
AN ONTOLOGICAL APPROACH TO ENGINEERING REQUIREMENT

REPRESENTATION AND ANALYSIS

by

Alolika Mukhopadhyay, B.TECH.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Technology Management
August 2015

Committee Members:

Farhad Ameri, Chair

Vedaraman Sriraman

Jaymeen Shah

COPYRIGHT

by

Alolika Mukhopadhyay

2015

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Alolika Mukhopadhyay, refuse permission to copy
in excess of the “Fair Use” exemption without my written permission.

DEDICATION

I would like to dedicate my thesis to my husband and my family. My husband

Shubhankar has always been there for supporting me and encouraging me through all the

challenges of graduate life. I am truly thankful for having him in my life. I want to extend

my feeling of gratitude towards my Dad for being my inspiration and my Mom for her

endless love, and care. I also want to dedicate my thesis to my sister Arunima, who never

left my side and always cheered me up.

ACKNOWLEDGEMENTS

I have no words to express my gratitude towards Dr. Ameri for being such a

wonderful supervisor. I am thankful to him for giving me the opportunity to work in his

lab. I consider myself blessed to have him as my advisor. He always believed in me and

encouraged me to perform my best. He will always inspire me by being an outstanding

teacher, a great researcher and above all a great human being.

I would like to thank my thesis committee members Dr. Sriraman for enlightening

me the glance of research and Dr. Shah for his valuable insights and guidance.

I would also like to thank Dr. Chiradeep Sen for his support, stimulating

discussions and all the suggestions he provided to accomplish my research. I thank my

fellow lab mates in Texas State for being with me all the time.

Finally, I want to recognize that this research would not have been possible

without the assistance of Texas State University, Department of Engineering Technology

at TXST, and the National Science Foundation, and express my gratitude to them.

 v

TABLE OF CONTENTS
 Page

ACKNOWLEDGEMENTS ..v

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xiii

ABSTRACT .. xiv

CHAPTER

1. RESEARCH PERSPECTIVES ..1

Introduction ..1
Motivations for Information Content Measurement2
Motivations for Measuring Specificity and Completeness4
Motivations for Requirement Classification5

Research Question ..5
Methodologies ..5
Research Tasks ...7
Assumptions ...8
Limitation ...8
Delimitations ..8
Preliminary Results ..8

2. REQUIREMENT ONTOLOGY ..13

Introduction ..13
Background - Engineering Requirements Modeling14
Requirement Ontology (ReqOn) ..16

Identify Purpose and Scope of the Ontology16
Build Ontology ...17
Evaluate Ontology ..31

Requirement Reuse ...32

 vi

Implementation ...33
Conclusion ..37

3. INFORMATION CONTENT MEASUREMENT38

Introduction ..38
Scope ..40
Related Work ..40
Information Content Measurement ..42

Uniform Random Distribution Approach43
Sequential Selection Approach ..47

Entropy of a Requirement Statement ...55
Comparison of Uniform Random Distribution Approach and
Decision Making Approach: ..57

Implementation ...59
Experiments ..61
Experiment 1: Information Content of Requirements for
Different Product Families ...61
Experiment 2: Comparison of Performance of Different
Senior Design Teams ..66
Experiment 3: Evolution of Engineering Requirements69

Conclusion ..71

4. REQUIREMENT SPECIFICITY, COMPLETENESS, AND
CLASSIFICATION ...72

Introduction ..72
Related Work ..72
Completeness and Specificity Measurement75

Completeness ..76
Specificity ...79

Result ..92
Case Study: Bike Suspension ...95
Classification of Requirement ..98

Class Definition ..99
Ontology Reasoning based on Attribute103
Ontology Reasoning based on Verb109

 vii

Conclusion ..113

5. CONCLUSIONS AND FUTURE WORK..115

Answers to Research Questions ...115
Contribution ...122
Future Work ...123

APPENDIX SECTION ...125

REFERENCES ...133

 viii

LIST OF TABLES

Table Page

1. Different types of Functional Requirement ... 10

2. Different types of Nonfunctional Requirements .. 11

3. Protocol for creating requirement in ReqOn .. 21

4. Definition of some of the core classes in ReqOn ... 23

5. ReqOn definition of different individual ... 32

6. SPARQL query that returns the entire set of functional requirement, which contains
Nontransitive verb, with their corresponding behavior and verb 33

7. Example of taxonomy and size entropy measurement of Functional and

Nonfunctional statement ... 56

8. Average Information content for functional and nonfunctional requirements of small

kitchen appliances and small garden equipment of equal complexity
level ... 62

9. Two sample t -test for kitchen appliances vs. garden equipment for functional and

nonfunctional requirement .. 63

10. Total information content for engineering design requirements of three different

products, generated by three different design teams during their first week of
design .. 67

11. Cardinality restriction of essential properties for Functional Requirement 76

12. Cardinality restriction of essential properties for Nonfunctional Requirement 77

13. Example of Complete Functional and Nonfunctional Requirement 78

14. Algorithm to calculate Specificity score of Functional Requirement 87

 ix

15. Algorithm to calculate Specificity score of Nonfunctional Requirement 89

16. Example of Completeness and Specificity Score Calculation 93

17. Example of textual requirements: bike suspension .. 95

18. Attribute and Requirement Relation .. 105

19. Example of Reasoning requirement type by attribute instances of requirement
statement ... 109

20. Connection of verb class with the requirement type and related SWRL rules 110

 x

LIST OF FIGURES

Figure Page

1. Concept diagram for the FunctionalRequirement Class .. 19

2. Concept diagram for the NonFunctionalRequirement Class 20

3. Screenshot of Class expression editor for Functional Requirement
in Protégé 4.3 ... 26

4. Screenshot of class editor for Nonfunctional Requirement in Protégé 29

5. Screenshot of the requirement editor for functional requirement 34

6. Screenshot of the requirement editor for functional requirement 34

7. Run time environment of the java and OWL API based tool to convert textual
requirement into owl ontology .. 35

8. Screenshot of a nonfunctional requirement converted using the tool 36

9. Two-step approach of information measurement .. 39

10. The Hierarchical Structure of Verb Class .. 46

11. Flowchart for measuring IC of a Requirement Statement ... 55

12. Comparison of Uniform Random Distribution Approach and Sequential Selection
Approach for functional and nonfunctional requirements of
suspension ... 58

13. The interface for class entropy measurement .. 60

14. The interface for product entropy measurement .. 60

15. The interface for requirement entropy measurement ... 61

 xi

16. Plot of IC for functional and nonfunctional requirements for the two families of
product ... 64

17. Comparison of information content of functional and nonfunctional requirements for

three different products designed by three different design teams 68

18. Plot for IC for flux measuring device for six consecutive weeks 69

19. Flow chart for Specificity and Completeness measurement using
java application .. 85

20. Comparison of Specificity of Functional and Nonfunctional Requirement for Bike

Suspension requirements ... 97

21. Classification of Requirement.. 99

 xii

LIST OF ABBREVIATIONS

Abbreviation Description

API Application Program Interface

OWL Web Ontology Language

OWL DL Web Ontology Language (Description Logic)

ReqOn Requirement Ontology

SWRL Semantic Web Rule Language

 xiii

ABSTRACT

The objective of this research is to develop an ontological method for measuring

the information content of engineering design requirements, assessing their completeness

and specificity, and automatically classifying them under predetermined classes.

Information content can be used as a metric for evaluating the performance of

engineering design teams with respect to information generation rate. Requirement plays

an important role into idea generation. An incomplete requirement is not useful for a

designer and might be misleading and also requirements should be specific or informative

enough to efficiently narrow down the design space. A two-step method will be proposed

for information content measurement. First, the textual requirements will be converted

into an ontological representation and then the information metric will be applied to

them. A Java-based tool will be developed for the automated measurement of the

information content of requirements based on their ontological representation and

proposed metrics. Also ontological reasoning techniques based semantic rules and

axioms will be adopted for evaluating completeness and specificity of engineering

requirements and classifying them under predefined classes. Multiple experiments will be

designed and conducted to validate the proposed methods and metrics.

 xiv

CHAPTER 1

RESEARCH PERSPECTIVES

1.1 Introduction:

 Engineering requirements describe the conditions and capabilities that a design

artifact should meet in order to satisfy implicit and explicit customer needs. Requirement

planning is one of the most critical tasks in the product development process. Despite its

significant impact on the outcomes of the design process, engineering requirement

planning is often conducted in an ad hoc manner without much structure. In particular,

the requirement planning phase suffers from a lack of quantifiable measures for

evaluating the quality of the generated requirements and also a lack of structure and

formality in representing engineering requirements. The adequacy of the generated

requirements in terms of specificity and completeness is often appraised on a consensual

basis. Additionally, the requirements are usually represented informally in plain English

without following any standard protocol or vocabulary. Even in the same company,

different design teams may follow different methods and conventions for representing

engineering requirements. In the absence of formal methods and models for engineering

requirement representation, organization, search, and retrieval of requirements becomes

inefficient and tedious.

 The objectives of this research are: 1) to develop a formal ontology for standard

representation of engineering requirements, 2) to develop the method and metrics

necessary for measuring the information content of engineering requirements, and 3)

 1

using ontological reasoning techniques for measuring the specificity and complexity of

the requirement statement and requirement classification.

1.1.1 Motivations for Information Content Measurement:

 One of the main focuses of this work is on developing the necessary metrics for

measuring the information content of engineering requirements. A reliable set of metrics

for information content measurement can be used for evaluating the performance of

engineering design teams. The concept of measuring the information transferred over a

channel using probability theory is well established and ‘bit’ is used as a unit for the

measurement. However, it is not sufficient to measure the pragmatic information content

of design documents and artifacts produced during the design process. Design is an

iterative and complex process and consists of a series of converging and diverging

processes. In novel product design projects, the steps of the design process are not

preordained, they are iterative and complex, and they usually vary between design

problems. Consequently, the information transforms are also not easily visible. At the

beginning of the design, which is the planning phase, the level of uncertainty remains at

its summit. This uncertainty rises due to the lack of information. As the design unfolds,

the designer gathers more information about the design space and possible solutions and

eventually uncertainty goes down to zero and the design terminates when enough

information is collected for determining all the design variables. It will be useful if

uncertainty reduction (or information growth) rate during product development process

can be quantified and visualized. This will help project managers evaluate and compare

the performance of engineering design teams based on a measure that is directly related
 2

to the inherent capabilities of the design teams such as learning, information processing

and knowledge generation. To this end, it is necessary to measure the information

content of the various design artifacts, such as requirements, function models, CAD

models, graphs, sketches and product layouts in a formal and replicable manner. The

focus of this work is on the artifacts that are represented textually such as engineering

requirement. The proposed methods and metrics in this work should be applicable to all

types of textual documents.

An information-theoretic approach is adopted for evaluating the performance of the

requirement planning phase. Since design is essentially an information transformation

and generation process, it can be argued that an information-based metric can better

reflect the progress of the design process compared to other indirect measures such as

cost or time. It is not always easy to track the information transformation process or fully

understand its dynamics since it is a complex phenomenon involving multiple domain

experts with varying levels of expertise and experience. However, the amount of

information generated at different timestamps during the design process should be

quantifiable. More effective design teams generate and transform information at a faster

rate. Also, the information generated by them is of higher value for downstream

processes and results in better decisions. Design information is embodied in design

artifacts. Hence, in order to study information transformation rate, first, the information

content of the artifacts that are being evolved throughout the design projects should be

objectively measurable so that given a step, where, say, requirements are transformed

 3

into function models, the amount of information input to and output from the step could

be measured.

1.1.2 Motivations for Measuring Specificity and Completeness:

 Requirement Engineering is one of the crucial steps in Engineering Design.

Requirements reflect the desired functions and characteristics of the product. A set of

requirements delineates the constraints and criteria that define the design space. A

requirement statement should be written in a clear and unambiguous way and provides

enough details such that the designer can develop a solid understanding of feasible design

solutions. Imprecise and ambiguous requirements can lead to poor designs. In spite of

having significant impact on design decisions, requirement planning are often neglected

by the designer and conducted in a discrete manner without much structure. As a result,

requirements are often subject to incompleteness, inconsistency, and conflict. The

adequacy of the generated requirements in terms of specificity and completeness is often

appraised subjectively. But it is very important to reduce the ambiguity and

inconsistencies in the earlier stages in order to avoid huge cost to fix the design in the

advanced stages. Therefore, it is necessary to develop the methods and metrics needed for

evaluating the completeness and specificity of engineering requirements. As the size and

the number of design projects increase in a design organization, the number, complexity,

and variety of the requirements statements increase as well. Therefore, the proposed

methods for requirement evaluation should lend themselves to automation in order to

enable designers to quickly evaluate large sets of requirements.

 4

1.1.3 Motivations for Requirement Classification:

Over the years, requirement planning for software development has matured to the

point where they are well understood and have proper taxonomy for classification. The

developers have the proficiency to categorize them into various categories and reuse them

if necessary. This is not the case in engineering design. Requirement categorization

facilitates search and retrieval of requirement. Also it enables designers to learn how the

past designs have addressed similar design problems. Requirements can be classified

under different categories such as safety, performance, production, service, and

agronomy. Requirement written in a textual format do not lend themselves to automatic

classification. If requirements are represented ontologically, they can be automatically

classified, thus improving search-ability and reusability.

1.2 Research Question:

 The underlying research questions for this work include:

x What are the components of a formal ontology for requirements modeling?

x What is a good metric for measuring the information content of engineering

requirements?

x How may the completeness and specificity of a requirement statement be

measured using the formal requirement ontology?

x How to use ontological reasoning techniques to classify requirements?

1.3 Methodologies:

A design problem can be represented in many different ways. In contrast, the

solution conjecture may also take different forms such as sketch, text or graphs etc. In

 5

this research, one of the key assumptions is Form-neutrality, which means the

information contained in different design artifacts is same irrespective of their type.

Therefore, all design artifacts need to be converted into a form neutral representation

without loosing any information. In this research the focus is on requirement statements

and an OWL ontology will be developed for ontology representation

A three-staged method is used to classify the requirements and measure their

information content, specificity and completeness. The first stage involved in this method

is aimed at identifying different components of a requirement statement and developing

an OWL ontology for requirement modeling. A set of two or three requirements clustered

together, is broken down into separate requirements and further elements of each

requirement statement is dispersed. Parts of speech tagging is used to spot the building

blocks of requirement statements. Depending on different identified elements of the

requirement statement, a formal structure of the ontology is developed at this point.

Sentence structure of numerous requirements is also being studied to verify the ontology

structure. The second stage takes into account the way of developing necessary method

and metrics to measure the information content of a single requirement or a set of

requirements. Shannon’s information metric based on used vocabulary is applied to

determine the metrics. After translating the requirements into OWL ontology different

containers of information such as entities, relations and attributes are recognized and

textual requirements are exposed from the plain English sentences. At this stage the

Shannon’s information metric is applied to them to compute the information content in

bits scale. A semi automatic java tool using ontology and OWL API is also being

 6

developed to do the task semi-automatically. The last stage is focused on measuring the

quality of the requirements in terms of specificity and completeness. With the purpose of

measuring requirements quality, SWRL rules are added to the ontology. An OWL API

interface is also being used to reason through the requirements and return a specificity

and completeness score for each requirement statement. Finally all these stages will add

up to a syntax for functional and nonfunctional requirements, a metric for measuring

information content and query based system to measure the specificity and completeness

of the requirements. An experimental validation is also used to examine the accuracy of

the developed ontology model.

1.4 Research Tasks:

The work included for this research is broken down into 6 tasks as listed below:

Requirement Modeling

Task 1. Creating the formal ontology model using protégé

Task 2. Populating the ontology with various requirements to validate the

structure of the ontology

Task 3. Developing the metric to measure the information content,

completeness and specificity

Task 4. Implementation of the metrics

Task 5. Developing a tool to create an interactive interface to measure the

Information content using JAVA and OWLAPI

Task 6. Experimental Validation

 7

1.5 Assumptions:

General assumptions of this research are:

1. Form neutrality of information is one of the key assumptions in this study and

therefore, a design artifact such as a requirement statement conveys the same

amount of information to the designer irrespective of it form such as text or

sketch, and that this amount could be measured

2. The information entropy of each class of the ontology depends on the structure of

the class and the number of instances of the class that are available in the

ontology at any given timestamp.

3. All nodes in the ontology follow a uniform distribution that means they have

equal likelihood of occurrence.

1.6 Limitation:

x The metrics proposed in this work provide relative measures of the information

content.

1.7 Delimitations:

x The focus of this work is on the artifacts that are represented textually such as

engineering requirement.

x The products that are included in this study are typical consumer products with

low-medium complexity.

1.8 Preliminary Results:

This section provides a high-level overview of a draft ontology developed for

formal representation of engineering requirements. The primary objective of developing
 8

the Requirement Ontology (ReqOn) is not to create a comprehensive vocabulary that

provides a complete coverage of all terms and relations used for describing engineering

requirements of various products. Rather, the objective is to create a formal

representation amenable to automated information content measurement. With this

objective in mind, ReqOn is designed such that it can break a requirement statement into

its elemental containers of information. These containers are essentially ontology classes

or concepts. A linguistic and grammatical approach is adopted for ontology

conceptualization. Therefore, parts of speech (verbs and nouns) and grammatical

functions (subject, object, complement, and adjuncts) define the major classes of the

ontology.

The scope of ReqOn is currently limited to consumer products with medium

complexity. However, ReqOn can be evolved into a comprehensive design requirements

ontology in the future that could be used for communicating design requirements among

product stakeholders. An evolutionary approach was adopted for developing ReqOn

starting with a flat ontology and then categorizing the instances into appropriate groups

and eventually forming class-subclass relationships to increase the taxonomical depth of

the ontology. In ReqOn, each requirement statement is represented by the Requirement

class, which has two disjoint subclasses, namely, Functional Requirement and

Nonfunctional Requirement. A functional requirement describes the functions and

behaviors of the product, whereas nonfunctional requirements describe the attributes of

the product such as size, color, or recyclability. In order to define the structure of the

requirement ontology different types of requirements of various consumer products are

 9

collected and their basic components are identified. Components of different types of

functional requirements are shown in Table 1 and Table 2 shows the components of

different nonfunctional requirements. Based on the similarities in structure of these

requirement statements, the structure of the formal requirement ontology could be

defined.

Table 1: Different types of Functional Requirement
Type 1: The product has a behavior as a whole
Example: The electric kettle boils water quickly
Product Electric Kettle
Subject Electric Kettle
Verb Boils
Object Water
Adverbial Adjunct Quickly
Type 2: The product has a part that has a behavior
Example: The electric kettle has a handle that insulates electricity.
Product Electric Kettle
Primary Subject Handle
Subject Electric kettle
Verb Insulates
Object Electricity
Product Electric Kettle
Primary Subject Left-handed User
Verb handles
Object Electric kettle
Adverbial Adjunct easily
Example 2: Electric Wok has a handle that the user grips easily.
Product Electric Kettle
Subject user
Verb grips
Object handle
Adverbial Adjunct Easily

 10

Table 2: Different types of Nonfunctional Requirements
Type 1: The product has a qualitative attribute.
Example: The electric kettle is light
Product Electric Kettle
Qualitative attribute Weight (implied)
Primary Subject Electric Kettle
Value low
OR:
Product Electric Kettle
Boolean attribute isLight
Value True
Type 2: The product has a quantitative attribute
Example: The electric kettle’s capacity is 1 liter.
Product Electric Kettle
Primary Subject Electric Kettle
Qualitative attribute Volume
Value 1
Unit Liter
Type 3: The product has a part that has an attribute (qualitative, quantitative, or
Boolean).
Example: The electric kettle has a cord that is long.
Product Electric Kettle
Primary subject Cord
Subject Electric kettle
hasPart cord
hasQualityAttribute Length
hasValue high
Type 4: The product has a physical component
Example: The electric kettle has a dual water window
Product Electric Kettle
Primary Subject Electric Kettle
hasPart Dual water window

 11

Table 2- Continued: Different types of Nonfunctional Requirements
Type 5: The product (or one of its components) has a particular material.
Example: The electric kettle has a plastic handle.
Product Electric Kettle
Primary Subject handle
Subject Electric Kettle
hasPart handle
hasMaterial plastic

 12

CHAPTER 2

2 REQUIREMENT ONTOLOGY

2.1 Introduction:

Conceptualization of a set of objects is abstract, but ontology is the explicit

definition of these objects and their interconnectivity (Ameri & Summers, 2008).

Ontologies are the single integrated view of a particular knowledge domain and they are

analogous to the conceptual schema of a database system. Conceptual schema is the

theoretical definition of the whole project and it contains set of concepts, their relations

and a set of assertion regarding their nature (Halpin, 1996). Conceptual schema allows

software applications to access the data without sharing the structure of the data.

Similarly, ontologies also provide semantic interoperability and logical reasoning ability

(Noy & McGuinness, 2001). In semantic web, ontologies have been used for so many

applications but in engineering design the use of ontologies are relatively new. Therefore

the main objective of this study is to develop formal ontology for standard representation

of engineering requirements and also to utilize the ontology to study various

characteristics of requirement statements using software applications. This chapter

presents the main framework of the ontology, definition of all essential elements of the

ontology, the association among the elements, and the implementation of these concepts

to build the ontology.

 13

2.2 Background - Engineering Requirements Modeling:

 Engineering requirements describe the attributes, behaviors, and functionalities a

product must fulfill to satisfy the needs of multiple stakeholders including manufacturing

engineers, sales and service staff, and end users. Engineering requirements are derived

from customer need statements. Customer need statements, represented in natural

language, are often imprecise and ambiguous and contain contradictory information

(Tseng & Jiao, 1998a). Researchers have developed formal models with the objective of

improving the process of requirement elicitation, analysis, communication, validation,

and reuse. However, there is no definite structure for requirement modeling and

representation in engineering design (Jiao & Chen, 2006). Requirement modeling and

representation is more rigorously studied in the software engineering domain and several

models and methods for structured and formal representation of requirements have been

proposed and implemented (Kossmann, Wong, Odeh, & Gillies, 2008; Mir, Agarwal, &

Iqbal, ; Qureshi, Jureta, & Perini, 2011). Although requirement modeling in software

engineering has fundamental differences with that in engineering design, there are some

ontologies in software engineering domain, such as CORE(Qureshi et al., 2011), that can

be applied to engineering design due to their high-level conceptualization. CORE is

based on DOLCE (Gangemi, Guarino, Masolo, Oltramari, & Schneider, 2002), a

foundational ontology that contains even more general concepts that are the same across

all knowledge domains.

 Lamar (Lamar, 2009) studied engineering requirements from a linguistic

perspective and proposed a formalized syntax for requirement representation based on

 14

parts of speech, grammatical functions, and sentence structure. Lamar decomposes

requirement statement into four syntactical elements, namely, artifact, necessity, function,

and condition. Using the proposed syntax and its associated analysis methods, one can

assess the quality of requirement statements with respect to completeness, unambiguity,

and traceability.

 Morkos (Morkos, Shankar, & Summers, 2012) developed a computational

reasoning tool to help designers predict change propagation in the engineering domain.

This tool uses the syntactical elements of requirements to build relationships between

requirements. The syntactical elements used in Morkos’s model include subject,

modifier, verb (modal and transitive), object and condition.

 Lin et al. (Lin, Fox, & Bilgic, 1996) proposed an ontology for representing

requirements that supports a generic requirements management process in engineering

design. First-order logic is used as the knowledge representation formalism. In this

ontology, engineering requirements are classified into four main categories: physical,

structural, functional, and cost. The proposed ontology can be used for checking

completeness, consistency, and satisfiability of engineering requirements.

 Darlington (Darlington & Culley, 2008), proposed ontology for organizing the

terms used for capturing design requirements. The objective of this ontology is to

eliminate the ambiguity about various concepts related to engineering requirements such

as target market, requirement resource, stakeholder and the like. The envisioned

applications for this ontology include streamlining communication among design

engineers, supporting software application development (in particular developing Case

 15

Based Reasoning systems for engineering requirements), and improving the performance

of search engines. This ontology, however, is high level and cannot be used for breaking

down requirement statements into its elemental components. Other related works in

requirement representation include the requirement taxonomy(Hauge & Stauffer, 1993),

the customer attribute hierarchy (Yan, Chen, & Khoo, 2001) and the functional

requirement topology(Tseng & Jiao, 1998b).

2.3 Requirement Ontology (ReqOn):

Uschold and King Ontology Building method is adopted to develop the ReqOn

(Uschold & King, 1995). This ‘skeletal’ methodology combines four ad hoc processes to

build the ontology.

x Identify Purpose and Scope

x Build Ontology

o Ontology Capture

o Ontology Coding

o Ontology Integration

x Evaluate Ontology

x Document Ontology

2.3.1 Identify Purpose and Scope of the Ontology:

The primary objective of developing the Requirement Ontology (ReqOn) is not to

create a comprehensive vocabulary that provides a complete coverage of all terms and

relations used for describing engineering requirements of various products. Rather, the

 16

objective is to create a formal representation amenable to automated information content

measurement. With this objective in mind, ReqOn is designed such that it can break a

requirement statement into its elemental containers of information. These containers are

essentially ontology classes or concepts. A linguistic and grammatical approach is

adopted for ontology conceptualization (Morkos et al., 2012). Therefore, parts of speech

(verbs and nouns) and grammatical functions (subject, object, complement, and adjuncts)

define the major classes of the ontology. The scope of ReqOn is currently limited to

consumer products with medium complexity. However, ReqOn can be evolved into a

comprehensive design requirements ontology in the future that could be used for

communicating design requirements among product stakeholders. An evolutionary

approach was adopted for developing ReqOn starting with a flat ontology and then

categorizing the instances into appropriate groups and eventually forming class-subclass

relationships to increase the taxonomical depth of the ontology.

2.3.2 Build Ontology:

2.3.2.1 Ontology Capture:
 In ReqOn, each requirement statement is represented by the Requirement

class, which has two disjoint subclasses, namely, FunctionalRequirement and

NonFunctionalRequirement. A functional requirement describes the functions

and behaviors of the product, whereas nonfunctional requirements describe the attributes

of the product such as size, color, or recyclability. The concept diagrams in [Figure 1] and

[Figure 2] show the properties of the FunctionalRequirement and

NonFunctionalRequirement classes respectively.
 17

Both types of requirements inherit hasProduct and isFunctional

properties from their common super-class (i.e., Requirement). hasProduct refers

to the product to which the requirement statement applies and its range is limited to

instances of the Product class. Each requirement statement has exactly one instance of

the Product class associated with it. isFunctional is a Boolean property used for

indicating whether or not the requirement is functional.

describesBehavior is a property specific to the

FunctionalRequirement class and its range is limited to instances of the class

Behavior. The behavior of a product describes the casual process through which the

function is achieved(Sen, Caldwell, Summers, & Mocko, 2010a) .The Behavior class

captures this process by encoding the predicate elements of the requirement statement.

The Behavior class in the ontology is designed such that a series of subjects and

objects that are involved in delivering the function can be embedded in the behavior.

Each behavior has exactly one action verb, either transitive or nontransitive. Since the

Functional Basis (FB) (Sen et al., 2010a) provides a widely accepted functional schema

in the engineering design community, this schema is adopted in ReqOn for breaking

down the Verb class into more specific subclasses such as Connect, Convert,

Support, and Branch. `

A functional requirement with a transitive verb has a primary subject and may

have one or more secondary subjects. For example, if a functional requirement has its

hasProduct property set to the wheel of a bicycle, then the wheel is the primary

 18

subject and the bicycle is the secondary subject, since the requirement directly applies to

the wheel and not to the bicycle. Each requirement statement that has a transitive verb

needs a primary object and may have one or more secondary objects. Both object and

subject can have different types such as user, product, part, material, energy, or signal.

For example, consider the reqirement “The Electric Wok has a lid that can be flipped

easily”. In this requirement statement “flip “is TransitiveVerb, “lid” is

PrimaryObject, and electric wok is Object. The taxonomy of the material,

energy, and signal classes are directly imported from FB. It is important to incorporate

various class hierarchies in ReqOn since it allows for more accurate evaluation of the

information content based on the depth of classes in the hierarchy.

Figure 1: Concept diagram for the FunctionalRequirement Class

describesBehavior

z�FunctionalRequirement

z�Behavior

hasPrimaryObject

hasObject

isFunctional Boolean: Y/N

hasProduct z�Product

z�Object

hasVerb z�Verb

hasSubject z�Product

hasPrimarySubject

z�Part z�User

z�Transitive Verb

z�NonTransitive Verb

hasAdjunct

z�Adjunct

z�Conditional

z�Locative

z�Temporal

z�Reason

z�Frequency

z�Adverbial

z�Measure

z�Modificative

z�Instrumental

isConstraints Boolean: Y/N

z�Information z�Energy z�Joint z�Material

 19

Figure 2: Concept diagram for the NonFunctionalRequirement Class

The specificity of functional requirements can be improved by using Adjunct. An

adjunct usually modifies the verb and indicates the time, manner, place, frequency,

reason, degree, or condition pertaining to the requirement. For example, in the

requirement statement “the hand truck holds boxes securely on steep slopes”, “securely”

is an AdverbialAdjunct while “on steep slopes” is a LocativeAdjunct. “Hand truck” and

“box” are subject and object respectively. As the requirements evolve, designers add

more details in the requirement through introducing various types of adjuncts. [Table 1]

describes three possible types of functional requirement that can be represented in

ReqOn.

describesAttribute

z�NonFunctional
 Requirement

hasQualitativeValue

z�QualityAttribute

z�QualitativeValue

z�BooleanAttribute

z�Attribute

hasBooleanValue Boolean: Y/N

z�QuantityAttribute

hasUnit z�Unit

hasLowerValue Float

hasUpperValue Float

hasValue Float

isFunctional Boolean: Y/N

hasSubject

z�Subject

hasProduct z�Product

hasPrimarySubject

hasAdjunct

z�Conditional

z�Locative

z�Temporal

z�Reason

z�Frequency

z�Adverbial

z�Measure

z�Modificative

z�Instrumental

 z�Adjunct

isConstraints Boolean: Y/N

 20

A NonFunctionalRequirement uses the describesAttribute property to describe the

attributes of the product. There are three subclasses for the Attribute class in the

requirements ontology, namely, BooleanAttribute, QualityAttribute, and

QuantityAttribute. For example, in the requirement the phone is small in size, “size” is

the quality attribute with small as its value. Grammatically, small is the subject

complement in this example. However, if the actual dimensions, or ranges, are given for

the size of the phone, then size can be regarded as a quantity attribute. A Boolean

attribute is used for indicating if a product possesses a certain property. For example, in

the requirement the printer is easy to repair, ease of repair can be treated as a Boolean

attribute with a true value. [Table 2] describes five possible types of nonfunctional

requirement that can be represented in ReqOn. Protocol for creating requirement in

ReqOn [Table 3] describes the protocol for identifying different components of

requirement statements and converting them into ontological representation.

Table 3: Protocol for creating requirement in ReqOn
1- Identify the type of the requirement statement
2- Rephrase the statement if necessary to match with one of the requirement

patterns.
a. Don’t use the modals “can” or “must”. Uses simple present (third-person) for

the verb tense. For example, instead of “the cup can hold liquid”, use “the cup
holds liquid”.

b. If the user is implied in a requirement statement, make it explicit.
c. Rewrite the statements in active voice (not passive voice). For example instead

of “The electric wok is handled easily by left-handed users”, use “Left-hand
users easily handle the electric wok”.

d. When the product is the subject, start the statement with the name of the
product.

 21

Table 3-Continued: Protocol for creating requirement in ReqOn
3- Identifying requirements components:

a. Product: It is the product for which the requirement is defined.
b. Subject: The subject associated with a verb. It is either the product itself, or a

part of the product, or the user. In a non-functional requirement, subject is the
entity that the attribute pertains to.

i. A requirement can have multiple subjects but it can only have one
primary subject. The primary subject is the entity that is directly
involved in the action. For example, in the statement: “the pin of the
paper punch makes holes in paper”, both the paper punch and the pin
are subjects but the pin is the primary subject, since it performs the
action “making hole” directly.

c. Object: the object associated with transitive verbs. The primary object is the
direct object that received the action of the action verb. If the direct object
receives the action through a chain of objects, then those objects are regarded as
secondary (indirect) objects.

d. Verb: describes the action. It can be transitive or intransitive. Requirements
with linking verbs (such as “is and “are”) are often represented as non-
functional requirements (Example: Bicycle “is” easy to repair).

e. Adjunct: Identify the adjuncts that further modify the verb, object, or subject.
i. For transitive verbs, try to use the verbs already available in the

Functional Basis taxonomy.
f. Attribute: A feature, property, quality, or component related to the product or

its parts.
i. A quality attributes can also be written as a Boolean attribute. For

example, bicycle has low weight can be written as bicycle is light
(isLight attribute with True value).

2.3.2.2 Ontology Coding:
Ontology coding represents implementation of the concept developed during

ontology capture phase. This stage involves selecting a representation language and

writing the codes (Ameri, Urbanovsky, & McArthur, 2012; Gruber, 1993). In this study

OWL DL (DL stands for “Description Logic”) is selected as the ontology representation

 22

language. OWL DL is a subset of OWL (“Web Ontology Language”), which allows

reasoning engines to support reasoning and can detect semantic inconsistencies in the

ontology. It also supports SPARQL queries to sort the data.

Syntax of description logic is based on simple mathematical logics such as subset, union,

intersection, universal and existential concept etc. (Ameri & Summers, 2008). Identifying

semantic structure, classes, class hierarchies, object and data properties, instances etc.

creates ReqOn. In this section the core components of the ReqOn is defined formally

using OWL DL and necessary axioms are also provided. Definition of some core concept

included in the ontology is shown in [Table 4]. Each class in the ontology represents a

unique concept and each property mirrors the association among these concepts. To

uniquely identify each concept a set of OWL Ontology Class Axioms, OWL Ontology

Property Axioms and OWL DL Restrictions are required.

Table 4: Definition of some of the core classes in ReqOn

Concept Definition

Functional Requirement
A requirement that describes operation and activities that
the product has to perform.

Behavior
A component of functional requirement through which the
function is achieved

Subject
Subject is the product, part, user, material, energy or
information that is doing or being something

Object
Object is the product, part, user, material, energy or
information, which is acted upon by the subject

Transitive Verb Transitive verb is the verb, which takes at least one object
NonTransitive Verb NonTransitive verbs do not have any object

Nonfunctional Requirement
Nonfunctional requirements are requirements that describe
one or more characteristics of the product

 23

Table 4 - Continued: Definition of some of the core classes in ReqOn
Concept Definition

Attribute
Attributes are concepts that do not exist on their own;
rather, they are parameters that characterize the subject

Value

Value indicates the magnitude of an attribute. Values can
be quantitative (e.g., “85 °C”) or qualitative (e.g., “high”
temperature), and thus, they can occur in the text as nouns,
adjectives, or adverbs.

Adjunct
Adjuncts are optional and usually modifies the verb and
indicates the time, manner, place, frequency, reason,
degree, or condition pertaining to the requirement

2.3.2.2.1 Ontology Building Blocks:

Definition (1): Requirements are classified into two disjoint classes and they

are completely constraint. Requirement is a statement that is associated with exactly

one product, it can be functional or nonfunctional and it can be a constraint or criteria.

ݐ݊݁݉݁ݎ݅ݑݍܴ݁ = ת ݐ݊݁݉݁ݐܽݐܵ (ݐܿݑ݀݋ݎܲ.ݐܿݑ݀݋ݎܲݏ݄ܽ׌)
ת .݈ܽ݊݋݅ݐܿ݊ݑܨݏ݅׊) :݀ݏݔ .݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰݏ݅ ݎ݋ ݈݊ܽ݁݋݋ܾ :݀ݏݔ (݈݊ܽ݁݋݋ܾ

ת .݊݅ܽݎݐݏ݊݋ܥݏ݅׊) :݀ݏݔ .ܽ݅ݎ݁ݐ݅ݎܥݏ݅ ݎ݋ ݈݊ܽ݁݋݋ܾ :݀ݏݔ (݈݊ܽ݁݋݋ܾ

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = "Requirement"/ >
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"Requirement݈ܽ݊݋݅ݐܿ݊ݑܨ"

< :ݏ݂݀ݎ :݂݀ݎ ݂ܱݏݏ݈ܾܽܿݑݏ ݁ܿݎݑ݋ݏ݁ݎ = "#Requirement " >
</owl: Class >
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"Requirement݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ"

< :ݏ݂݀ݎ :݂݀ݎ ݂ܱݏݏ݈ܾܽܿݑݏ ݁ܿݎݑ݋ݏ݁ݎ = "#Requirement " >
</owl: Class >
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = "Product"/ >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasProduct"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Requirement " >

 24

< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Product " >
ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋ ܦܫ = "isFunctional"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Requirement " >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "& xsd; boolean " >

ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋ ܦܫ = "isConstrain"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Requirement " >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "& xsd; boolean " >

ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋/> >

Definition (2): Functional requirement inherits all characteristics form its parent

class requirement. Functional requirement describes exactly one behavior of the product.

ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ
= ת ݐ݊݁݉݁ݎ݅ݑݍܴ݁ (= (ݎ݋݅ݒ݄ܽ݁ܤ.ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ 1

ת .݈ܽ݊݋݅ݐܿ݊ݑܨݏ݅׊) (݁ݑݎݐ

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = "Behavior"/ >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "describesBehavior"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#FunctionalRequirement " >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >

 25

Figure 3: Screenshot of Class expression editor for Functional Requirement in
Protégé 4.3

Definition (3): Behavior is a component of functional requirement that

contains exactly one primary subject, some secondary subject, exactly one primary

object, some secondary object, exactly one action verb and some adjuncts.

ݎ݋݅ݒ݄ܽ݁ܤ = ݐ݊݁݊݋݌݉݋ܥ ת (= .ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1 (ݐ݆ܾܿ݁ݑܵ

ת (= (ݐ݆ܾܱܿ݁.ݐ݆ܾܱܿ݁ݕݎܽ݉݅ݎܲݏ݄ܽ 1

ת .ݐ݆ܾܿ݁ݑܵݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ׌) (ݐ݆ܾܿ݁ݑܵ

ת (ݐ݆ܾܱܿ݁.ݐ݆ܾܱܿ݁ݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ׌) ת (= (ܾݎܸ݁.ܾݎܸ݁ݏ݄ܽ 1

ת (ݐܿ݊ݑ݆݀ܣ.ݐܿ݊ݑ݆݀ܣݏ݄ܽ׌)

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݐݎܽܲ"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݈ܽ݅ݎ݁ݐܽܯ"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݐ݊݅݋ܬ"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݕ݃ݎ݁݊ܧ"

 26

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݊݋݅ݐܽ݉ݎ݋݂݊ܫ"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݎ݁ݏܷ"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ܾݎܸ݁"
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݐܿ݊ݑ݆݀ܣ"

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"ݐ݆ܾܿ݁ݑܵ"
< ݁݌ݕܶ݁ݏݎܽ݌:݂݀ݎ ݂ܱ݊݋݅݊ݑ:݈ݓ݋ = Collection >

< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"ݐݎܽܲ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"݈ܽ݅ݎ݁ݐܽܯ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"ݐ݊݅݋ܬ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"ݕ݃ݎ݁݊ܧ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"݊݋݅ݐܽ݉ݎ݋݂݊ܫ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"ݎ݁ݏܷ#"
< ݐݑ݋ܾܽ:݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ = < /"ݐܿݑ݀݋ݎܲ#"

</owl: unionOf >
</owl: Class >

(Similarly, object is also union of Part, Product,
Material, Joint, Energy, Information and User.)

< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasPrimarySubject"/ >
< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Subject " >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasPrimaryObject"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Object " >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasSecondarySubject"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Subject " >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasPrimarySubject"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
 27

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Subject " >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasSecondaryObject"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Object " >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasVerb"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Verb" >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasAdjunct"/ >

< :݂݀ݎ :݂݀ݎ ݁݌ݕݐ ݁ܿݎݑ݋ݏ݁ݎ = </ "ݕݐݎ݁݌݋ݎ݈ܲܽ݊݋݅ݐܿ݊ݑܨ;݈ݓ݋&"
< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Behavior" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Adjunct" >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >

Definition (4): Nonfunctional requirement also inherits all properties of

requirement. Nonfunctional requirement contains exactly one primary subject, exactly

one primary object, some secondary subject, some secondary object, some adjunct and

minimum one attribute.

 28

Figure 4: Screenshot of class editor for Nonfunctional Requirement in
Protégé

ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑ݂݊݋ܰ
= ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ת (= .ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1 (ݐ݆ܾܿ݁ݑܵ

ת .ݐ݆ܾܿ݁ݑܵݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ׌) (ݐ݆ܾܿ݁ݑܵ

ת (൒ (݁ݐݑܾ݅ݎݐݐܣ.݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ 1 ת (ݐܿ݊ݑ݆݀ܣ.ݐܿ݊ݑ݆݀ܣݏ݄ܽ׌)

(For Nonfunctional requirement hasPrimarySubject, hasSecondarySubject, and
hasAdjunct coding are similar to the properties of Behavior. Thereby, to avoid
redundancy only the property describesAttribute is shown here)

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = "Attribute"/ >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "describesAttribute"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#NonFunctionalRequirement " >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#Attribute" >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = "Attribute"/ >

< < ݊݋݅ݐܿ݅ݎݐݏܴ݁:݈ݓ݋
< :݈ݓ݋ :݂݀ݎ ݕݐݎ݁݌݋ݎܲ݊݋ ݁ܿݎݑ݋ݏ݁ݎ = < "݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀#"

< ݁݌ݕݐܽݐܽ݀:݂݀ݎ ݕݐ݈݅ܽ݊݅݀ݎܽܥ݊݅݉:݈ݓ݋ = & xsd; nonNegativeInteger > 1
 < ݕݐ݈݅ܽ݊݅݀ݎܽܥ݊݅݉:݈ݓ݋/>

 29

 < ݊݋݅ݐܿ݅ݎݐݏܴ݁:݈ݓ݋/>
ݏݏ݈ܽܥ:݈ݓ݋/> >

Definition (5): Attribute defines the characteristics of subject and they can be

qualitative, quantitative or Boolean. Qualitative Attribute is a type of attribute

that has exactly one qualitative value. Quantity Attribute is a type of attribute

that has either a value or a lower or upper value or both. Further, numeric value has

exactly one unit. Boolean Attribute is a type of attribute that has exactly one

Boolean Value.

݁ݐݑܾ݅ݎݐݐܣ ݕݐ݈݅ܽݑܳ = ݁ݐݑܾ݅ݎݐݐܣ ת (= (݁ݑ݈ܸܽ݁ݒ݅ݐܽݐ݈݅ܽݑܳ.݁ݑ݈ܸܽ݁ݒ݅ݐܽݐ݈݅ܽݑܳݏ݄ܽ 1

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݁ݐݑܾ݅ݎݐݐܣݕݐ݈݅ܽݑܳ"

< :ݏ݂݀ݎ :݂݀ݎ ݂ܱݏݏ݈ܾܽܿݑݏ ݁ܿݎݑ݋ݏ݁ݎ = "#Attribute " >
:ݏ݂݀ݎ/> ݂ܱݏݏ݈ܾܽܿݑݏ >

</owl: Class >

݁ݐݑܾ݅ݎݐݐܣ ݕݐ݅ݐ݊ܽݑܳ = ݁ݐݑܾ݅ݎݐݐܣ ת .݁ݑ݈ܸܽݏ݄ܽ ׌) = ת ݁ݑ݈ܸܽ) (ݐܷ݅݊.ݐܷ݅݊ݏ݄ܽ 1

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݁ݑ݈ܸܽ݁ݒ݅ݐܽݐ݈݅ܽݑܳ"
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋ ܦܫ = "hasQualitativeValue"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#QualityAttribute " >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#QualitativeValue" >

ݕݐݎ݁݌݋ݎܲݐ݆ܾܱܿ݁:݈ݓ݋/> >
< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݁ݐݑܾ݅ݎݐݐܣݕݐ݅ݐ݊ܽݑܳ"

< :ݏ݂݀ݎ :݂݀ݎ ݂ܱݏݏ݈ܾܽܿݑݏ ݁ܿݎݑ݋ݏ݁ݎ = "#Attribute " >
:ݏ݂݀ݎ/> ݂ܱݏݏ݈ܾܽܿݑݏ >

</owl: Class >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋ ܦܫ = "hasValue"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#QuantityAttribute" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "& xsd; float " >

 30

ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋/> >

݁ݐݑܾ݅ݎݐݐܣ ݈݊ܽ݁݋݋ܤ = ݁ݐݑܾ݅ݎݐݐܣ ת (= .݁ݑ݈ܸ݈ܽ݊ܽ݁݋݋ܤݏ݄ܽ 1 (݈݊ܽ݁݋݋ܤ:݀ݏݔ

< :݂݀ݎ ݏݏ݈ܽܥ:݈ݓ݋ ܦܫ = < /"݁ݐݑܾ݅ݎݐݐܣ݈݊ܽ݁݋݋ܤ"
< :ݏ݂݀ݎ :݂݀ݎ ݂ܱݏݏ݈ܾܽܿݑݏ ݁ܿݎݑ݋ݏ݁ݎ = "#Attribute " >
:ݏ݂݀ݎ/> ݂ܱݏݏ݈ܾܽܿݑݏ >

</owl: Class >
< :݂݀ݎ ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋ ܦܫ = "hasBooleanValue"/ >

< :݂݀ݎ ݊݅ܽ݉݋ܦ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "#QuantityAttribute" >
< :݂݀ݎ ܴ݁݃݊ܽ:ݏ݂݀ݎ ݁ܿݎݑ݋ݏ݁ݎ = "& xsd; boolean " >

ݕݐݎ݁݌݋ݎܲ݁݌ݕݐܽݐܽܦ:݈ݓ݋/> >

2.3.3 Evaluate Ontology:

 In order to be useful, the method must be objective, i.e., not influenced by the

designer’s preference or interpretation: a property reflected in its ability to produce

ontologies that are similar between designers. Also the requirements can be written in

various ways and structure of all requirements is not identical. Thereby, it is very

important that the developed ontology can successfully accommodate a wide range of

requirements while maintain its consistency. As a preliminary assessment of this

reliability, requirements from different design projects were imported into the ontology.

At present, this dynamic ReqOn consists of 247 functional requirements and 182

nonfunctional requirements for a total of 27 products. It also offers a standard vocabulary

composed of 113 instances for verb (Sen et al., 2010a) and 126 instances for attribute.

Apart from that it has several instances for all classes that are available to the designer to

reuse. [Table 5] shows a few instances and their definition inherited from their type.

 31

Table 5: ReqOn definition of different individual

Individual Name ReqOn Description

The electric kettle
boils water quickly

Requirement

= ݐ݊݁݉݁ݐܽݐܵ
ת .ݐܿݑ݀݋ݎܲݏ݄ܽ׌) (݈݁ݐݐ݁ܭ ܿ݅ݎݐ݈ܿ݁݁

ת .݈ܽ݊݋݅ݐܿ݊ݑܨݏ݅׊) (݁ݑݎݐ

ת .݊݅ܽݎݐݏ݊݋ܥݏ݅׊) (݁ݑݎݐ

The electric kettle
boils water quickly

Functional
Requirement

= ݐ݊݁݉݁ݎ݅ݑݍܴ݁
ת ൬= .ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ 1 ݎ݁ݐܽݓ ݏ݈݅݋ܾ

ݕ݈݇ܿ݅ݑݍ ൰
ת .݈ܽ݊݋݅ݐܿ݊ݑܨݏ݅׊) (݁ݑݎݐ

Boils water quickly Behavior

= ݐ݊݁݊݋݌݉݋ܥ ת ቀ= .ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1
݈݁ݐݐ݁݇ ܿ݅ݎݐ݈ܿ݁݁ ቁ

ת (= (ݎ݁ݐܽݓ.ݐ݆ܾܱܿ݁ݕݎܽ݉݅ݎܲݏ݄ܽ 1

ת (= .ܾݎܸ݁ݏ݄ܽ 1 (ݏ݈݅݋ܾ

ת .ݐܿ݊ݑ݆݀ܣݏ݄ܽ׌) (ݕ݈݇ܿ݅ݑݍ

The electric kettle is
light

Nonfunctional
Requirement

= ݐ݊݁݉݁ݎ݅ݑݍܴ݁
ת (= .ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1 (݈݁ݐݐ݁݇ ܿ݅ݎݐ݈ܿ݁݁

ת (൒ (ݐ݄ܹ݃݅݁.݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ 1

Weight (light)
Quality
Attribute

= ݁ݐݑܾ݅ݎݐݐܣ
ת (= .݁ݑ݈ܸܽ݁ݒ݅ݐܽݐ݈݅ܽݑܳݏ݄ܽ 1 (ݐ݄݈݃݅

2.4 Requirement Reuse:

Requirement reuse is one of the key assets for the designer to effectively design a

novel product. Due to the potential benefits of requirement reuse, it gained noticeable

recognition and attracted researchers. Currently, there are so many tools exist that

facilitate requirement reuse as a functionality such as DOORS, JAMA, P&PM, ViReq etc

(Rolland & Proix, 1992). However, all of these tools are specially designed for software

requirements and they are not made to manage the requirements related to the

engineering product design and development. [Table 6] shows a SPARQL query that

returns the functional requirement, which contains nontransitive verb and also sorts the
 32

result in an ascending order of requirement and for each requirement in ascending order

of the verb.

Table 6: SPARQL query that returns the entire set of functional
requirement, which contains Nontransitive verb, with their corresponding

behavior and verb
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ReqOn: <http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-
ontology-11#>

SELECT ?FunctionalRequirement ?Behavior ?Verb
 WHERE { ?FunctionalRequirement ReqOn:describesBehavior ?Behavior.
 ?Behavior ReqOn:hasVerb ?Verb .
 ?Verb rdf:type ReqOn:NonTransitiveVerb }
ORDER BY ?FunctionalRequirement (?Verb)

In this circumstance, developing an effective search engine, which is specially

designed for requirements, will be beneficial. At the semantic level, ReqOn can retrieve

its data using RDF query languages such as SPARQL and thereby increase its

effectiveness (Motik, Sattler, & Studer, 2005).

2.5 Implementation:

A java and OWL API tool has been developed based on the structure of the

ontology demonstrated in the previous sections. It translates the text into ontology using

OWL API. The tool will provide two different interactive windows for functional and

 33

nonfunctional requirement based on the user selection. [Figure 5] and [Figure 6] show the

functional and nonfunctional requirement editors respectively.

Figure 5: Screenshot of the requirement editor for functional requirement

Figure 6: Screenshot of the requirement editor for functional requirement

 34

The tool has a default ontology saved into it and users also have the flexibility to

use any other owl file instead of the default ontology. The user has to enter the

requirement statement and other components of the requirement as text. To use the tool

the user does not require any knowledge of ontology. The user has to identify the

grammatical components of the sentence such as subject, object, verb, and adjunct etc.

[Figure 7] shows the run time environment for the tool.

Figure 7:Run time environment of the java and OWL API based tool to convert
textual requirement into owl ontology

 35

By user defined components the tool will first try to utilize the exiting instances

of the ontology in order to avoid duplication of instances and if no similar instances

exists in the ontology then the tool will create a new instance. For each new instance the

tool will also assert the appropriate class of the instance using

OWLClassAssertionAxiom. After converting the text into owl instances the tool will

assert the value for each property of the requirement using

OWLObjectPropertyAssertionAxiom and OWLDataPropertyAssertionAxiom. After

converting text into ontology the tool can save changes either on the uploaded ontology

or to a different file by using user defined file directory. [Figure 8] shows a nonfunctional

requirement “The suspension weighs between 5-10 lbs” in protégé 4.3.This requirement

is translated into the ontology using the developed tool.

Figure 8: Screenshot of a nonfunctional requirement converted using the tool
 36

2.6 Conclusion:

The objective of this chapter was to propose a systematic approach to develop

ReqOn, as ontology for requirements generated at the early stage of the design. This

chapter also provides a protocol for writing and modifying design requirements. ReqOn

is limited to the requirement statements but it can be extended for technical specifications

and guidelines or other relevant text using similar concept. The proposed approach

suggests a four-step method to conceptualize, develop, validate and document the

ontology. Further, the ontology developing method portrayed three tasks for capturing,

coding and integrating the ontology. OWL DL is used as the language to code ReqOn and

the ontology was populated with several requirements to ensure the validity of the

ontology concept. Requirements used in this study were collected from different design

projects and some of them were also created following the proposed protocol to check the

usefulness of the protocol. It was also observed that the requirements created following

the protocol was nearly similar to the requirements collected from the design projects.

Additionally, it is possible to import them into the ReqOn successfully without losing any

element. ReqOn provides a common vocabulary that can be reused while creating

requirements and reuse functionality can be achieved by using SPARQL query. Use of

SPARQL query enhances the flexibility of retrieving data and thereby, reusing the

requirements and their components.

 37

CHAPTER 3

3 INFORMATION CONTENT MEASUREMENT

3.1 Introduction:

In this chapter, the details of the proposed methods for information content

measurement are described. As discussed earlier, information content can be used as

measure of specificity or in formativeness of engineering documents and artifacts. The

overall goal of the proposed methods is to provide a formal and replicable means for

measuring the information content of engineering requirements. Design is an

information-transforming process. It starts with a need or a problem statement

(information) and ends with specification of a solution (information). In novel product

design, especially within the early stages, the steps between these two terminals are not

preordained, they are iterative and complex, and they usually vary between design

problems. Consequently, the information transforms are not easily visible. In order to

study these transforms, first, the information content of the artifacts used in early design

should be objectively measurable, so that given a step, where, say, requirements are

transformed into function models, the amount of information input to and output from the

step could be measured. This need sets the overall motivation of this research.

Within each artifact, information can be present in various forms, such as text,

sketch, or graphs (Suh, 1990) . Form-neutrality of information is one of the key

assumptions of this work. Form-neutrality indicates that the amount of information

contained in a design artifact does not depend on its form; being text, sketch, or graph.

Therefore, if all design artifacts can be translated into a standard and formal
 38

representation, such as an OWL ontology, no information loss should occur during this

transformation. The ontology that is introduced in this paper is focused on requirement

representation. Different OWL ontologies can be created for different type of design

artifacts.

 It is, therefore, the job of the information metric to ascertain this form-neutrality.

To this end, we propose a two-step process of measuring information [Figure 9]. First, a

form-neutral representation that could be used to translate any type of design information

into a neutral form is used. Next, Shannon’s metrics of information content are applied

to this neutral form.

Figure 9: Two-step approach of information measurement

 39

3.2 Scope:

In this section, the proposed approach is demonstrated using text-based input

information and the ReqOn Ontology REQUIREMENT ONTOLOGY as the form-

neutral representation.. The products that are included in this study are typical consumer

products with low-to-medium complexity.

3.3 Related Work:

The notion of information content in the context of engineering design was first

introduced by Suh (Suh, 2001) in his seminal work on Axiomatic Design. Based on the

Information Axiom, the second axiom in the Axiomatic Design theory, the best design is

the one with minimum information content. In his earlier work on using the axiomatic

approach to improve the productivity of manufacturing systems in 1978, Suh (Suh, 2001)

loosely defined the information content of a product as the instructions necessary for

fully describing the product and its associated manufacturing and assembly processes.

Based on the information axiom, minimizing information means loosening tolerances,

simplifying shapes, accepting rough surfaces, and reducing the number of instructions

required for processing and inserting the parts. However, he didn’t provide any rigorous

formalism for quantifying the information content in different design documents.

In 1980, Wilson (D. R. Wilson & Massachusetts Institute of Technology. Department of

Mechanical Engineering, 1980) proposed a metric for indirect measurement of

information content as the logarithm of the inverse of the probability of satisfying a

tolerance. This definition, although limited to the geometric features of design artifacts,

was later embraced by the Axiomatic Design theory and it was further generalized and

 40

redefined as the inverse of the logarithm of the probability that the design successfully

meets its functional requirements (Suh, 2001). Higher probability of success means less

information content, which, in turn, implies less complex products. This measure of

information provided a basis for other researchers to further investigate and enhance the

underlying mathematical and stochastic models of the information axiom (El-Haik &

Yang, 1999; Frey, Jahangir, & Engelhardt, 2000). Associating product information

content to its complexities proved to be a reasonable approach for information

quantification and uncertainty analysis in engineering design and researchers used the

information axiom in different applications such as predicting manufacturing time and

cost (Collopy & Eames, 2001). However, due to the generic nature of the proposed

measure, applying it to different representations of design artifacts especially in early

design is not always trivial. For example, one may ask how the “probability of success”

should be interpreted when measuring the information content of a requirements list or an

early sketch of the product. To this end, there is a need for more direct and absolute

metrics for measuring the information content of the intermediate design artifacts created

at various stages of design process and represented using different formalisms.

In function-based design, metrics of information content of function structure graphs

have been proposed (Sen, Summers, & Mocko, 2010; Sen, Caldwell, Summers, &

Mocko, 2010b). These metrics build on Shannon’s notion of information entropy

(Shannon, 2001) and can separately account for information from the functions and flows

(El-Haik & Yang, 1999) and that from the topological connections of these graphs

(Collopy & Eames, 2001) based on a fixed vocabulary of functions and flows.

 41

Intuitively, information content represents the number of questions that are answered by a

function model for a designer who receives the model as a message containing discrete

elements such as functions and flows (El-Haik & Yang, 1999).

3.4 Information Content Measurement:

Within each artifact, information can be present in various forms, such as text,

sketch, or graphs (Chandrasegaran et al., 2013). This research is based on the premise

that information is a form-neutral entity and therefore, a design artifact such as a

requirement statement conveys the same amount of information to the designer

irrespective of it form such as text or sketch, and that this amount could be measured. The

described ontology provides a form-neutral and formal representation that is amenable to

automated information content measurement. It exposes various parts of speech in the

requirement statement as ontological classes than can be contemplated as containers of

information.

 The proposed information content measurement technique in this work is based

on the entropy metric used in Shannon’s Information Theory (Shannon, 2001). In

information theory, entropy is the measure of uncertainty in a model. On the contrary,

uncertainty reduction is the amount of information required to diminish the uncertainty.

Shannon’s metric measures information contained in a finite message composed of

discrete symbols drawn from a finite vocabulary, such as the dots and dashes in a

telegraph message (Shannon, 2001). According to this theory, the entropy of a discrete

random variable X with a probability distribution p(x) is defined by:

 42

ؠ ௫ܪ െ෍݌(ܺ)

௫א௑
 logଶ (ݔ)݌ = logଶ ܧ

1

(ܺ)݌

Equation 1

 Values of X with higher likelihood of occurrence have lower entropy according

to this definition. Shannon’s metric intends to measure the information content of a

message in terms of the size of the unique vocabulary that the message is drawn from. In

the context of measuring the information content of engineering requirements, each

requirement statement can be treated as a finite message, composed of distinct word

drawn from a finite vocabulary. For a requirement statement written in plain English, the

reference vocabulary would be the entire dictionary of the English language. The

requirement ontology, as a subset of the English language is used as the reference

vocabulary in this wok. Requirement statements are considered as a message, each

instances (i) as a discrete symbol and classes (c) are the set of instances in which instance

i is comprised. Further, information is contained in each node and in the topological

connections. In this section, two different approaches are taken to measure the entropy of

different entities of the OWL ontology – uniform random distribution approach and

decision-making approach. Each approach is explained is details with relevant

calculations.

3.4.1 Uniform Random Distribution Approach:

The main assumption of this approach is the uniform probability distribution of

the entities that means all the leaf classes of the ontology have equal chance of occurring.

ReqOn has different owl classes and subclasses. Each class in the ontology represents a

variable with some inherent entropy. In this approach, the entropy of each class is

 43

considered to be depended on the structure of the class and the number of instances of the

class that are available in the ontology at any given timestamp. The entropy associated

with the structure of a class is referred to as taxonomy entropy in this work and the

entropy attributed to the number of direct class instances is called size entropy. The

classes that have more complex sub-class structure introduce more uncertainty. Also the

classes that are instantiated more frequently have higher entropy because the probability

of encountering of a particular instance would be low. The taxonomy entropy of a class

is based on the probability that a particular class is selected when formulating a

requirement and the size entropy is based on probability that the selected class assumes a

certain value. The total entropy of a class (Eci) is calculated as the summation of

taxonomy (TEci) and size (SEci) entropy [Equation 2].

= ௜ܿܧ + ௜ܿܧܶ ௜ Equation 2ܿܧܵ

3.4.1.1 Taxonomy Entropy:
The taxonomy entropy of a class depends on the structure of the class. Classes with

deeper subclass structures tend to have higher taxonomy entropy. The following steps are

used to calculate the taxonomy entropy of a class. The Verb class is used as an example

here. The hierarchical structure of Verb is shown in [Figure 10].

x Count the number of leaf classes under each parent class (N). A leaf class is one

that doesn’t have any subclasses. For example NonTransitiveVerb,

Divide, and Import are examples of leaf classes. In [Figure 10] parent class

Verb has 36 leaves.
 44

x Assign a probability of (1/Number of leaf under parent class = 1/N) to each leaf.

For example, assign probability of 1/36 to NonTransitiveVerb, Divide,

and Import. It is assumed that all leaf nodes have equal likelihood of occurrence

(uniform probability distribution).

x Next, for the rest of the subclasses under the parent class, count the number of

leaves (n) under them. For example, the count of leaves under class Branch is n

= 4.

x Probability of all subclasses other than leaf is the number of leaf nodes under the

selected class divided by total number of leaf nodes under its parent class (n/N).

For example, Probability of occurrence of class Branch = 4/36.

x After determining the probability of occurrence of the class, the entropy measure

is applied for calculating the taxonomy entropy of the class.

= ௜ܿܧܶ െ ଶ(ܲܿ௜) Equation 3݃݋݈

Where, TEci is the Taxonomy Entropy of the ith class ci and Pci is the probability

of occurrence of class ci. For example, the Taxonomy Entropy of class Branch (TEbranch)

is calculated as follows:

஻௥௔௡௖௛ܧܶ = െ݈݃݋ଶ ஻ܲ௥௔௡௖௛ = െ ଶ݃݋݈
4

36

ൎ ݏܾ݅ 2.97

Equation 4

 45

3.4.1.2 Size Entropy:
Entropy measures can be applied to measuring the size entropy of each class as

well. Size of a class implies the number of individuals, or instances, under the class at

any instant in time. Size does not consider the individuals that are under direct or indirect

subclasses of a class. To measure the size entropy, the first step is to calculate the

probability of occurrence of each individual under the class. The size entropy of class ci is

calculated using [Equation 5].

Figure 10: The Hierarchical Structure of Verb Class

= ௜ܿܧܵ െ)ଶ݃݋݈
1

ܰܿ௜
) Equation 5

For example, if there are nine instances of the class Product in the ontology, then:

 46

= ௉௥௢ௗ௨௖௧ܿܧܵ െ ଶ݃݋݈
1

9
= ݏݐܾ݅ 2.197

Equation 6

 Size entropy and Taxonomy entropy of all classes such as Verb, Product, or

Material can be measured using the above procedures. But for the compound classes such

as Behavior, size and taxonomy entropy are measured through summation of the

entropies associated with the constituting classes, namely, Subject,

PrimarySubject, Object, PrimaryObject, Verb and Adjunct.

= ஻௘௛௔௩௜௢௥ܧ + ௌ௨௕௝௘௖௧ܧ ௉௥௜௠௔௥௬ ௌ௨௕௝௘௖௧ܧ + ை௕௝௘௖௧ܧ

+ ௉௥௜௠௔௥௬ ை௕௝௘௖௧ܧ + ௏௘௥௕ܧ + ஺ௗ௝௨௡௖௧ܧ

Equation 7

3.4.2 Sequential Selection Approach:

In this approach, it is assumed that a design decision is made through making a

selection from a finite set of options. For example, when selecting the material for a

product, the designer chooses a material from the available set of materials such a

aluminum, ABS plastic, or wood. In most occasions, the designer needs to traverse a

taxonomy (such as material taxonomy of function taxonomy) in order to make the final

decision. A selection is made at each level of the taxonomy and once the required depth

is gained, the decision is finalized. Decision making approach is a more direct way of

measuring the information content. In this approach, Shannon’s theory (Shannon, 2001)

is applied as well to measure the information content but the concept of measuring the

probability is different from the previous approach. In the sequential selection approach,

 47

the classed of the ontology do not follow a uniform probability distribution. Instead, the

probability of occurrence of each class in the ontology depends on the number of direct

and indirect instances of that class. Conventionally, hierarchical structures are

represented using a tree diagram and for each element of a requirement statement, the

designer has to make a series of decisions to get to the required depth. For reaching the

classes that are positioned at lower levels, more decisions need to be made. In this

approach, it is also assumed that the probability of occurrence of each parent class

located at the top of the tree network (for owl ontology the classes those are directly

under OWL:Thing), will be 1. The basis for this assumption was that selecting the top

class would not be considered as a decision; since there is only one unique node present.

For example, selection of the "verb" class by itself will not be considered as a decision

while a functional requirement is being composed. Hence, there is 100% chance that the

designer will select some type of "Verb" class in the requirement statement. It is evident

that the probability increases as the designer moves up the hierarchy and thereby its

information content decreases. For most of the classes in the developed ontology,

hierarchical structures with their relations were explicitly defined. However, some atomic

classes such as Product, Part, Qualitative Value, User, and Unit

also exist in the ontology that have no sub-class structure. Probabilities of occurrence of

these atomic classes are 1 and no further calculation is required for them. However, for

rest of the classes, first a top down approach is applied to create a standard metric to

measure the probability of occurrence of each class at each level of the tree. It can also be

argued that the probability of encountering an instance of child class depends on the

 48

chance of selecting its parent. To realize this concept a bottom up method is adopted to

trace their super classes and the sequence of decisions acquired to reach the super classes.

After that the entropy involved in each decision was measured. More precisely, the

bottom up method includes determining the direct super class in the hierarchy, adding up

their information content, and the process repeats until the top level of the hierarchy is

reached. Further, the tree structure of the Verb class is used to demonstrate the method

in details.

3.4.2.1.1 Class Entropy (Top down approach):

It involves moving through the tree from top level to the bottom and calculating

probability of occurrence of all classes at each level separately. In order to determine the

probability of occurrence, the following tasks have to be performed.

1. The first task is to count the number of direct and indirect instances (n) of each class

(c). This task can be performed programmatically by using Algorithm 1. For

example, instance count of class Verb will be the summation of instances those are

directly under Verb (0) and summation of instances of its subclasses (113).

Therefore, the total instance count for class Verb will be 113. Similarly, n for

Transitive Verb will be 95, Non Transitive Verb will be18, and for Branch will be10

etc.

 49

2. For parent classes, which are at the top level of the hierarchy, have the probability of

occurrence one. For example, Verb is at the top level of the hierarchical structure

for Verb class. Hence, the probability of class Verb will be one.

3. Determine the equivalent classes of each class at each level except the top level.

Algorithm 2 can be used to determine the equivalent classes in OWL API. For

example, at level 2 equivalent classes of class Transitive Verb will be

Nontransitive Verb. Similarly, at level 3 the sibling classes Branch,

Channel, Connect, Control Magnitude, Convert, Provision,

Signal, Support, and Other Verb are all equivalent to each other.

4. Calculate the summation of instance (N) of equivalent classes including the class of

interest at each level. Algorithm 3 can be used to calculate (N) for each class in

OWL API. For example, number of instances of all equivalent class at level 2 will be

113, since, the number of instances of Transitive Verb and NonTransitive Verb are

95 and 18, respectively. Similarly, at level 3, N for Branch, Channel,

Connect, Control Magnitude, Convert, Provision, Signal,

Support, and Other Verb will be 95.

5. Compute the probability of occurrence of each class using Equation 17. For

example, probability of occurrence of Transitive Verb is equal to (95/113 =. 841),

for Non Transitive Verb (18/113 =. 159), and for Branch (10/95 = .105) etc.

6. After determining the probability of occurrence of the class, the entropy measure is

applied [Equation 1] for calculating the information contained in each class. For

example, class entropy of Verb will be 0, for Transitive Verb (-log2 .841 =
 50

.2498 bits), for NonTransitive Verb (-log2 .159 = 2.653 bits), and for

Branch (-log2 .105 = 3.25 bits) etc. Similarly, class entropy of each class can be

calculated using [Equation 9].

Algorithm 1:

= ݐ݊ݑ݋ܿ ݈ܾ݁ݑ݋݀ 0; ՚ ݐ݊ݑ݋ܿ ܿ ݏݏ݈ܽܿ ݂݋ ݏ݁ܿ݊ܽݐݏ݊݅ ݂݋ ݎܾ݁݉ݑܰ

݊݋݅ݏݏ݁ݎ݌ݔܧݏݏ݈ܽܥܮܹܱ ׷ ܿ

ݐ݁ܵ < ݈ܽݑ݀݅ݒ݅݀݊ܫ݀݁݉ܽܰܮܹܱ > ࢋࢉ࢔ࢇ࢚࢙࢔࢏
= ;()݀݁݊݁ݐݐ݈ܽܨݐ݁݃.(݁ݏ݈݂ܽ,ܿ)ݏ݁ܿ݊ܽݐݏ݊ܫݐ݁݃.ݎ݁݊݋ݏܽ݁ݎ

ݐ݁ݏ ݄݁ݐ ݂݋ ࢏ ݐ݈݊݁݉݁݁ ݄ܿܽ݁ ݎ݋ࢌ < ݈ܽݑ݀݅ݒ݅݀݊ܫ݀݁݉ܽܰܮܹܱ > ݄݇ܿ݁ܿ ࢋࢉ࢔ࢇ࢚࢙࢔࢏

!) ࢌ࢏ ݅. } (()ݕݐ݅ݐ݊ܧ݉݋ݐݐ݋ܤݏ݅

ݐ݊ݑ݋ܿ = ݐ݊ݑ݋ܿ + 1 };

 ;ݐ݊ݑ݋ܿ ࢔࢛࢚࢘ࢋ࢘
Algorithm 2:

݊݋݅ݏݏ݁ݎ݌ݔܧݏݏ݈ܽܥܮܹܱ ׷ ܿ

ݐ݁ܵ < ݏݏ݈ܽܥܮܹܱ > ࢚࢔ࢋ࢘ࢇ࢖ = ;()ݏ݁݅ݐ݅ݐ݊ܧݐ݁݃.(ܿ)ݏ݁ݏݏ݈ܽܥݐ݈݊݁ܽݒ݅ݑݍܧݐ݁݃.ݎ݁݊݋ݏܽ݁ݎ

 ; ݐ݊݁ݎܽ݌ ࢔࢛࢚࢘ࢋ࢘
Algorithm 3:

՚ ݅ ݏݏ݈ܽܥܮܹܱ ܽ , ܾ , ܿ ,݀… … … .݊

ݔ ݈ܾ݁ݑ݋݀ = 0;

௜ݐ݊ݑ݋ܿ ݈ܾ݁ݑ݋݀ = ௜ݐ݊ݑ݋ܿ ;0 ՚ ݅ ݏݏ݈ܽܿ ݂݋ ݏ݁ܿ݊ܽݐݏ݊݅ ݂݋ ݎܾ݁݉ݑܰ
Apply Algorithm 1 to ܵ݁ݐ < ݏݏ݈ܽܥܮܹܱ > to get the instance count of each ࢚࢔ࢋ࢘ࢇ࢖

equivalent class i including the class of interest.

ݔ = ෍ܿݐ݊ݑ݋௔
௡

௜ୀ௔
+ ௕ݐ݊ݑ݋ܿ + ௖ݐ݊ݑ݋ܿ + …ڮ … … … … … … … + ;௡ݐ݊ݑ݋ܿ

 51

௖(ݏݏ݈ܽܥ)ܲ =
݊
ܰ

Equation 8

 ݊ = ܿ ݏݏ݈ܽܿ ݂݋ ݏ݁ܿ݊ܽݐݏ݊݅ ݂݋ ݎܾ݁݉ݑܰ

ܰ = ܿ ݏݏ݈ܽܿ ݂݋ ݏ݁ݏݏ݈ܽܿ ݐ݈݊݁ܽݒ݅ݑݍ݁ ݂݋ ݏ݁ܿ݊ܽݐݏ݊݅ ݂݋ ݎܾ݁݉ݑܰ

(௖ݏݏ݈ܽܥ)ܥܫ = െ݈݃݋ଶ ௖ܲ Equation 9

3.4.2.1.2 Decision Entropy (Bottom up approach):

This part of the method includes tracking back the super class and measuring the

information involved in the decisions of selecting these super classes. To implement this

concept, it is necessary to find out the direct super class of each child class and measure

the entropy of the super class. This process continues until it reaches to the top parent,

where the information content is 0. The necessary tasks for this method are –

1. Consider the tree from bottom level towards the top level and determine the super

class of each element at the bottom most level. For Example, [Figure 10] has 5 levels

including the top level Verb. In this hierarchical structure the fifth level, which is the

bottom most level contain classes Divide, Extract, Remove,

Transport, Transmit, Translate, Rotate, Allow DOF, Join,

Link, Increase, Decrease, Increment, Decrement, Shape,

Condition, prevent, inhibit, contain, collect, detect,

measure, track, display, stabilize, secure, and position.

This step involves finding the direct super class of all the bottom most classes such

 52

as super class of Divide, Extract and Remove will be Separate, super

class of Transmit and Transport will be Guide etc.

2. Repeat the process until the super class is the top level class, which is directly under

OWL:Thing. For example, super class of Separate is Branch, super class of

Branch is Transitive Verb, and again super class of Transitive Verb

is verb. Since, the super class of Verb is OWL:Thing, this step will terminate when

it will encounter OWL:Thing, as the super class of Verb.

3. The next step is to measure the entropy lies under the decision of selecting each

super class. For example, if designer pick an instance of class Remove as the verb

for creating any functional requirement, the selection involves a sequence of

decisions. [Equation 14] shows the chain of decisions had been made prior choosing

the instance under class Remove. Further, it can be argued that the entropy of each

decision will be equal to the information contained in each class selected by that

decision [Equation 10]. In the [Equation 15] entropy of decision DRemove is the

quantity of information contained in the class Transitive Verb, Branch

and Separate.

(ܦ) ݊݋݅ݏ݅ܿ݁ܦ = ෍ܵଵ
௡

௜ୀଵ
+ ܵଶ + ܵଷ

+ …ڮ … … … … … … … … … … . . +ܵ௡

Equation 10

(ܦ)ܥܫ = ෍ܥܫ(ܵଵ)

௡

௜ୀଵ
+ (ଶܵ)ܥܫ + (ଷܵ)ܥܫ + ڮ . . … … …

+ (௡ܵ)ܥܫ

Equation 11

 53

4. Finally, the entropy for decision factors can be obtained by using [Equation 11].

3.4.2.1.3 Total Entropy:

Total entropy of each element of the ontology will be the sum of the information

contained in the class of the element and the information content of the decision

associated in the selection of the element.

(ݐ݈݊݁݉݁ܧ)ܥܫ = (௖ݏݏ݈ܽܥ)ܥܫ + Equation 12 (ܦ)ܥܫ

For example, total information content of an instance of class is shown in [Equation 13,

Equation 14, and Equation 15].

՚ ݎ݈ܽ݁ܿ , ݈ܽݑ݀݅ݒ݅݀݊ܫ ݁ݒ݋ܴ݉݁:ݏ݁݌ݕܶ

(ݎ݈ܽ݁ܥ)ܥܫ = (݁ݒ݋ܴ݉݁)ܥܫ + (ோ௘௠௢௩௘ܦ)ܥܫ
Equation 13

(ோ௘௠௢௩௘ܦ)݊݋݅ݏ݅ܿ݁ܦ = ܾݎܸ݁ ݁ݒ݅ݐ݅ݏ݊ܽݎܶ ՜ ݄ܿ݊ܽݎܤ
՜ ݁ݐܽݎܽ݌݁ܵ ՜ ݁ݒ݋ܴ݉݁

Equation 14

(ோ௘௠௢௩௘ܦ)ܥܫ = ෍(ܾݎܸ݁ ݁ݒ݅ݐ݅ݏ݊ܽݎܶ)ܥܫ

ଷ

௜ୀଵ
+ (݄ܿ݊ܽݎܤ)ܥܫ

+ (݁ݐܽݎܽ݌݁ܵ)ܥܫ

Equation 15

(ܾݎܸ݁ ݁ݒ݅ݐ݅ݏ݊ܽݎܶ)ܥܫ = .25 , (݄ܿ݊ܽݎܤ)ܥܫ = 3.24 , (݁ݐܽݎܽ݌݁ܵ)ܥܫ = .13 ,

(݁ݒ݋ܴ݉݁)ܥܫ = 1.32

(ோ௘௠௢௩௘ܦ)ܥܫ = .25 + 3.24 + .13 = ݏݐ݅ܤ 3.62

(ݎ݈ܽ݁ܥ)ܥܫ = = 3.62 + 1.32 = ݏݐ݅ܤ 4.94

 54

3.5 Entropy of a Requirement Statement:

The information content of the functional requirement and nonfunctional requirement

statement can be calculated following the below steps.

x Step 1: Identify if the requirement statement is functional or nonfunctional.

x Step 2: Measure size (SEci) and taxonomy entropy (TEci) of the atomic classes

embedded in the requirement.

x Step 3: Add up the calculated entropies to calculate the aggregate entropy of the

class.

 [Equation 17 and Equation 18] are the equations for measuring entropy for functional

and nonfunctional requirement statement, respectively. Table 7 shows an example of

taxonomy and size entropy measurement of Functional and Nonfunctional requirement

statement. Figure 11 shows the decision flowchart for measuring entropy of a

requirement statement.

START

Receive Requirement

Statement

isFunctional

Identify Product Class

(Ci)

Identify Behavior (Ci)

Measure Class Entropy

(ECi)

Y
e

s

Identify Attribute Class

(Ci)No

Calculate Requirement

Entropy

END

Figure 11: Flowchart for measuring IC of a Requirement Statement

 55

= ஻௘௛௔௩௜௢௥ܧ + ௌ௨௕௝௘௖௧ܧ ௉௥௜௠௔௥௬ ௌ௨௕௝௘௖௧ܧ + ை௕௝௘௖௧ܧ

+ ௉௥௜௠௔௥௬ ை௕௝௘௖௧ܧ + ௏௘௥௕ܧ + ஺ௗ௝௨௡௖௧ܧ
Equation 16

(ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ)_ܧ = ݐܿݑ݀݋ݎ݌_ܧ +

(ݎ݋݅ݒ݄ܽ݁ܤ)_ܧ + (݈ܽ݊݋݅ݐܿ݊ݑܨ ݏ݅)1 + (ݐ݊݅ܽݎݐݏ݊݋ܥݏ݅)1

Equation 17

= ே௢௡௙௨௡௖௧௜௢௡௔௟ ோ௘௤௨௜௥௘௠௘௡௧ܧ + ௌ௨௕௝௘௖௧ܧ ௉௥௜௠௔௥௬ ௌ௨௕௝௘௖௧ܧ +

+ ஺௧௧௥௜௕௨௧௘ܧ ஺ௗ௝௨௡௖௧ܧ + (݈ܽ݊݋݅ݐܿ݊ݑܨ ݏ݅)1 + (ݐ݊݅ܽݎݐݏ݊݋ܥݏ݅)1
Equation 18

Table 7: Example of taxonomy and size entropy measurement of

Functional and Nonfunctional statement
Functional Requirement
Outside surface of the electric kettle remains cool enough to touch even when the water
inside is boiling

Object
Property

Data
Property Property Value Class TEci SEci Eci

hasPrimaryS
ubject

 Outside Surface
Part 0 5.86 5.86

hasSubject Electric Kettle Product 0 4.58 4.58

hasProduct Electric Kettle Product 0 4.58 4.58

hasVerb
 Remains Non Transitive

Verb
5.32 4.17 9.49

hasAdjunct
 Cool enough to

touch
Adverbial
Adjunct

3.17 6.25 9.42

hasAdjunct
 Even when the

water is boiling
Conditional
Adjunct

3.17 5.21 8.38

 isFunctional true N/A 1

 isConstraint true N/A 1

Total 11.66 30.65 44.31

 56

Table 7- Continued: Example of taxonomy and size entropy
measurement of Functional and Nonfunctional statement

Object
Property

Data
Property Property Value Class TEci SEci Eci

NonFunctional Requirement
Coffee maker has easy to view water window for easy filling of water
hasPrimaryS
ubject

 Water Window Part 0 5.86 5.86

hasSubject Coffee Maker Product 0 4.58 4.58

hasProduct Coffee Maker Product 0 4.58 4.58

describesAtt
ribute

 isEasytoView
Boolean
Attribute

1.58 6.07 7.65

hasBoolean
Value

true N/A 1

hasAdjunct
For easy filling
of water

Reason
Adjunct

3.17 4.09 7.26

 isFunctional false 1

 isConstraint false 1

Total 4.75 25.18 32.93

3.5.1 Comparison of Uniform Random Distribution Approach

and Decision Making Approach:

To compare the results of the proposed methods, it is first necessary to normalize

the calculated values based on each method. Normalization is done through dividing the

information content calculated for a requirement statement by the maximum possible

information content based on the current state of the ontology. [Figure 12] shows how the

proposed methods correlate. The calculated values are based on the requirement set for

the bike suspension. Functional and nonfunctional requirements for bicycle suspension

were imported into the ontology and information content of each requirement were

 57

measured using both methods separately and then the results were normalized to an

equivalent scale of 0-1.

Figure 12: Comparison of Uniform Random Distribution Approach and Sequential
Selection Approach for functional and nonfunctional requirements of suspension

(ݐ݈݊݁݉݁ܧ)ܥܫ ݀݁ݖ݈݅ܽ݉ݎ݋ܰ =
(ݐ݈݊݁݉݁ܧ)ܥܫ
ܥܫ ݔܽܯ Equation 19

From Figure 12] it can be contented that both techniques are valid. In the first

method, class probability is based on the structure of the class taxonomy whereas in the

second method, class probability is based on the number of instances of the class. In

Figure 12] the information content lies within 0.4 to 1 bits for functional requirements

and 0.5 to 1 bits for nonfunctional requirements in uniform random distribution approach,

whereas, it varies between 0.5 to 1 bits for functional requirements and .34 to 1 bits for

nonfunctional requirements in sequential selection approach. Information content

measured using these two different approaches is almost similar in values. Therefor it can

be asserted that the two approaches provide almost similar results for information content

 58

measure with a little deviation. In summary both methods can be used to measure the

information content of a requirement statement.

3.6 Implementation:

A Java-based tool has been developed based on the algorithm detailed in the

previous section that can semi-automatically measure the information content of the

requirements represented ontologically. The developed tool uses OWL API for

interacting with the ontology. It is semi-automated in a sense that the user needs to

translate the engineering requirements written in natural language into an ontological

representation following the protocol described in REQUIREMENT ONTOLOGY.

Protégé is used for creation of requirement instances in the ontology. The tool receives

OWL/XML file created in Protégé as the input and measures the entropy of the selected

entities. The developed tool enables the user to calculate the entropy of a particular class

[Figure 13], a particular requirement [Figure 15], and the overall entropy of a selected

product [Figure 14].

 59

Figure 13: The interface for class entropy measurement

Figure 14: The interface for product entropy measurement

 60

Figure 15: The interface for requirement entropy measurement

3.7 Experiments:

To validate the proposed ontology and the information metrics, a series of

experiments were conducted.

3.7.1 Experiment 1: Information Content of Requirements for

Different Product Families

In this experiment, two families of consumer products, namely, small kitchen appliances

and small gardening equipment, were studied with respect to the information content of

their functional and non-functional requirements. The objective of this experimentation

was to investigate if information content is product-dependent quantity. In other words,

the question is if the type and nature of the functions of product have any impact on the

amount of information contained in their engineering requirements. To this end, 5-7

 61

products were arbitrarily picked under each category. The selected products were fairly

similar in terms of the level of complexity, number of parts, and type of user interaction.

For each product, about 17-20 requirements were generated based on the structure

suggested by the ontology. All requirement statements were imported to the ontology and

their information content were measured via the developed tool. [Table 8] shows the

summary of the results.

Table 8: Average Information content for functional and nonfunctional
requirements of small kitchen appliances and small garden equipment of

equal complexity level

Product
Name

No.
of
Re
q.

No.
of
Func
. req.

Functi
onal
IC

No.
of
Non
Func
.
Req.

Non
Functi
onal IC

Total
IC

IC per
Requir
ement

Avg.
Functi
o-nal
IC

Avera
ge
Non
Functi
onal
IC

Kitchen Appliances

Coffee maker 20 8 303.71 12 315.9 619.61 30.98 37.96 26.32
Electric
Kettle 20 8 330.27 12 296.92 627.19 31.36 41.28 24.74
Blender 20 13 566.82 7 185.22 752.04 37.60 43.60 26.46
Toaster Oven 20 12 453.91 8 186.31 640.22 32.01 37.82 23.28
Rice Cooker 20 14 537.61 6 130.64 668.25 33.41 38.40 21.77
Ice Cream
Maker

19 8 346.27 11 285.03 631.3 33.22 43.28 25.91

Electric Grill 18 13 561.98 5 121.59 683.57 37.97 43.22 24.31

Mean 660.31 33.79 40.79 24.68

 62

Table 8 - Continued: Average Information content for functional and
nonfunctional requirements of small kitchen appliances and small garden

equipment of equal complexity level

Product
Name

No.
of
Re
q.

No.
of
Func
. req.

Functi
onal
IC

No.
of
Non
Func
.
Req.

Non
Functi
onal IC

Total
IC

IC per
Requir
ement

Avg.
Functi
o-nal
IC

Avera
ge
Non
Functi
onal
IC

Gardening Equipment
Lawn Mower 19 12 470.95 7 155.25 626.2 32.95 39.246 22.17
Electric Leaf
Blower 17 12 409.73 5 111.69 521.42 30.67 34.144 22.33
Electric
Snow Blower 19 15 634.65 4 79.28 713.93 37.57 42.310 19.82
Electric
Pressure
Washer 18 13 466.49 5 115.37 581.86 32.32 35.884 23.07
Electric
Cultivator 19 16 648.77 3 67.11 715.88 37.67 40.548 22.37

Mean 631.85 34.24 38.42 21.95

Table 9: Two sample T- test for kitchen appliances vs. garden equipment
for functional and nonfunctional requirement

Product Family N Mean St.
Dev.

SE
Mean

Pooled
St. Dev.

T
Value

P
Value

Functional
Kitchen
Appliances

7 40.80 2.67 1.0
2.9641 1.37 .202

Garden
Equipment

5 38.43 3.36 1.5

'LIIHUHQFH� �ȝ��.LWFKHQ�$SSOLDQFHV��- ȝ��*DUGHQ�(TXLSPHQW�
Estimate for difference: 2.37
95% CI for difference: (-1.50, 6.24)
T-7HVW�RI�GLIIHUHQFH� ����YV�����7-Value = 1.37 P-Value = 0.202 , DF = 10

 63

Table 9 - Continued: Two sample T- test for kitchen appliances vs.
garden equipment for functional and nonfunctional requirement

Nonfunctional
Kitchen
Appliances

7 24.69 1.73 .65
1.5521 3.01 .013

Garden
Equipment

5 21.96 1.24 .56

'LIIHUHQFH� �ȝ��.LWFKHQ�$SSOLDQFHV��- ȝ��*DUGHQ�(TXLSPHQW�
Estimate for difference: 2.732
95% CI for difference: (0.708, 4.757)
T-7HVW�RI�GLIIHUHQFH� ����YV�����7-Value = 3.01 P-Value = 0.013, DF = 10

Figure 16: Plot of IC for functional and nonfunctional requirements for the two
families of product

In order to verify if there exists any statistically significant difference between the

information content of the two products families, a t-test was conducted for each type of

requirement (i.e., functional and non-functional). It was assumed that both samples were

normally distributed and standard deviations for both populations were equal. It was

30

50

1 2 3 4 5IC
 (

b
it

s
)

Products

IC for Functional

Requirements

Gardening Kitchen

15

35

1 2 3 4 5IC
(
b

it
s
)

Products

IC for Non-functional

Requirements

Gardening Kitchen

 64

hypothesized that the means of information content for both families of the products are

the same. The results of the t-test are provided in Table 2 and Table 3. [Figure 16] show

the plots of IC for functional and non-functional requirements. The average IC for

functional requirement for all 10 data points vary between 34 and 44 bits whereas, for

non-functional requirements this range is from 20 to 27 bits. Higher IC for functional

requirements can be attributed to the more complicated structure of the functional

requirement class in the ontology and deeper class structure.

3.7.1.1 Discussion:
 Results of the t-test for functional requirements are summarized in [Table 9].

The calculated p-value was fairly large (0.202) therefore the null hypothesis is not

rejected. Henceforth, with 95% confidence, we have strong evidence to conclude that

mean of information content for functional requirements for both families of the products

are the equals. For nonfunctional requirements, the calculated p-value was 0.013, which

means the test statistics lies inside the rejection zone. Therefore, with 95% confidence,

we have some evidence against the null hypothesis. Based on these two tests, it is not

possible to arrive at a definitive conclusion about equality or inequality of the average

information content of requirements for different families of products. However, given

the relatively low-pooled standard deviation for the total IC in the studied sample, it can

be concluded that products with similar complexities in terms of size, number of parts,

and number of core functions, have similar ranges of IC for their requirements. Based on

 65

this experiment, the average of total IC measured for sample products was 648 bits with a

standard deviation of 63 bits. Therefore, a design team working on development of a

similar product in terms of size and complexity, should expect to generate somewhere

between 600 to 700 bits of information by the end of the requirement planning phase.

3.7.2 Experiment 2: Comparison of Performance of Different

Senior Design Teams:

In this experiment, design requirements of three different products, from three

different design teams were collected and compared with regard to the total information

content of a product at initial stage of design. This experiment was intended to examine if

there is any resemblance in total information content for diverse products. In order to do

that, 3 different design teams are selected randomly and each team members were equally

competitive and focused on design of one product. In their first week of design,

requirements were gathered and refined in order to fit into the base ontology. All

requirements were imported to the ontology and total information content for all products

were measured using the developed tool. [Table 10] shows the summary of the result.

3.7.2.1 Discussion:
In this experiment three teams had three entirely different categories of products

of different complexity. [Figure 17] indicates that the quantity of total information

content of different design teams was significantly different. However, information

content for each design team exhibited certain similar framework. For each team the

design requirements were predominantly nonfunctional. This nature could be explained

 66

by the fact that at the initial stage of design, teams only had little information that was

regarding the physical attributes of the products rather than utilities. For example,

Team#1 had 4 functional requirements and 9 nonfunctional requirements; Team#2 had 3

functional requirements and 5 nonfunctional requirements, whereas Team#3 had equal

number (6) of functional and non-functional requirements. In Experiment-1, it was

established that the functional requirements were more decisive and the average

information content for each functional requirement was remarkably higher than the

nonfunctional requirement irrespective of the category of the product. This clarifies the

reason for highest information content value for Team#3 and lowest value for Team#2.

Table 10: Total information content for engineering design requirements of
three different products, generated by three different design teams during their

first week of design
Te
am

Product Name
No. of
Req.

No. of
Func.
req.

Functi
onal
IC

No. of Non
Func. Req.

Non
Function
al IC

Total
IC

1 Bench Warmer 13 4 119.81 9 195.33 315.14
2 Robotic Drilling System 8 3 93.21 5 95.87 189.08
3 Ingot Growth Oven 12 6 200.49 6 161.71 362.2

 67

Figure 17: Comparison of information content of functional and nonfunctional

requirements for three different products designed by three different design teams

Moreover it could be concluded that the total information content for functional

requirements and nonfunctional requirements for every team is directly proportional to

the number of functional and nonfunctional requirements, respectively.

Consequently, it could be anticipated that the requirement gathering practice would be

more rigorous in subsequent weeks and eventually the number of functional requirements

would surpass the number of nonfunctional requirements. If it was possible to had equal

number of functional and nonfunctional requirements for each team, then they might

have similar value for the total information content. Therefore, it could not be affirmed

that the total information content for a product fluctuates with expertise of design team;

instead, it depends on the meticulousness of design progression.

0

50

100

150

200

250

300

350

400

Bench WarmerRobotic Drilling SystemIngot Growth Oven

Total IC for

Product

Total

Functional

IC

Total IC

NonFuncti

onal

 68

3.7.3 Experiment 3: Evolution of Engineering Requirements

To validate the proposed ontology and the information metrics, an experiment

was conducted for studying the evolution of requirements in a senior design project

related to design of a flux measurement device. In this project, students had to update the

requirements list for six consecutive weeks. The requirement list obtained by the end of

the sixth week was considered to be the final list and was used as the reference for the

rest of the project. The requirements list started with 13 requirement statements in week

one and ended with 19 requirements statements by the end of week six. [Figure 18]

shows the plot of IC from week one to week six. As can be seen in this figure, there is a

steady growth from week one to week six in the information content of non-functional

requirements from 219 bits in week one to 277 bits in week six. However, this is not the

case for functional requirements as the IC declines from week three to five and then

jumps back up in week six but still below the IC measured for week two.

Figure 18: Plot for IC for flux measuring device for six consecutive weeks

0

100

200

300

400

500

600

1 2 3 4 5 6

I
C

 (
b

it
s

)

week

Total

Functional

Non-

functional

 69

3.7.3.1 Discussion:
Variation in the IC of the functional requirements can be attributed to the

exploratory nature of the design project since the core functions of the product were not

known a priori. In such projects, designers typically start with a set of functions as a

“wish list” and then prune the list based on the exiting constraints to come up with more

realistic and feasible design solutions. Therefore, it is very likely that some of the

functions included in the initial set of requirements are eliminated in the final list or

replaced by different functions. For example, in week 3 the team added, “The device

must be able to measure inflow and outflow." However the team eliminated this

requirement from their final set of requirements.

The steady growth observed in the information content of non-functional

requirement can be an indication of gradual enrichment of the requirements as the

designers learn more about the limitation and possibilities. This results in incremental

information inflation each time the requirements list is updated.

 For example, initially in week 2 the team included a non-functional requirement

stating, " The design must cost less than $500." In week 3 they revised the same

requirement, as “Material and testing must cost less than $500." Finally in week 7, they

refined the requirement again and represented the requirement, as “Prototype should cost

less than $500 including materials and testing." The results of this experiment reaffirm

that the proposed method for information content measurement reflects the true

fluctuations of information during the requirement-planning phase.

70

3.8 Conclusion:

In this chapter, a generic approach is proposed for measuring the information

content of text-based design requirements by first translating the text to a form-neutral

owl ontology model using protégé and then applying Shannon’s information metrics to

the model. Although the proposed approach is focused on engineering requirements, the

underlying principles can be applied to any textual document created in design projects. It

should be noted that the protocol presented in this work is tailored for requirement

statements that already follow a semi-structured syntax and grammar. For more

unstructured texts and non-textual information, such as those found in technical standards

or service guidelines, a more complete set of protocols should be developed.

The metrics proposed in this work provide relative measures of the information content

and should be treated as such. One explanation for the relative nature of the proposed

measure for information content is that it varies with the size of the vocabulary captured.

Therefore, the information content of the same requirement statement may change with

time, depending on how many classes and instances exist in the ontology. For this reason,

comparisons between two measure values of information content is meaningful only if

they are calculated based on the same ontology.

There are multiple possibilities for extension of this work in the future. Further

exterminations and analysis are required to study how the information content of

requirements for a given product correlates with the complexity of the products.

71

CHAPTER 4

4 REQUIREMENT SPECIFICITY, COMPLETENESS, AND CLASSIFICATION

4.1 Introduction:

 This chapter describes the methods and metrics that are developed for automated

classification and assessment of requirement statements in terms of completeness and

specificity. An incomplete requirement statement is not useful for a designer and might

be misleading. Also, requirements should be specific or informative enough to efficiently

narrow down the design space. If a requirement statement is not informative enough, it

won’t serve as a useful constraint or criteria for the designer. Also, if the designer is

provided with a set of highly specific requirements, then the designer won’t have enough

flexibility and freedom in exploring the solution space. Therefore, before handing off the

requirements to the downstream design processes, they need to be validated through

completeness and specificity analysis. The particular objective of the proposed method is

to use ontological reasoning, enabled by semantic rules and axioms, for requirement

assessment.

4.2 Related Work:

 Requirement based research is mainly focused in three major areas: requirement

statement, requirement document, and reasoning or queries with requirements (Joshi &

Summers, 2014a). Research has been conducted to examine requirements as a statement

with the intention of improving the quality of the requirement statement (Hooks, 1994;

72

Turk, 2006; Wiegers, 1999). Hooks (1994) (Hooks, 1994) demonstrated a set of required

characteristics of a good requirement. In 1997, Wilson et al. (W. M. Wilson, Rosenberg,

& Hyatt, 1997)compiled a list of nine indicators for quality attributes of requirement.

Quality attributes are the characteristics that a good requirement should exhibit and these

are considered as a baseline for analyzing natural language requirements. The quality

indicators for individual requirement statements were based on frequency of using words,

phrases and the structure. A tool was also developed by Software Assurance Technology

center to measure the quality of the requirements based on the identified quality

indicators.

 In 1999, Wiegers (Wiegers, 1999) provides a comprehensive analysis of

requirement writing procedure. He investigated some badly written requirements and

showed how they can affect the overall health of the project. He also investigated several

characteristics of high quality requirements and concluded that a good requirement

should exhibit six important properties such as correctness, feasibility, verifiability,

unambiguity, priority, and necessity. On the other hand, he identified completeness,

consistency, modifiability and tractability as the characteristics of a quality requirement

document as a whole.

 In 2001, Fabrini et al. (Fabbrini, Fusani, Gnesi, & Lami, 2001) proposed a

quality model for natural language requirement analysis and developed an automated tool

“QuARS” to measure specificity of requirements. “QuARS” was made to detect the

possible source of errors in a textual requirement and it was based on five logical

73

modules: “lexical analyzer, syntax analyzer, quality evaluator, special purpose grammar,

and dictionaries”.

In another research on natural language requirements Lami (Lami, 2005)

proposed a method and an automated tool to analyze the quality of natural language

requirements in terms of consistency, completeness and ambiguity.

In 2009, Lamar (Lamar, 2009)described a method to analyze the natural language

requirement linguistically and determined the “completeness, specificity, qualitativeness

and quantitativeness”(Lamar, 2009)of engineering requirements. Lamar checked the

“completeness” of a requirement statement based on the syntax proposed for

requirements and for each complete requirement he measured specificity qualitatively. If

a requirement is missing any component, it will become incomplete requirement and

thereby increases vagueness. Hence, it is necessary to measure the completeness while

analyzing requirements. In this study “specificity” was defined as “the amount of detail

about a behavior or characteristic of a system or system component”. According to this

study specificity is also directly proportional to the adjuncts. Further presence of

numerical values increases specificity of functional requirements, whereas, presence of

“Adjectival Noun” improved specificity of nonfunctional requirement.

In 2014, Joshi (Joshi & Summers, 2014b) introduced “completeness” and

“specificity” as a baseline to measure the project health. To measure the completeness

Joshi considered components such as “subject, modal and verb phrase” and specificity as

count of “numbers” and “adjuncts”.

74

Though an extensive research was conducted on guidelines of writing ‘good’

requirements and analyzing natural language requirements in software engineering;

analyzing requirements in mechanical engineering domain is little explored. Although

several researches were conducted in a variety of perspective on analyzing natural

language requirements, there is a lack of quantitative method. Hence, it is necessary to

combine qualitative approach and quantitative approach and create a method that can

analyze the natural language requirement in a qualitative manner and as well as can

provide quantitative measure for each of the quality indicators.

4.3 Completeness and Specificity Measurement:

The proposed completeness and specificity measurement technique uses

ontological representation of engineering requirements as the input. Requirement

Ontology described in the REQUIREMENT ONTOLOGY is used to break down the

requirement statement into its elements. For ontology conceptualization, a linguistic and

grammatical approach was used. As discussed in the previous chapters, functional and

nonfunctional requirements, both have some necessary components with limited

cardinality and some optional components with or without any cardinality restrictions.

However, the optional components are preferred in the ontology but not required to

convert a requirement statement into consistent requirement ontology. They mostly

enhance the quality of the requirement. Hence, it can be stated that the compulsory

components contribute towards the completeness of a requirement statement, whereas the

noncompulsory components improve the specificity or informativeness of a requirement.
75

4.3.1 Completeness:

Completeness analysis can be conducted through checking the presences of the

necessary elements in the requirement statement. If a requirement contains all the

required components, it is considered to be a complete requirement. [Table 11] and

[Table 12] show all the essential properties of functional and nonfunctional requirements

respectively. In Table 11 and Table 12, the domain for object properties

hasPrimarySubject and hasPrimaryObject are Subject and Object respectively. These two

classes are hypothetical and used in order to simplify Table 11. Both Subject and Object

classes are the union of 7 other classes namely Information, Energy, Material, Object,

Part, Product, and User.

Table 11: Cardinality restriction of essential properties for Functional
Requirement

Property Name Proper
ty Type Range Domain Cardinalit

y Restriction

hasProduct Object
Requiremen

t
Product 1 hasProduct exactly 1

Product

describesBehavior Object
Functional
Requiremen

t
Behavior 1

describesbehavior
exactly 1 Behavior

hasPrimarySubject Object Behavior Subject* 1
hasPrimarySubjec

t exactly 1 Subject

hasVerb Object Behavior Verb 1 hasVerb exactly 1
Verb

hasPrimaryObject Object Behavior Object* 1
hasPrimaryObject

exactly 1 Product

76

Table 12: Cardinality restriction of essential properties for Nonfunctional
Requirement

Property Name Property
Type Range Domain Cardinali

ty Restriction

hasProduct Object Requirement Product 1 hasProduct exactly 1
Product

hasPrimarySubj
ect Object Requirement

Subject
* 1

hasPrimarySubje

ct exactly 1
Subject

describesAttri
bute Object

Nonfunction
al

Requirement

Attribu
te 1

describesAttrib

ute minimum 1
Attribute

One major assumptions of this research is that the requirements can be either

complete or incomplete. Thus, the completeness score of requirements is either 0 (for an

incomplete requirement) or 1 (for a complete requirement). To assign a score to each

instance of the Requirement class, a Boolean data property termed hasCompletenessScore

was introduced. The domain of the property hasCompletenessScore is Requirement class

and its range is 1 or 0. A functional requirement will have a completeness score of 1, if it

describes a behavior, which has exactly one product, has exactly one primary subject, has

exactly one verb, has exactly one primary object, and it may have some (existential

restriction) additional properties as well. A nonfunctional requirement will have a

completeness score of 1 if it has exactly one product, has exactly one primary subject,

and describes minimum one attribute. [Table 13] shows examples of complete functional

and nonfunctional requirement.

77

Table 13: Example of Complete Functional and Nonfunctional
Requirement

Functional Requirement Example 1 - Suspension reduces vibration to the hands

hasProduct Exactly 1 Suspension
describesBehavior Exactly 1 Reduces vibration to the hands
hasPrimarySubject Exactly 1 Suspension
hasVerb Exactly 1 Reduces
hasPrimaryObject Exactly 1 hands
Nonfunctional Requirement Example 1 - The suspension weighs between 5-10 lbs.

hasProduct Exactly 1 Suspension
hasPrimarySubject Exactly 1 Suspension
describesAttribute Minimum 1 Weight
hasUpperValue Optional 10
hasLowerValue Optional 5
hasUnit Optional Lbs.

Further, if a requirement has a completeness score of 1, then it will be considered

as complete and the ontology reasoner will infer that particular instance of requirement as

an instance of the complete class. Incomplete is the complement class of complete. In

other words, Complete and Incomplete classes are mutually disjoint. Therefore, if a

requirement does not belong to the Complete class, the reasoner will infer the

requirement as an incomplete requirement. In this study, Pellet and HermiT reasoners are

used. To infer if a requirement is a member of Complete or Incomplete class, SWRL

(Semantic Web Rule Language) rules are used in the proposed ontology. [Equation 20,

Equation 21, Equation 22] show the SWRL rules used in the ontology to determine if a

requirement is complete. Since negation is not allowed in SWRL rules, a combination of

78

SWRL rules and java codes with OWL API was implemented to infer the incompleteness

of a requirement [Equation 23and Equation 24].

(݂?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ ר , ݂?)ݐܿݑ݀݋ݎܲݏ݄ܽ ? (ݔ ר
, ݂?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ ? ܾ) ר ?)ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ ܾ , (݌? ר
?)ܾݎܸ݁ݏ݄ܽ ܾ , ? (ݒ ר ?)ݐ݆ܾܱܿ݁ݕݎܽ݉݅ݎܲݏ݄ܽ ܾ , ? (݋ ՜
, ݂?)݁ݎ݋ܿܵݏݏ݁݊݁ݐ݈݁݌݉݋ܥݏ݄ܽ 1) Equation 20

(݊?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ ר , ݊?)ݐܿݑ݀݋ݎܲݏ݄ܽ ? (ݔ ר
, ݊?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ?ܽ) ר , ݊?)ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ (݌? ՜
, ݊?)݁ݎ݋ܿܵݏݏ݁݊݁ݐ݈݁݌݉݋ܥݏ݄ܽ 1) Equation 21

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݁ (ݔ ר ?)݁ݎ݋ܿܵݏݏ݁݊݁ݐ݈݁݌݉݋ܥݏ݄ܽ , ݔ 1)

՜ ?)݁ݐ݈݁݌݉݋ܥ Equation 22 (ݔ

ܺ ՚ ; ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ܻ ՚ ; [ܺ]݁ݎ݋ܿܵݏݏ݁݊݁ݐ݈݁݌݉݋ܥݏ݄ܽ

.ܻ)݈݄݁݅ݓ ܻ ݋݀ }(ݕݐ݌݉ܧݏ݅ = 0 } Equation 23

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݁ (ݔ ר ?) ݁ݎ݋ܿܵݏݏ݁݊݁ݐ݈݁݌݉݋ܥݏ݄ܽ , ݔ 0)

՜ ?)݁ݐ݈݁݌݉݋ܿ݊ܫ Equation 24 (ݔ

4.3.2 Specificity:

 Specificity score of an incomplete requirement is meaningless and unnecessary.

If a requirement is incomplete, it needs to be revised by the designer and no further

quality evaluation is required. Therefore, the first step is to check if a requirement is

complete or incomplete.

79

4.3.2.1 Specificity Criteria of Functional Requirement:
 For complete functional requirements, five criteria were considered and

weighted to measure the specificity. A weight is assigned to each criterion because for a

functional requirement, existence of secondary subject can be more important than the

number of adjuncts. By including a secondary subject may include a specific function of

a part of the product, whereas, addition of adjuncts can provide more details about the

function. In comparison, changing the secondary subject can significantly change the

design solution, but changing or deleting an adjunct will marginally change the design.

Criteria 1. Existence of Secondary Subject
Criteria 2. Depth of Verb
Criteria 3. Existence of Secondary Object
Criteria 4. Number of Adjunct
Criteria 5. Existence of a Measure Adjunct

Criteria 1(Existence of Secondary Subject): Existence of a secondary subject can add

more details into a requirement and make it more specific or informative. A requirement

with a primary subject and a secondary subject can be more specific than a requirement

comprising a primary subject only. For example, the requirement statement “Hand Truck

has a base pad that moves many different sized object”, has a primary subject “base pad”

and a secondary subject “Hand Truck”; whereas the requirement statement “Hand Truck

holds large/odd shape loads securely”, has only primary subject “Hand Truck”. The first

requirement describes a function of a part of the product and the second requirement

describes a function of the product itself. Hence, it can be reasoned that the presence of

secondary subject adds more specificity to the requirement and makes it more
80

informative. As discussed before, a more specific requirement is not necessarily

preferred over a less specific requirement. In the Hand Truck example, the more specific

requirement forces the designer to incorporate a “base pad” into the design.

Criteria 2(Depth of Verb): The depth criterion is used as a measure of specificity since

it can be argued that deeper classes in taxonomy are more specific than top-level classes.

A class with a more elaborate and deeper sub-class structure poses more uncertainty. The

proposed ontology uses hierarchical structure for some of classes such as Verb, Energy,

Adjunct, and Attribute etc. Since, the functional requirement illustrates one or more

function of a product and it is impossible to explain any function without using an

appropriate verb, the Verb class can be considered as the most significant constituent for

a functional requirement.

To measure the specificity, only the structure of the verb class is considered and

stipulated depth of the verb is used for measurement. In the requirement ontology, a

comprehensive classification of verb is adopted from functional basis (Sen et al.,

2010b)Therefore, if the verb of a functional requirement can be classified under any of

those subcategories, the requirement will definitely be more specific and adding depth

will further increase the specificity.

Criteria 3(Existence of Secondary Object): For this criterion, it is assumed that the

presence of a secondary object increases the specificity and informativeness of a

requirement. For example, the requirement statement “The suspension preserves the

steering characteristics of the bike.” has a primary object “Steering Characteristic” and a

81

secondary object “Bike”. If the secondary object is eliminated from the statement it will

become (“The suspension preserves the steering characteristics”) and it conveys less

specifics than the previous requirement. Hereby, secondary objects can be considered as

another important contributor to the specificity of a functional requirement statement.

Criteria 4(Number of Adjunct): The specificity of functional requirements can be

further improved by using adjunct. An adjunct usually modifies the verb and indicates the

time, manner, place, frequency, reason, degree, or condition pertaining to the

requirement. For example, in the requirement statement “the hand truck holds boxes

securely on steep slopes”, “securely” is an AdverbialAdjunct while “on steep slopes”

is a LocativeAdjunct. “Hand truck” and “box” are subject and object respectively. As

the requirements evolve, designers add more details to the requirement through

introducing various types of adjuncts. Therefore, if the number of adjuncts increases, the

specificity will also increase. It is assumed that a requirement typically has 2 adjuncts,

which improves the specificity significantly but beyond that, specificity turns out to be

stagnant.

Criteria 5(Existence of Measure Adjunct): This criterion is included based on the

assumption that if a functional requirement includes an Adjunct of type Measure

Adjunct, then it will be more specific rather than having any other type of Adjunct. It

can be argued that specific numeric values and units are more informative. In the

requirement statement “The suspension has a maximum vertical deflection at the seat

82

mount of 8 mm at 250 lb. static load”, by including the MeasureAdjunct “at 250 lb.

static load”, the requirement is pointing to an important design variable with important

implications for the final design. For example if static load quantity was replaced by, say,

500 lb., the design solution could be significantly altered. For example, removing “during

hard cornering” (TemporalAdjunct) from the requirement statement “The suspension

remains rigid during hard cornering” will not affect the design severely.

4.3.2.2 Specificity Criteria of Nonfunctional Requirement:
 For complete nonfunctional requirements, four criteria are considered to

measure the specificity.

Criteria 1. Existence of Secondary Subject
Criteria 2. Number of Attributes
Criteria 3. Number of Adjuncts
Criteria 4. Type of Attributes

Criteria 1 and Criteria 3:

Criteria1 and criteria3 are similar to the Criteria 1and Criteria 4 for functional

requirements, respectively.

Criteria 2 (Number of Attributes): For nonfunctional requirements, Attribute is a

set of parameters that characterize the entities. The main purpose of nonfunctional

requirements is to describe quality characteristics of the product. For example, attributes

such as height, weight, size, safety, ease of maintenance, affordability, usability,

availability etc. are not the features of the product, but they are product’s characteristics.

It is impossible to write a specific nonfunctional requirement without any attributes.
83

Therefore, if a nonfunctional requirement defines two attributes, it is considered to be

more precise and unambiguous in comparison to another requirement describing a single

attribute. Diminishing ambiguity and increasing precision increases the specificity and

informativeness of requirements. Hence, it can be asserted that the number of attributes is

an important factor for measuring the specificity of a nonfunctional requirement.

Criteria 4 (Number of Adjuncts): During requirement collection process, customer

may ask for a product, which has higher quality than the previous one without specifying

in which basis they are measuring the quality of the product. Perhaps, the customer can

say that they need a product, which is light in weight. For existing products it is not a

huge problem, because the designer can rephrase the need and add a value based on their

experience as they have a baseline for product’s weight, which is the weight of the

existing model of the product. But for novel products, this type of requirements does not

convey much information. Similarly, the specificity also relies on the type of the

attribute. It is presumed that the specificity of QuantityAttribute will be higher than

the specificity of a QualityAttribute or a BooleanAttribute, as

QualityAttribute and BooleanAttribute convey fewer details than

QuantityAttribute and might not impose any rigorous boundaries on design

parameters. Replacing or removing any quality or Boolean attribute will not modify the

design significantly but revising a quantity attribute can alter the design solution. For

example, “The suspension is light” enforces a loose constraint on design parameter

84

“weight”, whereas the requirement “The weight of the suspension is less than 10 lbs”

confine the “weight” with an upper threshold restriction. Further, “The suspension

weighs between 5-10 lbs.” will be more specific than the previous one since, it

constraints the weight in between a maximum and a minimum value. Furthermore, the

same requirement will be much more specific if it has an exact numeric value such as

“The weight of the suspension is 6 lbs.” Therefore, it is evident that the type of the

attribute and its value influence the specificity of a nonfunctional requirement.

4.3.2.3 Specificity Score of Functional and Nonfunctional
Requirement:

 [Figure 19] demonstrates the flow diagram of completeness and specificity

measurement method.

85

Figure 19: Flow chart for Specificity and Completeness measurement using java

application
The specificity of functional and nonfunctional requirement is quantified through a

specificity score. A continuous scale of 0-1 is used to represent the specificity score of

the requirements. As discussed before, different criteria influence specificity score

differently. [Table 14] and [Table 15] show the algorithm for calculating the specificity

score of functional requirement and nonfunctional requirements respectively.

4.3.2.3.1 Functional Requirement

 Different importance factors can be assigned to different criteria depending on

their perceived importance. . An arbitrary scale of weight can be used, as long as the

86

scale is applied to all requirements and the scores are used only for comparison, instead

of an absolute measure of specificity. In this paper, weight (Wi) of 5, 4, 3, 2, and 1 is

assigned to criteria 1, criteria 2, criteria 3, criteria 4, and criteria 5, respectively. The final

result will be in a range of 0-1 continuous scales

87

Table 14: Algorithm to calculate Specificity score of Functional
Requirement

Algorithm 1.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ "1ݎ݋݅ݒ݄ܾܽ݁" ݁ݑ݈ܽݒ ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁

݀݊ܽ ݐ݆ܾܿ݁ݑܵ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1ݎ݋݅ݒ൬ܾ݄݁ܽ ࢌ࢏
ݐ݆ܾܿ݁ݑܵ ࢋ࢓࢕࢙ ݐ݆ܾܿ݁ݑܵݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ ൰ {

௜݁ݎ݋ܿݏ = 20 };
 }(ݐ݆ܾܿ݁ݑܵ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ 1ݎ݋݅ݒ݄ܾܽ݁) ࢌ࢏ ࢋ࢙࢒ࢋ
ଵ݁ݎ݋ܿݏ = 10};
ଵ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 0;
 ; ଵ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 2.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ "1ݎ݋݅ݒ݄ܾܽ݁" ݁ݑ݈ܽݒ ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ܾݎܸ݁ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ܾݎܸ݁ݏ݄ܽ, ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ܾݎܸ݁:ݏ݁݌ݕܶ , 1ܾݎ݁ݒ
݈ܽݎ݁ݐ݅ܮ ׷ :݀ݏݔ ݀ ݎ݁݃݁ݐ݊݅
݀ ՚ ܾݎܸ݁ ݂݋ ݄ݐ݌݁݀
ଶ݁ݎ݋ܿݏ = 10 כ ݀ ;
 ; ଶ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 3.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ "1ݎ݋݅ݒ݄ܾܽ݁" ݁ݑ݈ܽݒ ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁

݀݊ܽ ݐ݆ܾܱܿ݁ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܱܿ݁ݕݎܽ݉݅ݎܲݏ݄ܽ 1ݎ݋݅ݒ൬ܾ݄݁ܽ ࢌ࢏
ݐ݆ܾܱܿ݁ ࢋ࢓࢕࢙ ݐ݆ܾܱܿ݁ݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ ൰ {

௜݁ݎ݋ܿݏ = 20 };
 }(ݐ݆ܾܱܿ݁ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܱܿ݁ݕݎܽ݉݅ݎܲݏ݄ܽ 1ݎ݋݅ݒ݄ܾܽ݁) ࢌ࢏ ࢋ࢙࢒ࢋ
௜݁ݎ݋ܿݏ = 10};
ଷ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 0;
 ;ଷ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

88

Table 14-Continued: Algorithm to calculate Specificity score of Functional
Requirement

Algorithm 4.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ "1ݎ݋݅ݒ݄ܾܽ݁" ݁ݑ݈ܽݒ ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݐܿ݊ݑ݆݀ܣ ࢋ࢓࢕࢙ ݐܿ݊ݑ݆݀ܣݏ݄ܽ, ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁
݈ܽݎ݁ݐ݅ܮ ׷ :݀ݏݔ ݊ ݎ݁݃݁ݐ݊݅
݊ ՚ ݐܿ݊ݑ݆݀ܣ ݂݋ ݐ݊ݑ݋ܥ
݊) ࢌ࢏ < ସ݁ݎ݋ܿݏ}(3 = 10 כ ݊} ;
ସ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 20};
 ; ସ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 5.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ "1ݎ݋݅ݒ݄ܾܽ݁" ݁ݑ݈ܽݒ ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁
 } (ݐܿ݊ݑ݆݀ܣ݁ݎݑݏܽ݁ܯ ࢋ࢓࢕࢙ ݐܿ݊ݑ݆݀ܣݏ݄ܽ 1ݎ݋݅ݒ݄ܾܽ݁) ࢌ࢏
ହ݁ݎ݋ܿݏ = 10 };
ହ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 0;
 ; ହ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 6.

݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = ෍ ௜ܹ × ݎ݋ܿܵ ௜݁

ହ

௜ିଵ

݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = 5 × ଵ݁ݎ݋ܿݏ × + 4 × ଶ݁ݎ݋ܿݏ + 3 × ଷ݁ݎ݋ܿݏ + 2 × ସ݁ݎ݋ܿݏ + 1

× ହ݁ݎ݋ܿݏ
݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = ଵܹ × ଵ݁ݎ݋ܿݏ × + ଶܹ × ଶ݁ݎ݋ܿݏ + ଷܹ × ଷ݁ݎ݋ܿݏ + ସܹ

× ସ݁ݎ݋ܿݏ + ହܹ × ହ݁ݎ݋ܿݏ
݁ݎ݋ܿܵ ݈ܽݐ݋ܶ ݈ܾ݁݅ݏݏ݋݌ ݉ݑ݉݅ݔܽܯ = 370
 ,݃݊݅ݖ݈݅ܽ݉ݎ݋ܰ ݎ݁ݐ݂ܣ

= ࢋ࢘࢕ࢉࡿ ࢚࢟࢏ࢉ࢏ࢌ࢏ࢉࢋ࢖ࡿ
ࢋ࢘࢕ࢉࡿ ࢒ࢇ࢚࢕ࢀ

૜ૠ૙

Equation 25

Equation 26

89

Table 15: Algorithm to calculate Specificity score of Nonfunctional
Requirement

Algorithm 1.
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݎ݋݅ݒ݄ܽ݁ܤ:ݏ݁݌ݕܶ , 1ݎ݋݅ݒ݄ܾܽ݁

 ݀݊ܽ ݐ݆ܾܿ݁ݑܵ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ ൬ܴ ࢌ࢏

ݐ݆ܾܿ݁ݑܵ ࢋ࢓࢕࢙ ݐ݆ܾܿ݁ݑܵݕݎܽ݀݊݋ܿ݁ܵݏ݄ܽ ൰ {

௜݁ݎ݋ܿݏ = 20 };
 }(ݐ݆ܾܿ݁ݑܵ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݐ݆ܾܿ݁ݑܵݕݎܽ݉݅ݎܲݏ݄ܽ ܴ) ࢌ࢏ ࢋ࢙࢒ࢋ
ଵ݁ݎ݋ܿݏ = 10};
ݎ݋ܿݏ ࢋ࢙࢒ࢋ ௜݁ = 0;
 ; ଵ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 2.
݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ ݁ݐݑܾ݅ݎݐݐܣ ૚ܖܑܕ݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ:ݏ݁݌ݕܶ ܴ
݈ܽݎ݁ݐ݅ܮ ׷ :݀ݏݔ ݊ ݎ݁݃݁ݐ݊݅
݊ ՚ ݁ݐݑܾ݅ݎݐݐܣ ݂݋ ݎܾ݁݉ݑܰ
݊) ࢌ࢏ < ସ݁ݎ݋ܿݏ}(3 = 10 כ ݊} ;
ଶ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 20};
 ; ଶ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 3.
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݐܿ݊ݑ݆݀ܣ ࢋ࢓࢕࢙ ݐܿ݊ݑ݆݀ܣݏ݄ܽ, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ:ݏ݁݌ݕܶ ܴ
݈ܽݎ݁ݐ݅ܮ ׷ :݀ݏݔ ݊ ݎ݁݃݁ݐ݊݅
݊ ՚ ݐܿ݊ݑ݆݀ܣ ݂݋ ݐ݊ݑ݋ܥ
݊) ࢌ࢏ < ସ݁ݎ݋ܿݏ}(3 = 10 כ ݊} ;
ଷ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 20};
 ; ଷ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

90

Table15-Continued: Algorithm to calculate Specificity score of

Nonfunctional Requirement
Algorithm 4.

݈ܽݑ݀݅ݒ݅݀݊ܫ
׷ ݁ݐݑܾ݅ݎݐݐܣ ૚ܖܑܕ݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀, ݐ݊݁݉݁ݎ݅ݑݍܴ݁ ݈ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ:ݏ݁݌ݕܶ ܴ
݈ܽݑ݀݅ݒ݅݀݊ܫ ׷ ݁ݑ݈ܸܽݏ݄ܽ, ݁ݐݑܾ݅ݎݐݐܣݕݐ݅ݐ݊ܽݑܳ:ݏ݁݌ݕܶ ݖ ࡾࡻ ݈ܽݎ݁ݐ݅ܮ ૚ܡܔܜ܋܉܍
L ܍ܕܗܛ hasRange ܀۽ ૚ Literal ܡܔܜ܋܉ܠ܍ hasLowerValue ܀۽ ૚ Literal ࢟࢒࢚ࢉࢇ࢞ࢋ ݁ݑ݈ܸܽݎ݁݌݌ܷݏ݄ܽ
 } (݈ܽݎ݁ݐ݅ܮ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݁ݑ݈ܸܽݎ݁݌݌ܷݏ݄ܽ | ݈ܽݎ݁ݐ݅ܮ ૚ ࢟࢒࢚ࢉ࢞ࢇࢋ ݁ݑ݈ܸܽݎ݁ݓ݋ܮݏ݄ܽ ݖ) ࢌ࢏
ସ݁ݎ݋ܿݏ = 10 };
 } (݈ܽݎ݁ݐ݅ܮ ૚ ࢟࢒࢚ࢉࢇ࢞ࢋ ݁ݑ݈ܸܽݎ݁݌݌ܷݏ݄ܽ && ݈ܽݎ݁ݐ݅ܮ ૚ ࢟࢒࢚ࢉ࢞ࢇࢋ ݁ݑ݈ܸܽݎ݁ݓ݋ܮݏ݄ܽ ݖ) ࢌ࢏ ࢋ࢙࢒ࢋ
ସ݁ݎ݋ܿݏ = 20 };
 } (݈ܽݎ݁ݐ݅ܮ ૚ ࢟࢒࢚ࢉ࢞ࢇࢋ ݁ݑ݈ܸܽݏ݄ܽ ݖ) ࢌ࢏ ࢋ࢙࢒ࢋ
ସ݁ݎ݋ܿݏ = 30 };
ସ݁ݎ݋ܿݏ ࢋ࢙࢒ࢋ = 0 };
 ; ସ݁ݎ݋ܿݏ ࢔࢛࢚࢘ࢋ࢘

Algorithm 5.

݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = ෍ ௜ܹ × ௜݁ݎ݋ܿܵ
ସ

௜ିଵ

Equation 27

݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = ଵܹ × ଵ݁ݎ݋ܿݏ × + ଶܹ × ଶ݁ݎ݋ܿݏ + ଷܹ × ଷ݁ݎ݋ܿݏ
+ ସܹ × ସ݁ݎ݋ܿݏ

݁ݎ݋ܿܵ ݈ܽݐ݋ܶ = 4 × ଵ݁ݎ݋ܿݏ × + 3 × ଶ݁ݎ݋ܿݏ + 2 × ଷ݁ݎ݋ܿݏ + 1

× ସ݁ݎ݋ܿݏ
݁ݎ݋ܿܵ ݈ܽݐ݋ܶ ݈ܾ݁݅ݏݏ݋݌ ݉ݑ݉݅ݔܽܯ = 170
 ,݃݊݅ݖ݈݅ܽ݉ݎ݋ܰ ݎ݁ݐ݂ܣ

= ࢋ࢘࢕ࢉࡿ ࢚࢟࢏ࢉ࢏ࢌ࢏ࢉࢋ࢖ࡿ
ࢋ࢘࢕ࢉࡿ ࢒ࢇ࢚࢕ࢀ

૚ૠ૙

Equation 28

4.3.2.3.2 Nonfunctional Requirement

 Similar to the functional requirement, weights based on perceived importance

are assigned to each of these four mentioned criteria for nonfunctional requirement.

Different weights are assigned to the criteria depending on the specific design problem

and designer. An arbitrary scale of weight is used, the scale is applied to all requirements
91

and the scores are used only for comparison, instead of using them as an absolute

measure of specificity. In this paper, a weight (Wi) of 4, 3, 2, and 1 is assigned to criteria

1, criteria 2, criteria 3, and criteria 4, respectively.

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݁ (ݔ ר ?)݁ݎ݋ܿܵݕݐ݂݅ܿ݅݅ܿ݁݌ܵݏ݄ܽ , ݔ (ݕ?

ר , ݕ?) ݈ܽݑݍܧݎܱ݄݊ܽܶݎ݁ݐܽ݁ݎ݃ 0.75)

՜ ?)݂ܿ݅݅ܿ݁݌ܵݕ݈݄݃݅ܪ (ݔ
Equation 29

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݁ (ݔ ר ?)݁ݎ݋ܿܵݕݐ݂݅ܿ݅݅ܿ݁݌ܵݏ݄ܽ , ݔ (ݕ? ר

, ݕ?) ݈ܽݑݍܧݎܱ݄݊ܽܶݎ݁ݐܽ݁ݎ݃ 0.5) ר , ݕ?)݄݊ܽܶݏݏ݈݁ 0.75) ՜

?)݂ܿ݅݅ܿ݁݌ܵݕ݈݁ݐܽݎ݁݀݋ܯ (ݔ
Equation 30

Using above-mentioned method, specificity of functional and nonfunctional requirements

can be measured on a continuous scale between 0 and 1.

Using the proposed score, requirements can be classified into three classes: Highly

Specific, Moderately Specific and Not Specific. A requirement having a specificity score

greater than or equal to 0.75 is considered as highly specific, specificity score greater

than equal to 0.5 but less than 0.75 is categorized as moderately specific, and specificity

score less than 0.5 is considered to be Not Specific requirement. In the ontology, SWRL

rules (Equation 29, Equation 30) are used to determine the equivalent specificity class of

a requirement.

92

4.4 Result:

 The size of the requirement ontology is dynamic and till now it contains around

247 functional requirements and 182 nonfunctional requirements for 27 different

products. Measuring completeness and specificity of these 429 requirements manually is

tedious and time consuming. Therefore, java tool is developed based on the proposed

method for completeness and specificity measurement. OWL API is used to run through

the structure of the ontology and access information from the ontology. With the help of

the SWRL rules and software application, completeness and specificity scores are

calculated and assigned to two empty properties hasSpecificityScore and

hasCompletenessScore.

93

Table 16: Example of Completeness and Specificity Score Calculation
Functional Requirement: The suspension enables high speed descents on bumpy trails

Condition
Type/Decis

ion
Condition Outcome Æ true/false

Basic
Score

(s)
Weight(w)

Wt
Score
(w X

s)

Complete-
ness

hasProduct True (Suspension)

1 N/A 1

hasPrimarySubject True (Suspension)
describesBehavior True (high speed

descents on bumpy
trails)

hasVerb True (enable)
Decision Is Complete and equivalent to Complete class

Specificity
Condition

hasPrimarySubject
AND
hasSecondarySubject

False 0 5 0

hasPrimarySubject True (Suspension) 10 5 50
Level of Verb (n) n = 3 (Actuate

ÆControl Magnitude
Æ Transitive Verb Æ
Verb)

30 4 120

hasPrimaryObject
AND
hasSecondaryObject

False 0 3 0

hasPrimaryObject True (descents) 10 3 30
Number of Adjuncts (n) n = 2 (bumpy trails ,

high speed) 20 2 40
n>=3 False
Individual: X,
Type: Measure Adjunct;
behavior hasAdjunct X ,

False (High Speed Æ
Adverbial Adjunct,
Bumpy Trails Æ
Locative Adjunct)

0 1 0

Total Score 240

94

Table 16-Continued: Example of Completeness and Specificity Score
Calculation

Specificity Score (Total Score/370) 0.648
Nonfunctional Requirement: The suspension weighs between 5-10 lbs.

Complete-ness
hasProduct True (Suspension)

1 N/A 1 hasPrimarySubject True (Suspension)
describesAttribute True (Weight)

Decision Is Complete and equivalent to Complete class

Specificity
Condition

hasPrimarySubject
AND
hasSecondarySubject

False 0 4 0

hasPrimarySubject True 10 4 40
Number of Attribute
(n)

n=1 (AttributeÆ
Weight) 10 3 30

n<=3 True
Number of Adjunct
(n)

n=0
0 2 0

n<=3 True
Attribute Æ
hasUpperValue OR
hasLowerValue

True(Weight
hasUpperValue=10
lbs AND
haLowerValue = 5
lbs.)

0 1 0

Attribute Æ
hasUpperValue
AND
hasLowerValue

True(Weight
hasUpperValue=10
lbs AND
haLowerValue = 5
lbs.)

20 1 20

Attribute Æ
hasValue

False 0 1 0

Total Score 90
Specificity Score (Total Score/170) 0.53

95

4.5 Case Study: Bike Suspension

 Column 2 in Table 17 shows the requirements for a bike suspension found in an

engineering design text (Ulrich, 2003) and modified to add some complexity in the form

of numeric constraints and conditional statements. These textual requirements are

imported to the proposed requirement ontology and completeness and specificity scores

are measured using the described method Specificity Score of Functional and

Nonfunctional Requirement: Column 3, 4 and 6 of [Table 17] shows the derived

completeness class, specificity score and equivalent specificity class for these

requirements, respectively. [Figure 20] shows the comparison of specificity of functional

and nonfunctional requirement for bike suspension.

Table 17: Example of textual requirements: bike suspension

Sl.
No

Requirement Statement Complete/
Incomplete

Specificity
Score

Equivalent
Specificity

Class
Functional Requirement

1. The suspension instills pride C 0.51 Moderate
2. The suspension works with fenders C 0.54 Moderate

3.
The suspension fits a wide variety of
bikes

C
0.59

Moderate

4.
The suspension fits a wide variety of
tires.

C
0.59

Moderate

5.
The suspension can carry riders
weighing up to 250 lbs

C
0.62

Moderate

6.
The suspension preserves the steering
characteristics of the bike

C
0.62

Moderate

96

Table 17 - Continued: Example of textual requirements: bike suspension
Sl.
No

Requirement Statement Complete/
Incomplete

Specificity
Score

Equivalent
Specificity

Class

7.
The suspension enables high speed
descents on bumpy trails

C
0.64

Moderate

8.
The suspension provides stiff
mounting points for the brakes

C
0.67

Moderate

9.
The suspension reduces vibration to
the hands

C
0.72

Moderate

10. The suspension fits a wide variety of
wheels

C
0.72

Moderate

11. The suspension allows easy
replacement of worn parts

C
0.72

Moderate

12. The suspension allows easy traversal
on slow difficult terrain

C
0.75

Highly
Specific

Nonfunctional Requirement
13. The suspension lasts a long time C 0.47 Not Specific

14. Suspension allows sensitivity
adjustment

C
0.47 Not Specific

15. The suspension is easy to install C 0.47 Not Specific

16. The suspension can be easily
accessed for maintenance

C
0.47 Not Specific

17. Suspension is not contaminated by
water

C
0.47 Not Specific

18. The suspension weighs between 5-10
lbs.

C
0.52 Moderate

19. The suspension remains rigid during
hard cornering

C
0.58 Moderate

20. The suspension can be maintained
with readily available tools

C
0.7 Moderate

21. Suspension is affordable for an
amateur enthusiast

C
0.7 Moderate

97

Table 17 - Continued: Example of textual requirements: bike suspension
Sl.
No

Requirement Statement Complete/
Incomplete

Specificity
Score

Equivalent
Specificity

Class

22.
The suspension has a maximum
vertical deflection at the seat mount of
8 mm for 250 lb static load.

C
0.7 Moderate

23.
The suspension has a maximum
vertical deflection at the seat mount of
5 mm for a 200lb static load

C
0.7 Moderate

Result shows that in a set of 23 requirements, composed of 12 functional

requirements and 11 nonfunctional requirements, all requirements are complete. 11 out of

these 12 functional requirements have a specificity score in a range of 0.36 to 0.48 and

equivalent to Moderately Specific class, whereas, the remaining functional requirement is

highly specific with a specificity score of 0.75.

Figure 20: Comparison of Specificity of Functional and Nonfunctional Requirement

for Bike Suspension requirements

98

Among the nonfunctional requirements, 5 requirements have a specificity score of

0.47 and equivalent to Not Specific class, and the remaining 6 requirements have a

specificity score in a range of 0.52 to 0.7 and equivalent to Moderately Specific class. As

discussed before, highly specific requirements do not necessarily improve the quality,

novelty, or variety of final designs. Studying the impact of requirement specificity on the

idea generation process is an important research problem, which is outside the scope of

this work. In this research we are merely dealing with specificity (or informativeness)

quantification.

4.6 Classification of Requirement:

 Requirements are directly connected to design solutions. Thus, creating a

structured requirement dictionary is essential effective design reuse. Currently there are

multiple requirement management tool exist in the market such as “DOOR”,

“InteGREAT”, “Blueprint Requirement Center”, “Caliber” “Code beamer Requirement

Management” etc. (Carrillo de Gea, Juan M et al., 2011) but they are intended to manage

requirements for software industry. For engineering design, there are no such tools

available in the market where requirements can be stored in an organized manner and can

be retrieved easily. In this work, we propose an ontological approach to requirement

classification. To increase the reusability of the requirements, it is important to store the

requirements according to their type, rather storing them directly under Functional or

Nonfunctional Requirement class. For example, a requirement statement “The

99

suspension can be easily accessed for maintenance” can be a member of a separate class

Maintenance instead of simply placing them under Nonfunctional

Requirement class. Therefore, in order classify different types of requirements

nineteen distinct classes are introduced into the ontology. [Figure 21] shows the different

categories of functional and nonfunctional requirement. Categorizing requirements will

also help in mapping requirements from the ontology by running any reasoner (Pellet or

HermiT, and FaCT++ etc.). Further, results can be sorted by using SPARQL queries. All

the classes are overlapping and partially constrained.

Figure 21: Classification of Requirement

4.6.1 Class Definition:

 Requirements place restrictions on every aspect of the product such as the

geometry, features, energy requirements, operation, manufacturing and assembly process,

100

safety, maintenance, reliability, reusability, lifecycle, and overall quality of the product.

Each of these categories is represented as a subclass of Requirement Type. Each subclass

contains certain type of requirements depending on their definition (Paul & Beitz, 1984).

Assembly: This class contains requirement those are directly or indirectly related to the

assembly process of the product. Assembly requirement can be about the complexity of

the assembly process or the type of assembly or if it is manual or automated etc.

Therefore, if a requirement contains information about installation procedure, assembly

method, any special regulation or guidelines, sitting or foundations etc. then it can be

considered as a member of assembly requirement.

Cost: This class contains requirements related to the price or affordability of the product.

Requirement can contain maximum permissible selling cost, material and tooling cost,

manufacturing cost, depreciation, maintenance cost, cost of parts, prototype cost etc.

Since, cost is an attribute of the product or part, the requirements comprising price details

are mostly nonfunctional requirements. Hence, ontology can only accept nonfunctional

requirements as cost requirements.

Energy Requirement: This class comprise requirements, which outlines the energy

needs of the product or any part of the product, energy conversion during any function

performed by the product, product performance parameters in terms of energy such as

efficiency, consumption, frictional loss, ventilation, pressure, temperature, heating,

cooling, capacity etc.

101

Ergonomics: This class represents requirements associated with the shape of the product,

degree of comfort that a product should achieve, compatibility of the product to work

with any other product or parts or environment etc.

Features: As the name of the class implies, it includes requirement that convey

information regarding to the feature of the product.

Force: If a requirement will includes details about to the magnitude or direction of force,

frequency, weight, load, deformation, stiffness, hardness, rigidity, elasticity, inertial

forces or resonance etc., then it will be a member of force requirement.

Geometry: Requirements in this class explains the geometry of the product such as size,

length, breadth, width, depth, height, space requirement, arrangement, connection etc.

Kinematics: This class represents requirement, which defines the type of motion of the

product, direction of motion, velocity, acceleration etc.

Maintenance: Maintenance requirements recognize the needs pertaining to the servicing,

servicing intervals if any, inspection, painting, cleaning, repairing etc.

Operation: Operation related requirements suggest functions need to be performed by

the product, any operational parameters such as quietness, wear and tear and if the

product has any special uses etc.

Portability/Mobility: Portability requirements are the requirements that describe the

extent to which the customer can move the product anywhere without taking much effort.

102

Production: It involves requirement that indicates factory limitations if any, maximum

permissible dimensions, and preferred production method, means of production,

achievable quality and tolerances, wastage etc.

Quality Control: This class comprehends requirement that imitates the needs related to

the testing and measuring, application of special regulations and standards, accuracy etc.

Recycling: Recycling requirements signify the needs for reuse, reprocessing, disposal,

and storage etc.

Safety: This class includes requirements that identify needs pertinent to operational and

environmental safety.

Signals: The requirements under this class indicate details of inputs and outputs, form,

display, control equipment etc.

Transport: Transport requirements describe if there are any limitations due to lifting

gear or wheels, means of transport etc.

Usability: Usability requirements involve the needs related to the user friendliness of a

product such as ease of use, ease of learning, effectiveness of the product, error tolerant

and user satisfaction level etc.

Setting up the type of requirement for a huge set of requirements manually is time

taking and erroneous. The main issue associated with it is to identify the proper category

and maintain the consistency of the ontology. In order to reduce manual efforts, the type

of the requirements can be derived automatically using ontology reasoning method. In the

developed ontology, functional and nonfunctional requirements both can be classified

103

under the requirement categories. Since, the requirement types are overlapping and

partially constrained, a requirement can be part of two or more categories and also it is

not necessary for each requirement to be a part of any of that requirement category. Two

types of reasoning technique are used in this research –

1) Reasoning based on Attributes for Nonfunctional Requirement

2) Reasoning based on Verb for Functional Requirement

4.6.2 Ontology Reasoning based on Attribute:

 Attributes are the inherent characteristics of a product or part. Each

nonfunctional requirement in a requirement set describes one or more distinct attributes

and the class of the requirement somewhat depends on the nature of the attributes

specified by the requirement statement. In REQUIREMENT ONTOLOGY attributes are

classified as quality attribute, quantity attribute or Boolean attribute according to their

on 1their value. Further, attributes can be classified again according to their nature. The

classification applied in this research involves two subclass Tangible Attribute

and Intangible Attribute. Tangible attributes are the concrete, physical and

objective characteristics of a product, whereas, intangible attributes are abstract,

favorable and subjective attributes. (Lefkoff-Hagius & Mason, 1990). For example, a

phone can be light, black and affordable. Among these three attributes, light and black

indicates weight and color attributes those are tangible and affordable is intangible.

Weight and color describes some physical properties of the product, but affordable is

104

mainly imaginary and favorable aspect of the product. These two subclasses are again

subdivided into several other subclasses. [Table 18] shows the subclasses under

Tangible Attribute and Intangible Attribute. Each subclass under

Attribute is disjoint with all other sibling classes. Adding more subclasses add more

structure to the ontology, however, it creates more complexity. For example, if

Attribute class is divided into two different categories based on their value

(Quality, Quantity and Boolean) and based on their nature (Tangible and

Nontangible), the designer will have the responsibility to specify the type of each

attribute according to these two different criteria.

Using reasoning can resolve the problem. In this study, keyword matching

approach is used to derive the type of the attributes (Ducatel, Cui, & Azvine, 2006). A

software tool is developed using JAVA and OWL API to determine the type of the

requirement based on the attribute. The tool runs through the ontology and accesses each

element of the ontology. In the runtime, it will analyze each instance of Attribute

class and match them with similar words or synonyms from a set of predefined keywords.

For each subclass of Attribute, a set of potential attributes are used for logical

reasoning such as for Weight class “weight”, “light”, “heavy” etc. are used as

keywords. After determining the type, the application will also assert the appropriate type

of each instance of the attribute by ontology class assertion axiom e.g. User enters a

requirement statement “The suspension can be maintained with readily available tools”

105

and asserts ‘‘isEasyToMaintain’’ as an attribute. The tool will match the attribute

with the keyword maintain and assert Maintenance as the type of the attribute. The

keyword matching method used in this study can accommodate plurals, stemming,

synonyms, upper and lower case but it is sensitive to spelling. One major assumption for

this technique was that the user would spell correctly while entering the attribute instance

into the ontology. Subsequently, a basic assumption of this technique is associated with

the naming convention. It is assumed that the user will use suitable names for the

instances of the Attribute. Ontology can only have unique names of the classes and

instances. Thereby, if an attribute is used in more than one requirement statement,

appropriate suffix or prefix should be added in accordance with product name. Suppose,

an attribute weight is used for two requirement statements (“The suspension weighs

between 5-10 lbs” and “The phone weighs between 1-2 lbs”), and both of the attributes

are same with a different values and are associated with two different products

suspension and phone. The attribute weight can be written as sus_weight with a range 5-

10 lbs for suspension and phone_weight with a range 1-2 lbs for phone instead of using

weight and assigning two distinct sets of value to it.

Table 18: Attribute and Requirement Relation

Attribute
Subclass Keywords used

Related
Requirement

Type
Tangible Attributes

Arrangement Arrangement, display, setup, alignment,
organization, order, group etc. Geometry

Capacity Capacity, volume etc. Energy

106

Color Color, paint, hue, tint, tone, shade, pigment, stain,
dye etc. Ergonomics

Consumption Consumption, expend, dissipation, utilization etc. Energy
Table 18-Continued: Attribute and Requirement Relation

Attribute
Subclass Keywords used

Related
Requirement

Type
Cooling Cooling, cool, refrigerate, chill, cool off, cold etc. Energy

Deformation
Deform, deformation, buckle, contort, warp, impair,
twist, distort, bend, deflect, out of shape, disfigure
etc.

Force

Heating Heating, warm, reheat, warm up, heat up etc. Energy
Load Load, cargo, consignment, goods, bundle, strain etc. Force
Pressure Pressure, stress, force, thrust etc. Force
Response Time Time, response, prompt, quick etc. Operation
Availability Availability, accessibility, accessible, available,

convenience, reachable, reachability, handy,
feasible, feasibility, obtainable, obtainability etc.

Cost

Comfort Comfort, comfortable, pleasant, comfy, satisfaction,
relief, enjoy etc.

Ergonomics

Efficiency Efficiency, efficient, productivity, output, expert,
effective, capability, proficiency etc.

Energy

Installation/
Uninstallation

Install, uninstall, start, end, position, settle, plant,
place, remove etc.

Assembly

Life Life, duration, durability, durable, existence etc. Quality
Control

Manufacturabil
ity

Manufacturability, build ability, construct, fabricate,
produce, create, make, weld ability etc.

Production

Portability Portable, portability, mobile, mobility, movable,
movability, adjustability, adaptability etc.

Portability

Price Cost, price, expense, charge, fee, fare, sum, amount,
estimate, expenditure etc.

Cost

Quietness Quiet, noise, noisy, silent, loud etc. Operation
Reliability Quality

Control
Reusability Reliability, dependability, authenticity, genuine etc. Recycle

107

Table 18-Continued: Attribute and Requirement Relation
Attribute
Subclass

Keywords used
Related

Requirement
Type

Serviceability
Maintenance Maintenance Maintain, service, repair, replace etc.

 Cleaning Clean, cleanse, scrub, rinse, disinfect, dry etc.
Testability Testability, test, measure etc. Operation
User
Friendliness

Use, ergonomic, simple, complex, automatic,
manual, usability, simplicity etc.

Usability

After the attributes are placed under distinct subclasses, SWRL rules will be used to infer

the requirement type. Relation of all subclasses of Tangible and Intangible Attribute is

identified and SWRL rules are applied to get the inferred instances of

RequirementType subclasses. [Table 18] shows the relation of different attribute

classes with the requirement type classes. Attributes are generally noun e.g. “Height”,

“Weight”, but Boolean attributes contain verb such as “isEaseToUse”,

“isEasyToMaintain”, “isLight”, “isCommon” etc. For this reason, along with

nouns, few verbs and adjectives are also used as a keyword and the tool will match the

substring of Boolean attributes with those keywords. [Equation 31, Equation 32, Equation

33, Equation 34,Equation 35] demonstrate the applied SWRL rules for Geometry, Cost

and Assembly types. For example, the requirement sentence “The frame of the ingot oven

is not taller than 51/2 feet” describes an attribute height, which is a subclass of size.

108

According to the SWRL rule illustrated in [Equation 31], if a nonfunctional requirement

describes an attribute, which belongs to the class Size, the type of the requirement will be

Geometry. Hence, the type of the requirement statement “The frame of the ingot oven is

not taller than 51/2 feet” will be Geometry. Similar rules are used for all other subclasses

and they are not presented in the paper for brevity of the paper. Few examples of

reasoning requirement type by Attributes are shown in the [Table 19].

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ ר (ݕ?)݁ݖ݅ܵ

ר ?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ (ݕ?

՜ ?)ݕݎݐ݁݉݋݁ܩ Equation 31 (ݔ

(ݕ?)ݕݐ݈ܾ݅݅ܽ݀ݎ݋݂݂ܣ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ ר
?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ <െ (ݕ? ?)ݐݏ݋ܥ Equation 32 (ݔ

(ݕ?)݁ܿ݅ݎܲ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ

ר ?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ <െ (ݕ? ?)ݐݏ݋ܥ Equation 33 (ݔ

(ݕ?)݊݋݅ݐ݈݈ܽܽݐݏ݊ܫ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ

ר ?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ െ (ݕ?
> ?)ݕ݈ܾ݉݁ݏݏܣ Equation 34 (ݔ

(ݕ?)݁ݎݑݏܽ݁ܯݕ݈ܾ݉݁ݏݏܣ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ

ר ?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ െ (ݕ?
> ?)ݕ݈ܾ݉݁ݏݏܣ Equation 35 (ݔ

109

Table 19:Example of Reasoning requirement type by attribute instances
of requirement statement

Asserted

Attribute

Similar

Keyword
Attribute Subclass

Requirement

Type

RequirementÆ “The suspension weighs between 5-10 lbs”

Weight Weight Weight Geometry

RequirementÆ “The suspension remains rigid during hard cornering”

IsRigid Rigid Stiffness Force

RequirementÆ “The suspension can be easily accessed for maintenance”

IsEasyToMaintain Maintain Maintenance Serviceability Maintenance

RequirementÆ “EW has high temperature response”

Temperature

Response

Temperature Temperature Energy

RequirementÆ “Hand Truck balances safely and easily”

SafetyOfBalance Safe Operation Safety –Safety Measure Safety

4.6.3 Ontology Reasoning based on Verb:

 Since, functional requirement do not have any attributes, reasoning through

attributes is not possible for functional requirements. Rather, for functional requirements

verbs are used to infer the type of the requirement. Classification of the Verb class is

already explained in Chapter 2.Thus, the objective of this section is to illustrate the

relation of the verbs and the requirement types. Unlike the attribute, the type of the verbs

is user defined and only SWRL rules are required to reason the type of the requirement.

110

[Table 20] shows the connection of each subclass of verb with the subclasses of

requirement type and the rules used for reasoning. For example, if a behavior of a

functional requirement has a verb, which is a member of Transport class, the type of the

corresponding functional requirement will be Transport. e.g. The requirement statement

“The suspension traverse easily on slow difficult terrain” has a verb traverse, which is an

instance of Transport class. The requirement type will be Transport Requirement.

Similarly, another requirement “Doorjig can be simply attach to truck frame.” has a verb

attach, which is an instance of Link. According to the rules mentioned in [Table 20], if a

requirement describes a behavior, which has a verb of class Link, the requirement will be

Assembly type requirement. Thereby, the requirement “Doorjig can be simply attach to

truck frame.” will be an Assembly type requirement. Another requirement “Electric snow

blower prevents snow blowback on operator” has a verb prevents of class prevent and

according to the rules the type of the requirement will be Force. Likewise, type of all

functional requirements can be determined by using the following rules.

Table 20: Connection of verb class with the requirement type and related
SWRL rules

Verb Class Requirement
Type

SWRL rules

Branch
 Distribute Operation ݁ݐݑܾ݅ݎݐݏ݅ܦ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Separate
 Divide Operation ݁݀݅ݒ݅ܦ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

111

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

Table 20-Continued: Connection of verb class with the requirement type

and related SWRL rules
Verb Class Requirement

Type
SWRL rules

 Extract Operation ݐܿܽݎݐݔܧ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Remove Assembly ܴ݁݉݁ݒ݋(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݕ݈ܾ݉݁ݏݏܣ (ݔ

Channel
 Export Operation ݐݎ݋݌ݔܧ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Guide
?)݁݀݅ݑܩ (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏܿ݅ݐܽ݉݁݊݅ܭ (ݔ

 Allow DOF Kinematics
 Rotate Kinematics
 Translate Kinematics
 Import Operation ݐݎ݋݌݉ܫ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Transfer
 Transmit Operation ܶݐ݅݉ݏ݊ܽݎ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ

ר ?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ?

ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ

՜ ?)݊݋݅ݐܽݎ݁݌ܱ (ݔ
 Transport Transport ܶݐݎ݋݌ݏ݊ܽݎ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏݐݎ݋݌ݏ݊ܽݎܶ (ݔ

Connect
 Couple ݈݁݌ݑ݋ܥ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݕ݈ܾ݉݁ݏݏܣ (ݔ

 Join Assembly
 Link Assembly
 Mix Operation ݔ݅ܯ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

112

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

Table 20-Continued: Connection of verb class with the requirement type

and related SWRL rules
Verb Class Requirement

Type
SWRL rules

Control
Magnitude

 Actuate Kinematics ݁ݐܽݑݐܿܣ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏܿ݅ݐܽ݉݁݊݅ܭ (ݔ

 Change
 Condition Energy ݊݋݅ݐ݅݀݊݋ܥ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݕ݃ݎ݁݊ܧ (ݔ

 Increment Operation ݐ݊݁݉݁ݎܿ݊ܫ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Decrement Operation ר ݐ݊݁݉݁ݎܿ݁ܦ ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

 Shape Ergonomics ݄ܵܽ݁݌(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏܿ݅݉݋݊݋݃ݎܧ (ݔ

 Regulate ܴ݁݃݁ݐ݈ܽݑ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏܿ݅ݐܽ݉݁݊݅ܭ (ݔ

 Decrease Kinematic
 Increase Kinematic
 Stop ܵ݌݋ݐ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏ݁ܿݎ݋ܨ (ݔ

 Inhibit Force
 Prevent Force
Convert Energy ݐݎ݁ݒ݊݋ܥ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ

ר ?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ?

ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜ ?)ݕ݃ݎ݁݊ܧ (ݔ
Provision ܲ݊݋݅ݏ݅ݒ݋ݎ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ

ר ?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ Store (ݕ?

113

 Collect Operation ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ

՜ ?)݊݋݅ݐܽݎ݁݌ܱ (ݔ

Table 20-Continued: Connection of verb class with the requirement type
and related SWRL rules

Verb Class Requirement
Type

SWRL rules

 Contain Operation
 Supply Operation
Signal

݈ܵ݅݃݊ܽ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݏ݈ܽ݊݃݅ܵ (ݔ

 Indicate Signal
 Display Signal
 Track Signal
 Process Signal
 Sense Signal
 Detect Signal
 Measure Signal
Support
 Position Geometry ܲ݊݋݅ݐ݅ݏ݋(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר

?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݕݎݐ݁݉݋݁ܩ (ݔ

 Secure Safety ܵ݁ܿ݁ݎݑ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)ݕݐ݂݁ܽܵ (ݔ

 Stabilize Quality Control ܵ݁ݖ݈ܾ݅݅ܽݐ(? (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר
?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ? ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜
?)݈݋ݎݐ݊݋ܥݕݐ݈݅ܽݑܳ (ݔ

4.7 Conclusion:

The chapter describes ontological reasoning procedure for completeness and

specificity measurement and also to classify requirements. The method described here

114

involves several steps to measure the completeness and specificity. A data property

hasCompletenessScore with a range of 0 or 1 and requirement domain is

introduced into the ontology. SWRL rules are applied to measure the completeness of

each instance of requirement class. The reasoner analyzes the requirements and assigns

completeness score of 0 or 1. Further, based on the requirement’s score the reasoner also

infers their class as either complete or incomplete. After measuring completeness, each

complete requirement undergoes the specificity measurement process. A software tool is

developed using JAVA and OWL API to measure the specificity and to classify

requirements. Each time user runs the application; it calculates the specificity of

requirements based on few criteria and assigns a specificity score in a scale of 0-1 and

asserts specificity class of each requirement via ontology class assertion axioms. The tool

also determines the type of all attribute instances. After attribute classification, the

reasoner, depending on either attribute or verb, also infers the type of the requirements.

The application is used for attribute classification and the application uses the concept of

keyword matching to derive the type of each attribute instance. However, SWRL rules

are used to reason the requirement class for both situations verb and attributes. Since, the

rules used for requirement classification enforce partial constrains, it is possible to have

requirements, which does not lie under any of the predefined category of requirements. In

conclusion, the application and the reasoning technique together can accurately measure

the completeness and specificity of requirements and also infers the appropriate type of

the requirement statement.

115

116

CHAPTER 5

5 CONCLUSIONS AND FUTURE WORK

The objective of this research was to develop a form neutral model of engineering

requirement representation and to use the model to measure the information content,

analyze the quality indicators of requirements, and classify the requirements according to

their types. To provide the answers for the research questions identified in Chapter 1, ,

different methods and metrics were used throughout this study. In this chapter, the

findings related to these questions are summarized and the main contributions and the

future works are discussed

5.1 Answers to Research Questions:

1. What are the components of a formal ontology for requirements modeling?

As discussed in chapter 2, this research introduced ReqOn as an ontology for the

representation of engineering design requirements. In ReqOn, requirements were

classified into two distinct categories- functional and nonfunctional according to

their purpose. The functional requirements describe the function that needs to be

achieved by the product or any part of the product, while, the nonfunctional

requirements explain the expected characteristics of the product or any part of the

product.

Further, functional and nonfunctional requirements were broken down to their

117

atomic elements.

 A functional requirement is associated with one product and should exhibit a

particular behavior. Behavior is not an atomic component and thereby, it is

broken down into subject, verb, object and adjuncts. ReqOn also enforces

cardinality restriction to the ontology modules. Behavior of the functional

requirements must have exactly one primary subject, primary object, and one

action verb. However, a behavior may have some secondary subjects, some

secondary objects, and some adjuncts. In ReqOn, product and behavior classes are

connected to the functional requirement class through object properties

hasProduct, and describesBehavior respectively. Similarly, subject, object, verb,

and adjuncts are connected to the behavior class through hasPrimarySubject,

hasSecondarySubject, hasPrimaryObject, hasSecondaryObject, hasVerb, and

hasAdjunct, respectively.

Nonfunctional requirements are also associated with a product and inherit all the

properties of its parent class; Requirement. Nonfunctional requirements are

composed of subject, attributes, and adjuncts. Similar to the functional

requirements, nonfunctional requirements also have some necessary and some

optional elements. Nonfunctional requirements have exactly one primary subject,

at least one attribute, and some adjuncts. HasPrimarySubject,

hasSecondarySubject, describesAttribute, and hasAdjunct are the connecting

118

object properties between nonfunctional requirement and subject, attribute, and

adjunct, respectively. Further, attributes were classified into qualitative,

quantitative, and boolean attributes. Qualitative attributes have exactly one

qualitative value, boolean attributes have exactly one boolean value and

quantitative attributes have at least one value or an upper limit or a lower limit or

a range and a unit. Numerical Values are connected with the quantitative

attributes with data properties hasValue, hasUpperValue ,and hasLowerValue.

Only float is allowed as range for these data properties. Appropriate domain and

range of the object and data properties were also identified in ReqOn.

2. What is a good metric for measuring the information content of engineering

requirements?

Chapter 3 demonstrates two different approaches for measuring the information

content of requirements. Both approaches utilize Shannon’s Information theory.

One approach is based on the concept of uniform probability distribution,

whereas, another approach is based on sequential selection.

Uniform probability distribution approach assumes uniform probability

distribution of the leaf classes on the ontology. In this approach, the entropy of

each class is considered to be dependent on the structure of the class and the

number of instances of the class that are available in the ontology at any given

119

timestamp. The entropy associated with the structure of a class is referred to as

taxonomy entropy in this work and the entropy attributed to the number of direct

class instances is called size entropy. The total entropy of a class (Eci) is

calculated as the summation of taxonomy (TEci) and size (SEci) entropy.

= ௜ܿܧ + ௜ܿܧܶ ௜ܿܧܵ

= ௜ܿܧܶ െ ଶ(ܲܿ௜)݃݋݈

= ௜ܿܧܵ െ)ଶ݃݋݈
1

ܰܿ௜
)

Where, TEci is the Taxonomy Entropy of the ith class ci and Pci is the probability

of occurrence of class ci . SEci is the Size Entropy of the ith class ci and Nci is the

number of instances of class ci.

In the sequential selection approach, it is assumed that a design decision is made

through making a sequence of selections from a finite set of options. In this

approach, the probability of occurrence of each class in the ontology depends on

the number of direct and indirect instances of that class. Higher number of

instances implies higher probability of occurrence. This approach involves

traversing the tree from the top level to the bottom and calculating probability of

occurrence of all classes along the path that leads to the final selection. According

to this approach, total entropy of each element of the ontology will be the sum of

the information contained in the class of the element and the information content

of the decision associated in the selection of the element.

120

(ݐ݈݊݁݉݁ܧ)ܥܫ = (௖ݏݏ݈ܽܥ)ܥܫ + (ܦ)ܥܫ

To validate these two approaches, information content of the requirement

instances of ReqOn were measured using these methods individually. The results

obtained were compared and it was concluded that the two methods provide

almost similar values of IC. Therefore, any of these two approaches can be used

to measure information content. Finally, the information content of a requirement

statement can be calculated by using these two equations.

E Functional Req =E Behavior+E Product+E Subject+ 1(is Functional)+ 1(isConstraint)

E NonFunctional Req =E Attribute+E Product+E Subject+E Primary Subject + 1(is Functional)+

1(isConstraint)

3. How may the completeness and specificity of a requirement statement be

measured using the formal requirement ontology?

Completeness analysis was conducted by checking the presence of the necessary

elements of ReqOn. If a requirement contains all the required components, it was

considered to be a complete requirement. If a functional requirement describes a

behavior and the behavior contains a primary subject, a primary object and a verb,

the requirement is considered as a complete requirement. Though, a nonfunctional

requirement is considered to be a complete requirement if it contains a primary

subject, describes at least one attribute and the attribute has a value.

121

The Specificity of complete requirements was measured quantitatively and a

specificity score of 0-1 was assigned to each requirement statement of the ReqOn.

For functional requirements existence of secondary subject, depth of verb,

existence of secondary object, number of adjuncts, and existence of a measure

adjunct were identified as main specificity enhancing factors. For nonfunctional

requirement, existence of secondary subject, number of attributes, number of

adjuncts, and type of Attributes were established as specificity criteria.

Each of these criteria was weighted in a 1-5 scale based on their impact on the

specificity. The scores were also normalized and were represented in a 0-1

continuous scale.

After calculating the completeness and specificity score, ontology reasoning was

used to determine and infer the specificity class. SWRL rules were also

introduced in chapter 4 to execute the reasoning.

4. How to use ontological reasoning techniques to classify requirements?

Requirements pose restrictions on different aspects of a product such as the

geometry, features, energy requirements, operation, manufacturing and assembly

process, safety, maintenance, reliability, reusability, lifecycle, and overall quality

of the product. Each of these categories is represented as a subclass of

122

Requirement Type in ReqOn. The type of the requirements was derived

automatically using ontology reasoning method. Two types of reasoning

technique were used in this research: reasoning based on Attributes for

Nonfunctional Requirement and reasoning based on Verb for Functional

Requirement. For Nonfunctional requirements attributes were classified into

tangible and intangible attributes. Further these two attributes were subdivided

into different categories and keyword-matching technique was used to assert the

type of the attribute programmatically. A java tool was also developed to

determine the type of the attribute based on keywords detection. Once the type of

the attributes were assigned, SWRL rules were used to infer the type of the

requirement based on the type of the attribute used. Since, functional requirement

do not have any attributes, reasoning through attributes is not possible for

functional requirements. Instead, for functional requirements, verb type was used

to infer the type of the requirement. Unlike the attribute, the type of the verb is

user defined and only SWRL rules are required to reason about the type of the

requirement. Two examples of the rules that were used to determine the type of

the requirement via ontology reasoning are presented below:

?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ݊݋ܰ (ݔ ר (ݕ?)݁ݖ݅ܵ ר ?)݁ݐݑܾ݅ݎݐݐܣݏܾ݁݅ݎܿݏ݁݀ ,ݔ (ݕ?

՜ ?)ݕݎݐ݁݉݋݁ܩ (ݔ

?)݁݀݅ݑܩ (ݖ ר ?)ݐ݊݁݉݁ݎ݅ݑݍܴ݈݁ܽ݊݋݅ݐܿ݊ݑܨ (ݔ ר ?)ݎ݋݅ݒ݄ܽ݁ܤݏܾ݁݅ݎܿݏ݁݀ , ݔ (ݕ?

ר , ݕ?)ܾݎܸ݁ݏ݄ܽ ? (ݖ ՜ ?)ݏܿ݅ݐܽ݁݊݅ܭ (ݔ

123

5.2 Contribution:

In this work, a novel method for representation, evaluation, and classification of

engineering requirements was introduced. The core technical contributions of this work

are twofold: 1) Developing the first comprehensive ontology for requirement

representation based on OWL and 2) developing quantitative methods and metrics for

requirement evaluation supported by automated ontological reasoning. The tools and

methods developed in this work enable more intelligent decision making process in

design. Also, they enable quantitative evaluation of the design process through

monitoring information generation rate.

 A java based automated tool was also built to translate the natural language

requirement statement into OWL ontology. The tool is based on the linguistic structure of

the requirement and it was developed in such a way that the user doesn’t require any

knowledge of owl ontology to use it. Further, necessary methods and metrics to measure

the information content of a requirement statement were also established. A semi-

automatic tool based on JAVA and OWL API was created to measure the information

content of a single requirement statement or a whole requirement document for a product.

Furthermore, to evaluate the quality of a requirement statement, necessary metrics and

rules were developed to measure the completeness and specificity of a requirement

statement. A java tool was developed to measure and assert the completeness and

specificity of a requirement. Also, requirements were classified into distinct categories

using ontology reasoning.

124

It should be noted that the methodologies presented in this work is tailored for

requirement statements that already follow a semi-structured syntax and grammar. For

more unstructured texts and non-textual information, such as those found in technical

standards or service guidelines, a more complete set of protocols should be developed.

The metrics proposed in this work provide relative measures of the information content

and should be treated as such. One explanation for the relative nature of the proposed

measure for information content is that it varies with the size of the vocabulary captured.

Therefore, the information content of the same requirement statement may change with

time, depending on how many classes and instances exist in the ontology. For this reason,

comparisons between two measure values of information content is meaningful only if

they are calculated based on the same ontology.

5.3 Future Work:

There are multiple possibilities for extension of this work in the future. Further

exterminations and analysis are required to study how the information content of

requirements for a given product correlates with the complexity of the products.

Although the proposed requirements ontology was developed to support automated

information content measurement, it could be used for enabling knowledge management

and reuse during requirement planning phase. A formal ontology with explicit semantics

not only provides the requirement planning process with more structure, but also

facilitates retrieval and reuse of the requirements from similar design projects. If

engineering requirements are mapped to different design features of the existing products
125

in the design repository, designers can adopt the existing concepts, or their variations, to

address new design problems.

 Extension of the ontology defines another avenue for future work. The ontology is

rich with respect to the vocabulary for functional requirements since it is based on the

vocabulary of the Functional Basis (FB). But the non-functional side of the ontology

needs further expansion. In particular, there is a need for extending the Attribute class of

the ontology and include a taxonomy that covers various type of attributes such as

attributes durability, recyclability, serviceability, color, and ease of use.

126

APPENDIX SECTION

OWL API Guidelines

Installation and Getting Stated with OWL API

To configure your Java project download the owl api distribution jar file from
http://sourceforge.net/projects/owlapi/. If you are using a Java IDE such as Eclipse,
IntelliJ, or Netbenas then add all the owl api distribution jar files to your classpath.

Creating and Loading Ontology

To create an empty ontology or load an existing ontology from local file
OWLOntologyManager should be created. The OWLOntologyManager provides a vital
point for creating, loading, changing and saving ontologies. The instances of ontology are
unique to a specific manager and the changes in ontology are incorporated through its
manager. The following are some example of methods to create and load ontolology.
OwlOntologyManager creates a new (empty) ontology that has the specified ontology IRI
(and no version IRI). It also requires an IRIMapper. The ontology document IRI of the
created ontology will be set to the value returned by any installed
OWLOntologyIRIMappers. If no mappers are installed or the ontology IRI was not
mapped to a document IRI by any of the installed mappers, then the ontology document
IRI will be set to the value of ontologyIRI.

Creating an Ontology

public static void createOntology () throws OWLOntologyCreationException {

 OWLOntologyManager manager =
OWLManager.createOWLOntologyManager();
 AutoIRIMapper mapper;
 mapper = new AutoIRIMapper (new File("myOntology"), true);
 manager.addIRIMapper(mapper);
 IRI myOntology_iri
=IRI.create("http://www.semanticweb.org/ontologies/ont.owl");
 OWLOntology ontology = manager.createOntology(myOntology_iri);

 }

127

Loading an Ontology

public static void loadOntology(File file) throws OWLOntologyCreationException {

 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();
 OWLOntology ontology = manager.loadOntologyFromOntologyDocument(file);

 }
OWLClass and OWLInstances

Retrieve All OWL Classes

Set<OWLClass> myClass = ontology.getClassesInSignature();

If you print the set then the output would be like :
<http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-ontology-11#Part>
<http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-ontology-
11#ModificativeAdjunct>
<http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-ontology-11#Flip>
<http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-ontology-
11#ConditionalAdjunct>
<http://www.semanticweb.org/fa11/ontologies/2014/1/untitled-ontology-11#Input>

To get the short form of classes, an instance of ShortFormProvider Class has to be
declared and the method shortFormProvider.getShortForm(OWLEntity) will provide the
short form of an owl entity in String format .
ShortFormProvider shortFormProvider = new SimpleShortFormProvider();
Set<OWLClass> myClass = ontology.getClassesInSignature();
for (OWLClass example : myClass){
 System.out.println(shortFormProvider.getShortForm(example));
 }
In this case the ouput would be like -
Part
ModificativeAdjunct
Flip
ConditionalAdjunct
Input

Retrieve All Instances:

Set< OWLNamedIndividual > myIndividuals = ontology.getIndividualsInSignature();

128

Parsing String into OWLClassExpression:

OWLDataFactory : OWLDataFactory is an interface and is bound to OWLManager.

To retrieve subclass, superclass or all instances of a user defined class; it’s necessary to
parse the user specified string into OWLClassExpression. To parse the string
OWLDataFactory, ManchesterOWLSyntaxEditorParser, and OWLEntityChecker are
needed. We also need a BidirectionalShortFormProvider to get the short form of all owl
entities. The following code could be used for parsing a string into
OWLClassExpression.

To provide an example a supporting java class MyMethods is been created and methods
for parsing a String into OWLClassExpression is shown.

public class MyMethods {
 private static OWLReasoner reasoner;
 private static OWLOntology myOntology;
 private static BidirectionalShortFormProvider bidiShortFormProvider;
 private static ShortFormProvider shortFormProvider;

//create a constructor
public MyMethods (OWLReasoner reasoner, ShortFormProvider shortFormProvider) {
 myMethods.reasoner = reasoner;
 myMethods.myOntology = reasoner.getRootOntology();
 myMethods.shortFormProvider = shortFormProvider;

OWLOntologyManager manager = myOntology.getOWLOntologyManager();

// Gets the set of loaded ontologies that this ontology is related to (i.e. The set returned
includes all ontologies returned by the OWLOntology.getImports() method plus this
ontology.) If this ontology imports ontology B, and ontology B imports ontology C, then
this method will return the set consisting of this ontology, ontology B and ontology C.
 Set<OWLOntology> importsClosure = myOntology.getImportsClosure();
 bidiShortFormProvider = new BidirectionalShortFormProviderAdapter(manager,
importsClosure, shortFormProvider);

 }

129

public static OWLClassExpression parseClassExpression(String classExpressionString)
throws ParserException {
 OWLOntologyManager manager = myOntology.getOWLOntologyManager();
 OWLDataFactory dataFactory = manager.getOWLDataFactory();
 ManchesterOWLSyntaxEditorParser myParser = new
ManchesterOWLSyntaxEditorParser(dataFactory, classExpressionString);
 myParser.setDefaultOntology(myOntology);
 OWLEntityChecker entityChecker = new
ShortFormEntityChecker(bidiShortFormProvider);
 myParser.setOWLEntityChecker(entityChecker);

 return myParser.parseClassExpression();
}
}

Retrieve SUPER/SUB/EQUIVALENT class or Instances of a class:

After parsing the string into OWLClassExpression we can get the sub class, super class,
equivalent class, and instances of a class. Reasoning is a key part of working with OWL
Ontologies and reasoners could be used to check the ontology consistency. OWLAPI has
numerous interfaces to support the interaction with reasoners. But the main interface is
the OWLReasoner that provides several methods to perform so many tasks. Likewise to
get the subclass, super class or instances of a class we also need a reasoner.

Declare a reasoner –
OWLReasoner reasoner = new StructuralReasonerFactory().createReasoner(ontology);

SubClass : The following method will return the subclass of ClassName.

public static Set<OWLClass> getsubclasses (String ClassName , boolean direct){

 OWLClassExpression cls = parseClassExpression(ClassName);

 return reasoner.getSubClasses(cls, direct).getFlattened();

 }

Note: For Boolean direct= true will return only direct subclasses of the String ClassName
and for Boolean direct=false then it will return direct and indirect subclasses of
ClassName.

130

Similarly, superclass and equivalent class of a class can be displayed.

For Super Class the return statement will be –
return reasoner.getSuperClasses(cls, direct).getFlattened();

For Equivalent Class the return statement will be –
return reasoner.getEquivalentClasses(cls).getEntities();

For Instances the above method could be used with a little change in the data type.

public static Set<OWLNamedIndividual> getInstances (String instanceName , boolean
direct){

 OWLClassExpression instance = parseClassExpression(instanceName);

 return reasoner.getInstances(instance, direct).getFlattened();

 }

OWL Properties:

OWLObjectProperties of ontology:

The method will return a set of all object properties of the ontology.

public static Set<OWLObjectProperty> getObjectProperties (OWLOntology
myOntology){

 return myOntology.getObjectPropertiesInSignature();

 }
Parsing a property expression (String) into an OWLObjectProperty: (Similar to parsing
string into OWLClassExpression)

public static Set<OWLObjectPropertyExpression> parseObjectPropertyExpression
(String propertyExpressionString) throws ParserException {
 OWLDataFactory dataFactory =
myOntology.getOWLOntologyManager().getOWLDataFactory();
 ManchesterOWLSyntaxEditorParser myParser = new
ManchesterOWLSyntaxEditorParser(dataFactory, propertyExpressionString);

131

 myParser.setDefaultOntology(myOntology);
 OWLEntityChecker entityChecker = new
ShortFormEntityChecker(bidiShortFormProvider);
 myParser.setOWLEntityChecker(entityChecker);

 return myParser.parseObjectPropertyList();

 }

Range of Property: This code will return the range for each property in terms of
Set<OWLClass> .

public static Set<OWLClass> getRange (String propertyExpressionString){
 Set<OWLClass> range = new HashSet<>();
 Set<OWLObjectPropertyExpression> property = parseObjectPropertyExpression
(propertyExpressionString);
 for (OWLObjectPropertyExpression p : property){
 range = reasoner.getObjectPropertyRanges(p, true).getFlattened();

 }
 return range;
 }

Domain of a Property: Domain of an object property is an owl class. The method will
return the domain of object property.

public static Set<OWLClass> getDomain (String propertyExpressionString){
 Set<OWLClass> domain = new HashSet<>();
 Set<OWLObjectPropertyExpression> property = parseObjectPropertyExpression
(propertyExpressionString);
 for (OWLObjectPropertyExpression p : property){
 domain = reasoner.getObjectPropertyDomains(p, true).getFlattened();

 }
 return domain;
 }

Value of Property: Gets the object property values for the specified individual and object
property expression.

132

public static Set<OWLNamedIndividual> getValueofProperty (OWLNamedIndividual
instance, String propertyExpressionString){
 Set<OWLNamedIndividual> value = new HashSet<>();
 Set<OWLObjectPropertyExpression> property = parseObjectPropertyExpression
(propertyExpressionString);
 for (OWLObjectPropertyExpression p : property){
 value = reasoner.getObjectPropertyValues(instance, p).getFlattened();

 }
 return value;
 }

OWLDataProperty

Here is an example of method, which could be used to print all the data properties in
signature with the ontology in string format.

public static void printDataProperties (OWLOntology ontology, ShortFormProvider
shortFormProvider){

 Set<OWLDataProperty> dataProperty = ontology.getDataPropertiesInSignature();

 for (OWLDataProperty property : dataProperty){

 System.out.println(shortFormProvider.getShortForm(property));
 }

 }

The output of the method will be like
run:
hasLowerValue
hasBooleanValue
hasUpperValue
isFunctional
isConstrain
hasValue

OWL Data Property Values
Suppose we want the data property and their values associated with a particular instance.
The following method could be used in this case. We have to provide the ontology and an

133

OWLNamedIndividual (instance). The method will return us a map containing the short
form of data properties (String type) as key and property value of that data property for
given instance as value.

public static Map<String, OWLLiteral> printDataProperties (OWLOntology ontology,
OWLNamedIndividual instance){

 Set<OWLDataProperty> dataProperty = ontology.getDataPropertiesInSignature();
 Map<String, OWLLiteral> map = new TreeMap<>();
 for (OWLDataProperty property : dataProperty){
 Set<OWLLiteral> literal = reasoner.getDataPropertyValues(instance,
property);
 for (OWLLiteral value: literal){
 map.put(shortFormProvider.getShortForm(property), value);
 }
 }
 return map;
 }

Method for Domain of Data Property

public static Set<OWLClass> getDomainofDataProperty (OWLDataProperty
dataProperty){

 return reasoner.getDataPropertyDomains(dataProperty, true).getFlattened();
 }

134

REFERENCES

1. Ameri, F., & Summers, J. D. (2008). An ontology for representation of fixture design
knowledge. Computer-Aided Design and Applications, 5(5), 601-611.

2. Ameri, F., Urbanovsky, C., & McArthur, C. (2012). A Systematic Approach to
Developing Ontologies for Manufacturing Service Modeling. Paper presented at the
Proc. 7th International Conference on Formal Ontology in Information Systems
(FOIS 2012), Graz, Austria,

3. Carrillo de Gea, Juan M, Nicolás, J., Alemán, J. L. F., Toval, A., Ebert, C., & Vizcaíno,
A. (2011). Requirements engineering tools. Software, IEEE, 28(4), 86-91.

4. Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R.
F., & Gao, W. (2013). The evolution, challenges, and future of knowledge
representation in product design systems. Computer-Aided Design, 45(2), 204-228.

5. Collopy, P. D., & Eames, D. J. (2001). Aerospace Manufacturing Cost Prediction from
a Measure of Part Definition Information,

6. Darlington, M. J., & Culley, S. J. (2008). Investigating ontology development for
engineering design support. Advanced Engineering Informatics, 22(1), 112-134.

7. Ducatel, G., Cui, Z., & Azvine, B. (2006). Hybrid ontology and keyword matching
indexing system. Paper presented at the Proc. of IntraWebs Workshop at WWW,

8. El-Haik, B., & Yang, K. (1999). The components of complexity in engineering design.
IIE Transactions, 31(10), 925-934.

9. Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). The linguistic approach to the
natural language requirements quality: benefit of the use of an automatic tool. Paper
presented at the Software Engineering Workshop, 2001. Proceedings. 26th Annual
NASA Goddard, 97-105.

10. Frey, D. D., Jahangir, E., & Engelhardt, F. (2000). Computing the information content
of decoupled designs. Research in Engineering Design, 12(2), 90-102.

11. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., & Schneider, L. (2002).
Sweetening ontologies with DOLCE. Knowledge engineering and knowledge
management: Ontologies and the semantic Web (pp. 166-181) Springer.

12. Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), 199-220.

13. Halpin, T. (1996). Conceptual schema and relational database design Prentice-Hall,
Inc.

14. Hauge, P. L., & Stauffer, L. A. (1993). ELK: A method for eliciting knowledge from
customers. ASME DES ENG DIV PUBL DE., ASME, NEW YORK, NY(USA), 1993,
53, 73-81.

135

15. Hooks, I. (1994). Writing good requirements. Paper presented at the INCOSE
International Symposium, , 4(1) 1247-1253.

16. Jiao, J. R., & Chen, C. (2006). Customer requirement management in product
development: a review of research issues. Concurrent Engineering, 14(3), 173-185.

17. Joshi, S., & Summers, J. D. (2014a). Impact of Requirements Elicitation Activity on
Idea Generation: A Designer Study. Paper presented at the ASME 2014 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, V007T07A026-V007T07A026.

18. Joshi, S., & Summers, J. D. (2014b). Tracking Project Health Using Completeness
and Specificity of Requirements: A Case Study. Paper presented at the ASME 2014
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, V003T04A001-V003T04A001.

19. Kossmann, M., Wong, R., Odeh, M., & Gillies, A. (2008). Ontology-driven
requirements engineering: building the OntorEM meta model. Paper presented at the
Information and Communication Technologies: From Theory to Applications, 2008.
ICTTA 2008. 3rd International Conference On, 1-6.

20. Lamar, C. (2009). Linguistic analysis of natural language engineering requirements.
21. Lami, G. (2005). QuARS: A Tool for Analyzing Requirements,
22. Lefkoff-Hagius, R., & Mason, C. H. (1990). The role of tangible and intangible

attributes in similarity and preference judgments. Advances in Consumer Research,
17(1), 135-143.

23. Lin, J., Fox, M. S., & Bilgic, T. (1996). A requirement ontology for engineering
design. Concurrent Engineering, 4(3), 279-291.

24. Mir, M., Agarwal, N., & Iqbal, K.Applied ontology for Requirements Engineering:
An approach to semantic integration of requirements model with system model.
International Conference on Software Engineering and Applications, SEA. 214-221.
doi:10.2316/P.2011.758-056

25. Morkos, B., Shankar, P., & Summers, J. D. (2012). Predicting requirement change
propagation, using higher order design structure matrices: an industry case study.
Journal of Engineering Design, 23(12), 905-926.

26. Motik, B., Sattler, U., & Studer, R. (2005). Query answering for OWL-DL with rules.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(1), 41-60.

27. Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to
creating your first ontology.

28. Paul, G., & Beitz, W. (1984). Engineering design. London, UK: Design Council,
29. Qureshi, N. A., Jureta, I. J., & Perini, A. (2011). Requirements engineering for self-

adaptive systems: Core ontology and problem statement. Paper presented at the
Advanced Information Systems Engineering, 33-47.

136

30. Rolland, C., & Proix, C. (1992). A natural language approach for requirements
engineering. Paper presented at the Advanced Information Systems Engineering,
257-277.

31. Sen, C., Caldwell, B. W., Summers, J. D., & Mocko, G. M. (2010a). Evaluation of the
functional basis using an information theoretic approach. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 24(01), 87-105.

32. Sen, C., Caldwell, B. W., Summers, J. D., & Mocko, G. M. (2010b). Evaluation of the
functional basis using an information theoretic approach. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 24(01), 87-105.

33. Sen, C., Summers, J. D., & Mocko, G. M. (2010). Topological information content
and expressiveness of function models in mechanical design. Journal of Computing
and Information Science in Engineering, 10(3), 031003.

34. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1), 3-55.

35. Suh, N. P. (1990). The principles of design. New York ; Oxford: Oxford University
Press.

36. Suh, N. P. (2001). Axiomatic design: advances and applications. New York ; Oxford:
Oxford University Press.

37. Tseng, M. M., & Jiao, J. (1998a). Computer-aided requirement management for
product definition: a methodology and implementation. Concurrent Engineering,
6(2), 145-160.

38. Tseng, M. M., & Jiao, J. (1998b). Computer-aided requirement management for
product definition: a methodology and implementation. Concurrent Engineering,
6(2), 145-160.

39. Turk, W. (2006). Writing requirements for engineers [good requirement writing].
Engineering Management, 16(3), 20-23.

40. Ulrich, K. T. (2003). Product design and development Tata McGraw-Hill Education.
41. Uschold, M., & King, M. (1995). Towards a methodology for building ontologies

Citeseer.
42. Wiegers, K. E. (1999). Writing quality requirements. Software Development, 7(5), 44-

48.
43. Wilson, W. M., Rosenberg, L. H., & Hyatt, L. E. (1997). Automated analysis of

requirement specifications. Paper presented at the Proceedings of the 19th
International Conference on Software Engineering, 161-171.

44. Wilson, D. R., & Massachusetts Institute of Technology. Department of Mechanical
Engineering. (1980). An exploratory study of complexity in axiomatic design
Retrieved from http://hdl.handle.net/1721.1/15861

137

45. Yan, W., Chen, C., & Khoo, L. P. (2001). A radial basis function neural network
multicultural factors evaluation engine for product concept development. Expert
Systems, 18(5), 219-232.

138

