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OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED
DIFFERENTIAL EQUATIONS

MIROSLAV BARTUSEK

ABSTRACT. We study a third-order damped neutral sublinear differential equa-
tion whose differential operator is non-oscillatory. Specifically, we obtain suf-
ficient conditions for all solutions to be oscillatory.

1. INTRODUCTION

Consider the third-order differential equation
2"+ qt)2 + () f(x(o(t)) =0, >0, (1.1)
2(t) = z(t) + a(t)x(T(t)) ) (1.2)
In this article we impose er the following assumptions:
(H1) ¢ € C(Ry), q(t) > 0 for large t, » € C(Ry), r(t) > 0 for large t, Ry =
[0, 00);
(H2) 0 € C(R), R = (—00,00), o(t) < tfort € R, lim; o 0(t) = 00, there exists
a constant oy such that 0 < o/(t) < o7 for all t € R;
(H3) 7 € C3(R), o(t) < 7(t) <t forall t € R, limy_, 7(t) = 0o, and there exists
a 7o exists such that 0 < 79 < 7/(¢) for all ¢ € R;
(H4) a € C3(Ry), there exists a number a; such that 0 < a(t) < a; for all
te R+,
(H5) f e CR), f(u)u >0 for u # 0 and there exists a A € (0, 1] such that

[f@)] > |u]* VueR;
(H6) The associated second-order linear equation
" +q(t)h=0, t>0 (1.3)
has a solution h(t) > 0 for all ¢ large enough.

Definition 1.1. Let T' € Ry and Ty = o(T). A function x is said to be a solution
of on [T,00) if = is defined and continuous on [Ty, 00), z € C3[T, ), and x
satisfies on [T, 00).

A solution is said to be non-oscillatory if 2(t) # 0 for all large ¢, otherwise it is
said to be oscillatory. Equation is oscillatory if all its solutions are oscillatory.
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In recent years, a great attention has been paid to qualitative theory of third-
order neutral differential equations. Such equations have applications in mathe-
matical modeling in biology and physics, see for example [10, 1T} 12} [15]. A great
effort has been devoted to oscillation theory of the damped equations of the forms

" +q(t)z’ + r(t) f(z(o(t)) =0, (1.4)
(r2()(r1(1)2")) + ()’ (£) + r(8) f (2( (1)) = 0 (1.5)

with r; € C(Ry), m(t) > 0 for t € Ry and i =1, 2.
An equation is said to have Property A if every solution is either oscillatory or
z(t)z'(t) < 0 for all large ¢. Sufficient (and or necessary) conditions have been

studied under which equation either (1.4]) or (1.5 has Property A. Equation (|1.4)
has been studied in [8] (where there is a nice review of the results.), in [2], and the

references therein. For studies of ((1.5]), see for example [T}, B} [14].
Property A has been generalized for the neutral differential equation

2"+ rt) f(x(o(t) =0 (1.6)

in [I3], and for the equation

(ra(1) (11 (1)2")) + R(t)z(a(t)) =0 (1.7)
in [5, @], where r; € C(Ry), R€ C(Ry), r; > 0for i =1,2, R > 0, and z is given
by (1.2). An interesting question was solved in [6] for (1.7)) in the canonical case,
i.e. when

/ Ldt:oo fori=1,2. (1.8)
o Ti(t)
Reference [5] shows sufficient conditions for (with ¢ = 0) no having a solution
x such that z(¢)z'(t) < 0 for large ¢.

Since is non-oscillatory and ¢ > 0, every eventually positive solution of
is nondecreasing for large ¢, and the following holds, see [9].

Lemma 1.2. Equation (1.3) has a solution h which is positive and nondecreasing

fort >ty >0 and
—— = 00, h(t)dt = oc0. 1.9
| w0 [ hat (1.9)

0
If [ tq(t)dt < oo then limy_,o h(t) € (0,00). Also if [;°tq(t)dt = oo, then
lim; o0 h(t) = oco.
Note that if a solution h satisfies ([1.9), then a positive constant times h also
satisfies (1.9]). This solution is called a principal solution.

Definition 1.3. Let h be a principal solution of (1.3) such that A(t) > 0 on
[t*,00) C Ry. In the case [ tq(t)dt < oo, h is chosen such that lim;_, h(t) = 1.

It is easy to see that for for ¢t > t*, (|1.1)) can be rewritten as

(m( hz(t) )Y + her ) ((o(1) = 0. (1.10)

For ¢t > t*, we denote the quasiderivatives of z as follows:

z[ll(t):@7 L)y =r20) (@) Bl = (Be).

" (1.11)
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Then we rewrite (1.1)) as (1.10) and using (1.11),

Bt + ht)r(t) f(z(a(t)) = 0. (1.12)
Note, that For ¢ > t*, is a special case of the equation
(ra(t) (r1.(1)2")) + R(t) f (x(a(t))) = 0, (1.13)
where
1 9 _
ri(t) = %, ro(t) = h*(t), R(t) = h(t)r(t). (1.14)

Because of (|1.9)), equation (|1.13) is in canonical form, i.e. (L.8)) holds.

Our goal is to find sufficient conditions for to be oscillatory. A crucial
problem is to prove nonexistence of non-oscillatory solutions such that z(¢)z’(t) < 0
for large t. So, if f(u) = u on R it is possible to use results from [6] for equation
([1.7) with (1.14). However, a very restrictive assumption 7(o(t)) = o(7(t)) is used
in [6]. We give sufficient conditions for the nonexistence of such solutions without
this assumption and without the assumption f(u) = u. Note, that our assumption
0 < o'(t) < o1 is not assumed in [G].

Let V be the set of all non-oscillatory solutions of which are defined on
subintervals of R, and which are positive for large t. We shall study only the set N.
Non-oscillatory solutions which are negative for large ¢ can be study by a similar
way.

It is known (see, e.g., [0 Lemma |) that N can be divided into two subsets

N = Ny UN7 where z is given by (1.2) and
No={zeN:2z(t) >0, 21(1) < 0,22(t) > 0,28(t) < 0 for large t},
M ={zeN:201)>0,i=0,1,2,2P(t) <0 for large t}].

1

In this article, 77! and o~! denote the inverse functions of 7 and o, respectively.

Also we define
Noo = {x eNy: tligloz(t) = O} ,

Nor={zeNy: tlggo z(t) € (0,00) } .
For simplicity, for ¢ > 0, we define

r*(t) = min {’I‘(U_l(t)),’f‘(O'_l(T(t)))} . (1.15)
Note, that by (H3),

o () > ¢, (1.16)
where e denotes the Euler number.
2. PRELIMINARIES
Here we state some auxiliary results which will be needed later.

Lemma 2.1. Let x € N be defined on [T,00) and Ty = o(T). Let A € C[T,0) be
positive and

/OO A) [2(o(8) dt < oo. (2.1)

T
Then

/w A (1) |2(t)] dt < oo (2.2)
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where
A*(t) = min (A(o_l(t))7 A(a_l(T(t)))) .

Proof. Let x € N and t; > T be such that z(t) > 0 for ¢ > o(¢1). The substitution
s =o(t) and (2.1)) yield

1 > ds
— Ao (s))a M (s)ds < A(o(s))a?(s) ———
01 Joty) (7 )z s ds < é(tl) (a7 )2 )a’(a‘l(s)) (2.3)
= / A(t)z? (o(t)dt < 0.
From this, applying substitution s = 7(t), for to = 7~ (o (¢1)), we obtain
2 T A(e ()2 (1)) dt < Jil T Ao )2 ()7 (1) dt
o . o (2.4)
- . )A(a’l(s))x’\(s) ds < .
We have N
2t) < (x(t) + az(7(t)))” < M(xk(t) + 2 (T()) (2.5)

with M = 2*(1 + a?). As 7 is increasing and o(¢;) < to, (2.3), (2.4), [2.5) imply
1 o0
min {—, 2} [ A*(1)2 () dt

g1 01 to

< M{i /:O Al ()2 () dt} + o /OOA(U%(T@))”C/\(T(@) dt < oco.

1 Ja(tr) 01 Jtq
Hence, is valid. ([
Lemma 2.2. There exist kg > k > 0 such that
kot > h(t) > k exp { /t sq(s) ds} fort>t* (2.6)
where t* and h are given by Definition |Eq. Moreover, if € > 0, then
lizgz))g(l—i—s)z forquZ%t*>t*. (2.7)

Proof. As for (2.6)), see [4, Lemma 2] and Now we prove (2.7). We have

—<—v > t* which is equivalent to v — t* > —*—. From this we have

14-¢ 1+e
u—t* U U 1+¢ ,
v—t*gvft*g(l—FE)E foruzvat. (2.8)

As B/(t) > 0 and A’ is non-increasing for ¢ > ¢*, we obtain
t
h(t) = h(t*) +/ B (s)ds > B (£)(t — ).
.
This inequality and (2.8]) imply

h(uw) “h(s) Y ods u—t* u
h(v) exp{/v h(s) s}_exp{/v sft*} v — t* = +€)v
foru>v > 1‘!%*; hence, ([2.7) holds. O

Lemma 2.3. Let x € N and T > 0 be such that x is positive on [o(T'),00).
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(i) If v € Ny and [;°t q(t)dt < oo, then

/(><> 2 (1) 2 () dt < oo (2.9)
(i) If x € N, then
/T exp { /0 sq(s) ds}r*(t) At)dt < 0. (2.10)

Proof (i) Let z € Ny and tp > max(7,t*) be such that z(¢t) > 0 for t > o(to),
( ) # 0 for t > tg, i = 1,2. Then lim;_,, 2(t) = C > 0. It is easy to see that

-, (T.11) and = € Ny imply limy o 2[1(¢) = 0 for i = 1,2. Hence (T.11)) and

(H5) yield
Ay =— [ h2(s)28(s) ds,
/‘f (2.11)

22t = — /too 2B(s)ds = /too h(s)r(s)z*(o(s)) ds

for t > t,.
As tg > t*, by Definition there exist positive constants C; and C5 such that
Cy < h(t) < Cy for t > tg. From this, (L.11)), (2.11), and Fubini’s theorem, we have

00 > z(tg) — C = — /00 h(s)z1(s)ds

to

> /00 h(s) /OO ! )/OO h(w)r(w)x)‘(a(w)) dw dv ds

/tos/ / (w)) dw dv ds
—Cg/to /5 w— S)r )‘(o(w))dwds

ng/ (w —to)*r(w)z* (o(w)) dw

2 to
Cs * 2 A
> — w’r(w)z* (o(w)) dw

8 Jat,

with C3 = (C1/C2)%. From this and Lemma (with A(t) = t2r(t), T = 2ty),
= / min { (o1 (1)*r (o 1(8)), (0~ (7(1)))*r (01 ((£))) } 2 (B)dt < o0
2ty

Using ([1.15)) and ( - we obtain (|

(ii) Let z € N be defined on [T, oo) Then there exists to > max(T,t*) such that
z(t) >0 fort>o(ty), 22(t)>0 fort>tg.

From this, (1.11)), (1.12)), (H5), and Lemma we have

0o > 218(tg) > 28 (tg) — 2 (c0)

z—/ 2Bl (s) ds
to

— /oo h(t)r(t) f(z(o(t))) dt

to
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e} t
> k/ exp {/ sq(s) ds}r(t)x/\(a(t)) dt .
to to
Therefore, (2.10) follows Lemma (with A(t) = exp { fg sq(s) ds}r(t)). O

3. MAIN RESULTS
We begin with the following lemma which states sufficient conditions for A to
be empty in case f(u) = u.
Lemma 3.1. Let f(u) = u on R and let one of the following assumptions hold.
(i) There exists a function & € C(Ry) such that t < &(t) < o~ Y(7(t)) for large
t and either
, 201 (7’0 + al)
To€E

I =00 <I<oo (3.1)

where

= limin t r*(s hs) s)—s)’ds;
I'_lt*“f/ﬂw(f(t))) e (£) = )" ds:

(ii) there exists a function n € C(Ry) such that 7= 1(a(t)) < n(t) <t for large
t and either

J=o00 or 201(1+T—0><J<oo (3.2)
where
'—imsu¢0717 —1)? tr*ss
= timonp o (7 0 <) [ ) as.
Then Ny = 0.

Proof. Let & € Ny. Then there exists T > ¢* (see Definition such that for
t>Tand 1 =0,1,2,

ht) >0, z(o@t) >0, (=1)1(1) >0, (3.3)

and t < £(t) < o7 1(7(t)) (vesp. 7" 1(a(t)) < n(t) <t) in case (i) (resp. (ii)).
From this, (H2), and (H3), we obtain

2Pl 7 0) + b @) (1) 2(7(0)

m o @) + (o™ (w7 (@)r (o (r(1))a(r(1) =0,

where ' = %. Similarly,
o1 (2P0 () + h(o™ 1 (t))r (o1 (1)) 2(2)
: (o—*ll(t))/ (o™ (0) + R (8)r (071 (1)) x(t) = 0.
Hence, using (H4) for t > T, we have
[alz[21 (01 (1)) + %Z[Q] (a—l(T(t)))}' +h(o™ (r(8))r* () 2(2)

<

ai101

< [alz[zl(g—l(t))+ - Z[Q](g—l(T(t)))}/—|—h(g—1(t))r(0—1(t))x(t) (3.4)

+ath(o™ (r(1)r (07 (7 (1)) (7 () < 0.
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Furthermore, for v > ¢ > T', we have

v L2 2P
—z@) > M) — () = /t h2((s)) ds > h2((v)) (v—1t)

and thus using ([1.11)), and integration from u to v, with v > u, imply

22 w) v U
w2 5 [ how sz g (39)
Assuming Case (i), we define
o(t) = 0128 (07 1()) + B2 (07 (7(1))) (3.6)

70

for t > T. Then (3.4) and (3.5)) with u = ¢, v = £(t) imply

ey 4 RO (v 2 g
O+ =Gy 0 1M (Em) <0.

As &(t) < o71(7(t)) and h is nondecreasing, we obtain

v+ 2hlét()t)) (£(t) — ) r* ()22 (&()) < 0. (3.7)

As 2 > 0is non-increasing, (3.6)) implies
o(t) < [or + B2 (07 (7(1),

70
and, hence,
L) 2 e se(r o))
Substituting this into yields
1)+ =T O ey (e ) <0 (38)

201 (10 + ay) h(£(1))

Using (3.1), 771 (c(£(¢))) < t, and the well-known criterion for to be oscillatory
(see [7, Theorem 2.1.1]) implies a contradiction.
Now assume Case (ii). According to foru =1t v=0"Y7r(nt))) > u we
have h)
-1 _ A2 12 (-1
) > gty (0 0 = %2 0 ). (39)
Integrating from 7(t) to ¢, we have

o1 (o7 (1) + S (1)

> 0122 (071 (1)) + 2222 (071 (7 (1)) +/ h(o=(7(s)))r*(s)=(s) ds

To
t

> h(o~ (r(n(1))))=(1) / r*(s) ds.

n(t)
From this, (3.3), (3.9), and 2 > 0 and decreasing, we have

o1 (14 2o ()

t

> h(o™ (r(n()) () / r*(s) ds

n(t)
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t

it) o (7 —1)? r*(s)dsz? (o7 (7
2 Sty ¢ TN~ ) /W) () s (o7 ((n(1)))).
This contradicts and proves the statement. O

Note, that some ideas from [6] are used in the second part of the proof of
Lemma [3:11

Theorem 3.2. (i) Let either

/ tq(t)dt < oo and / t2r* (t) dt = 0o (3.10)
0 0

or

/000 tq(t)dt = o0 and /000 exp { /075 sq(s) ds}r*(t) dt =00. (3.11)

Then the set Noy is empty.
(i) If

/000 exp { /Ot sq(s) ds}t/\r*(t) dt = oo (3.12)

then the set N1 is empty.

Proof. (i) Let x € Np; be such that z(t) > 0 for ¢t € [0(T),00). Then lim;_, o 2(t) =
C € (0,00) and (3.10), (resp. (3.12))) contradicts (resp. (2.10)).

(ii) Let € Nj. From this and from (L.11]), positive constants Ty > T and
M exist such that z(t) > Mt for ¢ > Ty. Now, this fact and contradict
@2.10). O

Now we can formulate the main results. For £ € C(Ry) and n € C(Ry), we
denote

¢
I = liminf/ r(s)(&(s) — 3)2 ds, (3.13)
700 Jrt (o)
5 [t
Ji = limsup (o™ (T(n(t))) — t) / r*(s)ds, (3.14)
t—o0 n(t)
t
— liminf s 2 -
I, htrglor.} /rl(a(g(t))) {(s)r (s)(&(s) — s)" ds, (3.15)

t

i ‘H;U_lT —t)° r*(s)ds. .
Sy =limswp e (07 @) <0 [ ds @10

Lemma 3.3. Suppose K >0, C >0, [~ tq(t)dt < oo, f(u) > Ku for u € [0,C]
and one of the following assumptions holds.

(i) There exists a function £(t) € C(Ry) such that t < &(t) < o= 1(7(t)) for
large t, and either Iy = oo or

201(19 + a1)
KToe

(ii) There exists a function n € C(Ry) such that 7=(o(t)) < n(t)) < t for large
t, and either J, = oo or

M = < I < o0;

20’1 ay
— (1 7) < J1 < .
K ( + 70 ! >



EJDE-2021/81 THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS 9

Then (1.1) has no solution x € Ny such that z(t) < C for large t.
Proof. (i) Let z € Ny and T > 0 be such that
0<z(o(t)) <C, 0<z(t)<C fort>T,

t<&t) <o ' (r(t)) fort>T, (3.17)
l—e<h(t)<1l fort>T,

where
1M gy
e={272n DS (3.18)
5 if Il =
Note, that (3.17)) and (3.18)) imply
h(t) 1 M _L+3M NM
>l—ece=—+—> = 3.19
W@y~ T2 Al I (3.19)

with N = 41—]\14 + % for t > T in case I; < co. Then x is the solution of the equation

2"+ q(t)2 + ro(t)z(o(t) =0 (3.20)
for t > T with
_ f(z(o(®))
roft) = L2000 0) > Krtr). (3.21)

Now we apply Lemma [3.1] to (3.20]), considering the assumption pObed in I. If
I; = o0, then using (3.19) and (3.21)), I = co. Let I; < co. Then and ([3:21))

imply

A . o . h(s) ot
htrggolf/T oy, M0 Gralo™ N s (€69 5)
znmianMN () ((s) — 5)2 ds > 2T )

e £1))) Toe

hence, all assumptions of Lemmaapplied on ([3.20) are satisfied and N is empty.
The contradiction proves the statement.
Statement (ii) can be proved similarly. O

Lemma 3.4. Suppose K >0, C >0, [[* tq(t)dt = oo, f(u) > Ku for u € [0,C]
and one of the following assumptions holds
(i) There exists a function £(t) € C(Ry) such that t < &(t) < o= 1(7(t)) for
large t, and either Is = oo or
20’1 (To —+ al)
Kroe

(ii) There exists a function n € C(Ry) such that 7=(o(t) < n(t)) <t for large
t, and either Jy = oo or

M = <I) < 0;

20’1(7'0 + al)
KTO

Then (1.1) has no solution x € Ny such that z(t) < C for large t.

< Jy < 0.
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Proof. It is similar as the one of Lemma instead of (3.19)), we apply (2.7) with
0 <e < 22M iy case (i). We obtain

Is+M
h(t) 1 M
e 2t m) @

Case (ii) is similar. O

The following results solve our problem for A = 1. Recall, that I, Ji, Is and J
are given by (3.13)—(3.16)), respectively.
Theorem 3.5. Suppose A =1, fooo tq(t) dt < oo and one of the following assump-
tions holds.
(i) There exists a function £(t) € C(Ry) such that t < £(t) < o~ (7(t)) for
large t, and either I = oo or
20’1 (T() —+ al)
T0€
(ii) there exists a function n € C(Ry) such that 7= (a(t)) < n(t) <t for large
t, and either J, = oo or

<I; <o0;

20’1(1+ﬂ) <J1 <.
To
Then the set Ny is empty. If, moreover,
/ tr*(t) dt = 0o,
0

then (1.1)) is oscillatory.

Proof. Let x € Ny. As A =1, wecan put K =1 and C =1+ 2limy_,, 2(t). Then
a contradiction follows from Lemma [3-3] The nonexistence of x € N; follows from

Theorem [3.2(ii), (B-12) and [~ tq(t) dt < co. O

Theorem 3.6. Suppose A =1, fooo tq(t) dt = oo, and one of the following assump-
tions holds:

(i) There exists a function £(t) € C(Ry) such that t < £(t) < o= Y(7(t)) for
large t, and either I = oo or
20’1 (7'0 + al)
T0€
(ii) there exists a function n € C(Ry) such that 7= (a(t)) < n(t)) <t for large
t, and either Jy = oo or

< Iy < o0

20’1<l+ﬂ) < Jy <.
70

Then the set Ny is empty. If, moreover,

00 t
/ exp { / sq(s) ds}tr*(t) dt = oo
0 0
then (1.1)) is oscillatory.

The proof of the above theorem is similar to that of Theorem [3.5

Theorem 3.7. Let A € (0,1), [, tq(t)dt < co and one of the following assump-
tions hold.
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(i) Thee exists a function &(t) € C(Ry) such that t < £(t) < o= 1(7(t)) for
large t, and either Iy = co or I; > 0;

(ii) there exists a function n € C(Ry) such that 7=1(o(t)) < n(t)) <t for large
t, and either J; = oo or J; > 0.

Then set Nog is empty. If, moreover,

/OO tA*(t) dt = oo (3.22)
0

then (L.1) s oscillatory.
Proof. (i) Let x € Noo. Put

. 30’1(7’0 +a1)

and C =K 1%
7'06[1

K
in case I < oo and K = C = 1if I; = co. Then f(u) > u* > Ku on [0,C]. Hence,
all assumptions of Lemma [3.3] are satisfied and Lemma [3.3] contradicts = € Nyo.
The nonexistence of € Ny UN; follows from (3.22) and Theorem (3.2

Statement (ii) can be proved similarly. O

Theorem 3.8. Let A € (0,1), fooo tq(t) dt = oo and one of the following assump-
tions hold.
(i) There exists a function £(t) € C(RL) such that t < £(t) < o~ Y(7(t)) for
large t, and either

[ee] t
I, =00 and / exp { / sq(s) ds}tkr* (t)dt = 0 (3.23)
0 0
or
o) t
0< I <o and / exp {/ 5q(s) ds}r*(t) dt = oo} (3.24)
0 0
(ii) there is a function n € C(Ry) such that 771(a(t)) < n(t)) <t for large t,
and either
e8] t
Jy =00 and / exp {/ sq(s) ds}tkr*(t) dt = oo
0 0
or

[oe] t
0<Jy <0 and / exp {/ sq(s) ds}r*(t) dt = 0.
0 0

Then (1.1) is oscillatory.

Proof. (i) Suppose holds. Then Theorem [3.2{ii) implies N7 = (). Let 2 € Nj.
Then lim; o 2(t) = Cy € [0,00) and z(t) < C = 2Cy + 1 for large t. Moreover,
f(u) > K u for [0,C] where K = C*~!. Then all assumptions of Lemma i) are
satisfied whose statement contradicts z € N.

Suppose holds. Then Theorem [3.2implies Mg1 UN] = (). The nonexistence
of x € Ny can be proved as in Theoremi).

The proof of (ii) is similar. O
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4. EXAMPLES

Remark 4.1. (i) It follows from the assumptions of Theorems that o(t) <
7(t) for large ¢ as it is supposed in (H3).

(i) In Theorems it is possible to choose e.g. &(t) = 1(t+ o1 (7(t)));
similarly, we can choose either 7(t) < ¢, 7(¢t) # t in any neighborhood of co and
n(t) =7(t), or 7(t) =t for large ¢t and n(t) = L(t+o(t)), o(t) < t.

Example 4.2. Consider the equation

2" 4 q(t)2 +r(t)|x(Crt) [ sgna(Cit) = 0 (4.1)
with z(t) = x(t) + a(t)z(Cot) where 0 < A < 1,0 < C; < Cp < 1, 7(t) > 72 for
large ¢t with 7o > 0 and v > 0, 0 < a(t) < a1 < oo and (H6) holds. Put £(¢) = Cat,
1<Cy < g—(l’ Let A = 1. Then N is empty for (4.1)) if either v < 3 or v = 3 and

Co —m Co+ a1
0102 ?"0600012
where m = 1 for [ tq(t)dt < oo and m = Cy for [, tq(t)dt = oo (see Theo-

rems [3.5 and [3.6). Moreover, ([4.1) is oscillatory if v < 2.
Let 0 < A < 1. Equation (4.1 is oscillatory if v < A+ 1 (Theorems and .

(Cg - 1)2 log

Example 4.3. Consider the equation

2" 4 q(t)2 +r(t)|z(t — C) M sgna(t —C) =0 (4.2)
with z(t) = x(t) + a(t)z(t — Cp) where 0 < Cp < C1, 0 < a(t) < a1 < 0o on Ry,
r(t) > rot¥, v > 0 and (H6) holds. Put Cy € (0,C; — Cy), &(t) =t + Co. If XA =1,
then Theorems and imply that (4.2)) is oscillatory if either v > 0 or
201 (10 + @1)

roTo€ '

If A € (0,1), then Theorems and imply that (4.2) is oscillatory if v > 0.

Acknowledgements. This research was supported by the Grant GA 20-11846S
from the Czech Grant Agency.

v=0 and C3[C;—Cy—Co] >

REFERENCES

[1] M. F. Aktag, D. Gakmak, A. Tiryaki; On the qualitative behaviors of solutions of third
order nonlinear differential equations, Comput. Math. Appl., 62 (4) (2011), 2029-2036. doi:
10.1016/j.camwa.2011.06.045

[2] M. Bartusek, M. Cecchi, Z. Dosl4, M. Marini; Oscillation for third-order differential equa-
tion with deviating argument, Abstr. Appl. Anal., (2010), 19 pp. Art. ID 278962. doi:
10.1155/2010/278962

[3] M. Bartusek, M. Cecchi, Z. Dosl4, M. Marini; Positive solutions of third order damped
nonlinear differential equations, Math. Bohem., 136 (2) (2011) 205-213.

[4] M. Bartusek, Z. Dosla; Oscillation of fourth-order neutral differential equations with damping
term, Math. Methods Appl. Sci., to appear.

[5] J. Dzurina, B. Baculikov4, I. Jadlovskd; Integral oscillation criteria for third order differential
equations with delay argument, Int. J. Pure Appl. Math., 108 (2016), no. 1, 169-183. doi:
10.12732/ijpam.v108il.15

[6] J. Dzurina, S. R. Grace, I. Jadlovskd; On nonexistence of Kneser solution of third-
order neutral delay differential equations, Appl. Math. Lett., 88 (2019), 193-200. doi:
10.1016/j.aml1.2018.08.016

[7] L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation theory for functional differential equations,
Pure and Applied Mathematics 190, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995.



EJDE-2021/81 THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS 13

[8] J. R. Graef, S. H. Saker; Oscillation theory of third-order nonlinear functional differential
equations, Hiroshima Math. J., 43 (2013), 49-72.
[9] P. Hartman; Ordinary Differential Equations, Birhduser, Boston-Basel-Stuttgart, 1982.
[10] Y. Kuramoto, T. Yamada; Turbulent state in chemical reaction, Prog. Theoret. Phys., 56 (3)
(1976), 724-740.
[11] H. P. McKean, Jr.; Nagumo’s equation, Advances in Math. 4 (1970), 209-223.
[12] D. Michelson; Steady solutions of the Kuramoto-Sivashinsky equation. Phys. D, 19 (1) (1986),
89-111.
[13] S. Panigrahi, R. Basu; Oscillation results for third order nonlinear mixed neutral differential
equations, Math. Slovaca, 66 (4) (2016), 869-886. doi: 10.1515/ms-2015-0189
[14] A. Tiryaki, M. F. Aktag; Oscillation criteria of a certain class of third order nonlinear
delay differential equations with damping, J. Math. Anal. Appl., 325 (2007), 54-68. doi:
10.1016/j.jmaa.2006.01.001
[15] S. A. Vreeke, G. M. Sandquist; Phase plane analysis of reactor kinetics, Nuclear Sci. Engin.,
42 (1970), 259-305.

MIROSLAV BARTUSEK
DEPARTMENT OF MATHEMATICS AND STATISTICS, FACULTY OF SCIENCE, MASARYK UNIVERSITY,
KOTLARSKA 2, 611 37 BRNO, CZECH REPUBLIC

Email address: bartusek@math.muni.cz



	1. Introduction
	2. Preliminaries
	3. Main results
	4. Examples
	Acknowledgements

	References

