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1. INTRODUCTION 

Problem Definition 

The availability of large multivariate mixed data sets has created significant new 

opportunities to uncover previously hidden insights.  Of particular interest are data 

instances or patterns with characteristics that set them apart from the body of data in 

some way.  Called outliers if based solely on a specific measure of separation, or 

anomalies if determined to be strange in a quantitative or comparative sense, they are 

often averaged out or discarded due to the analytical complexities of addressing them.  

Traditional analytic processes, based on normative Gaussian statistics, are clearly useful 

in many cases.  At the same time, these processes often fail to recognize the complexities 

of real data sets and inappropriately apply simplifying assumptions.  Of special interest is 

the ability to deeply understand complex data that affect the welfare of the general public.  

In particular, identification, mitigation, and management of low probability, unexpected 

events (aka "Black Swans" [1]) such as disasters and security threats represent an 

important end goal.  

The problem addressed in this thesis is that widely used methodologies for the 

detection of anomalies frequently ignore the context of the data [2].  Those 

methodologies that take context into account often treat the data as normally distributed 

and do not attempt to deal with complex probability distributions that would better 

represent the data and identify anomalies that are truly interesting.  In particular, many 

highly important systems such as the stock market, weather, and economic phenomena 

exhibit power law probability density functions such as the exponential-logarithmic.   
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By overlooking the context of data, anomaly detection is less selective and points that 

"in context" would not be identified as anomalies become false positives and waste 

resources, such as time, that are needed to evaluate them. Furthermore, many interesting 

and important data sets are multivariate of order greater than two and are distributional 

mixtures.  Due to the complexities of representing multivariate data, visual analytic 

techniques are of limited value in the evaluation of outliers in these real world data sets.  

One option is to model complex density functions as a mixture of several Gaussians.  

Nevertheless, this significantly increases the computational complexity of this approach.   

The proposed solution is to extend an existing, novel, Gaussian density function based, 

context sensitive, anomaly detection scheme called Conditional Anomaly Detection 

Probability Density Function (FCAD) developed by Song to use non-Gaussian 

probability distributions to decrease computational complexity and improve detection [3].  

This thesis achieved this modification by applying the skew-normal density function to 

the Gaussian Mixture Model - Conditional Anomaly Detection – Split (GMM-CAD-

Split) version of the FCAD anomaly detection algorithm in order to improve the ability to 

detect meaningful anomalies in non-normal data sets while including normal data sets as 

well. 

The hypothesis of this thesis is that current methodologies used for the context 

sensitive identification of anomalies can be extended to include the use of non-Gaussian 

probability distributions while including the effects of context, leading to improved 

identification of significant, interesting, low probability anomalies.  These new 

distributions can be used to deal with both Gaussian and non-Gaussian data sets. 
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The contribution of this thesis is that it demonstrates non-Gaussian distributions can 

be successfully integrated into the FCAD algorithm and that it establishes that the use of 

an alternative probability distribution in association with FCAD can result in 

improvement of anomaly identification in non-normal data sets.  To the best of our 

knowledge this is the first use of non-Gaussian distributions used with FCAD to identify 

anomalies in non-Gaussian and Gaussian data sets. 

The remainder of this thesis is organized as follows. Section 2 covers relevant 

background where skew-normal and FCAD are described in detail. Section 3 describes 

pertinent related work. Section 4 presents the research methodology including solution 

and experimental setup. Section 5 presents the results of the experiments.  Section 6 

contains the global evaluation of these results, and finally Section 7 includes conclusions 

and proposals for further work. 
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2. BACKGROUND 

This section covers several relevant definitions and concepts. In particular, the skew-

normal distribution is introduced and defined and Expectation Maximization reviewed.  

 

Variable Types 

The bulk of research into anomaly detection has focused on data sets containing 

continuous variables.  Continuous variables are referred to as analog variables or 

quantitative variables and are defined as being able to take on any real number value 

between its minimum value and its maximum value.  Categorical variables are discrete 

variables that have two or more categories, and are differentiated by the presence of an 

intrinsic order.  Nominal categorical variables have no intrinsic order.  For example, real 

estate agents could classify their types of property into distinct categories such as houses, 

condos, co-ops or bungalows.  So, "type of property" is a nominal variable with 4 

categories called houses, condos, co-ops and bungalows.  Additionally, the different 

categories of a nominal variable can be referred to as groups or the levels of the nominal 

variable.  Ordinal categorical variables have a clear ordering.  An example is economic 

status with values low, medium, and high.  A random variable takes on a specific value 

based on the associated probability distribution.  There are two kinds of random 

variables, discrete and continuous.  A discrete random variable is associated with a mass 

function and a continuous random variable is associated with a density function.  
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Anomaly 

Although the term anomaly is frequently used interchangeably with the term outlier 

they are conceptually different.  An anomaly is a data point that has a low probability of 

occurring either in value or in relationship to other data points.  An outlier is a data point 

that is, by some metric, separated from other observations.  One implication is that a data 

point that would not be considered an outlier based on lack of separation from other data 

points could be an anomaly if lack of separation was not expected.  Furthermore, a 

context sensitive anomaly is a data point that is probabilistically out of place only in the 

context in which it is occurring.  An example would be a day with the temperature over 

100 degrees is an anomaly if this is occurring in January in Alaska but not if it occurs in 

the Sahara Desert in July.  This definition implies that there is no separation requirement 

and that discrete variables can be anomalies just as well. 

 

Errors of Type 1 and Type 2 

An error of type one occurs when the hypothesis being tested is really true and that it 

is concluded that it is false. An error of type 2 occurs when the hypothesis being tested is 

false and it is concluded that it is true.  

  

Probability Density Function (PDF) [4] 

A Probability Density Function describes the relative likelihood for a continuous 

random variable to take on a given value.  The probability of the random variable falling 
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within a particular range of values is given by the integral of this variable’s density over 

that range—that is, it is given by the area under the density function.  An example of a 

PDF of a random variable x, where x ϵℛ, is the normal distribution (Gaussian), which is 

parameterized in terms of the mean 𝜇 and variance𝜎: 

 
p(x) =

1
σ√2π

e
−(x−µ)2
2σ2  (1) 

 

The Exponential Family [4] 

The exponential family of probability distributions shares the PDF form: 

 f(x|θ)=h(x)g(θ) exp�η(θ) · T(x)� (2) 

where h, g, T and η are all known functions of x ϵ |𝑅| and are the parameters of a 

probability density function. 

A large number of common likelihood distributions are members of this family.  Well 

known examples are normal, exponential-logarithmic, Gamma, Beta, Dirichlet, Bernoulli, 

and Poisson. The skew-normal family is an extension of the exponential family and will 

be covered in the next section. 

 

The Skew-Normal Distribution [7] 

The skew-normal distribution pioneered by is a powerful and flexible distribution that 

is being used in a rapidly growing body of work [5, 6].  The skew normal extends the 

normal distribution through the addition of a parameter 𝜆 that defines skewness or "heavy 
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tailness".  The actual parameters of the normal distribution, mean µ  and variance Σ are 

used.  The effect of these parameters can be observed in figure 1 taken from the Boost 

toolkit description1.  It can be observed that where λ  is equal to zero, the distribution 

becomes the standard normal distribution. An increasing λ  increases the skew in the 

distribution. 

The skew-normal function has the PDF: 

 

 SN(y|µ, Σ, λ) = 2𝜙(y|µ, Σ)Φ�λTΣ−1/2(y − µ)� (4) 

 

where 𝜙 stands for the density of the p-variate normal distribution and Φ stands for the 

distribution of the standard univariate normal distribution.  It can be observed that when 

λ = 0, the result is a normal distribution. 

 

 

1http://www.boost.org/doc/libs/1_50_0/libs/math/doc/sf_and_dist/html/math_toolkit/di

st/dist_ref/dists/skew_normal_dist.html 
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Figure 1 – Plots of skew-normal distribution 

 

 

Maximum Likelihood Estimation (MLE) 

Maximum Likelihood Estimation is a method of estimating the parameters of a 

statistical distribution or model.  The likelihood function for the distribution is 

“maximized’ by the parameter specific function derivative to zero and solving for the 

parameter of interest.  Intuitively, this maximizes the "agreement" of the selected model 

with the observed data.  

Based on [8], starting with a statistical model consisting of a set, 𝑋, of observed data, a 

set of latent data 𝑍 (hidden variables), and a set of unknown parameters 𝜃, along with a 

likelihood function, the Maximum Likelihood Estimation (MLE) of the unknown 

parameters is determined by what’s called the marginal likelihood of the observed data: 

 L(θ; X, Z) = p(X|θ) = �p(X, Z|θ)
Z

 (5) 
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Maximizing the actual likelihood function for a particular distribution is often 

mathematically extremely difficult. The log-likelihood is often more convenient to use.  

Because the natural logarithm is a monotonically increasing function, the log of a 

function will have the same maximum as the original function.  Taking the derivatives of 

the likelihood function frequently results in taking derivatives of products of terms and 

the log-likelihood allows taking derivatives of sums of terms instead. An example is the 

Gamma function [4]: 

  L(α,β|x) = βα

Γ(α)
xα−1e−βx (6) 

Taking the log makes differentiation possible.  Where Γ is the Gamma function: 

 log L(α, β|x) = αlogβ − logΓ(α) + (α − 1)logx − βx 

  

 

(7) 

Expectation Maximization [10] 

Expectation Maximization (EM) is an algorithm that can be used to estimate the 

parameters in a MLE when they cannot be calculated directly. The EM algorithm was 

explained and given its name in a classic 1977 paper by Dempster et al. [9].  EM 

introduced the concept of “hidden variables” (𝑍 ) that allows the model to be formulated 

in a simple way.  For example, a mixture model can be described more simply by 

assuming that each observed data point has a corresponding unobserved data point, or 

latent variable, specifying the mixture component that each data point belongs to.  The 

algorithm assumes a starting value for the parameters and in an iterative fashion refines 
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the parameters based on the quality of fit of the actual data to the implied probability 

distributions.  

The algorithm seeks to find the MLE of the marginal likelihood by iteratively applying 

the following two steps: 

Expectation Step: Calculate the expected value of the log likelihood function with 

respect to the conditional distribution of 𝑍 given 𝑋 under the current estimate of the 

parameter 𝜃(𝑡): 

 Q�θ|θ(t)� = Expected Value[log L(θ; X, Z)] (8) 

Maximization Step: Find the parameters that maximize this quantity using Maximum 

Likelihood Estimation: 

 θ(t+1) = argmaxQ�θ|θ(t)� (9) 

 

Mixture Models 

If a data set can be described as a combination of different individual distributions, for 

example two normal distributions, this is called a mixture model.  Mixture models have 

been widely applied in many applications.  Given enough mixture components, they can 

approximate many complicated probability densities and accommodate skewness and 

heavy tails.  
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Gaussian Univariate Mixture Model 

It would be easy to explicitly state a Gaussian univariate mixture model if the 

membership of every point was known.  Since this is almost never the case, methods such 

as EM were developed to facilitate membership identification and the calculation of 

model parameters [11].  Starting with a probability function represented as a weighted 

sum of 𝑀 Gaussian (normal) component densities: 

For a data set {𝑥1: 𝑥𝑘}    

 
p(xi|M) = �πkp(xi|θk)

K

k=1

 (10) 

where M is the set of mixtures and there are K mixtures with mixing weight 𝜋𝑘, mean 𝜇𝑘, 

and standard deviation 𝜎𝑘.  

 To apply EM to the univariate Gaussian Mixture model the log-likelihood function is 

 
𝐸𝑧[log𝑝(𝑥|𝑧)] =  ��𝛾(𝑧𝑛𝑘)�log𝜋𝑘 + log�𝑝(𝑥|𝜇𝑘,𝜎𝑘2)��

𝐾

𝑘=1

𝑁

𝑛=1

 (11) 

E-Step: Maximize the log likelihood function to get the E-Step and M-Step functions. 

Compute the expected values of  the latent variable using the current parameter set.   

 
𝛾(𝑧𝑛𝑘) =  

𝜋𝑘𝑜𝑙𝑑𝑝�𝑥𝑛|𝜇𝑘𝑜𝑙𝑑,𝜎𝑘𝑜𝑙𝑑
2�

∑ 𝜋𝑗𝑜𝑙𝑑𝑝 �𝑥𝑛|𝜇𝑘𝑜𝑙𝑑, �𝜎𝑘𝑜𝑙𝑑
2��𝐾

𝑗=1

 (12) 

M Step: Update  𝜋𝑘𝑜𝑙𝑑, 𝜇𝑘𝑜𝑙𝑑, 𝜎𝑘𝑜𝑙𝑑 

 

 
𝜋𝑘𝑛𝑒𝑤 =  

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

𝑁
 (13) 
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𝜇𝑘𝑛𝑒𝑤 =  

∑ 𝛾(𝑧𝑛𝑘)𝑥𝑘𝑁
𝑛=1

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

 (14) 

 

 
𝜎𝑘𝑛𝑒𝑤

2 =  
∑ 𝛾(𝑧𝑛𝑘)(𝑥𝑛 − 𝜇𝑘𝑛𝑒𝑤)2𝑁
𝑛=1

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

 (15) 

 

 

Gaussian Multivariate Mixture Model 

The multivariate Gaussian mixture model is similar to the univariate mixture model.  

The PDF for multivariate mixtures is of the form: 

 𝑝𝑗(𝒙|𝜙) =  
1

(2𝜋)𝑑/2(𝑑𝑒𝑡𝛴𝑖)
𝑒−1/2(𝑥−𝜇𝑖)𝑇 ∑ (𝑥−𝜇𝑖)−1

𝑖  (16) 

where 𝑝𝑖 is the density for an individual normal mixture. 𝜇𝑖 is the mean vector for the 

𝜇𝑖 mixture, 𝛴𝑖 is the d x d symmetric covariance matrix for the  𝑖𝑡ℎmixture. The 

covariance matrix defines the relationship between the individual mixture components 

and indicates how a change in one variable affects the other variables. 

E-Step: Maximize the log likelihood function to get the E-Step and M-Step functions. 

Compute the expected values of  the latent variable using the current parameter set [11].   

 

 𝛾(𝑧𝑛𝑘) =  
𝜋𝑘𝑜𝑙𝑑 𝑝 �𝑥𝑛|𝜇𝑘𝑜𝑙𝑑,𝜎𝑘𝑜𝑙𝑑

2�

∑ 𝜋𝑗𝑜𝑙𝑑  𝑝 �𝑥𝑛|𝜇𝑗𝑜𝑙𝑑,𝜎𝑗𝑜𝑙𝑑
2�𝐾

𝑗=1

 (17) 
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M Step: Update 𝜋𝑘𝑜𝑙𝑑, 𝜇𝑘𝑜𝑙𝑑, 𝜎𝑘𝑜𝑙𝑑
2

 

 

 
 𝜋𝑘𝑛𝑒𝑤 =  

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

𝑁
 

 

(18) 

 
𝜇𝑘𝑛𝑒𝑤 =  

∑ 𝛾(𝑧𝑛𝑘)𝑥𝑘𝑁
𝑛=1

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

 
(19) 

 

 
𝛴𝑘𝑛𝑒𝑤

2 =  
∑ 𝛾(𝑧𝑛𝑘)(𝑥𝑛 − 𝜇𝑘𝑛𝑒𝑤)(𝑥𝑛 − 𝜇𝑘𝑛𝑒𝑤)𝑇𝑁
𝑛=1

∑ 𝛾(𝑧𝑛𝑘)𝑁
𝑛=1

 (20) 

 

Multivariate Skew-Normal Mixture Model 

As cataloged in [12], the original form of the skew-normal distribution (FUSN) has 

many extensions.  The extension used for this thesis is the class SMSN (Scale Mixture 

Skew Normal) described in [13].  This class of flexible distributions can accommodate 

skewness and discrepant observations.  A family of scale mixtures of the skew-normal 

distribution that differ by their distribution in the mix was described in [16] and was used 

for coding the mixsmsn R package used in this thesis.  Looking directly at the 

multivariate case as summarized in [14]: 

The p-dimensional random vector Y belongs to the Scale Mixture Skew Normal 

(SMSN) family when 𝑌 = 𝜇 + 𝑈−1/2𝑍   where 𝜇  is a 𝑝𝑥1 location vector, 

𝑍~𝑆𝑁(0, Σ, 𝜆), and U is a positive random variable, independent of Z with a distribution 
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factor 𝐻(. |𝜈)which  is known as the mixing scale distribution indexed by the parameter 

𝜈.  

From [13] and [14], the marginal skew-normal family density function is given by: 

 

𝑆𝑀𝑆𝑁(𝑦|𝜇, Σ, 𝜆, 𝜈) = 2� 𝜙(𝑦|𝜇, u−1, Σ )Φ�𝑢1/2𝜆𝑇Σ−1/2(𝑦 − 𝜇)�
∞

0
𝑑𝐻(𝑢|𝜈) 

 (21) 

 

Where 𝜙(∙ ) is the density of the p-variate normal distribution and Φ(∙ ) represents the 

distribution function of the standard univariate normal distribution [13][14]. The choice 

of 𝐻(∙ |𝜈)determines which member of the family you are using. For example:  

 - When U=1 and 𝜆 = 0 this is the multivariate normal distribution.  

 - When U=1 this is the multivariate skew-normal distribution.    

 - When U ~ 𝐺𝑎𝑚𝑚𝑎(𝜈/2, 𝜈/2)  with 𝜈 > 0 and Gamma (a, b) denotes the distribution 

with mean a/b this is the multivariate skew student-t distribution 

Estimation of the parameters of the FMSN can be accomplished using a form of 

Expectation Maximization called Expectation-Conditional Maximization where the 

actual density function is maximized rather than the log likelihood.  Complete details of 

the derivation of the parameter estimates and Maximum Likelihood function can be 

found at [14] and [15]. 

 

Conditional Anomaly Detection Probability Density Function (FCAD) 

Given a data set with each tuple being an ordered set of variables 

(𝑥1, … … . , 𝑥𝑘, 𝑦1, … … . .𝑦𝑘), which can be represented as an ordered pair of two sets of 
14 

 



attribute values(𝑥,𝑦), 𝑓 describes a probability distribution function that gives the 

likelihood that a single experiment with input x will give an output y where x is the set of 

context variables and y the set of indicator variables.  For an individual data point its 

FCAD value describes the probability that the set of indicator values would be associated 

with the set of context variable values given the relationship between x and y values in 

the entire data set.  In other words, how unusual the combination of context and indicator 

values is.   

Formally, this PDF is described as 𝑓(y|θ, x) where the PDF is conditioned on x and θ 

is the set of model parameters that generate the set of indicator values y. Θ is the 

complete set of parameters that describe the relationship between the context variables 

and the indicator variables.  The following three sets of parameters which make up the 

overall parameter set Θ are used: 

• A mixture model U that contains 𝑛𝑢 mixture components each of dimensionality 

𝑑𝑢. U models the data sets context variables and the ith mixture component is 

denoted Ui.  

• A set V of  𝑛𝑣 additional mixture components each of dimensionality 𝑑𝑣 that 

model the indicator portion of the data space. V models the data sets indicator 

variables and the jth mixture component is denoted Vj. 

• Probabilistic mappings function 𝑝�𝑉𝑗|𝑈𝑖�.  This gives the probability that a given 

𝑈𝑖 maps to a particular 𝑉𝑗. 
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Figure 2 shows the probabilistic mapping model used by FCAD.  It can be seen that 

both the context and the indicator variables form clusters of data points as in the above 

bivariate example.  The context portion of the tuple will form clusters of points U that 

can be mapped to clusters of indicator value points 𝑉.  As seen in the figure 2, 𝑝(𝑉|𝑈)  is 

the probability that a particular cluster 𝑈𝑖 is mapped to a particular cluster 𝑉𝑗. 

 

 

 

 

Figure 2 – FCAD Model  

 

Therefore,   
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𝐹𝐶𝐴𝐷(𝑦|𝜃, 𝑥) =  �𝑝(𝑥 ∈ 𝑈𝑖)

𝑛𝑢

𝑖=1

�𝑓�𝑦|𝑉𝑗�𝑝�𝑉𝑗|𝑈𝑖�
𝑛𝑣

𝑗=1

 (22) 

Where: 

 
𝑝(𝑥 ∈ 𝑈𝑖) =

𝑓�𝑥|𝑈𝑗�𝑝�𝑈𝑗�
∑ 𝑓(𝑥|𝑈𝑘)𝑝(𝑈𝑘)𝑛𝑈
𝑘=1

 (23) 

Which is the Bayesian Probability that x was produced by the 𝑖𝑡ℎ mixture component 

in U. 

𝑓�𝑦|𝑉𝑗� is the likelihood that the 𝑗𝑡ℎ mixture component in V would produce y. 

 𝑝�𝑉𝑗|𝑈𝑖� is the probability that the 𝑖𝑡ℎ mixture component from U maps to the 𝑗𝑡ℎ  

mixture component from V. This is directly given as a parameter in θ. 

θ is chosen so as to maximize the log-likelihood of 𝑓(𝑦|𝜃, 𝑥) for all possible values of 

θ using expectation-maximization. 

Song et al. explored three different methodologies for  θ.  Two of the three involved 

jointly learning the parameters of U and V and mathematically did not lend themselves to 

incorporating a non-Gaussian distribution.  The third, called GMM-CAD-Split algorithm 

learns the mixture models for U and V separately and then learns the mapping function 

between U and V and is the focus of this thesis.  The algorithm becomes: 
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1. Learn parameters for U and V by doing separate Expectation-Maximization 

optimizations. 

2. Compute joint probabilities for all k, i, j where k refers to number of data points, i 

refers to number of Gaussians in U, and j refers to number of Gaussians in V. 

3. Compute updated  𝑝�𝑉𝚥|𝑈𝚤����������� which is the best guess: 

 
𝑝�𝑉𝚥|𝑈𝚤����������� =  �𝑏𝑘𝑖𝑗

𝑛

𝑘=1

/��𝑏𝑘𝑖ℎ

𝑛𝑣

ℎ=1

𝑛

𝑘=1

 (24) 

where:  

 
𝑏𝑘𝑖𝑗 =  

𝑓(𝑥𝑘|𝑈𝑖)𝑝(𝑈𝑖)𝑓�𝑦𝑘|𝑉𝑗�𝑝�𝑉𝑗|𝑈𝑖 ,𝜃�
∑ ∑ {𝑓(𝑥𝑘|𝑈𝑡)𝑝(𝑈𝑡)𝑓(𝑦𝑘|𝑉ℎ)𝑝(𝑉ℎ|𝑈𝑡 ,𝜃)}𝑛𝑣

ℎ=1
𝑛𝑢
𝑡=1

 (25) 

4. Set 𝑝�𝑉𝑗|𝑈𝑖� = 𝑝�𝑉𝚥|𝑈𝚤����������� . 

Although Song, et al used Gaussian distributions in their paper, 𝑓(𝑥|𝑈) and 𝑓(𝑦|𝑉) 

can be calculated for other distributions.  In this thesis, the skew-normal distribution was 

substituted and explored.  

 

Quantile – Quantile Plot (Q-Q Plot) 

Q-Q plots are a way to compare whether a data set comes from a specific distribution or 

whether two data sets come from a common distribution.  The data can be compared to a 
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random sample drawn from a specific distribution to determine if the data comes from 

that distribution.  A perfect match plots as a 45-degree line.  Deviations from this 45-

degree line are an indication of how badly and where in the distribution there is deviation. 

 

Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (KS) test is a method for comparing a data sample to a 

specific probability distribution or to another sample.  The test evaluates the distance 

between the “empirical distribution function” of the sample and the cumulative 

distribution function of either a predetermined distribution or the empirical distribution 

function of another sample.  The test generates a 𝑝 statistic and having 𝑝 >  𝛼, where 𝛼 is 

the significance level, accepts the null hypothesis.  Consequently, big  𝑝-values establish 

a  strong confidence in the hypothesis that the two samples came from the same 

distribution. In the case of this Thesis, the significance level is .05. 
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3. RELATED WORK 

Contextual anomaly detection is a relatively new area of research with the bulk of 

historical research focused on point data and separation based outlier detection. [1] 

This research is based on and extends the often cited paper: “Conditional Anomaly 

Detection” by Song et al. [3].  Song used Gaussian based Expectation Maximization and 

training sets of data to determine the parameters of the Gaussian distribution for each 

context and indicator variable.  Then, they proceeded to determine probabilistic mapping 

functions between the context Gaussian distributions and indicator Gaussian 

distributions. Their algorithm, called FCAD, generates a ranking value for each data 

point, hereby referred to as an FCAD value.  These ranking values indicate the degree to 

which a given data point is an anomaly based on how unusual a point’s indicator variable 

values are in relation to the point's context variable values.  To the best of our knowledge, 

the work presented in [3] is the first work explicitly segregating variables into contextual 

and indicator variables and attempting find probabilistic relationships between these 

variables.  Nevertheless, Song et al. did not explore the use of non-Gaussian probability 

distributions. 

Babbar and Chawla have cited this paper ([3]) in their work and denote that it was the 

first to offer an approach to discover contextual anomalies and have shown no pertinent 

additional research [5], but to date, as far as we know, no research has extended the 

concepts in the proposed direction.  This paper has been cited extensively by others.  For 

example, in his Doctoral thesis, "Detecting Patterns of Anomalies," Das developed a set 
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of methods applicable to spatial scan data [6].  His method purports to treat the contextual 

and attribute variables as completely overlapping.  His approach is interesting but clearly 

not an extension of [3]. 

Tang et al. developed a methodology for finding contextual outliers in categorical data 

using the concept of parent / child relationships which might be considered to be loosely 

based on the methodology of Song et al. but is otherwise dissimilar [15].   

Other researchers in related fields of study have proposed data analysis methodologies 

that have similarities to the overall mapping methodology of [3] but are very different in 

execution.  For example, Deodhar et al. propose a methodology using co-clustering that 

maps the joint relationships of dyadic data where the data variables are each in turn 

represented by a vector of characteristics [16].  Although finding probabilistic 

relationships between sets of variables, context is not an explicit goal.   

To the best of our knowledge, and based on the extensive literature review we have 

performed, this proposal outlines the first research using contextual mapping assuming 

non-Gaussian distributions.  Several papers have been written in recent years that apply 

the skew-normal distribution to situations historically reserved for the normal 

distribution.  These papers applied the skew-normal distribution to modeling non 

Gaussian data but did neither use the skew-normal for modeling as an extension of FCAD 

or to improve the ability to detect anomalies of any sort.  
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4. METHODOLOGY 

Experimental Setup 

Experiments were performed on a Macbook Pro.  The data sets were prepared using 

the R language environment RStudio.  R is an open source statistical computing 

language.  Both skew-normal and normal modeling of the data was done in R using the 

mixmsmn package [13].  The mixsmsn package is used to model the context and 

indicator data. Its role is to determine the best fit including the most appropriate number 

of mixture components, the parameters of the mixtures to be used in the PDF and the 

estimated probability values for each data point for each mixture cluster.  FCAD can then 

be configured to use this information to calculate the FCAD values for each data tuple. 

This package provided Expectation-Maximization based modeling of the univariate and 

multivariate mixed model skew-normal family of distributions.  In addition, it supports 

capabilities such as random variable generation based on model parameters.  The FCAD 

algorithm was implemented in MATLAB using the R output as an input.  Finally, the 

FCAD results were imported back to R for analysis and visualization. 

Experimental Design 

Five experiments were conducted. Table 1 lists the five experiments and their 

characteristics. 
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Table 1 – List of Experiments Run 

1 Compare skew-normal distribution modeling of exponential and normal 
mixtures with normal distribution modeling of the same mixtures 

2 Compare FCAD results when modeling normal context/normal indicator data 
using both skew-normal and Gaussian distribution modeling  

3 Compare FCAD results when modeling normal context/exponential indicator 
data using both skew-normal and Gaussian distribution modeling  

4 Compare FCAD results when modeling exponential context/exponential 
indicator data using both skew-normal and Gaussian distribution modeling  

5 Compare FCAD results when modeling weather data using both skew-normal 
and Gaussian distributions  

 

 Experiments 1, 2, 3, and 4 all use data sets that were constructed from a base set of 

exponential and normal data. The base exponential data parameters are shown in Table 2. 

 
Table 2 – Parameters of the original exponential mixture data 

  

The exponential data is a two component mixture model created with 1000 random 

variable samples from the exponential PDF 𝑓(𝑥|𝜆) =  𝜆𝑒𝜆𝑥.  Another 1000 samples were 

created by adding the offset 15 to the first set of samples.  This data is shown in Figure 3. 

Exponential Mix Component 𝝀 Offset 

Mix Component 1 .4 0 

Mix Component 2 .4 15 
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Figure 3 - Histogram of Original Exponential Data 

 
 

The normal data is a two component mixture model created with 2000 random 

variable samples from the normal PDF 𝑓(𝑥|𝜇,𝜎2) = 1
√2𝜋𝜎2

 𝑒
(𝑥−𝜇)2

2𝜎2   using the parameters 

shown in Table 3. 

 

 

Table 3 – Parameters of original normal mixture data 

Normal Mix Components 𝝁 𝝈 

Mix Component 1 4 .5 

Mix Component 2 12 .5 
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The data is shown in Figure 4. 

 

Figure 4 - Histogram of Original Normal Data 

 

Experiment one compared the ability of the skew-normal to model the univariate 

mixture of exponential distributions from Figure 3 and the univariate mixture of normal 

distributions from Figure 4 to the ability of the normal distribution to model the same 

mixtures.  To evaluate exponential modeling both the skew-normal and the normal 

distribution based modeler then used the random samples from Figure 3 to generate their 

own set of parameters describing the original exponential mixture model.  2000 random 

samples were generated from each parameter set and used to visualize and analyze how 

well each distribution modeled the original exponential mixture model.  The number 

2000 was arbitrarily chosen to be large enough adequately represent the distribution both 

visibly and computationally.  To evaluate normal modeling both the skew-normal and the 

normal distribution based modeler then used the random samples from Figure 4 to 
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generate their own set of parameters describing the original normal mixture model.  2000 

random samples were generated from each parameter set and used to visualize how well 

each distribution modeled the original exponential mixture model. Histograms, Q-Q 

plots, and the KS test were used for analysis.   

The null hypothesis 𝐻0 for the two sample KS test is that both samples are drawn from 

the same distribution. The alternate hypothesis, 𝐻1, says that the samples came from 

different distributions.   The KS test compares the original normal and exponential data 

sets to random samples generated from both models.  Explicitly, the parameters generated 

modeling the normal sample data set using both normal and skew-normal distributions 

are used to generate 2000 point random samples that can be compared to the original 

2000-point normal data.  The specific hypotheses for normal data modeling are: 

𝐻0−𝑛𝑜𝑟𝑚𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙 : The sample from the model based on the normal distribution was 

drawn from the same distribution as the original normal data modeled. 

𝐻1−𝑛𝑜𝑟𝑚𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙 : The sample from the model based on the normal distribution was 

drawn from a different distribution than the original normal data modeled. 

𝐻0−𝑛𝑜𝑟𝑚𝑎𝑙:𝑠𝑘𝑒𝑤: The sample from the model based on the skew-normal distribution 

was drawn from the same distribution as the original normal data modeled. 

𝐻1−𝑛𝑜𝑟𝑚𝑎𝑙:𝑠𝑘𝑒𝑤: The sample from the model based on the skew-normal distribution 

was drawn from a different distribution than the original normal data modeled. 

Additionally, the parameters generated modeling the exponential sample data set using 

both normal and skew-normal distributions are used to generate 2000 point random 

samples that can be compared to the original 2000-point exponential data.  The specific 

hypotheses for exponential data modeling are: 
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𝐻0−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙 : The sample from the model based on the normal distribution 

was drawn from the same distribution as the original exponential data modeled. 

𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙 : The sample from the model based on the normal distribution 

was drawn from a different distribution than the original exponential data modeled. 

𝐻0−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑠𝑘𝑒𝑤: The sample from the model based on the skew-normal 

distribution was drawn from the same distribution as the original exponential data 

modeled. 

𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑠𝑘𝑒𝑤: The sample from the model based on the skew-normal 

distribution was drawn from a different distribution than the original exponential data 

modeled. 

In this Thesis, we have used a decision threshold of 0.05. Hence, if the 𝑝-value from 

the KS is greater than 0.05 we reject the alternative 𝐻1  hypothesis that the samples came 

from different distributions and can conclude that they had a high likelihood of being 

generated by the same distribution.  

Experiment two compared the results of using the normal and skew-normal 

distributions to model a synthetic data set as part of using FCAD for anomaly detection 

where both context and indicator variables are bivariate sets of normally distributed 

random variables.  The context data set was created by generating 1000 random normal 

sample pairs for each mixture component using the parameters in Table 3 and then 

concatenating the rows for a total of 2000 data tuples.  The 2000 was chosen arbitrarily to 

adequately represent the distribution both visibly and in computation.  The distributions 

were not mixed.  The indicator data is a copy of the context data generating a four 
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variable final data tuple for each point.  Hence, there is no mixing between distributions, 

the context and indicator tuples are the same, and no cross mapping between context and 

indicator distributions.  How well the modeler was able to fit the data was evaluated by 

comparing the number and distribution of the 10 smallest, most anomalous, log FCAD 

values where log FCAD is the log of the FCAD value for each tuple.  A data model of 

experiment 2 is shown in Figure 5. 

 

 

 

Figure 5 – Data model for Experiment 2 

 

 

Experiment three compared the results of using the normal and skew-normal 

distributions to model a synthetic data set as a part of using FCAD for anomaly detection 

where the context variables are bivariate sets of exponentially distributed random 

variables and the indicator variables are bivariate normally distributed.  The context data 

set was created by generating 1000 random exponential sample pairs for each mixture 

Normal Normal 
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component using the parameters in Table 2 and then concatenating the rows for a total of 

2000 data tuples.  The 2000 was chosen arbitrarily to adequately represent the 

distribution both visibly and in computation.  The distributions were not mixed.  The 

context data set was created by generating 1000 random normal sample pairs for each 

mixture component using the parameters in Table 3 and then concatenating the rows for a 

total of 2000 data tuples.  The distributions were not mixed.  Hence, there is no mixing 

between distributions and no cross mapping between context and indicator distributions. 

The context and indicator data sets were combined to form a 2000 point, four-variable, 

data set.  How well the modeler was able to fit the data was evaluated by comparing the 

number and distribution of the 10 smallest, most anomalous, log FCAD values.  A data 

model of experiment 3 is shown in Figure 6. 

 

 

Figure 6 – Data model for Experiment 3 

 

 

Exponential Normal 
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Experiment four compared the results of using the normal and skew-normal 

distributions to model a synthetic data set where both context and indicator variables are 

bivariate sets of exponentially distributed random variables.  Data sets were created as 

above.  Additionally, 40 points out of the 2000 were modified such that there was cross 

mapping between the lower context distribution and the upper indicator distribution.  The 

behavior of the modelers with respect to these points was evaluated by considering the 50 

most anomalous points identified by each modeler.  A data model of experiment 4 is 

shown in Figure 7. 

 

 

 

Figure 7 – Data model for Experiment 4 

 

 

Experiment five compared the identification of anomalies when modeling a real world 

data set where both normally and exponentially distributed data is present.  This 

experiment used two variables for the context and one variable for the indicator with both 

Exponential Normal 
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exponentially and skewed normally distributed data and evaluated the generation of type 

1 errors where the modelers differed from and expert selecting anomalies.  
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5. EXPERIMENTAL RESULTS 

Experiment 1 

Table 4 includes the parameters generated by the skew-normal model when modeling the 

target exponential data. 

 

Table 4 - Skew-normal based model parameters for exponential target data 

Skew-Normal Mix 
Component 

𝝁 𝚺 𝝀 

1 -0.25 11.07 29.79 

2 15.9 11.1 23.8 

 

 

Figure 8 shows the histogram obtained from generating 2000 random samples on the 

using the skew-normal model parameters 𝜇, Σ and 𝜆 that were obtained from the R 

mixmsmn skew-normal modeling package when modeling the exponential data 

described in Table 2 and shown in Figure 3. 
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It can be observed that the lower mixture was modeled closely by the skew-normal 

distribution and although there is some distortion at the beginning of the upper 

distribution, the bulk of the upper mixture is closely modeled by comparing them to the 

original distribution histogram in Figure 3.  Table 5 includes the parameters generated by 

the normal modeler when modeling the target exponential data. 

 

Table 5 – Normal based model parameters for exponential target data 

Normal Mix 
Component 

𝝁 𝝈 

1 2.28 2.06 

2 18.26 2.53 

 

 

Figure 9 shows the histogram obtained from generating 2000 random points based on 

the using the normal model parameters 𝜇 and 𝜎 that were obtained from the R mixmsmn 

- normal modeling package when modeling the exponential data.  

Figure 8 – Random samples from skew-normal based model of exponential data 
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Figure 9 –Random samples from normal based model of exponential data 

It can be observed that both the lower and upper exponential mixtures are poorly 

modeled by the normal distribution by comparing them to the original distribution 

histogram in Figure 3.   

Table 6 includes the resulting parameters generated by the skew-normal model when 

modeling the normal data. 

 

Table 6 - Skew-normal based model parameters for normal target data 

Skew-Normal Mix 
Component 

𝝁 𝝈 𝝀 

1 3.66 .378 .941 

2 11.66 .359 .934 
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Figure 10 shows the histogram obtained from generating 2000 random points based on 

using the skew-normal model parameters 𝜇, 𝜎 and 𝜆 from Table 6 that were obtained 

from the R mixmsmn skew-normal modeling package.  

 

 

 

Figure 10 –Random samples from skew-normal based model of normal data 

 

It can be observed that both mixture components were modeled closely using the 

skew-normal distribution by comparing them to the original distribution histogram in 

Figure 3. Table 7 includes the parameters generated by the normal modeler when 

modeling the normal data. 
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Table 7 - Normal based model parameters for normal target data 

Normal Mix 
Component 

𝝁 𝝈 

1 3.99 .513 

2 11.99 .501 

 

Figure 11 shows the histogram obtained from generating 2000 random points based on 

the using the normal model parameters 𝜇 and 𝜎 that were obtained from the R mixmsmn 

normal modeling package and detailed above.  

 

 

 Figure 11 –Random samples from normal based model of normal data 

 

It can be observed that both the lower and upper exponential mixtures are well 

modeled by the normal distribution by comparing them to the original distribution 

histogram in Figure 4.   
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Another way of expressing the quality of modeling is the Q-Q plot.  The same random 

samples obtained from using the parameters of the two models were used for the plots.  

Since the Q-Q plot is best used with a single distribution, the random samples were 

separated into 2 groups with the break at 8.  

Figure 12 shows a Q-Q plot which compares the lower distribution obtained from 

using the skew-normal distribution to model the exponential data to the exponential CDF.  

It can be observed that the majority of the points fall closely along the 45-degree line. 

This implies that the cumulative density functions for both the model and an exponential 

are very similar and that the generation models are similar. 

 

Figure 12 - Lower distribution of skew-normal based model compared to exponential CDF 

Figure 13 shows a Q-Q plot which compares the lower distribution obtained from 

using the normal distribution to model the exponential data to the exponential CDF.   
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Figure 13 - Lower distribution of normal based model compared to exponential CDF 

 

It can be observed that the majority of the points do not fall closely along the 45-

degree line which implies that the cumulative density functions for the model and an 

exponential function are not similar and that the normal distribution does not model an 

exponential function accurately. 

Figure 14 shows a Q-Q plot which compares the upper distribution obtained from 

using the skew-normal distribution to model the exponential data to the exponential 

function CDF.  
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Figure 14 - Upper distribution of skew-normal based model compared to exponential CDF 

 

It can be observed that points fall closely along the 45-degree line for the first half of 

the plot and then diverge.  This means that the cumulative density functions for both the 

model and an exponential function are similar.  This is in agreement with the histogram 

which shows modeling issues in the beginning of the plot. 

Figure 15 shows a Q-Q plot which compares the upper distribution obtained from the 

using the normal distribution to model the exponential data to the exponential function 

CDF.  
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Figure 15 - Upper distribution of normal based model compared to exponential CDF 

 

It can be observed that the points poorly track the 45-degree line.  This means that the 

cumulative density functions for both the model and an exponential function are very 

different and using the normal distribution does not model the exponential data well.  

Figure 16 shows a Q-Q plot which compares the lower distribution obtained from 

using the skew-normal distribution to model the normal data to the normal CDF.  
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Figure 16 - Lower distribution of skew-normal based model compared to normal CDF 

 

 It can be observed that the majority of the points fall closely along the 45-degree line.  

This implies that the cumulative density functions for both the model and normal are very 

similar and that the generation models are similar. 

Figure17 shows a Q-Q plot which compares the lower distribution obtained from 

using the normal distribution to model the normal data to the normal CDF. 
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Figure 17 - Lower distribution of normal based model compared to normal CDF 

 

It can be observed that the majority of the points fall closely along the 45-degree line.  

This implies that the cumulative density functions for both the model and normal are very 

similar and that the generation models are similar. 

Figure 18 shows a Q-Q plot which compares the upper distribution obtained from 

using the skew-normal distribution to model the normal data to the normal CDF.  
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Figure 18 - Upper distribution of skew-normal based model compared to normal CDF 

 

It can be observed that the majority of the points fall closely along the 45-degree line.  

This implies that the cumulative density functions for both the model and normal are very 

similar and that the generation models are similar. 

Figure 19 shows a Q-Q plot which compares the upper distribution obtained from 

using the normal distribution to model the normal data to the normal CDF.  
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Figure 19 - Upper distribution of normal based model compared to normal CDF 

 

It can be observed that the majority of the points fall closely along the 45-degree line.  

This implies that the cumulative density functions for both the model and normal are very 

similar and that the generation models are similar. 

An additional way of evaluating the quality of modeling is to use the Kolmogorov-

Smirnov (KS) test.  The benefit of using this test is that the entire data set can be 

evaluated at once since the KS test compares the samples generated by modeled 

parameters to the original mixture model data.  Table 8 shows the p-values from the KS 

test comparing the modeling of exponential and normal data by the two model types.  
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Table 8 – Comparison of Kolmogorov-Smirnov p values 

Model Exponential 
Mixture 

Normal 
Mixture 

Skew-Normal p = .002804 p = .2414 

Normal p = 1.25 e-06 p = .8186 

 

The two hypotheses 𝐻1−𝑛𝑜𝑟𝑚𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙 and 𝐻1−𝑛𝑜𝑟𝑚𝑎𝑙:𝑠𝑘𝑒𝑤, described in section 

chapter 4, were tested with the KS test to determine whether random samples drawn from 

the models of the normal data set based on the normal and skew-normal distributions 

were drawn from a different distribution than the original normal data set modeled.  From 

Table 8, the 𝑝-values for modeling a normal data set are both greater than .05. This 

indicates that both 𝐻1−𝑛𝑜𝑟𝑚𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙  and 𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑠𝑘𝑒𝑤  can be rejected and that 

samples drawn from the model and the original data came from the same distribution.  

We can conclude that both models did an acceptable job modeling the normal data set but 

using a normal distribution to model normal data provided a better fit. 

Modeling the exponential data is slightly more complicated.  𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙  

and 𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑠𝑘𝑒𝑤  were tested using the KS test to determine whether random 

samples drawn from the models of the exponential data set based on the normal and 

skew-normal distributions were drawn from a different distribution than the original 

exponential data set modeled.  From table 8 it can be observed that both p-values for 

exponential modeling are less than 0.05 indicating that the alternate hypotheses 

𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑛𝑜𝑟𝑚𝑎𝑙    and 𝐻1−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:𝑠𝑘𝑒𝑤  should be accepted, suggesting that the 

samples came from different distributions.  At the same time, although grounds for 
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accepting the alternative hypotheses, the skew-normal p-value of .0028 is much larger 

than the normal p-value of .00000125. This implies that the skew-normal based model, 

although not superb, is significantly better than the normal distribution based model when 

modeling exponential data. 

 

Experiment 2 

Figure 20 shows a histogram of 2000 log FCAD values when the context and indicator 

variable distributions, in this case both normal data were modeled using the normal 

distribution. 

 

 

 

Figure 20 – Log FCAD data from normal based modeling of normal data 
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Figure 21 shows a histogram of 2000 log FCAD values when the context and indicator 

variable distributions, in this case both normal data were modeled using the skew-normal 

distribution.   

 

Figure 21 – Log FCAD data from skew-normal based modeling of normal data 

 

Based on visual comparison, both FCAD data plots look similar. The mean log FCAD 

values, -3.331 for norm and -3.2442 are very close with standard deviations of 1.003 and 

1.179 respectively.  This implies that both modeling distributions yield roughly the same 

results at the overall level.  The FCAD data from using a normal distribution has a 

narrower range of values than the FCAD data from using a skew-normal distribution.  

This smaller spread might imply less ability to discriminate between adjacent FCAD 

values for normal modeling.  Figure 22 shows the context variables plotted and the top 10 

anomalies generated using normal modeling indicated in red. 
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Figure 22 – FCAD anomalies for context variables from normal based modeling 

 

Figure 23 shows the context variables plotted and the top 10 anomalies generated 

using skew-normal modeling indicated in red. 
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Figure 23 – FCAD anomalies for context variables from skew-normal based modeling 

 

It can be observed that several of the points identified as anomalous appear in both 

plots.  

 

Experiment 3 

Figure 24 shows a histogram of FCAD values for 2000 data tuples with exponential 

context variables and normally distributed indicator variables when modeled using the 

normal distribution. 
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Figure 24 – Log FCAD data from normal based modeling of exponential context / normal indicator 

data 

 

Figure 25 shows a histogram of FCAD values for 2000 data tuples with exponential 

context variables and normally distributed indicator variables when modeled using the 

skew-normal distribution. 

50 

 



 

Figure 25 –Log FCAD skew-normal based modeling of exponential context / normal indicator data 

 

It can be observed that the highest frequency values of log FCAD in the normal 

histogram have shifted toward the left or toward more anomalous. Additionally, it can be 

observed that the tail when using the normal distribution for modeling is shorter that 

when using the skew-normal distribution.  This implies that using the skew-normal 

distribution allows for a more informed modeling and a more refined discrimination 

between individual tuples.  At the same time the mean of the 200 most anomalous points 

(smallest log FCAD values) when using the skew-normal distribution is -19.68 versus -

17.78 when using the normal distribution with standard deviations of 5.5 and 4.9 

respectively. This implies that the skew-normal distribution is capable of making a 

“stronger” decision that a point is considered anomalous.  
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To further highlight the differences, Figure 26 shows a scatter plot of the context data 

with the 10 smallest log FCAD points when using the normal distribution for modeling 

highlighted in red.  

 

Figure 26 – Context data with small log FCAD values based on normal modeling 

 

Figure 27 shows a scatter plot of the context data with the 10 smallest log FCAD 

points derived from using the skew-normal distribution for modeling highlighted in red. 
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Figure 27 – Context data with small log FCAD values based on skew-normal modeling 

 

. It can be observed that although there are slight differences between the two plots, in 

the main both modeling methods identify roughly the same points as anomalies. 

 

 

Experiment 4 

Figure 28 shows a histogram of log FCAD values for 2000 data tuples with 

exponential context variables and exponential indicator variables with 40 points cross 

mapped when modeled using the normal distribution. 
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Figure 28 –Log FCAD distribution when using normal distribution in modeling 

 

Figure 29 shows a histogram of FCAD values for 2000 data tuples with exponential 

context variables and exponential indicator variables with 40 points cross mapped when 

modeled using the skew-normal distribution. 
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Figure 29 – Log FCAD distribution when using skew-normal distribution in modeling 

 

It can be observed that the highest frequency values of FCAD in the normal histogram 

have shifted toward the left or more anomalous.  Additionally, it can be observed that the 

spread of the skew-normal log FCAD values continues to be larger than the spread of the 

log FCAD values obtained from using a normal distribution for modeling.  Furthermore, 

the mean of the 200 most anomalous points (lowest log FCAD values) when using the 

skew-normal distribution for modeling is -35.84 versus -32.05 when using the normal 

distribution for modeling with standard deviations of 10.78 and 9.60 respectively.  This 

implies that using the skew-normal distribution is capable of making a “stronger” 

decision that a point is considered anomalous.  Figure 30 shows a scatter plot of the 

context data with the smallest 50 log FCAD points derived from using the normal 

distribution for modeling highlighted in red. 
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Figure 30 – Normal based modeling anomalies displayed in context data 

 

Figure 31 shows a scatter plot of the context data with smallest 50 log FCAD points 

derived from using the skew-normal distribution for modeling highlighted in red. 
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Figure 31 – Skew-normal based modeling anomalies displayed in context data 

 

It can be observed that both modeling methods identified roughly the same points as 

anomalies.  There was a trend exhibited when using the skew-normal distribution toward 

less distance based anomalies but it was subtle. 

Finally, looking at the 40 injected points, none of the injected points were included in 

the top 50 anomalies by either method.  

 

Experiment 5 

Figure 32 shows a histogram of the maximum Central Texas temperatures from 1940 

to present. 
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Figure 32 - Histogram of Central Texas Max Temperatures from 1940 to Present 

 

It can be observed that the data is skewed substantially to the right. Figure 33 shows a 

histogram of precipitation over the same period. 
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Figure 33 - Histogram of Central Texas Precipitation from 1940 to Present 

It can be observed that the data is highly exponential.  Figure 34 shows a scatter plot 

of daily rainfall and maximum temperatures for Central Texas covering 1940 to the 

present day.  In reality, the precipitation data is exponentially distributed with the 

majority of the values being zero or no rainfall. 
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Figure 34- Max Temperature and Rainfall data for Central Texas 1940-Present 

 

It can be observed that to the casual analyst, the data appears to be normally 

distributed with some extreme precipitation values that might be considered anomalies.   

Figure 35 shows the same scatter plot with the points manually considered to be 

anomalies colored blue. 
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Figure 35 – Weather data with anomalies manually selected 

It can be observed that these data points represent extremes of precipitation and that 

there are no temperature related points that stand out as extremes.   

Figure 36 shows the same scatter plot with the smallest 12 FCAD points when the 

normal distribution is used for FCAD modeling highlighted in red. 
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Figure 36 – FCAD anomalies identified using normal based modeling of weather data 

It can be observed that all of the points that were manually selected as anomalies are 

selected by FCAD when using the normal distribution for modeling as well as additional 

distance based precipitation related points. 

Figure 37 shows the same scatter plot with the smallest 12 FCAD points when the 

skew-normal distribution is used for FCAD modeling highlighted in red.  
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Figure 37 – FCAD anomalies identified using skew-normal modeling of weather data 

It can be observed that additional points have been identified as anomalies when using 

the skew-normal distribution for modeling and it can be further observed that these points 

are all low temperature based points and are not distance based points.  Normally, these 

points would not be selected by a human observer.  All points that were manually 

selected as anomalies are identified when using the skew-normal distribution for 

modeling.  

Table 9 shows all data points identified as anomaly points using the three methods of 

anomaly determination: manual, using the normal distribution for modeling and using the 

skew-normal distribution for modeling.  Type 1 errors, points identified as anomalies not 

visually identified, are detailed. 

 

63 

 



Table 9- Identified Anomaly Points 

Month 
Max 

Temp 
Precipitation 

Manual 

Baseline 
Normal 

Skew 

Normal 

Point 

Number 

11 68 7.55 Yes Yes Yes 22600 

9 78 7.04 Yes Yes Yes 25818 

10 78 6.24 Yes Yes Yes 21475 

8 87 5.68 Yes Yes Yes 19945 

6 81 5.66 Yes Yes Yes 15138 

5 79 5.55 Yes Yes Yes 14386 

1 20 0 No No T1 8046 

5 82 5.2 Yes Yes Yes 27539 

1 21 0 No No T1 4048 

1 21 0.05 No No T1 4049 

1 22 0.29 No No T1 3318 

1 52 4.41 No T1 T1 18637 

10 75 4.93 No T1 No 27697 

7 91 4.85 No T1 No 14445 

10 76 4.79 No T1 No 27691 

9 91 4.71 No T1 No 12323 

 

It can be observed that there are differences between the points identified as 

anomalies. No type two errors are present indicating that the FCAD modeling did as least 

as well as a human observer in anomaly identification. 
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Using both the normal and skew-normal distributions for modeling identified 

anomalies that were not identified manually.  This can be explained based on the 

difference between a human visually observing a plotted data set in two dimensions and 

assuming that the data is normally distributed.  Anomalies are visually identified based 

on being distance based outliers.  The observer selected points are all exceptional in that 

they represent very large daily precipitation values.  Both modeling methods calculated 

the total probability of a tuples context variables resulting in membership in a particular 

of indicator variable values.  Manual inspection the plot identified seven of the points.  

Using both the normal distribution for modeling and skew-normal distribution for 

modeling identified five additional anomalies each.  There was agreement on only one of 

these points.  The remaining four points identified by using the normal distribution for 

modeling were all precipitation events. The four additional anomalies identified by using 

the skew-normal distribution represent temperature based anomalies where none are 

outliers.  This implies that the ability to correctly incorporate the exponential nature of 

rainfall data results in a more complex selection of anomalies.  
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6.  RESULT EVALUATION 

This thesis demonstrates that an innovative context sensitive anomaly detection 

algorithm can be extended to use non-Gaussian probability distributions in the calculation 

of PDF values and enhance the ability to discover anomalies.  Under the right 

circumstances, the skew-normal distribution was capable of providing enhanced detection 

performance when used with non-Gaussian data and had acceptable performance when 

used with normal data.  

Modeling with the skew-normal distribution results in the majority of points in a data 

set being treated as less anomalous than when modeling with the normal distribution.  

Table 10 shows mean log FCAD values for Experiments 2, 3 and 4 considering the 1000 

points out of 2000 with the largest log FCAD values and the 1400 points out of 2000 with 

the largest log FCAD values for both normal and skew-normal distribution based models.  

The mean log FCAD value for skew-normal is always larger than the mean value for 

normal distribution based modeling. 
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Table 10 – Mean log FCAD values for least anomalous points 

Experiment Mean FCAD 
Upper 50% Points 

Mean FCAD 
Upper 70% Points 

Experiment 2 - Normal -2.62 -2.80 
Experiment 2- Skew-Normal -2.42 -2.63 
   
Experiment 3 - Normal -4.87 -5.15 
Experiment 3 – Skew-Normal -4.71 -4.90 
   
Experiment 4 - Normal -6.69 -7.14 
Experiment 4 – Skew-Normal -6.15 -6.74 

 

Table 11 shows the means of log FCAD values for the 200 most anomalous points 

identified by each model. 

 

 

Table 11 – Mean log FCAD values for most anomalous points 

Experiment Mean FCAD 
Lowest 200 Points 

Experiment 2 - Normal -5.6 

Experiment 2- Skew-Normal -6.0 
  

Experiment 3 - Normal -17.78 

Experiment 3 – Skew-Normal -19.98 

  

Experiment 4 - Normal -32.05 

Experiment 4 – Skew-Normal -35.84 
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In Table 11, it can be observed from the 200 most anomalous points from each 

experiment, that the mean log FCAD value when using the skew-normal distribution is 

smaller than the mean when using normal distribution based modeling.  This suggests 

that skew-normal based modeling more positively identifies those points that are truly 

lower probability. 

Both skew-normal and normal distribution based modeling appear to be effective at 

anomaly detection of clearly outlier anomalies and capture what would likely be 

identified by a human being. Finally, given all of the above, Experiment 5 strongly 

suggests that using skew–normal distribution based modeling provides a means of 

identifying interesting, important anomalies that previously would have gone unnoticed.  

Because of better data modeling afforded by the skew–normal distribution, and the 

application of context based probabilistic analysis, the unusual nature of the decline in 

temperature extrema became apparent.  
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7. CONCLUSIONS AND FUTURE WORK 

The usefulness of FCAD in identifying anomalies in complex context driven data sets 

depends on the ability to correctly calculate the PDF of the multivariate mixture model 

representing the context and the indicator variables.  Furthermore, in many areas of 

interest, exponentially biased data is relatively common.  

In this thesis, it was shown that, when data that is normally distributed is modeled 

using the skew-normal distribution, there is little difference in the anomalies identified. In 

the case of data sets containing skewed data, the skew-normal distribution is able to take 

into account the skew and provide a PDF that more accurately reflected the data and 

therefore, under the right circumstances, allowed FCAD to more accurately identify low 

probability tuples.  

It can be concluded that the context sensitive anomaly detection algorithm FCAD can 

be extended to utilize non-Gaussian probability distributions to better detect non-obvious 

anomalies in non-Gaussian data sets.  In particular, the skew-normal distribution can be 

used to model both Gaussian and non-Gaussian data and provide greater flexibility.  We 

have shown that the use of an alternative distribution to model non-Gaussian data leads to 

better anomaly detection when used with FCAD and has little negative impact when used 

with Gaussian data sets. 

There are several avenues for future work including: 1) the skew-normal is part of a 

family of skew density functions that includes the skew-student-t, skew-slash, and skew-

contaminated.  Each of these distributions provides the potential for an even better fit to 
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specific data sets and could be explored in the same fashion.  2) Rewrite the extension of 

FCAD to analyze discrete data sets.  
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