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Abstract. In this article we consider a mathematical model that describes

the quasi-static process of contact between a thermo-electro-viscoelastic body
and a conductive foundation. The constitutive law is assumed to be linear

thermo-electro-elastic and the process is quasistatic. The contact is modelled

with a Signiorini’s condition and the friction with Tresca’s law. The boundary
conditions of the electric field and thermal conductivity are assumed to be

non linear. First, we establish the existence and uniqueness result of the weak

solution of the model. The proofs are based on arguments of time-dependent
variational inequalities, Galerkin’s method and fixed point theorem. Also we

study a associated penalized problem. Then we prove its unique solvability as

well as the convergence of its solution to the solution of the original problem,
as the penalization parameter tends to zero.

1. Introduction

Certain crystals, such as quartz, tourmaline, Rochelle salt, when subjected to a
stress, become electrically polarized (J. and P. Curie 1880) [6]. This is the simple
piezoelectric effect. The deformation resulting from the application of a electric po-
tential is the reversible effect. An elastic material with piezoelectric effect is called
an electrolytic material and the discipline dealing with the study of electrolytic ma-
terials is the theory of electroelasticity. General models for elastic materials with
piezoelectric effects can be found in [19] and, more recently, in [20]. The electro-
elastic characteristics of piezoelectric materials have been studied extensively, and
their dependence on temperature is well-established [1, 21, 22]. The models for
elastic materials with thermo-piezoelectric effects can be found in [18] and, more
recently, in [1]. Some theoretical results for static frictional contact models taking
into account the interaction between the electric and the mechanic fields have been
obtained in [14], under the assumption that the foundation is insulated, and in [15]
under the assumption that the foundation is electrically conductive. The mathe-
matical model which describes the frictional contact between a thermo-piezoelectric
body and a conductive foundation is already addressed in the static case see [3, 4].
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A number of papers investigating quasi-static frictional contact problems with
viscoelastic materials have recently been published for example [12]. In [3] a bilat-
eral contact with Tresca’s friction law was analyzed, while in [17] frictional contact
with normal compliance was studied. Moreover, the contact problems involving
elastic or viscoelastic materials have received considerable attention recently in the
mathematical literature, see for instance [5, 8, 9].

This work deals with a quasistatic mathematical model which describes the fric-
tional contact between a thermo-electro viscoelastic body and an electrically and
thermally conductive rigid foundation. The novelty of this model lies in the chosen
linear thermo-electro-visco-elastic behavior for the body and in the electrical and
thermal conditions describing the contact, by Signorini condition, Tresca friction
law and a regularized electrical and thermal conductivity condition. The variational
formulation of this problem is derived and its unique weak solvability is established.

This article is structured as follows. In Section 2, we state the model of equi-
librium process of the thermo-electro-viscoelastic body in frictional contact with
a conductive rigid foundation, we introduce the notation and the assumptions on
the problem data. We also derive the variational formulation of the problem and
we present the main results concerned the existence and uniqueness of a weak so-
lution and also the penalty problem and its convergence of the penalized solution.
Finally in Section 3, we prove the existence of a weak solution of the model and its
uniqueness under additional assumptions. The proof is based on an abstract result
on elliptic, parabolic variational inequalities, Faedo-Galerkin, compactness method
and fixed point arguments. We show also the existence and uniqueness of penalty
problem and prove the solution converge as the penalty parameter ε vanishes.

2. Setting of the problem

2.1. Contact problem. We consider a body of a piezoelectric material which
occupies in the reference configuration the domain Ω ⊂ Rd (d = 2, 3) which will be
supposed bounded with a smooth boundary ∂Ω = Γ. This boundary is divided into
three open disjoint parts ΓD, ΓN , and ΓC , on one hand, and a partition of ΓD ∪ΓN
into two open parts Γa and Γb, on the other hand, such that meas(ΓD) > 0 and
meas(Γa) > 0. Let [0;T ] time interval of interest, where T > 0.

The body is submitted to the action of body forces of density f0, a volume electric
charge of density q0, and a heat source of constant strength q1. It also submitted to
mechanical, electrical and thermal constant on the boundary. Indeed, the body is
assumed to be clamped in ΓD and therefore the displacement filed vanishes there.
Moreover, we assume that a density of traction forces, denote by f2, acts on the
boundary part ΓN . We also assume that the electrical potential vanishes on Γa,
and surface electrical charge of density q2 is prescribed on Γb. We assume that the
temperature θ0 is prescribed on the surface ΓD ∪ ΓN .

In the reference configuration, the body may come in contact over ΓC with an
electrically-thermally conductive foundation. We assume that its potential, tem-
perature are maintained at ϕF , θF . The contact is frictional, and there may be
electrical charges and heat transfer on the contact surface. The normalized gap
between ΓC and the rigid foundation is denoted by g.

Everywhere below we use Sd to denote the space of second order symmetric
tensors on Rd while ”·” and | · | will represent the inner product and the Euclidean
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norm on Sd and Rd; that is,

u · v = uivi, |v| = (v.v)1/2, ∀u, v ∈ Rd,

σ · τ = σijτij , |τ | = (τ.τ)1/2, ∀σ, τ ∈ Sd.

We denote by u : Ω×]0;T [→ Rd the displacement field, σ : Ω → Sd and σ = (σij)
the stress tensor, θ : Ω×]0;T [→ Rd the temperature, q : Ω → Rd and q = (qi) the
heat flux vector, and by D : Ω→ Rd and D = (Di) the electric displacement filed.
We also denote E(ϕ) = (Ei(ϕ)) the electric vector field, where ϕ : Ω×]0;T [→ R
is the electric potential. Moreover, let ε(u) = (εij(u)) denote the linearized strain
tensor given by εij(u) = 1

2 (ui,j + uj,i), and ”Div” and ”div” denote the divergence
operators for tensor and vector valued functions, respectively, i.e., Div σ = (σij,j)
and div ξ = (ξj,j). We shall adopt the usual notation for normal and tangential
components of displacement vector and stress: υn = υ · n, υτ = υ − υnn, σn =
(σn) · n, and στ = σn− σnn, where n denote the outward normal vector on Γ.

The equations of stress equilibrium, the equation of quasi-stationary electric
field, the equation of thermic field are given by

Div σ + f0 = 0 in Ω× (0, T ), (2.1)

divD = q0 in Ω× (0, T ), (2.2)

θ̇ + div q = q1 in Ω× (0, T ). (2.3)

The constitutive equation of a linear piezoelectric material can be written as

σ = =ε(u)− E∗E(ϕ)− θM+ Cε(u̇) in Ω× (0, T ), (2.4)

D = Eε(u) + βE(ϕ)− θP in Ω× (0, T ), (2.5)

where = = (fijkl), E = (eijk), M = (mij), β = (βij), P = (pi), and C = (cijkl)
are respectively, elastic, piezoelectric, thermal expansion, electric permittivity, py-
roelectric tensor and (fourth-order) viscosity tensor. E∗ is the transpose of E given
by

E∗ = (e∗ijk), e∗ijk = ekij ,

Eσυ = σE∗υ, ∀σ ∈ Sd, υ ∈ Rd.
(2.6)

The elastic strain-displacement, the electric field-potential and the Fourier law
of heat conduction are, respectively, given by

ε(u) =
1
2

(∇u+ (∇u)∗) on Ω× (0, T ), (2.7)

E(ϕ) = −∇ϕ on ΓN × (0, T ), (2.8)

q = −K∇θ in Ω× (0, T ), (2.9)

where K = (kij) denotes the thermal conductivity tensor. Next, to complete the
mathematical model according to the description of the physical setting, we have
the following boundary condition: The displacement conditions

u = 0 on ΓD × (0, T ), (2.10)

σν = f2 on ΓN × (0, T ), (2.11)

u(0, x) = u0(x) in Ω. (2.12)

The electric conditions

ϕ = 0 on Γa × (0, T ), (2.13)
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D · ν = qb on Γb × (0, T ). (2.14)

The thermal conditions

θ = 0 on (ΓD ∪ ΓN )× (0, T ), (2.15)

θ(0, x) = θ0(x) in Ω. (2.16)

The contact conditions, see [13],

σν(u) ≤ 0, uν − g ≤ 0, σν(u)(uν − g) = 0 on ΓC × (0, T ). (2.17)

The Tresca’s friction conditions:
‖στ‖ ≤ S on ΓC × (0, T ),

‖στ‖ < S =⇒ u̇τ = 0 on ΓC × (0, T ),

‖στ‖ = S =⇒ ∃λ 6= 0 such that στ = −λu̇τ on ΓC × (0, T ).
(2.18)

The regularized electrical and thermal conditions, see [7, 8],

D · ν = ψ(uν − g)φL(ϕ− ϕF ) on ΓC × (0, T ), (2.19)
∂q

∂ν
= kc(uν − g)φL(θ − θF ) on ΓC × (0, T ), (2.20)

such that

φL(s) =


−L if s < −L,
s if − L ≤ s ≤ L,
L if s > L,

ψ(r) =


0 if r < 0,
keδr if 0 ≤ r ≤ 1

δ ,

ke if r > 1
δ ,

(2.21)

where L is a large positive constant, δ > 0 is a small parameter, and ke ≥ 0 is
the electrical conductivity coefficient such that the thermal conductance function
kc : r → kc(r) is supposed to be zero for r < 0 and positive otherwise, nondecreasing
and Lipschitz continuous. We note that when ψ = 0, the equality (2.19) leads to
the condition

D · ν = 0 on ΓC × (0, T ),

which models the case when the foundation is a perfect electric insulator. Similarly,
we have:

∂q

∂ν
= 0 on ΓC × (0, T ).

We collect the above equations and conditions to obtain the following mathematical
problem.

Problem (P). Find a displacement field u : Ω×]0, T [→ Rd, an electric potential
ϕ : Ω×]0, T [→ R, and a temperature filed θ : Ω×]0, T [→ R such that (2.1)-(2.20).

2.2. Weak formulation and main results. In this section, we establish a weak
formulation of Problem (P) and we state the main results. Let X be a Banach space,
T a positive real number and 1 ≤ p ≤ ∞, denote by Lp(0, T ;X) and C(0, T ;X)
the Banach spaces of all measurable function u :]0, T [→ X with the norms

‖u‖Lp(0,T ;X) =
(∫ T

0

‖u(t)‖pXdt
)1/p

,

‖u‖C(0,T ;X) = sup
t∈[0,T ]

‖u(t)‖X , ‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖u̇‖2L2(Ω).
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We also use the Hilbert spaces

L2(Ω) = L2(Ω)d, H1(Ω) = H1(Ω)d,

H =
{
σ ∈ Sd : σ = σij , σij = σji ∈ L2(Ω)

}
,

endowed with the inner products

(u, v)L2(Ω) =
∫

Ω

uividx, (σ, τ)H =
∫

Ω

σiτidx,

(u, v)H1(Ω) = (u, v)L2(Ω) + (ε(u), ε(v))H.

Keeping in mind the boundary condition (2.10), we introduce the closed subspace
of H1(Ω),

V =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
,

and the set of admissible displacement

K =
{
v ∈ V : vν − g ≤ 0 on ΓC

}
.

Here and below, we write w for the trace γ(w) of the function w ∈ H1(Ω) on Γ.
Since meas(Γ1) > 0, Korn’s inequality hold

‖ε(v)‖H ≥ ck‖v‖H1(Ω), ∀v ∈ V, (2.22)

where ck is a nonnegative constant depending only on Ω and ΓD. Therefore, the
space V endowed with the inner product (u, v)V = (ε(u), ε(v))H is a real Hilbert
space, and its associated norm ‖v‖V = ‖ε(v)‖H is equivalent on V to the usual
norm ‖.‖H1(Ω). By Sobolev’s trace theorem, there exists a constant c0 > 0 which
depends only on Ω, ΓC , and ΓD such that

‖v‖L2(Γ)d ≤ c0‖v‖V , ∀v ∈ V. (2.23)

We also introduce the function spaces

W =
{
ξ ∈ H1(Ω) : ξ = 0 on Γa

}
,

Q =
{
η ∈ H1(Ω) : η = 0 on ΓD ∪ ΓN

}
,

W =
{
D = (D)i ∈ H1(Ω) : Di ∈ L2(Ω),divD ∈ L2(Ω)

}
.

Similarly, we write ζ for trace γ(ζ) of the function ζ ∈ H1(Ω) on Γ. Since
meas(Γa) > 0 and meas(ΓD) > 0, it is known that W and Q are real Hilbert
spaces with the inner products.

(ϕ, ξ)W = (∇ϕ,∇ξ)L2(Ω), (θ, η)Q = (∇θ,∇η)L2(Ω).

Moreover, the associated norms ‖ξ‖W = ‖∇ξ‖L2(Ω), ‖η‖Q = ‖∇η‖L2(Ω) are equiva-
lent on W and Q, respectively, with the usual norms ‖ · ‖H1(Ω). By Sobolev’s trace
theorem, there exists a constant c1 > 0 which depends only on Ω, Γa, and ΓC such
that

‖ξ‖L2(Γc) ≤ c1‖ξ‖W , ∀ξ ∈W, (2.24)

and c2 which depends only on Ω, ΓD, ΓN and ΓC such that

‖η‖L2(Γc) ≤ c2‖η‖Q, ∀η ∈ Q. (2.25)

The following Friedrichs-Poincaré inequalities hold on W and Q are

‖∇ξ‖W ≥ cp1‖ξ‖W , ‖∇η‖L2(Ω) ≥ cp2‖η‖Q, ∀ξ ∈W and ∀η ∈ Q. (2.26)
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In the study of the mechanical Problem (P), we denote by a : V × V → R, b :
W ×W → R, c : V × V → R and d : Q × Q → R are the following bilinear and
symmetric applications

a(u, v) := (=ε(u), ε(v))H, b(ϕ, ξ) := (β∇ϕ,∇ξ)L2(Ω),

c(u, v) := (Cε(u), ε(v))H, d(θ, η) := (K∇θ,∇η)L2(Ω),

also denote by e : V ×W → R, m : Q× V → R and p : Q×W → R are following
bilinear applications

e(v, ξ) := (Eε(v),∇ξ)L2(Ω) = (E∗∇ξ, ε(v))V ,

m(θ, v) := (Mθ, ε(v))Q, p(θ, ξ) := (P∇θ,∇ξ)L2(Ω).

We need the following assumptions.
(H1) The elasticity operator = : Ω × Sd → Sd, the electric permittivity tensor

β = (βij) : Ω × Rd → Rd, the viscosity tensor C : Ω × Sd → Sd and the
thermal conductivity tensor K = (kij) : Ω × Rd → Rd satisfy the usual
properties of symmetry, boundedness, and ellipticity,

fijkl = fjikl = flkij ∈ L∞(Ω), βij = βji ∈ L∞(Ω),

cijkl = cjikl = clkij ∈ L∞(Ω), kij = kji ∈ L∞(Ω),

and there exists that m=,mβ ,mC ,mK > 0 such that

fijkl(x)ξkξl ≥ m=‖ξ‖2, ∀ξ ∈ Sd, ∀x ∈ Ω,

cijkl(x)ξkξl ≥ mC‖ξ‖2, ∀ξ ∈ Sd, ∀x ∈ Ω,

βijζiζj ≥ mβ‖ζ‖2, kijζiζj ≥ mK‖ζ‖2, ∀ζ ∈ Rd.

(H2) From (H1) we have

|a(u, v)| ≤M=‖u‖V ‖v‖V , |b(ϕ, ξ)| ≤Mβ‖ϕ‖W ‖ξ‖W ,
|c(u, v)| ≤MC‖u‖V ‖v‖V , |d(θ, η)| ≤MK‖θ‖Q‖η‖Q,
|e(v, ξ)| ≤ME‖v‖V ‖ξ‖W , |m(θ, v)| ≤MM‖θ‖Q‖v‖V ,

|p(θ, ξ)| ≤MP‖θ‖Q‖ξ‖W .

(H3) The piezoelectric tensor E = (eijk) : Ω × Sd → R, the thermal expansion
tensorM = (mij) : Ω×R→ R, and the pyroelectric tensor P = (pi) : Ω→
Rd satisfy

eijk = eikj ∈ L∞(Ω), mij = mji ∈ L∞(Ω), pi ∈ L∞(Ω).

(H4) The surface electrical conductivity ψ : ΓC × R → R+ and the thermal
conductance kc : ΓC × R → R+ satisfy for π = ψ or kc: There exists
Mπ > 0 such that |π(x, u)| ≤Mπ for all u ∈ R and x ∈ ΓC , x→ π(x, u) is
measurable on ΓC for all u ∈ R, π(x, u) = 0 for all x ∈ ΓC and u ≤ 0.

(H5) The functions u → π(x, u) (π = ψ, kc) for π = ψ (rep kc) are a Lipschitz
function on R for all x ∈ ΓC and ∀u1, u2 ∈ R, there exists Lπ > 0 such that
|π(x, u1)− π(x, u2)| ≤ Lπ|u1 − u2|.

(H6) The forces, the traction, the volume, the surfaces charge densities, the
strength of the heat source,

f0 ∈ L2
(
0, T ;L2(Ω)d

)
, f2 ∈ L2

(
0, T ;L2(ΓN )d

)
,

q0 ∈W 1,2
(
0, T ;L2(Ω)

)
, qb ∈W 1,2

(
0, T ;L2(Γb)

)
,
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q1 ∈ L2
(
0, T ;L2(Ω)

)
.

The potential and temperature satisfy

ϕF ∈ L2
(
0, T ;L2(ΓC)

)
, θF ∈ L2

(
0, T ;L2(ΓC)

)
.

The initial conditions the friction bounded function and the gap function
satisfy

u0 ∈ K, θ0 ∈ L2(Ω), g ∈ L2(ΓC), g ≥ 0.

Next, using Riesz’s representation theorem, we define the elements f ∈ V , qe ∈ W
and qth ∈ Q by

(f(t), v)V =
∫

Ω

f0(t) · vdx+
∫

ΓN

f2(t).vda, ∀v ∈ V, (2.27)

(qe(t), ξ)W =
∫

Ω

q0(t).ξdx−
∫

Γb

qb(t).ξda, ∀ξ ∈ V, (2.28)

(qth(t), η)Q =
∫

Ω

q1(t).ηdx, ∀η ∈ Q. (2.29)

We define the mappings j : V → R, ` : V ×W 2 → R, and χ : V ×Q2 → R, by

j(v) =
∫

ΓC

S‖vτ‖da, ∀v ∈ V, (2.30)

`(u(t), ϕ(t), ξ) =
∫

ΓC

ψ(uν(t)− g)φL(ϕ(t)− ϕF )ξda, ∀u ∈ V, ∀ϕ, ξ ∈W, (2.31)

χ(u(t), θ(t), η) =
∫

ΓC

kc(uν(t)− g)φL(θ(t)− θF )ηda, ∀u ∈ V, ∀θ, η ∈ Q , (2.32)

respectively. Now, by a standard variational technique, it is straightforward to see
that if (u, ϕ, θ) satisfy the conditions (2.1)-(2.21), then for a.e. t ∈]0;T [,(

σ(t), ε(v)− ε(u̇(t))
)
H + j(v)− j(u̇(t))) ≥

(
f(t), v − u̇(t))

)
V
, ∀v ∈ K, (2.33)(

D(t),∇ξ
)
L2(Ω)

= `(u(t), ϕ(t), ξ)− (qe(t), ξ)W , ∀ξ ∈W, (2.34)(
q(t),∇η

)
L2(Ω)

= (θ̇(t), η)Q + χ(u(t), θ(t), η)− (qth(t), η)Q, ∀η ∈ Q. (2.35)

Using all of this assumptions, notation, and (2.8), we obtain the following varia-
tional formulation of Problem (P), in terms a displacement field, electric potential
and a temperature field.

Problem (PV). Find a displacement field u : ]0;T [→ K, an electric potential
ϕ : ]0;T [→W and a temperature field θ : ]0;T [→ Q a.e. t ∈]0;T [ such that

a(u(t), v − u̇(t)) + e(v − u̇(t), ϕ(t))−m(θ(t), v − u̇(t))

+ c(u̇(t), v − u̇(t)) + j(v)− j(u̇(t))

≥ (f(t), v − u̇(t)))V , ∀v ∈ K,
(2.36)

b(ϕ(t), ξ)− e(u(t), ξ)− p(θ(t), ξ) + `(u(t), ϕ(t), ξ) = (qe(t), ξ)W , ∀ξ ∈W, (2.37)

d(θ(t), η) + (θ̇(t), η)Q + χ(u(t), θ(t), η) = (qth(t), η)Q, ∀η ∈ Q, (2.38)

u(0, x) = u0(x), θ(0, x) = θ0(x). (2.39)

Now, we to state the main result of existence and uniqueness.
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Theorem 2.1. Assume that (H1)–(H6), (2.30)-(2.31) and

mβ > Mψc
2
1, mK < c2

(
Mkcc2 + LkkLc0

)
/2

hold. Then Problem (PV) has a unique solution,

u ∈ C1(0, T ;V ), ϕ ∈ L2(0, T ;W ), θ ∈ L2(0, T ;Q). (2.40)

2.3. Convergence analysis of the penalty method. Now, we use the penalty
problem, for this, let ε > 0 the penalty parameter . We replaced the Signorini’s
condition (2.17) by

σν(uε − g) = −1
ε

[uεν − g]+. (2.41)

We consider the functional Φ : V × V → R defined by

Φ(u, v) =
∫

ΓC

[uν ]+vνda = 〈[uν ]+, vν〉ΓC , ∀u, v ∈ V. (2.42)

We also consider, for all ε > 0, the family of convex and differentiable functions
Ψε : Rd → R given by

Ψε(v) =
√
‖v‖2 + ε2, ∀v ∈ R, (2.43)

it is easy to show that such a family of functions satisfies:

0 < Ψε(v)− ‖v‖ ≤ ε, (2.44)

Ψ′ε(v)(w) =
v.w√
‖v‖2 + ε2

, ∀v, w ∈ R. (2.45)

We then define a family of regularized frictional functional jε : V → R by

jε(v) =
∫

ΓC

SΨε(vτ )da, ∀v ∈ V. (2.46)

The functional jε are Gâteaux-differentiable with respect to the second argument v
and represent an approximation of jε, i.e., there exists a constant C > 0 such that

|jε(v)− j(v)| ≤ Cε, ∀v ∈ V. (2.47)

We denote by j′ε : V → V the derivative of jε given by

〈j′ε(v), w〉V ′,V =
∫

ΓC

SΨ′ε(vτ )(wτ )da, ∀v, w ∈ V. (2.48)

Now, we define the regularized problem associated to (2.36)-(2.39).

Problem (PVε). Find a displacement field uε : ]0;T [→ K, an electric potential
ϕε : ]0;T [→W , and a temperature field θε : ]0;T [→ Q a.e. t ∈]0;T [ such that

c(u̇ε(t), v) + a(uε(t), v) + e(v, ϕε(t))−m(θε(t), v)

+
1
ε

Φ(uε(t), v) + 〈j′ε(u̇ε(t)), v〉

= (f(t), v)V , ∀v ∈ V,

(2.49)

b(ϕε(t), ξ)− e(uε(t), ξ)− p(θε(t), ξ) + `(uε(t), ϕε(t), ξ) = (qe(t), ξ)W ,
∀ξ ∈W, (2.50)

d(θε(t), η) + (θ̇ε(t), η)Q + χ(uε(t), θε(t), η) = (qth(t), η)Q, ∀η ∈ Q. (2.51)

uε(0, x) = u0(x), θε(0, x) = θ0(x). (2.52)
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We recall that Problem (PVε) is well-posed see [11]. Then we have the following
existence, uniqueness and convergence of penalized problem.

Theorem 2.2. Assume the conditions stated in Theorem 2.1 and for all ε > 0, we
have

(a) Problem (PVε) admits a unique solution

uε ∈ C1(0, T ;V ), ϕε ∈ L2(0, T ;W ), θε ∈ L2(0, T ;Q).

(b) The solution (uε, ϕε, θε) of penalized Problem (PVε) converge to a solution
of Problem (PV). i.e.,

‖u− uε‖V → 0, ‖ϕ− ϕε‖W → 0, ‖θ − θε‖Q → 0 as ε→ 0.

3. Proof of main results

3.1. Proof of Theorem 2.1. The proof is carried out in serval steps, and it is
based on arguments of variational inequalities, Galerkin, compactness method and
Banach fixed point theorem. Let z ∈ C(0, T ;V ) given by(

z(t), v − u̇z(t)
)
V

= e
(
v − u̇z(t), ϕz(t)

)
−m

(
θz(t), v − u̇z(t)

)
. (3.1)

In the first step, we prove the following existence and uniqueness result for the
displacement field for this, we consider the following problem of displacement field:

Problem (PVdp). Find uz ∈ K for a.e. t ∈]0, T [ such that

c(u̇z(t), v − u̇z(t)) + a(uz(t), v − u̇z(t)) + (z(t), v − u̇z(t))V , ∀v ∈ V,
j(v)− j(u̇z(t)) ≥ (f(t), v − u̇z(t)))V ,

uz(0) = u0.

(3.2)

Lemma 3.1. For all v ∈ K and for a.e. t ∈]0, T [, the Problem (PVdp) has a
unique solution uz ∈ C1(0, T ;V ).

Proof. By using the Riesz’s representation theorem we define the operator

(fz(t), v)V = (f(t), v)V − (z(t), v)V . (3.3)

The Problem (PVdp) can be written

c(u̇z(t), v − u̇z(t)) + a(uz(t), v − u̇z(t)) + j(v)− j(u̇z(t)) ≥ (fz(t), v − u̇z(t)))V ,
uz(0) = u0.

(3.4)
By assumptions (H1), (H2), (H6), the condition (2.30) and using the result pre-
sented in [15, P. 61-65] we obtain result. �

Remark 3.2. If the operators a and c are nonlinear, Lipschitz and monoton, we
find same results of Lemma 3.1.

In the second step, we use the displacement field uz obtained in Lemma 3.1 to
obtain the following existence and uniqueness result for the temperature field θz of
the following problem.
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Problem (PVth). Find θz ∈ Q for a.e. t ∈]0, T [ such that

d(θz(t), η) + (θ̇z(t), η)Q + χ(uz(t), θz(t), η) = (qth(t), η)Q, ∀η ∈ Q,
θz(0) = θ0.

(3.5)

Lemma 3.3. For all η ∈ Q and a.e. t ∈]0, T [, the Problem (PVth) has a unique
solution θz ∈ L2(0, T ;Q).

To prove the above Lemma, we use the Faedo-Galerkin methods. For this, we
assume the functions wk = wk(t), k = 1, . . . ,m consisting of eigenfunctions of −∆
are smooth [

wk
]∞
k=1

is a orthonormal basis of H1(Ω). (3.6)

Fix now a positive integer m, we will look for a function θzm :]0, T [→ H1(Ω) of the
form

θzm :=
m∑
i=1

dim(t)wi, (3.7)

where we hope the select the coefficients dm(t) = (d1
m(t), d2

m(t), . . . , dmm(t)), (0 <
t < T ) so that

d
(
θzm(t), wk

)
+
(
θ̇zm(t), wk

)
Q

+ χ
(
uz(t), θzm(t), wk

)
= (qth(t), wk)Q, (3.8)

dkm(0) =
(
θ0, wk

)
, (k = 1, . . . ,m). (3.9)

Lemma 3.4. For each integer m ∈ N, there exists a unique θzm of the (3.5)
satisfying (3.7)-(3.8).

Proof. Assuming θzm has the structure (3.7), we first note from (3.6) that(
θ̇zm(t), wk

)
Q

= dk
′

m(t), (3.10)

d
(
θzm(t), wk

)
= Kdkm(t), (3.11)

χ(uz(t), θzm(t), wk) = χ
(
uz(t),

m∑
k=i

dim(t)wi, wk
)
, (3.12)(

qth(t), wk
)
Q

= qkth(t). (3.13)

Then (3.8)-(3.9) can be written as

dk
′

m(t) +Kdkm(t) +
∫

ΓC

kc(uzν (t)− g)φL
( m∑
i=1

dim(t)wi − θF
)
wkda = qkth(t),

dkm(0) = (θ0, wk), (k = 1, . . . ,m).

(3.14)

We pose

f
(
t, dkm(t)

)
= qkth(t)−Kdkm(t)−

∫
ΓC

kc(uν(t)−g)φL
( m∑
i=k

dim(t)wi−θF
)
wkda. (3.15)

By the inequality

|Kdkm2(t)−Kdkm1(t)| ≤MK
∣∣dkm2(t)− dkm1(t)

∣∣ , (3.16)
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and using (H4), (H5), we find∣∣∣ ∫
ΓC

kc(uzν (t)− g)φL
( m∑
i=k

dim2
(t)wi − θF

)
wkda

−
∫

ΓC

kc(uzν (t)− g)φL
( m∑
i=k

dim1
(t)wi − θF

)
wkda

∣∣∣
≤MψLmeas(ΓC)|dkm2

− dkm1
|.

(3.17)

Then∣∣f(t, dkm2(t)
)
− f

(
t, dkm1(t)

)∣∣ ≤ (MK +MψLmeas(ΓC)
)
|dkm2

− dkm1
|. (3.18)

There exists a unique absolutely continuous function dm(t) = (d1
m(t), . . . , dmm(t))

satisfying (3.17). �

Lemma 3.5 (Energy estimates). Under assumption (H2) and (2.25), there exists
a constants cs0 and cs1 depending only an Ω, T and the coefficient of d such that

‖θzm‖2L2(0,T ;Q) ≤ cs0

(
‖θ0‖2L2(Ω) + ‖qth‖2L2(0,T ;Q)

)
, (3.19)

‖θ̇zm‖2L2(0,T ;Q′) ≤ cs1

(
‖θ0‖2L2(Ω) + ‖qth‖2L2(0,T ;Q)

)
. (3.20)

Proof. Multiply (3.8) by dkm(t), sum for k = 1, . . . ,m and using (3.6), we obtain

d
(
θzm(t), θzm(t)

)
+
(
θ̇zm(t), θzm(t)

)
Q

+ χ
(
uz(t), θzm(t), θzm(t)

)
=
(
qth(t), θzm(t)

)
Q
.

(3.21)
We have

d
(
θzm(t), θzm(t)

)
≥ mK‖θzm‖2Q ≥

mK
c2
‖θzm‖2L2(Ω), (3.22)(

θ̇zm , θzm
)

=
1
2
d

dt
‖θzm‖2Q, (3.23)

|χ(uz, θzm , θzm)| ≤ M2
1

2α
+
αc2
2
‖θzm‖2Q, (3.24)(

qth, θzm
)
Q
≤ 1

2α
‖qth‖2Q +

α

2
‖θzm‖2Q, (3.25)

with M1 = Mkc .ML and α > 0.

Estimate for θzm . Using (3.22), (3.25), we have

d

dt
‖θzm‖2Q ≤

(
α(1 + c2)− 2mK

)
‖θzm‖2Q +

1
α

(
M1 + ‖qth‖2Q

)
. (3.26)

with mK < α
(
1 + c2

)
/2, α > 0. We integrate from 0 to t for almost all t ∈]0, T [

and by Gronwall inequality we have

‖θzm‖2L2(0,T ;Q) ≤ cs0

(
‖θ0‖2L2(Ω) + ‖qth‖2L2(0,T ;Q)

)
. (3.27)

Estimate for θ̇zm . Fix any η ∈ Q, with ‖η‖Q ≤ 1, and write η = η1 + η2, where
η1 ∈ spam[wk]mk=1 and

(
η2, wk

)
= 0 (k = 1, . . . ,m). Since the functions [wk]mk=1

are orthogonal in Q,
‖η1‖Q ≤ ‖η‖Q ≤ 1,

, using (3.8), we deduce for a.e. 0 < t < T that(
θ̇zm , η

1
)
Q

+ d
(
θzm , η

1
)

+ χ
(
uz, θzm , η

1
)

=
(
qth, η

1
)
Q
. (3.28)
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We have

|d(θzm , η
1)| ≤MM‖θzm‖Q, (3.29)

|(qth, η1)Q| ≤ ‖qth‖Q, (3.30)

|χ(uz, θzm , η
1)| ≤M1c2. (3.31)

Thus
‖θ̇zm‖Q∗(Ω) ≤ ‖qth‖Q +MK‖θzm‖Q +M1c2. (3.32)

We integrate from 0 to t for a.e. t ∈]0, T [ and by Gronwall inequality and the
estimate for θzm we have

‖θ̇zm‖2L2(0,T ;Q∗) ≤ cs1

(
‖θ0‖2|L2(Ω) + ‖qth‖2L2(0,T ;Q)

)
. (3.33)

�

Proof of Lemma 3.3.

Existence of a weak solution. We have

Q ⊂ L2(Ω) ⊂ Q∗. (3.34)

By the previous estimates, the sequence [θzm ]∞m=1 is bounded in L2(0, T,Q), and
[θ̇zm ]∞m=1 is bounded in L2

(
0, T,Q′

)
. By the classical Aubin-Lions lemma [2], there

exists a subsequence [θzml ]
∞
l=1 ⊂ [θzm ]∞m=1 and a function θz ∈ L2(0, T ;Q), with

θ̇z ∈ L2
(
0, T ;Q′

)
such that

θzml ⇀ θz weakly in L2(0, T ;Q),

θ̇zml ⇀ θ̇z weakly in L2
(
0, T ;Q∗

)
,

(3.35)

then

d(θzml , η)→ d(θz, η) in R, (3.36)

(θ̇zml , η)→ (θ̇z, η) in R. (3.37)

We have

|χ
(
uz, θzm , η

)
| =

∣∣ ∫
Γc

kc(uν(t)− g)φL(θzm − θF )ηda
∣∣ ≤MkCL‖η‖L2(Γc). (3.38)

Then {χ(uz, θzm , η)}∞m=1 is bounded in R, and so we may as well suppose upon
passing to a further subsequence if necessary that. For η = (θzml − θz) we have∣∣χ(uz, θz, θz − θzml )− χ(uz, θzml , θz − θzml )

∣∣ ≤MkcL‖θz − θzml ‖
2
L2(ΓC)

≤ c2MkcL‖θz − θzml ‖
2
Q.

(3.39)

Using the compactness of trace map γ : Q → L2(ΓC), it follows from the weak
convergence of

(
θzml

)
that(

θzml
)
→ θz strongly in L2(0, T ;L2(ΓC)),

then
χ(uz, θzml , η)→ χ(uz, θz, η) in R. (3.40)
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Uniqueness. Assume that θz and θ̃z are two weak solutions of Problem (PVth)
and let

B
(
θz(t), θ̃z(t)

)
= d
(
θz(t)− θ̃z(t), θz(t)− θ̃z(t)

)
+ χ

(
uz(t), θz(t), θz(t)− θ̃z(t)

)
− χ

(
uz(t), θ̃z(t), θz(t)− θ̃z(t)

)
.

(3.41)

By (3.8),

(θ̇z(t)− ˙̃
θz(t), θz(t)− θ̃z(t)) +B(θz(t), θ̃z(t)) = 0. (3.42)

Using (H2), (2.25) and (2.32), we have

B(θz(t), θ̃z(t)) ≥ −Mkc
Lc22‖θz(t)− θ̃z(t)‖2Q, (3.43)

0 =
1
2
d

dt
‖θz(t)− θ̃z(t)‖2Q +B(θz(t), θ̃z(t))

≥ 1
2
d

dt
‖θz(t)− θ̃z(t)‖2Q −Mkc

Lc22‖θz(t)− θ̃z(t)‖2Q.
(3.44)

By Gronwall inequality, we have

‖θz(t)− θ̃z(t)‖2Q ≤ 2Mkc
Lc22‖θz(t)− θ̃z(t)‖2Q. (3.45)

Thus θz = θ̃z. �

In the third step, we use the displacement field uz obtained in Lemma 3.1 and
the temperature field θz obtained in Lemma 3.3 in the following problem of electric
potential.

Problem (PVel). Find ϕz ∈W for all ξ ∈W and a.e. t ∈]0, T [ such that

b(ϕz(t), ξ)− e(uz(t), ξ)− p(θz(t), ξ) + `(uz(t), ϕz(t), ξ) = (qe(t), ξ)W ,

ϕz(0) = ϕ0.
(3.46)

Lemma 3.6. For all ξ ∈ W and for a.e. t ∈]0, T [, Problem (PVel) has a unique
solution ϕz ∈ L2(0, T ;W ).

The proof of this lemma is similar to those used in Lemma 3.3. We have

b(ϕzm(t), wk)− e(uz(t), wk)− p(θz(t), wk) + `(uz(t), ϕz(t), wk)

= (qe(t), wk)W ,
(3.47)

dkm(0) = (ϕ0, wk), (k ∈ N). (3.48)

with

ϕzm(t) :=
m∑
i=1

dim(t)wi.

To proceed further, we need the following result from [10, (p. 439].

Lemma 3.7 (Zeros of a vector field). Assume the continuous function v : Rn → Rn
satisfies

v(x) · x ≥ 0 for |x| = r, (3.49)

for some r > 0. Then there exists a point x ∈ B(0, r) such that

v(x) = 0. (3.50)
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Proof of Lemma 3.6. Let

vk(d) = βdkm(t) + `(uz(t), ϕzm(t), wk)− qke (t) + Pθkz + Eε(ukz). (3.51)

By the assumptions (H2) and (H4) combined with the monotonicity of the function
φL, we obtain

v(d) · d ≥ α1|d|2 − α2, (3.52)

with α1 = mβ − 3α
2 > 0 and α2 = M2

P‖θz‖2Q + M2
E‖uz‖2V + ‖qe‖2W . We apply

the Lemma 3.7 to conclude that v(d) = 0 for some point d ∈ R. Then exists a
function ϕzm satisfying (3.47)-(3.48). Multiply equation (3.47) by dkm(t), sum for
k = 1, . . . ,m we have

b(ϕzm(t), ϕzm(t))− e(uz(t), ϕzm(t))− p(θz(t), ϕzm(t))

+ `(uz(t), ϕzm(t), ϕzm(t))

= (qe(t), ϕzm(t)).
(3.53)

By assumptions (H2)–(H4), (H5) and integrating from 0 to t, for a.e. t ∈]0, T [, we
have

‖ϕzm(t)‖L2(0,T ;W ) ≤
(
α1 + α2‖qe(t)‖L2(0,T ;W )

)
, (3.54)

with α1 = α2(ME‖uz(t)‖V +MP‖θz(t)‖Q +MψMLc1) and α2 = 1
mβ

.

Existence. By (3.54) we can extract a subsequence [ϕzmj ]∞j=1 ⊂ [ϕzm ]∞m=1 and a
function ϕzmj ∈ L

2(0, T,W ) such that

ϕzmj ⇀ ϕz weakly in L2(0, T ;W ). (3.55)

By the assumptions (H4) and (H5) we have

|`(uz(t), ϕzm , ξ)| ≤MψL‖ξ‖L2(ΓC). (3.56)

Then
{
`(uz, ϕzm , ξ)

}∞
m=1

is bounded in R. For ξ = (ϕzmj−ϕz) and the assumptions
(H4), (H5) and (2.24), we find that

|`(uz, ϕz, ϕz − ϕzmj )− `(uz, ϕzmj , ϕz − ϕzmj )|

≤MψL‖ϕz − ϕzmj ‖
2
L2(ΓC)

≤MψLc
2
1‖ϕz − ϕzmj ‖

2
L2(0,T ;W ).

(3.57)

By using the compactness of trace map γ : Q→ L2(ΓC), from the weak convergence
of
(
ϕzml

)
it follows that(

ϕzml
)
→ ϕz strongly in L2

(
0, T ;L2(ΓC)

)
.

Then
`(uz, ϕzml , ξ)→ `(uz, ϕz, ξ) in R.

b(ϕzml , ξ)→ b(ϕz, ξ) in R.
(3.58)
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Uniqueness. By Riesz’s representation theorem, we define the operator Az(t) :
W →W such that

(Az(t)ϕz, ξ) = b(ϕz(t), ξ)− e(uz(t), ξ)− p(θz(t), ξ) + `(uz(t), ϕz(t), ξ). (3.59)

For ξ = (ϕz − ϕ̃z), where ϕz and ϕ̃z two solution of problem
(
PV el

)
we have

(Az(t)ϕz −Az(t)ϕ̃z, ϕz(t)− ϕ̃z(t)) = 0. (3.60)

By the monotonicity of the operator b, we have

(Az(t)ϕz −Az(t)ϕ̃z, ϕz(t)− ϕ̃z(t))
≥ mβ‖ϕz(t)− ϕ̃z(t)‖2W + `(uz(t), ϕz(t), ϕz(t)− ϕ̃z(t))
− `(uz(t), ϕ̃z(t), ϕz(t)− ϕ̃z(t)),

(3.61)

and by (H5) and the monotonicity of the function φL, we obtain

0 = (Az(t)ϕz −Az(t)ϕ̃z, ϕz(t)− ϕ̃z(t)) ≥ mβ‖ϕz(t)− ϕ̃z(t)‖2W . (3.62)

Thus ϕz = ϕ̃z. �

In the last step, for z ∈ L2(0, T ;V ), ϕz and θz the functions obtained in Lemmas
3.3 and 3.6, respectively, we consider the operator Λ : C(0, T ;V ) → C(0, T ;V )
defined by

(Λz(t), v)V = e(v, ϕz(t))−m(θz(t), v), (3.63)

for all v ∈ V and for a.e. t ∈]0, T [. We show that Λ has a unique fixed point.

Lemma 3.8. There exists a unique z̃ ∈ C(0, T ;V ) such that Λz̃ = z̃.

Proof. Let z ∈ C(0, T ;V ) and t1, t2 ∈]0, T [. By using the properties of operators e
and m, we find that

‖Λz(t1)− Λz(t2)‖V ≤ c
(
‖ϕz(t1)− ϕz(t2)‖W + ‖θz(t1)− θz(t2)‖Q

)
. (3.64)

Since ϕz ∈ L2(0, T ;W ) and θz ∈ L2(0, T ;Q), we deduce that Λz ∈ L2(0, T ;V ).
Now let z1, z2 ∈ C(0, T ;V ) and denote by ui, ϕi and θi the functions obtained

in Lemmas 3.1, 3.3 and 3.6. For i = 1, 2. Let t ∈ [0;T ]. Using (3.2), assumption
(H2) and this inequality

‖uz2(t)− uz1(t)‖V ≤
∫ t

0

‖u̇z2(t)− u̇z1(t)‖V ds, (3.65)

we have

‖uz2(t)− uz1(t)‖V ≤
M=
mC

∫ t

0

‖uz2(s)− uz1(s)‖V ds+
1
mC

∫ t

0

‖z2(s)− z1(s)‖V ds.

(3.66)
By Gronwall inequality, we obtain

‖uz2(t)− uz1(t)‖V ≤ ce
∫ t

0

‖z2(s)− z1(s)‖V ds, (3.67)

with ce = 1
mC

exp
(
TM=
mC

)
. Using (3.5), (H2), (H4) and (H5), we have

mK‖θz2(t)− θz1(t)‖2Q +
1
2
d

dt
‖θz2(t)− θz1(t)‖2Q

≤ β1‖θz2(t)− θz1(t)‖2Q + β2‖uz2(t)− uz1(t)‖V .‖θz2(t)− θz1(t)‖Q,
(3.68)
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with β1 = Mkcc
2
2 and β2 = LkcLc0c2. We integrate this inequality from 0 to t and

by Gronwall inequality, we obtain

‖θz2(t)− θz1(t)‖Q ≤ β3

∫ t

0

‖z2(s)− z1(s)‖V ds. (3.69)

with β3 =
(
ce2TLkcLc0c2 exp(β1 + β2 − 2mK)

)1/2 and the condition

mK < c2
(
Mkcc2 + LkkLc0

)
/2 .

Using (3.49), (H2), (H4) and (H5), we have

‖ϕz2(t)− ϕz1(t)‖W ≤ β4

∫ t

0

‖z2(s)− z1(s)‖V ds. (3.70)

with β4 = α
(
ME + Lψc0c1

)
/
(
mβ −Mψc

2
1

)
and the condition

(
mβ > Mψc

2
1

)
.

By (3.65), (3.67), (3.69) and (3.70), we obtain

‖Λz2(t)− Λz2(t)‖V ≤ β5

∫ t

0

‖z2(s)− z1(s)‖V ds, (3.71)

with β5 = α
(
β3 + β4

)
, α > 0. Iterating this inequality n times results in

‖Λnz2(t)− Λnz2(t)‖V ≤
βn5
n!
‖z2(s)− z1(s)‖C(0,T ;V ). (3.72)

This inequality show that a sufficiently large n the operator Λn is a contraction
on the Banach space C(0, T ;V ), and therefore, there exists a unique element z̃ ∈
C(0, T ;V ), such that Λz̃ = z̃. �

We are now ready to prove Theorem 2.1.

Existence. Let z̃ ∈ C(0, T ;V ) be the fixed point of the operator Λ and denote
x̃ = (ũz, ϕ̃z, θ̃z) the solution of the variational problem (PVz), for z̃ = z, the
definition of Λ and problem (PVz) prove that x̃ is a solution of problem (PV ).

Uniqueness. The uniqueness of the solution follows from the uniqueness of the
fixed point of the operator Λ.

3.2. Proof of Theorem 2.2. In this paragraph we prove the existence and unique-
ness of Problem (PVε) presented in Theorem 2.2(a) follow the same steps that
Theorem 2.1, for this let zε ∈ C(0, T ;V ) such that

(zε(t), v)V = e(v, ϕεz(t))−m(θεz(t), v). (3.73)

Proof of (a) in Theorem 2.2. We consider the following problem.

Problem (PVdp
εz ). Find uεz ∈ K such that for a.e. t ∈]0, T [ and v ∈ V such that

c(u̇εz(t), v) + a(uεz(t), v) + (zε(t), v)V

+
1
ε

Φ(uεz, v) + 〈j′ε(u̇εz), v〉(f(t), v)V ,

uε(0, x) = u0(x).

(3.74)

Using the Riesz’s representation theorem, we define the operator(
fεz(t), v

)
=
(
f(t), v

)
V
−
(
zε(t), v

)
V
, (3.75)

and
ã(uεz(t), v) = a(uεz(t), v) +

1
ε

Φ(uεz, v). (3.76)
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Note that Problem (PVdp
εz ) is equivalent to the Cauchy problem

ã(uεz(t), v) + c(u̇εz(t), v) + 〈j′ε(u̇εz), v〉 =
(
fz(t), v

)
,

uε(0, x) = u0(x).
(3.77)

By the coercivity of jε and the inequality (2.47), for all w ∈ L2(0, T ;V ), we have

〈j′ε(v), w − v〉 ≤ jε(w)− jε(v). (3.78)

Then Problem
(
PV dpε

)
can be written as

ã(uεz(t), v) + c(u̇εz(t), v) + jε(u̇εz(t))− jε(v) ≥ (fεz(t), v). (3.79)

By assumption (H6) and zε ∈ C(0, T ;V ), we have fεz ∈ C(0, T ;V ), and by (h1)−
(h2) the operator c is continuous and coercive. We prove now the operator ã is
continuous, for this let u, v ∈ L2(0, T ;V ), it follows from the definition of ã that

|ã(u, v)| = |a(u, v) +
1
ε

Φ(u, v)|

≤ |a(u, v)|+ 1
ε

∣∣ ∫
ΓC

[uν ]+vνda
∣∣

≤M=‖u‖V ‖v‖V +
1
ε
‖uν‖L2(ΓC)‖vν‖L2(ΓC)

≤
(
M= +

c20
ε

)
‖u‖V ‖v‖V .

(3.80)

By (2.46) the functional jε is proper convex and lower semicontinuous. Using now
the result presented in [16, pp. 61-65], Problem (PVdp

εz ) has a unique solution
uεz ∈ C1(0, T ;V ). Now we consider the following two problems:

Problem (PVel
εz). Find ϕεz : ]0, T [→W such that for a.e. t ∈]0, T [ and ξ ∈W

b(ϕεz(t), ξ)− e(uεz(t), ξ)− p(θεz(t), ξ) + `(uεz(t), ϕεz(t), ξ) = (qe(t), ξ)W , (3.81)

Problem (PVth
εz). Find θεz : ]0, T [→ Q such that for a.e. t ∈]0, T [ and η ∈ Q

d(θεz(t), η) + (θ̇εz(t), η)Q + χ(uεz(t), θεz(t), η) = (qth(t), η)Q. (3.82)

Similar to Lemmas 3.3 and 3.6 the previous problems have a unique solution
ϕεz ∈ L2(0, T ;W ) and θεz ∈ L2(0, T ;Q). Finally by lemma 3.8, Problem

(
PVε

)
has

a unique solution (uε, ϕε, θε). �

In the following paragraph, we provide a convergence result involving the se-
quences

{
uε
}

,
{
ϕε
}

and
{
θε
}

.

Proof of (b) in Theorem 2.2. We need a priori estimates for passing to limit. Sim-
ilar to (3.54)-(3.27) and (3.23), we find

{ϕε} is bounded in L2(0, T ;W ),

{θε} is bounded in L2(0, T ;Q),

{θ̇ε} is bounded in L2(0, T ;Q′).

(3.83)
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Estimate for uε. Setting v = uε in (2.49), we obtain

c(u̇ε(t), uε(t)) + a(uε(t), uε(t)) + e(uε(t), ϕε(t))−m(θε(t), uε(t))

+
1
ε

Φ(uε(t), uε(t)) + 〈j′ε(u̇ε), uε(t)〉

= (f(t), uε(t))V .

(3.84)

As Φ(uε(t), uε(t)) ≥ 0 and 〈j′ε(u̇ε), uε(t)〉 ≥ 0, we find that

a(uε(t), uε(t)) + c(u̇ε(t), uε(t)) + e(uε(t), ϕε(t))−m(θε(t), uε(t))

≤ (f(t), uε(t))V .
(3.85)

By assumptions (H1),(H2) and (3.83), we have

m=‖uε(t)‖2V +mC
1
2
d

dt
‖uε(t)‖2V ≤ s1‖uε(t)‖2V , (3.86)

with s1 depend of constants ME , MM, ‖f(t)‖V , ‖qe(t)‖L2(0,T ;W ), ‖qth(t)‖L2(0,T ;Q)

and ‖θ0‖L2(Ω). We integrate from 0 to t, for a.e. t ∈]0, T [ and using Gronwall
inequality we obtain {

uε
}

is bounded in L2(0, T ;V ). (3.87)

Estimate for u̇ε. We take v = u̇ε in (2.49), we obtain

c(u̇ε(t), u̇ε(t)) + a(uε(t), u̇ε(t)) + e(u̇ε(t), ϕε(t))−m(θε(t), u̇ε)

+
1
ε

Φ(uε(t), u̇ε(t)) + 〈j′ε(u̇ε), u̇ε(t)〉

= (f(t), uε(t))V .

(3.88)

By Φ(uε(t), uε(t)) ≥ 0, 〈j′ε(u̇ε), uε(t)〉 ≥ 0 and assumptions (h1)− (h2), we find that

mC‖u̇ε(t)‖V ′ ≤M=‖uε(t)‖V + s1. (3.89)

Integrating from 0 to t, for a.e. t ∈]0, T [, using Gronwall inequality and estimate
for uε we obtain that

{u̇ε} is bounded in L2(0, T ;V ′). (3.90)

Estimate for [uεν ]+. We have

1
ε

Φ
(
[uεν ]+, uεν

)
=

1
ε

∫
ΓC

(
[uεν ]+uεν

)
da =

1
ε
‖[uεν ]+‖2L2(ΓC) ≤ s2,

Integrate from 0 to t, for a.e. t ∈]0, T [, we obtain

{[uεν ]+} is bounded in L2
(
0, T ;L2(ΓC)

)
. (3.91)

Passage to the limit in ε. Using now (3.83), (3.87) and (3.90) to deduce that
there exists a subsequences of uε, ϕε and θε denoted again by uε, ϕε and θε such
that

uε ⇀ ũ in L2(0, T ;V ), u̇ε ⇀ ˙̃u in L2(0, T ;V ′),

ϕε ⇀ ϕ̃ in L2(0, T ;W ), θε ⇀ θ̃ in L2(0, T ;Q),

θ̇ε ⇀
˙̃
θ in L2(0, T ;Q′).

(3.92)
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Using the compactness of trace map γ : V ×W ×Q→ L2(ΓC)d×L2(ΓC)×L2(ΓC),
we find that

uε → ũ in L2(0, T ;L2(ΓC)d), u̇ε → ˙̃u in L2(0, T ;L2(ΓC)d),

ϕε → ϕ̃ in L2(0, T ;L2(ΓC)), θε → θ̃ in L2(0, T ;L2(ΓC))

θ̇ε → ˜̇
θ in L2(0, T ;L2(ΓC)).

(3.93)

By (3.91), we find that

lim
ε→0
‖[uεν ]+‖

L2
(

0,T ;L2(ΓC)
) = ‖[uν ]+‖

L2
(

0,T ;L2(ΓC)
) = 0. (3.94)

It results that ‖[uν ]+‖L2(0,T ;L2(ΓC)) = 0 and [uν ]+ = 0 a.e. on ΓC and ũν ≤ 0 on
ΓC ; then ũ ∈ K.

Using now (3.74), (3.78), (3.81), (3.82) and Φ(uε, v − u̇ε) ≥ 0, we get for all
v ∈ K, ξ ∈W and η ∈ Q,

a(uε(t), v − u̇ε(t)) + e(v − u̇ε(t), ϕε(t))−m(θε(t), v − u̇ε(t))
+ c(u̇ε(t), v − u̇ε(t)) + jε(v)− jε(u̇ε(t))
≥ (f(t), v − u̇ε(t)))V ,

b(ϕε(t), ξ)− e(uε(t), ξ)− p(θε(t), ξ) + `(uε(t), ϕε(t), ξ) = (qe(t), ξ)W ,

d(θε(t), η) + (θ̇ε(t), η)Q + χ(uε(t), θε(t), η) = (qth(t), η)Q.

(3.95)

By (3.93) and the properties of ψ, kc and φL, we have

jε(v)− jε(u̇ε(t))→ j(v)− j( ˙̃u(t)) in R,
`(uε(t), ϕε(t), ξ)→ `(ũ(t), ϕ̃(t), ξ) in R,

χ(uε(t), θε(t), η)→ χ(ũ(t), θ̃(t), η) in R.
(3.96)

Let w ∈ L2(0, T ;V ), by the coercivity of jε and inequality (2.47) imply that

〈j′ε(v), w − v〉V ′,V ≤ jε(w)− jε(v) ≤ j(w)− j(v) + 2Cε. (3.97)

Therefore, by (3.92), (2.26) and (3.97), we find that when ε→ 0

a(ũ(t), v − ˙̃u(t)) + e(v − ˙̃u(t), ϕ̃(t))−m(θ̃(t), v − ˙̃u(t))

+ c( ˙̃u(t), v − ũ(t)) + j(v)− j( ˙̃u(t))

≥ (f(t), v − ˙̃u(t)))V ,

b(ϕ̃(t), ξ)− e(ũ(t), ξ)− p(θ̃(t), ξ) + `(ũ(t), ϕ̃(t), ξ) = (qe(t), ξ)W ,

d(θ̃(t), η) + ( ˙̃
θ(t), η)Q + χ(ũ(t), θ̃(t), η) = (qth(t), η)Q, ∀η ∈ Q.

(3.98)

By (2.36)-(2.39), we obtain (ũ, ϕ̃, θ̃) = (u, ϕ, θ). �

Conclusion. In this work, we present a new model of thermo-electro-viscoelasticity,
we prove the existence and uniqueness of the solution of contact problem with
Tresca’s friction law by using Galerkin and fixed point method. The difficulty of
solving this type of problem lies not only in the coupling of viscoelastic, electrical
and thermal aspects, but also in the nonlinearity of the boundary conditions mod-
eling this type of physical phenomena (contact and friction conditions), which gives
us a nonlinear variational, quasi-variational inequalities and two types of nonlinear,
parabolic and elliptic family variational equations. To simplify this model, it can
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be treated without friction or neglecting the effect of the conductivity of the foun-
dation. We proved the existence and uniqueness of solution to the penalty problem
and its convergence to the solution of the original problem. The numerical analysis
by finite element or other method is an interesting direction of future research.
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Paris(1969).

[12] M. Shillor, M. Sofnea, J. J. Telega; Quasistatic Viscoelastic Contact with Friction and Wear
Diffusion. Quarterly of Applied Mathematics. Vol. 62, No. 2 (June 2004), pp. 379–399.

[13] A. Signorini; Sopra alcune questioni di elastostatica. Atti della Societ‘a Italiana per il Pro-

gresso delle Scienze, 1933.
[14] M. Sofonea, El-H. Essoufi; A piezoeletric contact problem with slip dependent coefficient of

friction. Mathematical Modelling and Analysis, 9, (2004), 229–242.

[15] M. Sofonea, O. Chau and W. Han, Analysis and approximationof a viscoelastic contact prob-
lem with slip dependent friction, Dynam. Cont. Discr. Impuls. Syst., Series B: Vol. 8, No. 2,

(2001), pp. 153–174 .

[16] M. Sofonea, A. Matei; Variational Inequalities with Application, A study of Antiolane Fric-
tional Contact Problems. Springer Science+Busness Media LLC (2009).

[17] M. Shillor, K.T Andrews, K.L Kuttler; On the dynamic behavior of a thermoviscoelastic body

in frictional contact. Europ. J. Appl. Math., Vol. 8, No. 4, pp. 417–436.
[18] H. F. Tiersten; On the non linear equation of electro-thermo-elasticity. International Journal

of Engineering Sciences 9, (1953), 587–604.
[19] R. D. Mindlin; Elasticity, piezoelasticity and crystal lattice dynamics. J. of Elasticity, 4,

(1972) 217–280.

[20] R. C. Batra, J. S. Yang; Saint-Venants principle in linear piezoelectricity. Journal of Elas-
ticity, 38, (1995) 209–218, .

[21] S. Migorski, A. Ochal, M. Sofonea; Weak Solvability of a Piezoelectric Contact Problem.

European Journal of Applied Mathematics. 20, (2009), 145–167.
[22] T. Ikeda; Fundamentals of Piezoelectricity. Oxford University Press, Oxford, (1990).

El-Hassan Essoufi

Univ. Hassan 1, Laboratory MISI, 26000 Settat, Morocco
E-mail address: e.h.essoufi@gmail.com

Mohammed Alaoui
Univ. Hassan 1, Laboratory MISI, 26000 Settat, Morocco

E-mail address: alaoui fsts@yahoo.fr



EJDE-2019/05 QUASISTATIC THERMO-ELECTRO-VISCOELASTIC CONTACT PROBLEM 21

Mustapha Bouallala (corresponding author)

Univ. Hassan 1, Laboratory MISI, 26000 Settat, Morocco

E-mail address: bouallalamustaphaan@gmail.com


	1. Introduction
	2. Setting of the problem
	2.1. Contact problem
	Problem (P)
	2.2. Weak formulation and main results
	Problem (PV)
	2.3. Convergence analysis of the penalty method
	Problem (PV)

	3. Proof of main results
	3.1. Proof of Theorem 2.1
	Problem (PVdp)
	Problem (PVth)
	Estimate for zm
	Estimate for zm
	Existence of a weak solution
	Uniqueness
	Problem (PVel)
	Existence
	Uniqueness
	Existence
	Uniqueness
	3.2. Proof of Theorem 2.2
	Problem (PVdpz)
	Problem (PVelz)
	Problem (PVthz)
	Estimate for u
	Estimate for  
	Estimate for [u]+
	Passage to the limit in 
	Conclusion

	References

