infinity). In
addition, passing to the limit as x →∞ in (4.4), and rearranging terms, we obtain

y′(x) = L +
∫ ∞

x

F (t, y(t)) dσ(t) (6.31)

If L 6= 0 then Lemma 4.5 implies that y(x) ∼ Lx as x → ∞ which contradicts
the boundedness of y(x). Hence L = 0. For x2 > x1 > 0, we integrate (6.31) over
[x1, x2) to find that y(x2)−y(x1) > 0 (by our assumptions on F and σ), that is, y(x)
is nondecreasing. Since y(x) is bounded by assumption, we get that y(x) → c for
some finite c > 0. Integrating (6.31) over [x,∞) and rearranging terms we obtain
the existence and finiteness of all integrals involved and, in fact, for all x ≥ x0 there
holds,

y(x) = c−
∫ ∞

x

(t− x) F (t, y(t)) dσ(t), (6.32)

after an application of Fubini’s Theorem. Consolidating our results we have that
0 < y(x0) < y(x) ≤ c, for all x ≥ x0. Observe that the integral (6.32) is finite for
x = x0. This, along with the hypothesis that F (x, ·) is nondecreasing gives us∫ ∞

x0

(t− x0) F (t, y(x0)) dσ(t) < ∞, (6.33)

and this equivalent to the convergence of (4.8) with M = y(x0). Note that we can
also replace M by any number smaller than c.

For the sufficiency we assume that (4.8) holds for some M > 0. Fix A > 0,
A < M and choose x = a so large that∫ ∞

a

(t− a) F (t,M) dt ≤ A/2.

We set up the iterative scheme

yn+1(x) = A−
∫ ∞

x

(t− x) F (t, yn(t)) dσ(t), x ≥ a, (6.34)
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with y0(x) = A, for each x ≥ a. Since F (t, y0(t)) = F (t, A) ≤ F (t,M) we obtain

y1(x) ≥ A−
∫ ∞

x

(t− x)F (t, M) dσ(t)

≥ A−
∫ ∞

a

(t− a) F (t, M) dσ(t)

≥ A−A/2 = A/2.

Thus, A/2 ≤ y1(x) ≤ A for every x ≥ a. A similar argument shows that if
A/2 ≤ yn(x) ≤ A for every x ≥ a, then the same is true of yn+1(x). An induction
argument gives us that

A/2 ≤ yn(x) ≤ A, x ≥ a, n ≥ 1. (6.35)

Next, we show that each yn(x) is nondecreasing and the family {yn(x)}∞n=1 is
equicontinuous on every interval [a, b]. Let x2 > x1 > a. Since

yn+1(x2)−yn+1(x1) =
∫ x2

x1

(t−x1) F (t, yn(t)) dσ(t)+
∫ ∞

x2

(x2−x1)F (t, yn(t)) dσ(t),

(6.36)
and F ≥ 0, σ is nondecreasing, it follows that the right side of (6.36) is non-
negative; thus for each n, the yn(x) are increasing over [a,∞). Next, estimating
the integrals in (6.36) using (6.35) and the basic estimates on A; for [x1, x2] ∈ [a, b],
we have

|yn+1(x2)− yn+1(x1)| ≤ |x2 − x1|
{∫ x2

x1

F (t, M) dσ(t) +
∫ ∞

x2

F (t,M) dσ(t)
}

≤ |x2 − x1|
∫ ∞

a

F (t, M) dσ(t).

This last integral, being finite on account of (4.8), shows that the family is equicon-
tinuous on [a, b] for every b > a. Thus, passing to a subsequence if necessary, we
can say that the limit y(x) = limn→∞ yn(x) exists and is a continuous function on
every interval [a, b].

Finally, we show that the limit y(x) is a solution of (4.4) on [a,∞). Let ε > 0.
Rearranging terms in (6.34) we can write, for x ∈ [a, b],

|yn+1(x)−A +
∫ b

x

(t− x) F (t, yn(t)) dσ(t)| ≤
∫ ∞

b

(t− x) F (t, yn(t)) dσ(t)

≤
∫ ∞

b

(t− a) F (t, yn(t)) dσ(t)

≤
∫ ∞

b

(t− a) F (t,M) dσ(t)

< ε, (6.37)

provided b is sufficiently large (this is possible on account of (4.8)). We can now
pass to the limit as n →∞ in (6.37) to find

|y(x)−A +
∫ b

x

(t− x) F (t, y(t)) dσ(t)| ≤ ε,

holds for every sufficiently large b, which is equivalent to saying that

y(x) = A−
∫ ∞

x

(t− x)F (t, y(t)) dσ(t), (6.38)
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Finally, an application of Fubini’s theorem shows that the latter is equivalent to

y(x) = A−
∫ ∞

x

∫ ∞

t

F (s, y(s)) dσ(s) dt. (6.39)

Hence, y is locally absolutely continuous and its (right-) derivative is given at every
point x ≥ a by differentiating (6.39), that is,

y′(x) =
∫ ∞

x

F (t, y(t)) dσ(t). (6.40)

Writing y′(0) =
∫∞
0

F (t, y(t)) dσ(t), (which necessarily exists and is finite because
of (4.8)) we can rewrite (6.40) in the form

y′(x) = y′(0) +
∫ ∞

x

F (t, y(t)) dσ(t)−
∫ ∞

0

F (t, y(t)) dσ(t)

= y′(0)−
∫ x

0

F (t, y(t)) dσ(t),

as desired (see (4.4)). �

Proof of Corollary 4.7. First, we note that the function F (x, y) := yG(x, y2) sat-
isfies all the conditions of the theorem. In addition, y is a solution of (4.9) if and
only if −y is. Furthermore, (4.10) is equivalent to (4.8) for appropriate choices
of c,M (indeed, (4.8) implies (4.10) with c = M2, and (4.10) implies (4.8) with
M =

√
c). Since, for a given solution y of (4.9) its counterpart −y is also a solution,

we can assume without loss of generality that this bounded nonoscillatory solution
is eventually positive and so proceed, with no other important changes, as in the
proof of the necessity in the theorem to arrive at (4.10). The sufficiency proceeds
along similar lines. �

Proof of Theorem 4.9. The sufficiency follows the proof of the sufficiency of Theo-
rem 4.6, which is applicable since (3.4) holds for ε = 0, as required by the theorem.
Since the solution in Theorem 4.6 is asymptotically a positive constant, it is even-
tually positive.

For the necessity we apply the proof of Lemma 4.5 to find that if y(x) is eventually
positive, say for x ≥ a, then c := limx→∞ y′(x) ≥ 0. Thus, with right-derivatives,

y′(x) = c +
∫ ∞

x

F (t, y(t)) dσ(t) ≥
∫ ∞

x

F (t, y(t)) dσ(t),

and since y is non-decreasing for x ≥ a (see the proof of Theorem 4.6), this gives

y(x)−ε
y′(x) ≥

∫ ∞

x

y(t)−ε
F (t, y(t)) dσ(t).

Now since y is positive and locally absolutely continuous for x ≥ a so is the function
y(x)1−ε, since y(x) is bounded away from zero on finite intervals. Hence, for b > a,
writing M := y(a),∫ b

a

y(x)−ε
y′(x) dx ≥

∫ b

a

∫ ∞

x

y(t)−ε
F (t, y(t)) dσ(t) dx

≥
∫ b

a

∫ ∞

x

M−ε F (t, M) dσ(t) dx.
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Since this is valid for any b > a we can let b →∞ and simplify the right to get∫ ∞

a

y(x)−ε
y′(x) dx ≥ M−ε

∫ ∞

a

(t− a) F (t, M) dσ(t).

The left side is finite since ε > 1 and so the right must be finite, that is, so is (4.8)
for this choice of M . �

Proof of Lemma 4.10. By assumption, there exists a number c > 0 such that for
every x ≥ a, say, we have y(x) ≥ cx and y′(x) > 0 (recall that y′(x) tends to a
limit as x →∞, cf., Lemma 4.5). Applying (4.4) over [a, x] and rearranging terms
we get

y′(a) = y′(x) +
∫ x

a

F (t, y(t)) dσ(t),≥
∫ x

a

F (t, ct) dσ(t),

for every x ≥ a. Since x is arbitrary, we can pass to the limit as x → ∞ and thus
obtain (4.11) with M = c > 0. �

Proof Theorem 4.12. This follows directly from an application of both Lemma 4.10
and an application of Theorem 4.1 in the special case where σ is nondecreasing. �

Proof of Theorem 4.14. We need only sketch the details as they are similar to those
included above in the proof of Theorem 2.4. For y ∈ X where X = {y ∈ Y :
‖y(x)/f(x)‖ ≤ 2} consider the map on X defined by (4.18). Minor changes in
the proof of said Theorem show that, indeed, T is a self-map on X (since σ is
non-decreasing). In addition, T is a contraction on account of (4.19). Hence the
theorem follows. �

Proof of Theorem 5.1. Define a right-continuous step-function by defining its jumps
to be at the integers n, of magnitude σ(n) − σ(n − 0) = −bn, for n ≥ 0 and so
σ(t) = constant in the interval (n, n + 1), for n ∈ N. The integral condition (3)
in Theorem 4.1 is equivalent to the above condition on the sum above and the
solution y(x) of the Volterra-Stieltjes integro-differential equation (4.4) is such that
y(n) := yn satisfies (5.2) for each n. The conclusion is a consequence of said
theorem. �

Proof of Theorem 5.2. We omit the proof as it is similar to that introduced in
Theorem 5.1, with the necessary modifications. �
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[13] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and

their applications, Comput. Math. Appl. 41 (12) (2001), 1535-1544.
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