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ON THE V-CONDITIONAL ASYMPTOTIC STABILITY OF THE
SOLUTIONS OF A NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

ABSTRACT. We provide sufficient conditions for W-conditional asymptotic sta-
bility of the solutions of a nonlinear Volterra integro-differential system.

1. INTRODUCTION

The purpose of this paper is to provide sufficient conditions for W-conditional
asymptotic stability of the solutions of the nonlinear Volterra integro-differential
System

¥ = At)r —l—/o F(t,s,x(s))ds (1.1)

and for the linear system
' = [A(t) + B(t)]z (1.2)

as a perturbed systems of
y' = A(t)y. (1.3)

We investigate conditions on a fundamental matrix Y'(¢) of the linear equation
(1.3) and on the functions B(t) and F(t,s,z) under which the solutions of (L)),
(1.2) or are U-conditionally asymptotically stable on R. Here, ¥ is a contin-
uous matrix function. The introduction of the matrix function ¥ permits to obtain
a mixed asymptotic behavior of the solutions.

The problem of W- stability for systems of ordinary differential equations has been
studied by many authors, as e.g. Akinyele [1l 2], Constantin [4], 5], Hallam [I3],
Kuben [I5], Morchalo [I8]. In these papers, the function ¥ is a scalar continuous
function (and monotone in [2], nondecreasing in [4]).

In our papers [8, @, [10], we have proved sufficient conditions for various types of
W-stability of the trivial solution of the equations , and . In these
papers, the function ¥ is a continuous matrix function.

Recent works for stability of solutions of (1.1) have been by Avramescu [3],
by Hara, Yoneyama and Itoh [I4], by Lakshmikantham and Rama Mohana Rao
[16], by Mahfoud [I7] and others. Coppel’s paper [0, Chapter III, Theorem 12],
[7] deal with the instability and conditional asymptotic stability of the solutions
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of a systems of differential equations. Spéth’s paper [21I] and Weyl’s paper [22]
deal with the conditional stability of solutions of systems of differential equations.
In our papers |11, [12], we have proved a necessary and sufficient conditions for U-
instability and W-conditional stability of the equation and sufficient conditions
for W-instability and W-conditional stability of trivial solution of the equations

and (1.2).

2. DEFINITIONS, NOTATION AND HYPOTHESES

Let R? denote the Euclidean d-space. For @ = (z1,%2,...24)7 € R, let ||z|| =
max{|z1|,|z2l,...|zq|} be the norm of z. For a dxd matrix A = (a;;), we define the
norm A by |A| = sup,<; [|Az]; it is well-known that [A] = max;<i<q Z‘;:l lasj].

In the equations f we assume that A(t) is a continuous d X d matrix
on Ry =[0,00) and F: DxR? - R4 D = {(t,s) € R?2:0<s<t<oc},isa
continuous d-vector with respect to all variables.

Let ¥, : Ry — (0,00),4=1,2,...d, be a continuous functions and

U = diag[\lll, \IJQ, ‘e \I’d]

A matrix P is said to be a projection matrix if P? = P. If P is a projection, then
so is I — P. Two such projections, whose sum is I and whose product is 0, are said
to be supplementary.

Definition 2.1. The solution z(t) of is said to be W-stable on R, if for every
e > 0 and any ¢y > 0, there exists a § = d(g,tp) > 0 such that any solution Z(t)
of which satisfies the inequality || ¥ (to)(Z(to) — x(to))]| < d(e,to) exists and
satisfies the inequality ||U(¢)(Z(t) — z(t))| < € for all t > t;.

Otherwise, is said that the solution x(t) is ¥-unstable on R..

Definition 2.2. A function ¢ : Ry — R? is said to be W-bounded on R if ¥ (#)p(t)
is bounded on R .

Remark 2.3. For ¥; = 1,7 =1,2,...d, we obtain the notion of classical stability,
instability and boundedness, respectively.

Definition 2.4. The solution z(t) of (L.1) is said to be ¥-conditionally stable on
R, if it is not W-stable on Ry but there exists a sequence (z,(t)) of solutions of
(1.1) defined for all ¢ > 0 such that

lim U (t)x,(t) = U(t)x(t), uniformly on R;.
n—oo
If the sequence z,,(t) can be chosen so that

tlim U(t)(zn(t) —xz(t)) =0, forn=1,2,...
—00
then x(t) is said to be W-conditionally asymptotically stable on R..

Remark 2.5. (1) It is easy to see that if |¥(¢)| and |¥~!(¢)| are bounded on
R,, then the W-conditional asymptotic stability is equivalent with the classical
conditional asymptotic stability.

(2) In the same manner as in classical conditional asymptotic stability, we can
speak about W-conditional asymptotic stability of a linear equation. Indeed, let
z(t), y(t) be two solutions of the linear equation (1.3). We suppose that z(t) is
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U-conditionally asymptotically stable on R;. Then y(¢) is U-unstable on Ry (see
[I1, Theorem 1]) and

lim U(t)yn(t) = U(t)y(t), uniformly on Ry,
hm U(t)(yn(t) —y(t)) =0, forn=1,2,...

where y, (t) = z,(t) — ( )+ y(t), n € N are solutions of the linear equation (1
Thus, all solutions of (| are U-conditionally asymptotically stable on R .

3. U-CONDITIONAL ASYMPTOTIC STABILITY OF LINEAR EQUATIONS

In this section we give necessary and sufﬁcient conditions for the ¥-conditional
asymptotic stability of the linear equation and sufﬁcient conditions for the
V-conditional asymptotic stability of the hnear equations (1.3]) and .

Theorem 3.1. The linear equation (1.3 is ¥-conditionally asymptotically stable
on Ry if and only if it has a V-unbounded solution on Ry and a non-trivial solution
Yyo(t) such that im0 ¥(t)yo(t) = 0.

Proof. Let Y (t) be a fundamental matrix for . Suppose that the linear equation
is W-conditionally asymptotically stable on Ry. From Definition and [8|
Theorem 3.1], it follows that |¥(t)Y(t)| is unbounded on R,. Thus, the linear equa-
tion has at least one W-unbounded solution on R . In addition, there exists a
sequence (y,(t)) of non-trivial solutions of such that lim,, ., ¥(t)y,(t) = 0,
uniformly on Ry and lim;_,o U (¢)y,(t) = 0 for n = 1,2,.... The proof of the “only
if” part is complete.

Suppose, conversely, that has at least one W-unbounded solution on R and
at least one non-trivial solution yo(t) such that lim; ., ¥(t)yo(t) = 0. It follows
that the matrix U(¢)Y(¢) is unbounded on Ry. Consequently, the linear equation
is U-unstable on Ry (See [IT, Theorem 1]). On the other hand, (Lyo(t))
is a sequence of solutions of such that lim, . ~W(t)yo(t) = 0, uniformly
on Ry and limy .o 2W()yo(t) = 0 for n € N. Thus, the linear equation is
W-conditionally asymptotically stable on R, . The proof is complete. O

We remark that Theorem generalizes a similar result in connection with the
classical conditional asymptotic stability in [6].

The conditions for ¥-conditional asymptotic stability of the linear equation
can be expressed in terms of a fundamental matrix for .

Theorem 3.2. Let Y (t) be a fundamental matriz for (1.3). Then, the linear equa-
tion (1.3) is W-conditionally asymptotically stable on R if and only if there are
satisfied two following conditions:
(a) There exists a projection Py such that U(t)Y (t)Py is unbounded on R ;
(b) there exists a projection Py # 0 such that lims o, ¥(¢)Y (¢)Py = 0.

Proof. First, we shall prove the sufficiency. From the hypoyhesis (a) and [I1l The-
orem 1], it follows that the linear equation (1.3]) is ¥-unstable on R,.
Let y(t) be a non-trivial solution on Ry of the linear equation (1.3). Let (\,)
be such that A\, € R\ {1}, lim,, o A\, = 1 and let (y,,) be defined by
yn(t) = Y () PY 1 (0)(Any(0)) + Y (1)(I — P2)Y 1 (0)y(0), ¢ > 0.
It is easy to see that y,(t), n € N, are solutions of the linear equation (|1.3).
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For n € N and t > 0, we have
12 ()yn(t) = @)y (@) = [¥E)Y ()Y (0)(An — 1)y(0))]
< P = [ E@OY @) Pel[YH0)y(0)]|

Thus,

nlLrI;O U(t)yn(t) = ¥(t)y(t), uniformly on R,

tlirglo U(t)(yn(t) —y(t)) =0, forn=12,....
It follows that the linear equation is W-conditionally asymptotically stable on
R,.

Now, we shall prove the necessity. From W-conditional asymptotic stability on
R of (L1.3), it follows that W(¢)Y (¢) is unbounded on Ry (see [I1, Theorem 1].

In addition, there exists a non-trivial solution yo(¢) on Ry of such that
limy 00 ¥(t)yo(t) = 0. Thus, there exists a constant vector ¢ # 0 such that
U(t)Y (t)c is such that limy_ o, U(¢)Y (t)c = 0. Let ¢s = ||c||. Let P> be the null
matrix in which the s-th column is replaced with ||c||~tc. Thus, P, is a projection
and lim;_,o, ¥(¢)Y (t)P2 = 0.

The proof is now complete. O

A sufficient condition for W-conditional asymptotic stability is given by the fol-
lowing theorem.

Theorem 3.3. If there exist two supplementary projections Py, Py, P; # 0, and
a positive constant K such that the fundamental matriz Y (t) of the equation (1.3
satisfies the condition

t e}
/ \\If(t)y(t)Plrl(s)qu(s)|ds+/ [T ()Y (1) PY "1 (s)T 1 (s)|ds < K
0 t
for allt > 0, then, the linear equation (1.3) is U-conditionally asymptotically stable
on R
The proof of the above theorem follows from [IT, Theorem 2 and Lemmas 1, 2].

Theorem 3.4. Suppose that:

(1) There exist supplementary projections Py, Pa, P; # 0, and a constant K > 0
such that the fundamental matriz Y (t) of (1.3) satisfies the conditions

T(Y ()PY 1 (s)T 1 (s)| < K, for0<s<t,
W)Y (H)PY 1 (s)U 7 (s)| < K, for0<t<s.
(2) limy— oo T(£)Y (t)P1 = 0.
(3) B(t) is a d x d continuous matriz function on Ry such that
/ |U(t)B(t)~(t)|dt is convergent.
0
(4) The linear equations (L.2) and (1.3)) are U-unstable on R, .
Then (1.2) is U-conditionally asymptotically stable on R, .
Proof. We choose ty > 0 sufficiently large so that

=K h |U () B(t)W 1 (t)|dt < 1.
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‘We put
S = {x:ty,00) — R?: z is continuous and ¥-bounded on [ty, c0)}.
Define on the set S a norm by
[l = sup [[¥(&)z()]-
t>to

It is well known that (S, ||| |||) is a Banach real space.
For x € S, we define

(Tz)(t) = /t Y ()P, Y~ (s)B(s)a(s)ds — /t Y WP () B(s)u(s)ds, > to.

It is easy to see that (T'z)(t) exists and is continuous for ¢ > ¢, (see the Proof of
[12] Theorem 3]). We have
o0
e(@)(Tz) (O] < K t @ (s)B(s) U (s)[[1W(5)a(s) 1 ds
0
qsup [[W(@)x ()]l = glll=[l], for £ > to.
t>to

IN

IN

This shows that T'S C S.
On the other hand, T is linear and

T2y = Tas||| = [IT (21 — 22)[[] < glflz1 — 22l]]-

Thus, T is a contraction on the Banach space (S, ||| - |||)-

Now, for every fixed - bounded solution y of we define an operator S, :
S — S, by the relation

Syx(t) = y(t) + Tx(t), t e [ty,00). (3.1)
It follows by the Banach contraction principle that S, has a unique fixed point in
S. An easy computation shows that the fixed point z(t) = Syz(t), t € [tg, 00), is a
W-bounded solution of .

Let S, S3 be the spaces of U-bounded solutions of equations and
respectively. We define the mapping C : S3 — S5 in the following way: For every
y € S3, Cy will be the fixed point of the contraction S,.

Now, from z = Cy and xy = Cyp, we have that ¢ = y + Tz, zg = yo + T'xg
respectively. We obtain

'z = zolll <[y = yolll + [[| Tz = Tol]
< |lly = wolll + alll « = zol[]-

Thus
-1
'z —zolll < (1 —=q) (Il ¥ = wolll- (3.2)
On the other hand,
Iy =wolll = Il # = Tz — w0 + Txoll|
<lz—mzo |l + [[| Te —Txo ]|

< (T4 gl & =0 |I]-

Thus, C' is homeomorfism.
Now, we prove that if z, y € S are ¥-bounded solutions of (|1.2) and (1.3)
respectively such that x = Cy, then

Jim (1) (1) — ()] = 0.
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Indeed, for a given € > 0, we choose t; > t; so that

K sup [[¥(t)(t)] too W (s)B(s) T~ (s)|ds < =

t>to 3
Thus, for t > t1, we have

() (2(t) = y@®)l
= [[e@)(Tx)@®)]|

[e@®Y ()PY ™" (5)B(s)a(s)|lds

to

+ /too 1T () PY ()T (s)U(s)B(s)T " (5)W(5)x(s)||ds

< Wy mP] [ Y (s)B(s)(s)]ds

+ KS;lp (@) (L)l I‘II(S)B(S)‘I’fl(S)ldS
+ K sup [¥(2)a(0)] / U (s)ds
< [(t) P1|/ 1Y =1(s)B(s)a(s)||ds + 2%.
Thus and assumption 3,
Jin (W () ((t) =y (@) = 0. (3:3)

(From the hypotheses, [11, Theorem1 and 2] it follows that the linear equation
is W-conditionally asymptotically stable on R .

Let z(t) be a U-bounded solution on R of (1.2). ;From the assumption 4, this
solution is W-unstable on Ry. Let y = C~'z. From Definition it follows that
there exists a sequence (y,,) of solutions of defined on R, such that

lim U(t)y,(t) = U(t)y(t), uniformly on Ry,
tlim U(t)(yn(t) —y(t)) =0, forn=12,....

Let 2, = Cy,. From (3.2) it follows that the sequence (z,) of solutions of (1.2)
defined on [tg,o0) (in fact, defined on R ) satisfies the condition

lim ¥(t)z, (t) =¥(t)z(t), uniformly on [tg,0).

Clearly,
lim ,(t,) = x(to).

By the Dependence on initial conditions Theorem (see [6, Chapter I, Theorem 3]),
it follows that
lim z,(t) = z(t), uniformly on [0, t].
Hence,
lim ¥(¢)x,(t) = ¥(¢)x(t), uniformly on [0,%o].
Thus,
lim ¥(t)z, (t) =¥(t)z(t), uniformly on R,.

n—oo
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This shows that the linear equation (1.2) is W-conditionally stable on Ry. From
(3.3) and
(t)(@n(t) —a(t) = W) (zn(t) — yn(t)) + W) (yn(t) — y(t)) + W (E)(y(t) — (1)),
it follows that

lim ¥(¢)(x,(t) —z(t)) =0, forn=1,2,....

t—o0
This shows that the linear equation (|1.2]) is W-conditionally asymptotically stable
on R;. The proof is complete. |

Theorem 3.5. Suppose that:

(1) There exist two supplementary projections Py, Pa, P; # 0, and a positive
constant K such that the fundamental matriz Y (t) of the equation (1.3
satisfies the condition

/t [T ()Y (t)PY 1 (s)T 1 (s)|ds + /Oo |T()Y (1) PY "1 (s)T 1 (s)|ds < K
0 t

for all t > 0.
(2) B(t) is a d x d continuous matriz function on Ry such that

Jim [@()B()T (t)] = 0.
Then, the linear equation (1.2) is U-conditionally asymptotically stable on R,..
The proof of the above theorem is similar to the proof of Theorem [3.4]

Remark 3.6. The first condition of the above Theorems can certainly be satisfied
if A(t) = A is a dxd real constant matrix which has characteristic roots with
different real parts. In this case, e.g., there exists an interval (o, 8) C R such that
for A € (a, 8), ¥(t) = e I, and Y (¢) can satisfy the first hypotheses of Theorems.

We have a similar situation if A(t) is a d x d real continuous periodic matrix (See
[12, Examples 1, 2]).

Thus, the above results can be considered as a generalization of a well-known
result in conection with the classical conditional asymptotic stability.

Remark 3.7. If in the above Theorems, the linear equation is only W-
conditionally asymptotically stable on R, then the perturbed equation (|1.2)) can
not be W-conditionally asymptotically stable on R..

This is shown by the next example transformed after an equation due to Perron
[19).

Example 3.8. Let a,b € R such that 0 < 4a < 1, b # 0 and

sinln(t +1) + cosln(t + 1) — 4a 0
A(t)< (141 + costu(e +1) _za),

Then, a fundamental matrix for the homogeneous equation (1.3)) is

e(t+1)[sinln(t+1)—4a] 0
Y(t) = < 0 e—2a(t+1)) :

1 0
U(t) = <0 ea(t+1)> .

Let
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‘We have

(t4+1)[sinIn(t+1)—4a]
(Y (1) = <e 0 ) .

0 e—a(t—i—l)
Let ¢/, = e®+2)7™ _ 1 for n = 1,2.... Since lim,, .o [¥(,)Y (£,)| = oo, it follows
that the linear equation (1.3]) is ¥-unstable on R (see [II, Theorem 1])

From Theorem it follows that the linear equation (1.3) is W-conditionally
asymptotically stable on Ry . If we take

0 bef2a(t+1)
s =3 7).

then, a fundamental matrix for the perturbed equation (1.2)) is

~ be(t+1)[sinln(t+1)—4a] f1t+1 e—ssinlns Jg e(t+1)[sinln(t+1)—4a]
Y(t) = e—2a(t+1) 0
We have
~ be(t+1)[sinln(t+1)—4a] t+1 e—ssinlns gg €(t+1)[sinln(t+1)—4a]
WY (t) = < i .

Since lim, oo |U(#,)Y (t,)| = oo, it follows that the perturbed equation is
U-unstable on Ry (see [II, Theorem 1]).

Let a € (0, g) Let t,, = e(Cn=2)7 for p = 1,2,.... For t, <s <t,e* we have
scosa < —ssinln s < s and hence

tne™ tne®
R B . T -,r .
etne (sinlnt,e™ —4a) / e—Ssin In Sds > etne (sinlnt,e™ —4a) / e—Ssin In 5ds
1 t

n

tne®
(] —
Zet"e (1 4a)/ eScosa g
t

n

tn(e¥—1)cosa
_ otnl(1-4a)e™ cosa) € ne" 1) -1

— OQ.
COS «x

Thus, the columns of ¥()Y (¢) are unbounded on R . It follows that the perturbed
equation (1.2]) is not W-conditionally asymptotically stable on R (see Theorem

5).
Finally, we have |¥(t)B(t)¥~(t) = be~3*(*+1D, Thus, B(t) satisfies the condi-
tions:
lim |W(t)B(t)¥~1(t)| = 0;

t—o0o

and fooo |W(t)B(t)¥~1(t)|dt can be a sufficiently small number.

4. U-CONDITIONAL ASYMPTOTIC STABILITY OF THE NONLINEAR EQUATION ([1.1)

In this section we give sufficient conditions for the W-conditional asymptotic
stability of U-bounded solutions of the nonlinear Volterra integro-differential system

)
Theorem 4.1. Suppose that:

(1) There exist supplementary projections Py, Py, P; # 0 and a constant K > 0
such that the fundamental matriz Y (t) of (1.3) satisfies the condition

/0 \Il(t)Y(t)PlY_l(s)\Il_l(s)|ds+/too [T ()Y (1) PY 1 (s)T 1 (s)|ds < K
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for allt > 0.
(2) The function F(t,s,x) satisfies the inequality
W (t) (F(t,s,2(s)) = F(t,5,y(5))) [| < f(Es)[W(s) (2(s) —y(s)) ]I,

for 0 < s <t < oo and for all continuous and V-bounded functions x,y :
R, — R?, where f(t,s) is a continuous nonnegative function on D such
that
t t
F(t,s,0) =0, lim f(t,8)ds =0, sup/ ft,s)ds < Kt
t=o0 Jo >0 Jo

Then, all ¥-bounded solutions of (1.1 are U-conditionally asymptotically stable on
R, .

Proof. Let
t
q= Ksup/ ft,s)ds < 1.
t>0 Jo
‘We put
S ={x:R;y — R%: z is continuous and ¥-bounded on R, }.
Define on the set S a norm by
[[][| = sup [[¥(t)z(t)].
>0

It is well-known that (S, ||| - |||) is @ Banach space. For x € S, we define
t s
(Tx) (1) :/ Y(t)PlYfl(s)/ F(s,u,z(u))duds
0 o
— / Y(t)P2Y*1(s)/ F(s,u,z(u))duds,t > 0.
t o

For 0 <t < w, we have

(1) /vY(t)PzY_l(s) /SF(s,u,x(u))dudsH

= / Y8 6) [ W6 F (sl
Cweyory- |/ 19() (s, u, ()| du ds

< / ROy )Ry ()T (s)] / F(s, w1 (w)a(w)| duds

< sup [W(u)o(u)]| / W)Y (1)PY (5) T (s) / £(5,u) duds

< gK tsup [W(u)z(u)|| [ [W@OY()PY T ()T (s)]ds.
u>0
JFrom assumption 1, it follows that the integral

/too Y (£)P,Y " 1(s) / F(s,u,z(u)) duds
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is convergent. Thus, (Tz)(t) exists and is continuous for ¢ > 0. For z € S and
t > 0, we have

e (&) (Tx)(t)]| = ||/ (5)T1(s) /S U(s)F (s, u,z(u)) duds
- [T wavery 6w [ eE R ) duds]
§/0 [T ()Y ()P, \/ 1T (s)F(s,u,z(u))| duds
+/t ()Y (1) P |/ 19 () F (s, u, 2()) | du ds
< [ wever \/ F(s, WD (w)a(u) | du ds
+/t ()Y ()P |/ F(5 )]0 () (w)]| duds

< gsup || W (w)z(u)|.
u>0
This shows that T'S C S. On the other hand, for z,y € S and ¢t > 0, we have

(@) (Tz)(8) = (Ty)()) ]

— / (907(6) [ 006) (F (o) — Fls, ) duds
- [T wovory e /Sws)(F(sux(u)) F(s,u,y(u))) duds|
</t|q/th (s) \/ 10 (s) (F(s,u, 2(w)) — F(s,u,y(w)) || duds
/ ()Y (1) PyY |/ 19 (s) (F(s,u,2(w)) — F(s,u,y(w)) || duds

S/o (W)Y () PY H(s)U (s \/0 F(s,w) [P (w)(z(uw) —y(uw))| duds
+ / W)Y (1) PyY ()T (s) / £, )| () () — ()| du s

< gsup [ (u)(z(u) —y(u)].
It follows that

sup [ () (T2)() = (Ty)(#) | < gsup W) (@(t) = y(®))I.

t>0
Thus, we have
[Tz = Ty|l] < qlllz — yll].

This shows that T is a contraction of the Banach space (.5, ||| - |||).
As in the Proof of Theorem [3:4] it follows by the Banach contraction principle
that for any function y € S, the integral equation

r=y+Tx (4.1)
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has a unique solution z € S. Furthermore, by the definition of T, x(t) — y(t) is
differentiable and

(x(t) = y(8))" = A(t) (a(t) - y(t)) +/O F(t,s,2(s))ds,t > 0.

Hence, if y(t) is a ¥-bounded solution of (1.3]), z(¢) is a U-bounded solution of

(1.1). Conversely, if z(t) is a ¥-bounded solution of (|1.1)), the function y(t) defined
by (4.1)) is a U-bounded solution of (1.3)).

Thus, (4.1) establishes a one-to-one correspondence C' between the W-bounded
solutions of (1.1}) and (1.3)): x = Cy.

Now, we consider the analogous equation
zo = yo + Txo.
We get

(=l = = zolll < [l ¥ = yolll (4.2)

Now, we prove that if z,y € S are ¥-bounded solutions of (1.1)) and (|L.3]) respec-
tively such that x = C'y, then

T [ W(1)(2(2) — y(1)]] = 0. (4.3)
For a given € > 0, we can choose t; > 0 such that
¢ €
Kllall | s(t.s)ds < 3.
0 2

for ¢ > t1. Moreover, since lim; oo |U(¢)Y (t)P1] = 0 (see [I1, Lemma 1]), there
exists a number ¢, > t; such that

t1
_ _ _ €
1\‘IJ(If)Y(t)PlHH%IH/0 [PLY " (s) W (s)|ds < 3
for t > ty. We have, for t > to,

Je(t)(a(t) - y®)
/ () L) (s) / ) s,y () | duds
/ (@)Y (t) Y~ |/ @ (s)F(s,u, z(w))| duds
/ () “Ls)u(s) / (5, ) [ (w)x(w)| du ds
/t WY ()P I/fsu||\If () dueds

< gK ety Plllllwlll/ [PLY = (s) T ()] ds

el [y @ry = w61 ([ i
+ [[|z]] /t°° [T)Y () PY ! (s) T (s)| (/OS f(s,u)du)ds <e.

Now, let z(t) be a ¥-bounded solution of ((1.1)). This solution is ¥-unstable on R .
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Indeed, if not, for every ¢ j 0 and any to > 0, there exists a § = d(g,tg) > 0 such
that any solution Z(t) of which satisfies the inequality || U(¢0)(Z(to) —x(t0))] <
0(g, o) exists and satisfies the inequality || (¢)(Z(t) — x(¢))|| < € for all ¢ > to.

Let z9p € R? be such that Pizo = 0 and 0 < ||[¥(0)2|| < 6(¢,0) and let Z(¢) the
solution of with the initial condition Z(0) = x(0) + zo. Then [|[T(t)z(¢)| <
for all ¢ > 0, where z(t) = Z(t) — x(t).

Now we consider the function y(t) = z(¢t) — (T2)(¢), t > 0.

Clearly, y(t) is a ¥-bounded solution on R} of . Without loss of generality,
we can suppose that Y'(0) = I. It is easy to see that Pyy(0) = 0. If Poy(0) # 0, from
[T, Lemma 2], it follows that limsup,_, . || (¢)y(t)|| = oo, which is contradictory.
Thus, Poy(0) = 0 and then y(t) = 0 for ¢ > 0.

It follows that z = Tz and then z = 0, which is a contradiction. This shows that
the solution z(t) is ¥-unstable on R.

Let y =« — Tx. From Theorem it follows that there exists a sequence (y,,)
of solutions of defined on R, such that

nILIr;O U(t)y,(t) = U(t)y(t), uniformly on R,
tlirgo U(t)(yn(t) —y() =0, n=1,2,....
Let z, = Cy,. From it follows that the sequence (x,) of solutions of
defined on R is such that
lim U(t)z,(t) = U(t)z(t), uniformly on Ry.

n—oo

This shows that the solution z(t) is ¥-conditionally stable on R. From and
V() (wn(t) —x(t)) = V(1) (@n(t) = yn(t) + (1) (yn(t) — y(t) + L(1)(y(t) — =(1)),
it follows that

lim U(¢)(x,(t) —z(t)) =0, forn=1,2,....

t—oo

This shows that the solution x(t) is ¥-conditionally asymptotically stable on R .
The proof is now complete. ([l

Corollary 4.2. If in Theorem [.1] we assume that f(t.s) = g(t)h(s), where g and
h are nonnegative continuous functions on Ry such that

t
supg(t)/ h(s)ds < K™,
0

t>0

lim g(t)/o h(s)ds =0,

t—oo

then the conclusion of the Theorem remains valid.

Corollary 4.3. If in Theorem[{.1 we assume that f(t.s) = g(t)h(s), where g and
h are nonnegative continuous functions on Ry such that

I:/ h(s)ds s convergent,
0

li = —
[lim g(t) = 0, i;gg(tkKF

then the conclusion of the Theorem remains valid.
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