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OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED

DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

Abstract. We study a third-order damped neutral sublinear differential equa-

tion whose differential operator is non-oscillatory. Specifically, we obtain suf-
ficient conditions for all solutions to be oscillatory.

1. Introduction

Consider the third-order differential equation

z′′′ + q(t)z′ + r(t)f
(
x(σ(t)

))
= 0 , t ≥ 0, (1.1)

z(t) = x(t) + a(t)x
(
τ(t)

)
. (1.2)

In this article we impose er the following assumptions:

(H1) q ∈ C(R+), q(t) ≥ 0 for large t, r ∈ C(R+), r(t) > 0 for large t, R+ =
[0,∞);

(H2) σ ∈ C(R), R = (−∞,∞), σ(t) ≤ t for t ∈ R, limt→∞ σ(t) =∞, there exists
a constant σ1 such that 0 < σ′(t) ≤ σ1 for all t ∈ R;

(H3) τ ∈ C3(R), σ(t) ≤ τ(t) ≤ t for all t ∈ R, limt→∞ τ(t) =∞, and there exists
a τ0 exists such that 0 < τ0 ≤ τ ′(t) for all t ∈ R;

(H4) a ∈ C3(R+), there exists a number a1 such that 0 ≤ a(t) ≤ a1 for all
t ∈ R+;

(H5) f ∈ C(R), f(u)u > 0 for u 6= 0 and there exists a λ ∈ (0, 1] such that

|f(u)| ≥ |u|λ ∀u ∈ R ;

(H6) The associated second-order linear equation

h′′ + q(t)h = 0 , t ≥ 0 (1.3)

has a solution h(t) > 0 for all t large enough.

Definition 1.1. Let T ∈ R+ and T0 = σ(T ). A function x is said to be a solution
of (1.1) on [T,∞) if x is defined and continuous on [T0,∞), z ∈ C3[T,∞), and x
satisfies (1.1) on [T,∞).

A solution is said to be non-oscillatory if x(t) 6= 0 for all large t, otherwise it is
said to be oscillatory. Equation (1.1) is oscillatory if all its solutions are oscillatory.
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In recent years, a great attention has been paid to qualitative theory of third-
order neutral differential equations. Such equations have applications in mathe-
matical modeling in biology and physics, see for example [10, 11, 12, 15]. A great
effort has been devoted to oscillation theory of the damped equations of the forms

x′′′ + q(t)x′ + r(t)f
(
x(σ(t))

)
= 0, (1.4)(

r2(t)(r1(t)x′)′
)′

+ q(t)x′(t) + r(t)f
(
x(σ(t))

)
= 0 (1.5)

with ri ∈ C(R+), ri(t) > 0 for t ∈ R+ and i = 1, 2.
An equation is said to have Property A if every solution is either oscillatory or

x(t)x′(t) < 0 for all large t. Sufficient (and or necessary) conditions have been
studied under which equation either (1.4) or (1.5) has Property A. Equation (1.4)
has been studied in [8] (where there is a nice review of the results.), in [2], and the
references therein. For studies of (1.5), see for example [1, 3, 14].

Property A has been generalized for the neutral differential equation

z′′′ + r(t)f
(
x(σ(t))

)
= 0 (1.6)

in [13], and for the equation(
r2(t)(r1(t)z′)′

)′
+R(t)x

(
σ(t)

)
= 0 (1.7)

in [5, 6], where ri ∈ C(R+), R ∈ C(R+), ri > 0 for i = 1, 2, R > 0, and z is given
by (1.2). An interesting question was solved in [6] for (1.7) in the canonical case,
i.e. when ∫ ∞

0

1

ri(t)
dt =∞ for i = 1, 2. (1.8)

Reference [5] shows sufficient conditions for (1.5) (with q ≡ 0) no having a solution
x such that z(t)z′(t) < 0 for large t.

Since (1.3) is non-oscillatory and q ≥ 0, every eventually positive solution of
(1.3) is nondecreasing for large t, and the following holds, see [9].

Lemma 1.2. Equation (1.3) has a solution h which is positive and nondecreasing
for t ≥ t0 ≥ 0 and ∫ ∞

t0

dt

h2(t)
=∞ ,

∫ ∞
t0

h(t) dt =∞ . (1.9)

If
∫∞

0
tq(t) dt < ∞ then limt→∞ h(t) ∈ (0,∞). Also if

∫∞
0
tq(t) dt = ∞, then

limt→∞ h(t) =∞.

Note that if a solution h satisfies (1.9), then a positive constant times h also
satisfies (1.9). This solution is called a principal solution.

Definition 1.3. Let h be a principal solution of (1.3) such that h(t) > 0 on
[t∗,∞) ⊂ R+. In the case

∫∞
0
tq(t) dt <∞, h is chosen such that limt→∞ h(t) = 1.

It is easy to see that for for t ≥ t∗, (1.1) can be rewritten as(
h2(t)

( z′

h(t)

)′)′
+ h(t)r(t)f

(
x(σ(t))

)
= 0 . (1.10)

For t ≥ t∗, we denote the quasiderivatives of z as follows:

z[1](t) =
z′(t)

h(t)
, z[2](t) = h2(t)

(
z[1](t)

)′
z[3](t) =

(
z[2](t)

)′
. (1.11)
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Then we rewrite (1.1) as (1.10) and using (1.11),

z[3](t) + h(t)r(t)f
(
x(σ(t))

)
= 0 . (1.12)

Note, that For t ≥ t∗, (1.10) is a special case of the equation(
r2(t)

(
r1(t)z′

)′)′
+R(t)f

(
x(σ(t))

)
= 0, (1.13)

where

r1(t) =
1

h(t)
, r2(t) = h2(t) , R(t) = h(t)r(t) . (1.14)

Because of (1.9), equation (1.13) is in canonical form, i.e. (1.8) holds.
Our goal is to find sufficient conditions for (1.1) to be oscillatory. A crucial

problem is to prove nonexistence of non-oscillatory solutions such that z(t)z′(t) < 0
for large t. So, if f(u) = u on R it is possible to use results from [6] for equation
(1.7) with (1.14). However, a very restrictive assumption τ(σ(t)) ≡ σ(τ(t)) is used
in [6]. We give sufficient conditions for the nonexistence of such solutions without
this assumption and without the assumption f(u) ≡ u. Note, that our assumption
0 < σ′(t) ≤ σ1 is not assumed in [6].

Let N be the set of all non-oscillatory solutions of (1.1) which are defined on
subintervals of R+ and which are positive for large t. We shall study only the set N .
Non-oscillatory solutions which are negative for large t can be study by a similar
way.

It is known (see, e.g., [6, Lemma ]) that N can be divided into two subsets
N = N0 ∪N1 where z is given by (1.2) and

N0 =
{
x ∈ N : z(t) > 0, z[1](t) < 0, z[2(t) > 0, z[3](t) < 0 for large t

}
,

N1 =
{
x ∈ N : z[i](t) > 0, i = 0, 1, 2, z[3](t) < 0 for large t

}
] .

In this article, τ−1 and σ−1 denote the inverse functions of τ and σ, respectively.
Also we define

N00 =
{
x ∈ N0 : lim

t→∞
z(t) = 0

}
,

N01 =
{
x ∈ N0 : lim

t→∞
z(t) ∈ (0,∞)

}
.

For simplicity, for t ≥ 0, we define

r∗(t) = min
{
r(σ−1(t)), r(σ−1(τ(t)))

}
. (1.15)

Note, that by (H3),

σ−1
(
τ(t)

)
≥ t , (1.16)

where e denotes the Euler number.

2. Preliminaries

Here we state some auxiliary results which will be needed later.

Lemma 2.1. Let x ∈ N be defined on [T,∞) and T0 = σ(T ). Let A ∈ C[T,∞) be
positive and ∫ ∞

T

A(t) |x
(
σ(t)

)
|λ dt <∞ . (2.1)

Then ∫ ∞
T

A∗(t) |z(t)|λ dt <∞ (2.2)
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where

A∗(t) = min
(
A(σ−1(t)), A(σ−1(τ(t)))

)
.

Proof. Let x ∈ N and t1 ≥ T be such that x(t) > 0 for t ≥ σ(t1). The substitution
s = σ(t) and (2.1) yield

1

σ1

∫ ∞
σ(t1)

A
(
σ−1(s)

)
xλ(s) ds ≤

∫ ∞
σ(t1)

A
(
σ−1(s)

)
xλ(s)

ds

σ′(σ−1(s))

=

∫ ∞
t1

A(t)xλ
(
σ(t
)
dt <∞ .

(2.3)

From this, applying substitution s = τ(t), for t0 = τ−1(σ(t1)), we obtain

τ0
σ1

∫ ∞
t0

A
(
σ−1(τ(t))

)
xλ
(
τ(t)

)
dt ≤ 1

σ1

∫ ∞
t0

A
(
σ−1(τ(t))

)
xλ
(
τ(t)

)
τ ′(t) dt

=
1

σ1

∫ ∞
σ(t1)

A
(
σ−1(s)

)
xλ(s) ds <∞ .

(2.4)

We have

zλ(t) ≤
(
x(t) + a1x

(
τ(t)

))λ ≤M(xλ(t) + xλ
(
τ(t)

)
(2.5)

with M = 2λ(1 + aλ1 ). As τ is increasing and σ(t1) ≤ t0, (2.3), (2.4), (2.5) imply

min
{ 1

σ1
,
τ0
σ1

}∫ ∞
t0

A∗(t)zλ(t) dt

≤M
{ 1

σ1

∫ ∞
σ(t1)

A
(
σ−1(t)

)
xλ(t) dt

}
+
τ0
σ1

∫ ∞
t0

A
(
σ−1(τ(t))

)
xλ
(
τ(t)

)
dt <∞ .

Hence, (2.2) is valid. �

Lemma 2.2. There exist k0 ≥ k > 0 such that

k0t ≥ h(t) ≥ k exp
{∫ t

0

sq(s) ds
}

for t ≥ t∗ (2.6)

where t∗ and h are given by Definition 1.3. Moreover, if ε > 0, then

h(u)

h(v)
≤ (1 + ε)

u

v
for u ≥ v ≥ 1 + ε

ε
t∗ > t∗ . (2.7)

Proof. As for (2.6), see [4, Lemma 2] and 1.3. Now we prove (2.7). We have
ε

1+εv ≥ t
∗ which is equivalent to v − t∗ ≥ v

1+ε . From this we have

u− t∗

v − t∗
≤ u

v − t∗
≤ (1 + ε)

u

v
for u ≥ v ≥ 1 + ε

ε
t∗ . (2.8)

As h′(t) > 0 and h′ is non-increasing for t ≥ t∗, we obtain

h(t) = h(t∗) +

∫ t

t∗
h′(s) ds ≥ h′(t)(t− t∗) .

This inequality and (2.8) imply

h(u)

h(v)
= exp

{∫ u

v

h′(s)

h(s)
ds
}
≤ exp

{∫ u

v

ds

s− t∗
}

=
u− t∗

v − t∗
≤ (1 + ε)

u

v

for u ≥ v ≥ 1+ε
ε t∗; hence, (2.7) holds. �

Lemma 2.3. Let x ∈ N and T ≥ 0 be such that x is positive on [σ(T ),∞).
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(i) If x ∈ N0 and
∫∞

0
t q(t) dt <∞, then∫ ∞

T

t2r∗(t)zλ(t) dt <∞ . (2.9)

(ii) If x ∈ N , then∫ ∞
T

exp
{∫ t

0

sq(s) ds
}
r∗(t) zλ(t) dt <∞ . (2.10)

Proof. (i) Let x ∈ N0 and t0 ≥ max(T, t∗) be such that x(t) > 0 for t ≥ σ(t0),
z[i](t) 6= 0 for t ≥ t0, i = 1, 2. Then limt→∞ z(t) = C ≥ 0. It is easy to see that
(1.9), (1.11) and x ∈ N0 imply limt→∞ z[i](t) = 0 for i = 1, 2. Hence (1.11) and
(H5) yield

z[1](t) = −
∫ ∞
t

h−2(s)z[2](s) ds,

z[2](t) = −
∫ ∞
t

z[3](s) ds =

∫ ∞
t

h(s)r(s)xλ
(
σ(s)

)
ds

(2.11)

for t ≥ t0.
As t0 ≥ t∗, by Definition 1.3 there exist positive constants C1 and C2 such that

C1 ≤ h(t) ≤ C2 for t ≥ t0. From this, (1.11), (2.11), and Fubini’s theorem, we have

∞ > z(t0)− C = −
∫ ∞
t0

h(s)z[1](s) ds

≥
∫ ∞
t0

h(s)

∫ ∞
s

1

h2(v)

∫ ∞
v

h(w)r(w)xλ
(
σ(w)

)
dw dv ds

≥
(C1

C2

)2
∫ ∞
t0

∫ ∞
s

∫ ∞
v

r(w)xλ
(
σ(w)

)
dw dv ds

= C3

∫ ∞
t0

∫ ∞
s

(w − s)r(w)xλ
(
σ(w)

)
dw ds

=
1

2
C3

∫ ∞
t0

(w − t0)2r(w)xλ
(
σ(w)

)
dw

≥ C3

8

∫ ∞
2t0

w2r(w)xλ
(
σ(w)

)
dw

with C3 = (C1/C2)2. From this and Lemma 2.1 (with A(t) = t2r(t), T = 2t0),

I :=

∫ ∞
2t0

min
{(
σ−1(t)

)2
r
(
σ−1(t)

)
,
(
σ−1(τ(t))

)2
r
(
σ−1(τ(t))

)}
zλ(t)dt <∞ .

Using (1.15) and (1.16) we obtain (2.9).
(ii) Let x ∈ N be defined on [T,∞). Then there exists t0 ≥ max(T, t∗) such that

x(t) > 0 for t ≥ σ(t0), z[2](t) > 0 for t ≥ t0 .
From this, (1.11), (1.12), (H5), and Lemma 2.2, we have

∞ > z[2](t0) ≥ z[2](t0)− z[2](∞)

= −
∫ ∞
t0

z[3](s) ds

=

∫ ∞
t0

h(t)r(t)f
(
x(σ(t))

)
dt
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≥ k
∫ ∞
t0

exp
{∫ t

t0

sq(s) ds
}
r(t)xλ(σ(t)) dt .

Therefore, (2.10) follows Lemma 2.1 (with A(t) = exp
{ ∫ t

0
sq(s) ds

}
r(t)). �

3. Main results

We begin with the following lemma which states sufficient conditions for N0 to
be empty in case f(u) = u.

Lemma 3.1. Let f(u) ≡ u on R and let one of the following assumptions hold.

(i) There exists a function ξ ∈ C(R+) such that t < ξ(t) < σ−1(τ(t)) for large
t and either

I =∞ or
2σ1(τ0 + a1)

τ0e
< I <∞ (3.1)

where

I := lim inf
t→∞

∫ t

τ−1(σ(ξ(t)))

r∗(s)
h(s)

h(ξ(s))

(
ξ(s)− s

)2
ds ;

(ii) there exists a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t) ≤ t for large
t and either

J =∞ or 2σ1

(
1 +

a1

τ0

)
< J <∞ (3.2)

where

J := lim sup
t→∞

h(t)

h(σ−1(τ(η(t)))

(
σ−1(τ(η(t)))− t

)2 ∫ t

η(t)

r∗(s) ds .

Then N0 = ∅.

Proof. Let x ∈ N0. Then there exists T ≥ t∗ (see Definition 1.3) such that for
t ≥ T and i = 0, 1, 2,

h(t) > 0 , x
(
σ(t)

)
> 0 , (−1)iz[i](t) > 0, (3.3)

and t < ξ(t) < σ−1(τ(t)) (resp. τ−1(σ(t)) ≤ η(t) ≤ t) in case (i) (resp. (ii)).
From this, (H2), and (H3), we obtain
σ1

τ0

(
z[2](σ−1(τ(t)))

)′
+ h
(
σ−1(τ(t))

)
r
(
σ−1(τ(t))

)
x
(
τ(t)

)
≤ 1

(σ−1(τ(t)))′
(
z[2](σ−1(τ(t)))

)′
+ h
(
σ−1(τ(t))

)
r
(
σ−1(τ(t))

)
x
(
τ(t)

)
= 0 ,

where ′ = d
dt . Similarly,

σ1

(
z[2](σ−1(t))

)′
+ h
(
σ−1(t)

)
r
(
σ−1(t)

)
x(t)

≤ 1

(σ−1(t))′
(
z[2](σ−1(t))

)′
+ h
(
σ−1(t)

)
r
(
σ−1(t)

)
x(t) = 0 .

Hence, using (H4) for t ≥ T , we have[
σ1z

[2]
(
σ−1(t)

)
+
a1σ1

τ0
z[2]
(
σ−1(τ(t))

)]′
+ h
(
σ−1(τ(t))

)
r∗(t)z(t)

≤
[
σ1z

[2]
(
σ−1(t)

)
+
a1σ1

τ0
z[2]
(
σ−1(τ(t))

)]′
+ h
(
σ−1(t)

)
r
(
σ−1(t)

)
x(t)

+ a1h
(
σ−1(τ(t))

)
r
(
σ−1(τ(t))

)
x
(
τ(t)

)
≤ 0 .

(3.4)
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Furthermore, for v ≥ t ≥ T , we have

−z[1](t) ≥ z[1](v)− z[1](t) =

∫ v

t

z[2](s)

h2(s)
ds ≥ z[2](v)

h2(v)
(v − t)

and thus using (1.11), and integration from u to v, with v ≥ u, imply

z(u) ≥ z[2](v)

h2(v)

∫ v

u

h(s)(v − s) ds ≥ h(u)

2h2(v)
(v − u)2z[2](v) . (3.5)

Assuming Case (i), we define

v(t) = σ1z
[2]
(
σ−1(t)

)
+
a1σ1

τ0
z[2]
(
σ−1(τ(t))

)
(3.6)

for t ≥ T . Then (3.4) and (3.5) with u = t, v = ξ(t) imply

v′(t) +
h(t)h(σ−1(τ(t)))

2h2(ξ(t))

(
ξ(t)− t

)2
r∗(t)z[2]

(
ξ(t)

)
≤ 0 .

As ξ(t) < σ−1(τ(t)) and h is nondecreasing, we obtain

v′(t) +
h(t)

2h(ξ(t))

(
ξ(t)− t

)2
r∗(t)z[2]

(
ξ(t)

)
≤ 0 . (3.7)

As z[2] > 0 is non-increasing, (3.6) implies

v(t) ≤
[
σ1 +

a1σ1

τ0

]
z[2]
(
σ−1(τ(t))

)
,

and, hence,

z[2]
(
ξ(t)

)
≥ τ0
σ1(τ0 + a1)

v
(
τ−1(σ(ξ(t)))

)
.

Substituting this into (3.7) yields

v′(t) +
τ0

2σ1(τ0 + a1)

h(t)

h(ξ(t))

(
ξ(t)− t

)2
r∗(t)v

(
τ−1(σ(ξ(t)))

)
≤ 0 . (3.8)

Using (3.1), τ−1(σ(ξ(t))) < t, and the well-known criterion for (3.8) to be oscillatory
(see [7, Theorem 2.1.1]) implies a contradiction.

Now assume Case (ii). According to (3.5) for u = t, v = σ−1(τ(η(t))) ≥ u we
have

z(t) ≥ h(t)

2h2(σ−1(τ(η(t))))

(
σ−1(τ(η(t)))− t

)2
z[2]
(
σ−1(τ(η(t)))

)
. (3.9)

Integrating (3.4) from η(t) to t, we have

σ1z
[2]
(
σ−1(η(t))

)
+
a1σ1

τ0
z[2]
(
σ−1(τ(η(t)))

)
≥ σ1z

[2]
(
σ−1(t)

)
+
a1σ1

τ0
z[2]
(
σ−1(τ(t))

)
+

∫ t

η(t)

h
(
σ−1(τ(s))

)
r∗(s)z(s) ds

≥ h
(
σ−1(τ(η(t)))

)
z(t)

∫ t

η(t)

r∗(s) ds .

From this, (3.3), (3.9), and z[2] > 0 and decreasing, we have

σ1

(
1 +

a1

τ0

)
z[2]
(
σ−1(τ(η(t)))

)
≥ h

(
σ−1(τ(η(t)))

)
z(t)

∫ t

η(t)

r∗(s) ds
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≥ h(t)

2h(σ−1(τ(η(t))))

(
σ−1(τ(η(t)))− t

)2 ∫ t

η(t)

r∗(s) dsz[2]
(
σ−1(τ(η(t)))

)
.

This contradicts (3.2) and proves the statement. �

Note, that some ideas from [6] are used in the second part of the proof of
Lemma 3.1.

Theorem 3.2. (i) Let either∫ ∞
0

tq(t) dt <∞ and

∫ ∞
0

t2r∗(t) dt =∞ (3.10)

or ∫ ∞
0

tq(t) dt =∞ and

∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
r∗(t) dt =∞ . (3.11)

Then the set N01 is empty.
(ii) If ∫ ∞

0

exp
{∫ t

0

sq(s) ds
}
tλr∗(t) dt =∞ (3.12)

then the set N1 is empty.

Proof. (i) Let x ∈ N01 be such that x(t) > 0 for t ∈ [σ(T ),∞). Then limt→∞ z(t) =
C ∈ (0,∞) and (3.10), (resp. (3.12)) contradicts (2.9) (resp. (2.10)).

(ii) Let x ∈ N1. From this and from (1.11), positive constants T0 ≥ T and
M exist such that z(t) ≥ Mt for t ≥ T0. Now, this fact and (3.12) contradict
(2.10). �

Now we can formulate the main results. For ξ ∈ C(R+) and η ∈ C(R+), we
denote

I1 = lim inf
t→∞

∫ t

τ−1(σ(ξ(t)))

r∗(s)
(
ξ(s)− s

)2
ds , (3.13)

J1 = lim sup
t→∞

(
σ−1(τ(η(t)))− t

)2 ∫ t

η(t)

r∗(s) ds , (3.14)

I2 = lim inf
t→∞

∫ t

τ−1(σ(ξ(t)))

s

ξ(s)
r∗(s)

(
ξ(s)− s

)2
ds , (3.15)

J2 = lim sup
t→∞

t

σ−1(τ(η(t)))

(
σ−1(τ(η(t)))− t

)2 ∫ t

η(t)

r∗(s) ds . (3.16)

Lemma 3.3. Suppose K > 0, C > 0,
∫∞

0
tq(t) dt < ∞, f(u) ≥ Ku for u ∈ [0, C]

and one of the following assumptions holds.

(i) There exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either I1 =∞ or

M :=
2σ1(τ0 + a1)

K τ0e
< I1 <∞ ;

(ii) There exists a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t)) ≤ t for large
t, and either J1 =∞ or

2σ1

K

(
1 +

a1

τ0

)
< J1 <∞ .
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Then (1.1) has no solution x ∈ N0 such that z(t) ≤ C for large t.

Proof. (i) Let x ∈ N0 and T ≥ 0 be such that

0 < x
(
σ(t)

)
≤ C , 0 < z(t) ≤ C for t ≥ T ,

t ≤ ξ(t) < σ−1
(
τ(t)

)
for t ≥ T ,

1− ε ≤ h(t) ≤ 1 for t ≥ T ,
(3.17)

where

ε =

{
1
2 −

M
2I1

if I1 <∞,
1
2 if I1 =∞.

(3.18)

Note, that (3.17) and (3.18) imply

h(t)

h(ξ(t))
≥ 1− ε =

1

2
+
M

2I1
>
I1 + 3M

4I1
=
NM

I1
(3.19)

with N = I1
4M + 3

4 for t ≥ T in case I1 <∞. Then x is the solution of the equation

z′′′ + q(t)z′ + r0(t)x
(
σ(t)

)
= 0 (3.20)

for t ≥ T with

r0(t) =
f(x(σ(t)))

x(σ(t))
r(t) ≥ Kr(t) . (3.21)

Now we apply Lemma 3.1 to (3.20), considering the assumption posed in I. If
I1 =∞, then using (3.19) and (3.21), I =∞. Let I1 <∞. Then (3.19) and (3.21)
imply

lim inf
t→∞

∫ t

τ−1(σ(ξ(t)))

min
{
r0(σ−1(s), r0(σ−1(τ(s)))} h(s)

h(ξ(s))

(
ξ(s)− s

)2
ds

≥ lim inf
t→∞

KMN

I1

∫ t

τ−1(σ(ξ(t)))

r∗(s)
(
ξ(s)− s

)2
ds >

2σ1(τ0 + a1)

τ0e
;

hence, all assumptions of Lemma 3.1 applied on (3.20) are satisfied andN0 is empty.
The contradiction proves the statement.

Statement (ii) can be proved similarly. �

Lemma 3.4. Suppose K > 0, C > 0,
∫∞

0
tq(t) dt = ∞, f(u) ≥ Ku for u ∈ [0, C]

and one of the following assumptions holds

(i) There exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either I2 =∞ or

M =
2σ1(τo + a1)

Kτ0e
< I2 <∞ ;

(ii) There exists a function η ∈ C(R+) such that τ−1(σ(t) ≤ η(t)) ≤ t for large
t, and either J2 =∞ or

2σ1(τ0 + a1)

Kτ0
< J2 <∞ .

Then (1.1) has no solution x ∈ N0 such that z(t) ≤ C for large t.
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Proof. It is similar as the one of Lemma 3.3; instead of (3.19), we apply (2.7) with
0 < ε ≤ I2−M

I2+M in case (i). We obtain

h(t)

h(ξ(t))
≥
(1

2
+
M

2I2

) t

ξ(t)
.

Case (ii) is similar. �

The following results solve our problem for λ = 1. Recall, that I1, J1, I2 and J2

are given by (3.13)–(3.16), respectively.

Theorem 3.5. Suppose λ = 1,
∫∞

0
tq(t) dt <∞ and one of the following assump-

tions holds.

(i) There exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either I1 =∞ or

2σ1(τ0 + a1)

τ0e
< I1 <∞ ;

(ii) there exists a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t) ≤ t for large
t, and either J1 =∞ or

2σ1

(
1 +

a1

τ0

)
< J1 <∞ .

Then the set N0 is empty. If, moreover,∫ ∞
0

tr∗(t) dt =∞ ,

then (1.1) is oscillatory.

Proof. Let x ∈ N0. As λ = 1, we can put K = 1 and C = 1 + 2 limt→∞ z(t). Then
a contradiction follows from Lemma 3.3. The nonexistence of x ∈ N1 follows from
Theorem 3.2(ii), (3.12) and

∫∞
0
tq(t) dt <∞. �

Theorem 3.6. Suppose λ = 1,
∫∞

0
tq(t) dt =∞, and one of the following assump-

tions holds:

(i) There exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either I2 =∞ or

2σ1(τ0 + a1)

τ0e
< I2 <∞ ;

(ii) there exists a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t)) ≤ t for large
t, and either J2 =∞ or

2σ1

(
1 +

a1

τ0

)
< J2 <∞ .

Then the set N0 is empty. If, moreover,∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
tr∗(t) dt =∞

then (1.1) is oscillatory.

The proof of the above theorem is similar to that of Theorem 3.5.

Theorem 3.7. Let λ ∈ (0, 1),
∫∞

0
tq(t) dt < ∞ and one of the following assump-

tions hold.
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(i) Thee exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either I1 =∞ or I1 > 0;

(ii) there exists a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t)) ≤ t for large
t, and either J1 =∞ or J1 > 0.

Then set N00 is empty. If, moreover,∫ ∞
0

tλr∗(t) dt =∞ (3.22)

then (1.1) is oscillatory.

Proof. (i) Let x ∈ N00. Put

K =
3σ1(τ0 + a1)

τ0eI1
and C = K−

1
1−λ

in case I1 <∞ and K = C = 1 if I1 =∞. Then f(u) ≥ uλ ≥ Ku on [0, C]. Hence,
all assumptions of Lemma 3.3 are satisfied and Lemma 3.3 contradicts x ∈ N00.
The nonexistence of x ∈ N01 ∪N1 follows from (3.22) and Theorem 3.2.

Statement (ii) can be proved similarly. �

Theorem 3.8. Let λ ∈ (0, 1),
∫∞

0
tq(t) dt = ∞ and one of the following assump-

tions hold.

(i) There exists a function ξ(t) ∈ C(R+) such that t ≤ ξ(t) < σ−1(τ(t)) for
large t, and either

I2 =∞ and

∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
tλr∗(t) dt =∞ (3.23)

or

0 < I2 <∞ and

∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
r∗(t) dt =∞ ; (3.24)

(ii) there is a function η ∈ C(R+) such that τ−1(σ(t)) ≤ η(t)) ≤ t for large t,
and either

J2 =∞ and

∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
tλr∗(t) dt =∞

or

0 < J2 <∞ and

∫ ∞
0

exp
{∫ t

0

sq(s) ds
}
r∗(t) dt =∞ .

Then (1.1) is oscillatory.

Proof. (i) Suppose (3.23) holds. Then Theorem 3.2(ii) implies N1 = ∅. Let x ∈ N0.
Then limt→∞ z(t) = C0 ∈ [0,∞) and z(t) ≤ C = 2C0 + 1 for large t. Moreover,
f(u) ≥ K u for [0, C] where K = Cλ−1. Then all assumptions of Lemma 3.4(i) are
satisfied whose statement contradicts x ∈ N0.

Suppose (3.24) holds. Then Theorem 3.2 impliesN01∪N1 = ∅. The nonexistence
of x ∈ N00 can be proved as in Theorem 3.7(i).

The proof of (ii) is similar. �
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4. Examples

Remark 4.1. (i) It follows from the assumptions of Theorems 3.5–3.8 that σ(t) ≤
τ(t) for large t as it is supposed in (H3).

(ii) In Theorems 3.5–3.8, it is possible to choose e.g. ξ(t) = 1
2 (t + σ−1(τ(t)));

similarly, we can choose either τ(t) ≤ t, τ(t) 6≡ t in any neighborhood of ∞ and
η(t) ≡ τ(t), or τ(t) ≡ t for large t and η(t) = 1

2 (t+ σ(t)), σ(t) < t.

Example 4.2. Consider the equation

z′′′ + q(t)z′ + r(t)|x(C1t)|λ sgnx(C1t) = 0 (4.1)

with z(t) = x(t) + a(t)x(C0t) where 0 < λ ≤ 1, 0 < C1 < C0 ≤ 1, r(t) ≥ r0
tv for

large t with r0 > 0 and v ≥ 0, 0 ≤ a(t) ≤ a1 <∞ and (H6) holds. Put ξ(t) = C2t,
1 < C2 <

C0

C1
. Let λ = 1. Then N0 is empty for (4.1) if either v < 3 or v = 3 and

(C2 − 1)2 log
C0

C1C2
> m

C0 + a1

r0eC0C2
1

where m = 1 for
∫∞

0
tq(t) dt < ∞ and m = C2 for

∫∞
0
tq(t) dt = ∞ (see Theo-

rems 3.5 and 3.6). Moreover, (4.1) is oscillatory if v ≤ 2.
Let 0 < λ < 1. Equation (4.1) is oscillatory if v ≤ λ+ 1 (Theorems 3.7 and 3.8).

Example 4.3. Consider the equation

z′′′ + q(t)z′ + r(t)|x(t− C1)|λ sgnx(t− C1) = 0 (4.2)

with z(t) = x(t) + a(t)x(t − C0) where 0 ≤ C0 < C1, 0 ≤ a(t) ≤ a1 < ∞ on R+,
r(t) ≥ r0t

v, v ≥ 0 and (H6) holds. Put C2 ∈ (0, C1 − C0), ξ(t) = t+ C2. If λ = 1,
then Theorems 3.5 and 3.6 imply that (4.2) is oscillatory if either v > 0 or

v = 0 and C2
2 [C1 − C0 − C2] >

2σ1(τ0 + a1)

r0τ0e
.

If λ ∈ (0, 1), then Theorems 3.7 and 3.8 imply that (4.2) is oscillatory if v ≥ 0.
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Kotlářská 2, 611 37 Brno, Czech Republic
Email address: bartusek@math.muni.cz


	1. Introduction
	2. Preliminaries
	3. Main results
	4. Examples
	Acknowledgements

	References

