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Abstract. In this article, we study a nonlinear Schrödinger equation arising

in optics. Firstly we prove the existence of multiple solutions of this equation.

Secondly, we consider a nonlinear Schrödinger system which is intimately re-
lated to the Schrödinger equation. We obtain the existence of nontrivial so-

lutions to this system and we also get some results on its positive solutions.

Finally, assuming Dirichlet or Neumann boundary condition, we show the ex-
istence and uniqueness of positive solution to the Schrödinger equation.

1. Introduction and statement of main results

1.1. Schrödinger equation. Schrödinger type equations have been studied ex-
tensively in the literature (see [2, 6, 10, 11, 13] for Schrödinger equation, [7, 12]
for Schrödinger systems, i.e., two coupled equations, and comments at the end of
sections 1.1 and 1.2).

In recent years, many exciting phenomena were found by careful experiments
on light waves propagating in nonlinear periodic lattices. These phenomena are
governed by the following Schrödinger equation (cf. [1, 25, 19] and the references
therein)

i
∂ψ

∂z
+D∆ψ = g(x, |ψ|2)ψ, (1.1)

where D > 0 means the beam diffraction coefficient and ∆ψ = ∂2ψ
∂x12 + ∂2ψ

∂x22 . We
take D = 1 for convenience. Steady wave beam propagate along z-axis direction
and transversely spread along x = (x1, x2) ∈ R2. The functions of concern are all
periodic with respect to x, so equation (1.1) is viewed as defined over a periodic
spatial domain Ω in R2. Steady state solution of equation (1.1) is a solution with the
form ψ(x, z) = eiλzu(x). Here λ ∈ R is a constant and u(x) is a real-valued function.
If we insert ψ(x, z) into equation (1.1) and take g(x, |ψ|2) (cf. [3, 8, 9, 16, 25, 19])
as

g(x, |ψ|2) =
P

1 + V (x) + |ψ|2
,
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we obtain
∆u =

Pu

1 + V + u2
+ λu. (1.2)

Here V = V (x) ≥ 0 is potential function, which depends on the spatial vari-
able x periodically (modulo Ω). In this paper, we set V0 = maxx∈Ω̄ V (x), v0 =
minx∈Ω̄ V (x).

A special case is when V (x) ≡ 0. In this case, equation (1.2) has the following
simple form

∆u =
Pu

1 + u2
+ λu. (1.3)

This equation will be heuristic when we study a system corresponding to equation
(1.2), as we will see later. Yang and Zhang [25, 26] showed that

Theorem 1.1. (1) For any P , equation (1.2) has a solution for some real
value λ = λ(P ).

(2) If P > 0, λ < 0 and |λ| is small enough, then equation (1.2) has a nontrivial
solution.

(3) If P < 0, 0 < λ < |P |/(1 + V0), then equation (1.2) has a nontrivial
solution.

(4) If P < 0, |P |/(1+v0) ≤ λ, then equation (1.2) has only the trivial solution.

Schechter [19] studied equation (1.2) by the linking method. Before stating his
results we need some notation. Let {λk; 0 = λ0 < λ1 < λ2 < · · · < λk < . . . }
be eigenvalues of the operator −∆ on functions in L2(Ω) having the same periods
as Ω, then λk has finite multiplicity. The corresponding eigenfunctions belong to
L∞(Ω). Schechter [19] proved the following result.

Theorem 1.2. (1) If P > 0, λ < 0 and there is an l ≥ 0 such that λl +
P/(1 + v0) ≤ |λ| < λl+1 + P/(1 + V0), |λ| > λl+1, then equation (1.2) has
a nontrivial solution.

(2) If P < 0, λ < 0, and there is an l ≥ 0 such that λl + P/(1 + V0) < |λ| ≤
λl+1 + P/(1 + v0), |λ| < λl, then equation (1.2) has a nontrivial solution.

(3) If P > 0, λ < 0, and 0 < |λ| < P/(1 + V0), then equation (1.2) has a
nontrivial solution.

(4) If P < 0, λ > 0, and 0 < λ < |P |/(1 + V0), then equation (1.2) has a
nontrivial solution.

Note that Schechter’s results hold in arbitrary dimensions. In this paper, we
consider the existence of multiple solutions of equation (1.2) and we obtain the
following result.

Theorem 1.3. If P < 0, λ > 0 and there is an integer k > 0 such that λ + λk <
|P |

1+V0
, then equation (1.2) has at least k pairs of distinct solutions.

The novelty of our result lies in establishing multiple solutions of equation (1.2)
while in [25, 26, 19] the authors considered the existence of single solution under
suitable conditions.

There are also lots of studies on equation (1.1) when the function g is defined in
other forms. For instance, g(x, |ψ|) = V (x)− γ|ψ|p−1 in [18, 2, 6, 13] (in fact, their
setting was abstract and thus their results covered a wider range), g(x, |ψ|) = l(l+
1)/|x|2 in [11]. Other than steady-state solutions, blow-up solutions of Schrödinger
equations have widely been investigated in the literature, too. In recent years,
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blow-up solutions of Schrödinger equation with defect have also attracted lots of
attentions. We refer [10] for references in this direction.

1.2. Schrödinger system: two coupled equations. We also study the system

∆u =
Pu

1 + u2 + v2
+ λu,

∆v =
Qv

1 + u2 + v2
+ λv,

(1.4)

which is intimately related to equations (1.2) and (1.3). In (1.4) P , Q and λ
are parameters and the functions u, v are defined over a periodic bounded spatial
domain Ω ⊂ R2. System (1.4) is also a nonlinear photonic lattic model and has
been studied by many researchers (cf. [4, 9, 15, 21, 23, 5, 24, 20] and the references
therein). A solution of system (1.4) having the form (u, v) is called nontrivial if
u 6≡ 0 and v 6≡ 0. If u ≡ 0 or v ≡ 0 but not both, it will be called a semi-trivial
solution.

System (1.4) was studied in [4, 20, 14]. The authors proved that system (1.4)
had semi-trivial solutions when P,Q, λ were suitably chosen. In particular, the
authors of [20, 14] studied equation (1.3) instead of (1.4) after pointing out that
the existence of nontrivial solutions of system (1.4) had not been proved.

In this article, we prove the existence of nontrivial solutions of system (1.4) in
two special cases. We also study the positive solutions of system (1.4) in these two
cases. Our results show that system (1.4) has nontrivial solutions and we hope they
will be helpful for understanding the physics of the nonlinear Schrödinger system
(1.4).

We give some comments on the recent work in [7, 12]. In [7] the author considered
the system of coupled nonlinear Schrödinger-Korteweg-de Vries equations, where
the parameter λ is different in each equation. We choose the same λ because our
analysis on system (1.4) is based upon results of equations (1.2) and (1.3). In [12]
the authors studied Schrödinger-Maxwell equations. They reduced this system to
a single equation by “elimination method”. More precisely, they represented one of
the unknown functions by the other and then the system was equivalent to a single
equation. Our system (1.4) is not solved by this method because we do not know
how the unknown functions rely on each other.

1.3. Schrödinger equation with zero Dirichlet or zero Neumann boundary
condition. Finally we show the existence and uniqueness of positive solution of
equation (1.2) with Dirichlet boundary condition u|∂Ω = 0 or Neumann boundary
condition ∂u

∂ν |∂Ω = 0. Let ϕ1 ∈ W 1,2
0 (Ω) be an eigenfunction of −∆ (with zero

Dirichlet boundary condition) corresponding to the first eigenvalue µ1 = µ1(Ω)
with ϕ1 > 0 in Ω and set M1 = maxΩ̄ ϕ1. Here we use µ1 to distinguish from λ1

which correspond to −∆ but without boundary condition. We obtain the following
theorems.

Theorem 1.4. If λ ≥ 0, P < 0 and µ1 + λ < |P |
1+V0+M1

, then equation (1.2) with
Dirichlet boundary condition u|∂Ω = 0 has a positive solution.

Theorem 1.5. If P < 0, then equation (1.2) with Dirichlet boundary condition
u|∂Ω = 0 has a unique positive solution.

For Neumann boundary condition we obtain the uniqueness of positive solution
for small λ > 0.



4 W.-L. LI EJDE-2018/109

Theorem 1.6. If P < 0, λ > 0 and λ < |P |
1+V0

, then equation (1.2) with Neumann
boundary condition ∂u

∂ν |∂Ω = 0 has a unique positive solution. When V (x) ≡ 0,
under the above conditions, the unique positive solution of equation (1.3) is u =√
−1− P

λ .

The rest of this article is organized as follows. In section 2, we prove Theorem
1.3 by verifying the conditions of Clark Theorem. In section 3, we investigate
nontrivial solutions and positive solutions of system (1.4) in two special cases. Our
discussions in this section are based on the existing results of equations (1.2) and
(1.3). In section 4, we establish the existence and uniqueness of positive solution
of equation (1.2) with zero Dirichlet (resp. Neumann) boundary condition, which
proves Theorems 1.4-1.6.

2. Multiple solutions

In this section, we prove Theorem 1.3. We use the following result of Clark[17,
p.53, Theorem 9.1].

Theorem 2.1. Let E be a real Banach space, I ∈ C1(E,R) with I even, bounded
from below, and satisfying (PS) condition. Suppose I(0) = 0, there is a set K ⊂ E
such that K is homeomorphic to Sj−1 by an odd map, and supK I < 0. Then I
possesses at least j distinct pairs of critical points.

We will verify the conditions of Theorem 2.1. The corresponding energy func-
tional of equation (1.2) is

I(u) =
1
2

∫
Ω

{
|∇u|2 + λu2 + P [log(1 + V + u2)− log(1 + V )]

}
dx

for u ∈ W 1,2(Ω). It is easy to see that I ∈ C1(W 1,2(Ω),R). I is even, i.e.,
I(−u) = I(u) and I(0) = 0.

Lemma 2.2. If P < 0 and λ > 0, then I is bounded from below.

Proof. For any ε > 0, we have

log(1 + V + u2)− log(1 + V ) ≤ |u| ≤ ε|u|2 + 1/(4ε),

and then

I(u) =
1
2

∫
Ω

{
|∇u|2 + λu2 + P [log(1 + V + u2)− log(1 + V )]

}
dx

≥ P

8ε
|Ω|+ 1

2

∫
Ω

(
|∇u|2 + λu2 + Pεu2

)
dx

=
P

8ε
|Ω|+ 1

2

∫
Ω

(
|∇u|2 +

λu2

2

)
dx.

(2.1)

To conclude Lemma 2.2, we take ε = −λ/(2P ) in the last equality. �

Lemma 2.3. If P < 0 and λ > 0, then I satisfies (PS) condition. In other words,
if {un} is a sequence in W 1,2(Ω) such that

(i) I(un) is bounded,
(ii) I ′(un)→ 0 as n→∞,

then {un} contains a subsequence which converges in W 1,2(Ω).



EJDE-2018/109 SCHRÖDINGER EQUATIONS IN PHOTONIC LATTICE 5

Proof. Suppose {un} ⊂ W 1,2(Ω) such that |I(un)| ≤ M and I ′(un) → 0, where
M > 0 is a fixed constant. We have∣∣ ∫

Ω

{
|∇un|2 + λu2

n + P [log(1 + V + u2
n)− log(1 + V )]

}
dx
∣∣ ≤ 2M

and

|〈I ′(un), v〉| =
∣∣ ∫

Ω

{
∇un∇v + λunv + P

unv

1 + V + u2
n

}
dx
∣∣ ≤ εn‖v‖W 1,2(Ω), (2.2)

where εn > 0 approaches to 0 as n→∞. Note that by (2.1) it follows that

I(un)− P

8ε
|Ω| ≥ 1

2

∫
Ω

{
|∇un|2 +

λ

2
u2
n

}
dx.

So {un} is bounded in W 1,2(Ω). Without loss of generality we set un convergence
weakly to some u in W 1,2(Ω). By Rellich-Kondrachov Theorem, we know that
un → u and un

1+V+u2
n
→ u

1+V+u2 in L2(Ω). Letting n→∞ in (2.2) we obtain∫
Ω

{
∇u∇v + λuv + P

uv

1 + V + u2

}
dx = 0. (2.3)

Plugging (2.3) into (2.2) and taking v = un − u, we have∣∣∣ ∫
Ω

{
|∇(un − u)|2 − P (un − u)

[ un
1 + V + u2

n

− u

1 + V + u2

]
+ λ(un − u)2

}
dx
∣∣∣

≤ εn‖un − u‖W 1,2(Ω).

Then ∫
Ω

|∇(un − u)|2 dx

≤ εn‖un − u‖W 1,2(Ω) + |P |
∫

Ω

|un − u|
∣∣ un
1 + V + u2

n

− u

1 + V + u2

∣∣ dx
+λ
∫

Ω

|un − u|2 dx→ 0.

We obtain un → u in W 1,2(Ω). �

Lemma 2.4. If P < 0, λ > 0 and λ+λk <
|P |

1+V0
, then there is a set K ⊂W 1,2(Ω)

such that K is homeomorphic to Sk−1 by an odd map and supK I < 0.

Proof. Indeed, let φk be one eigenfunction corresponding to λk. Without loss of
generality, we can take ‖φk‖W 1,2(Ω) = ‖∇φk‖L2(Ω) + ‖φk‖L2(Ω) = 1. Then (1 +
λk)

∫
φ2
k dx = 1 since −∆φk + φk = (λk + 1)φk. Let

K = K(r) =
{ k∑
i=1

αiφi :
k∑
i=1

α2
i = r2

}
.

Clearly K is homeomorphic to Sk−1 by an odd map for all r > 0.
We claim that supK I < 0 for r > 0 small enough. In fact, we have

log(1 + V + u2)− log(1 + V ) ≥ u2

1 + V + u2
≥ u2

1 + V0 + u2

provided 0 ≤ V (x) ≤ V0. By Jensen’s inequality

ϕ
(∫

Ω
f(x)p(x)dx∫
Ω
p(x)dx

)
≤
∫

Ω
ϕ(f(x))p(x)dx∫

Ω
p(x)dx

,
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if we take ϕ(t) = 1
1+V0+t and f(x) = p(x) = u2(x), we have∫

Ω

u2

1 + V0 + u2
dx ≥

∫
Ω

u2

1 + V0 +
R
Ω u

4 dxR
Ω u

2 dx

dx.

Using Gagliardo-Nirenberg inequality, we obtain∫
Ω

u4 dx ≤ C‖u‖2W 1,2(Ω)

∫
Ω

u2 dx,

and then ∫
Ω

u2

1 + V0 + u2
dx ≥

∫
Ω
u2 dx

1 + V0 + C‖u‖2W 1,2(Ω)

.

For u ∈ K we have ‖u‖2W 1,2(Ω) = r2, so we have arrived at the energy upper bound

I(u) =
1
2

∫
Ω

{
|∇u|2 + λu2 + P [log(1 + V + u2)− log(1 + V )]

}
dx

≤ 1
2

∫
Ω

{
|∇u|2 + λu2 + P

u2

1 + V0 + Cu2

}
dx

≤ 1
2

∫
Ω

{
|∇u|2 + λu2 + P

u2

1 + V0 + Cr2

}
dx

=
1
2
r2 +

1
2

(
λ− 1 +

P

1 + V0 + Cr2

)∫
Ω

u2 dx

=
1
2
r2 +

1
2

(
λ− 1 +

P

1 + V0 + Cr2

) k∑
i=1

( α2
i

λi + 1

)
.

But λ− 1 + P
1+V0

< −1− λk < 0 provided λ+ λk < − P
1+V0

. So there exists r1 > 0,
such that for all r ∈ (0, r1) we have λ− 1 + P

1+V0+Cr2 < −λk − 1 and

I(u) ≤ 1
2
r2 +

1
2

(
λ− 1 +

P

1 + V0 + Cr2

) r2

λk + 1

=
1
2
r2
[
1 +

1
λk + 1

(λ− 1 +
P

1 + V0 + Cr2
)
]
.

Then there is r0 ∈ (0, r1) such that I(u) < 0 for all u ∈ K(r0). �

Proof of Theorem 1.3. By Lemmas 2.2, 2.3, 2.4 and Theorem 2.1, the functional I
has at least k pairs distinct critical points and then equation (1.2) has at least k
pairs solutions. �

3. Nontrivial solutions and positive solution of the system

In this section, we focus on the existence of the nontrivial solutions of system
(1.4). As pointed out by Schechter [20] (see also [14]), no one has showed the
existence of nontrivial solutions of system (1.4). We consider two special cases in
which system (1.4) has nontrivial solutions.
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3.1. Case P = Q. System (1.4) becomes

∆u =
Pu

1 + u2 + v2
+ λu,

∆v =
Pv

1 + u2 + v2
+ λv.

(3.1)

Observing this system is closely connected to equation (1.2), more precisely to
equation (1.3), we have the following theorem.

Theorem 3.1. If λ > 0, P < 0, and λ < |P |, then system (3.1) has infinitely
many solutions.

Proof. The following equation has a nontrivial solution, say w, by Theorem 1.1

∆w =
Pw

1 + w2
+ λw.

Then (w cos θ, w sin θ), for all θ ∈ (−π,+π) \ {0,±π2 }, will be nontrivial solutions
of system (3.1). �

Remark 3.2. Combining our method and Theorems 1.1, 1.2 and results mentioned
in section 1.2, one has similar results of Theorem 3.1.

Remark 3.3. If system (3.1) has positive solution (u, v) with u > 0 and v > 0,
then (u, v) has the form (u, cu), i.e., v is proportional to u. In fact, u > 0 and v > 0
are solutions of linear equation

∆w + f(x)w = 0,

where f(x) = |P |/[1 + u2(x) + v2(x)] − λ. Then u and v are eigenfunctions cor-
responding to eigenvalue 0. So v = cu for some constant c > 0 because 0 is the
smallest eigenvalue which is simple. (If 0 is not smallest, then there is some eigen-
value, say λ0 < 0. Denote ϕ0 is a positive eigenfunction corresponding to λ0. This
will lead to a contradiction since different eigenfunction corresponding to different
eigenvalue should be orthogonal in L2(Ω). But u and ϕ0 are positive, so they cannot
be orthogonal in L2(Ω).)

Remark 3.4. Under the assumption of Theorem 3.1, system (3.1) has infinitely
positive solutions. In fact, our proof of Theorem 3.1 is based on Theorem 1.1
(3), which is proved by minimizing method. When w is a global minimizer so is
|w| because energy functional I satisfies I(w) ≥ I(|w|). Regularity theory and
maximum principle ensure that |w| is a positive solution. Thus (w cos θ, w sin θ),
for all θ ∈ (0, π/2), will be positive solutions of system (3.1).

3.2. Case Q = 0. System (1.4) will be “decoupled” into

∆u =
Pu

1 + u2 + v2
+ λu,

∆v = λv.
(3.2)

Theorem 3.5. (1) If −λ = λk > 0, P > 0, and there is an integer l ∈ (0, k)
such that λl +P/(1 +φ0

k) ≤ λk < λl+1 +P/(1 +φ1
k), then system (3.2) has

a nontrivial solution.
(2) If −λ = λk > 0, P < 0, and there is an integer l > k such that λl +P/(1 +

φ1
k) < λk ≤ λl+1 +P/(1 + φ0

k), then system (3.2) has a nontrivial solution.
Where φk is the eigenfunction corresponding to λk and φ0

k = minΩ̄(φk)2, φ1
k =

maxΩ̄(φk)2.
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Proof. Clearly v = φk is a nontrivial solution of the second equation of system
(3.2). For this fixed function v, we conclude this theorem by Theorem 1.2. �

Remark 3.6. If P < 0 and system (3.2) has positive solution (u, v) with u > 0
and v > 0, we find that λ must be 0 and then v is constant. We claim: all of the
positive solutions of system (3.2) have the form (Cuc0, c), where C, c are positive
constants and uc0 is a positive solution of

∆u =
(Pu)/1 + c2

1 + u2
(=:

Pcu

1 + u2
).

In fact, if (u, v) are positive solution of system (3.2), then λ = 0 and v = c for
some constant c. The first equation of system (3.2) becomes ∆u = Pu

1+c2+u2 , i.e.,
∆w = Pcw

1+w2 , where w = u/
√

1 + c2. Using the same argument as in Remark 3.3 we
obtain our claim.

We complete this section with a remark on more general cases.

Remark 3.7. If λ > 0, P < 0, Q < 0 and λ ≥ min{|P |, |Q|}, then equation (1.4)
has no positive solution (u, v) with u > 0 and v > 0. This follows from Remark 4.6
of sec. 4 and λ ≥ min{|P |, |Q|} > min{ |P |

1+v2
0
, |Q|

1+u2
0
}, where u0 = minx∈Ω u(x) and

v0 = minx∈Ω v(x). Please compare this remark with Remark 3.3.

4. Positive solution with zero Dirichlet or Neumann boundary
condition

In this section, we prove Theorems 1.4, 1.5 and 1.6. We set the energy functional
corresponding to equation (1.2) with zero Dirichlet boundary condition as

Ĩ(u) =
1
2

∫
Ω

{
|∇u|2 + λu2

}
dx+

1
2

∫
Ω

P
[

log(1 + V + u2
+)− log(1 + V )

]
dx

for u ∈W 1,2
0 (Ω), where u+ = max{u, 0}. We first give some lemmas.

Lemma 4.1. If P < 0 and λ ≥ 0 then Ĩ is bounded from below.

Proof. Since

log(1 + V + u2
+)− log(1 + V ) ≤ |u+| ≤ ε|u+|2 +

1
4ε
,

we have

Ĩ(u) ≥1
2

∫
Ω

(
|∇u|2 + λu2 + Pε|u+|2

)
dx+

P

8ε
|Ω|

≥P
8ε
|Ω|+ 1

2

∫
Ω

(
µ1 + λ+ Pε

)
u2 dx

≥P
8ε
|Ω|,

where ε > 0 is taken small enough such that µ1 + λ+ Pε > 0. �

Lemma 4.2. If P < 0 and λ ≥ 0, then Ĩ has a global minimizer, say w, in
W 1,2

0 (Ω).
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Proof. Let {un} be a minimizing sequence satisfying Ĩ(un) → infW 1,2
0 (Ω) Ĩ. Then

there exists N ∈ N such that for all n > N we have |Ĩ(un)| ≤ | infW 1,2
0 (Ω) Ĩ|+ 1. So

for ε > 0, we obtain

1
2

∫
Ω

(
|∇un|2 + λu2

n

)
dx

≤ | inf
W 1,2

0 (Ω)
Ĩ|+ 1− 1

2
P

∫
Ω

[
log(1 + V + u2

n)− log(1 + V )
]
dx

≤ | inf
W 1,2

0 (Ω)
Ĩ|+ 1− P

8ε
|Ω| − Pε

2

∫
Ω

u2
n dx.

Then {un} is bounded in W 1,2
0 (Ω). Without loss of generality un → w weakly

in W 1,2
0 (Ω). Since Ĩ is weakly lower continuity, Ĩ has a global minimizer w in

W 1,2
0 (Ω). �

Lemma 4.3. If P < 0, λ > 0 and µ1 + λ < |P |
1+V0+M1

, then Ĩ(w) < 0, where w is
defined in Lemma 4.2.

Proof. It is well known that µ1 > 0. By the definition of w, we obtain Ĩ(w) ≤ Ĩ(ϕ1).
Noticing

log(1 + V + u2
+)− log(1 + V ) ≥

u2
+

1 + V + u2
+

,

we obtain

Ĩ(ϕ1) =
1
2

∫
Ω

(
|∇ϕ1|2 + λϕ2

1

)
dx+

1
2

∫
Ω

P
[

log(1 + V + ϕ2
1)− log(1 + V )

]
dx

≤1
2

∫
Ω

(
µ1 + λ

)
ϕ2

1 dx+
1
2

∫
Ω

Pϕ2
1

1 + V + ϕ2
1

dx

≤
[1

2
(µ1 + λ) +

1
2

P

1 + V0 +M1

] ∫
Ω

ϕ2
1 dx < 0

provided that µ1 + λ < −P
1+V0+M1

. �

Proof of Theorem 1.4. Firstly w+ 6≡ 0: if w+ ≡ 0 then Ĩ(w) = 1
2

∫
Ω

(|∇w|2 +
λw2) dx ≥ 0, which contradicts to Lemma 4.3.

Secondly w ≥ 0. w is a weak solution of

∆w =
Pw+

1 + w2
+ + V

+ λw x ∈ Ω,

w = 0 x ∈ ∂Ω.
(4.1)

Multiplying the first equation in (4.1) by w− and integrating by parts on Ω, we
obtain ∫

Ω

(
|∇w−|2 + λw2

−
)
dx = 0.

So w− = 0 and then w ≥ 0, i.e., w is a weak solution of equation (1.2) with
zero Dirichlet boundary condition. Note that w is a classical solution by elliptic
regularity theory, and w > 0 follows from the strong maximum principle. �

To prove Theorem 1.5, we first prove the following lemma.
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Lemma 4.4. If P < 0, then equation (1.2) with Dirichlet boundary condition
u|∂Ω = 0 has at most one positive solution.

Proof. If u, w are positive solutions of equation (1.2), then u, w > 0 in Ω and

∆u =
Pu

1 + V + u2
+ λu, (4.2)

∆w =
Pw

1 + V + w2
+ λw. (4.3)

Set Ω+ = {x ∈ Ω;u(x)− w(x) > 0} then Ω+ is a piecewise C1 smooth domain.
We claim that Ω+ = ∅. In fact, if Ω+ 6= ∅, multiplying equation (4.2) by w and

subtracting equation (4.3) which is multiplied by u, we have∫
∂Ω+

(
w
∂u

∂ν
− u∂w

∂ν

)
dx

=
∫

Ω+

Puw
[ 1

1 + V + u2
− 1

1 + V + w2

]
dx

=
∫

Ω+

Puw
w2 − u2

(1 + V + w2)(1 + V + u2)
dx > 0.

However,∫
∂Ω+

(
w
∂u

∂ν
−u∂w

∂ν

)
dx =

∫
∂Ω+\∂Ω

(
w
∂u

∂ν
−u∂w

∂ν

)
dx =

∫
∂Ω+\∂Ω

w
∂(u− w)

∂ν
dx ≤ 0.

This contradiction shows that Ω+ = ∅. Similarly Ω− = {x ∈ Ω;u(x)−w(x) < 0} =
∅. Therefore we obtain u ≡ w in Ω. �

Remark 4.5. The method in the proof of Lemma 4.4 is modified from [22]. It
is easy to see that the same conclusion holds if boundary condition u|∂Ω = 0 is
replaced by ∂u

∂ν |∂Ω = 0.

Theorem 1.5 now follows from Theorem 1.4 and Lemma 4.4.

Proof of Theorem 1.6. We need only to prove that equation (1.2) has a positive
solution because of Remark 4.5. But this is a direct consequence of Theorem 1.1
(3) and Remark 3.4. Notice that in Theorem 1.1 there is no boundary condition
while we add Neumann boundary in our case, but we can use their proof since we
can still integrate by parts in the proof. �

Remark 4.6. When P < 0, λ > 0 and λ ≥ |P |/(1 + v0), equation (1.2) with zero
Neumann boundary condition has no positive solution because the only solution is
0 as pointed out by Yang and Zhang in Theorem 1.1 (4). In particular this is a
sharp conclusion for equation (1.3).
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