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CHAPTER I

INTRODUCTION

Climate is often a factor in environmental problems because the synthesis of past 

weather observations reveals pertinent regional characteristics. The meteorological 

processes that determine climate are ubiquitous. Classifying climates leads to a better 

comprehension and understanding of the environment through the generalization of 

phenomena for explanation or clarification. In the words of Abler, Adams, and Gould 

(1971,149), “the purpose of classification is to give order to the things we experience. 

We classify things so that we may learn more about them.” Classification theory is 

important to environmental studies because the process depicts and explains “natural 

systems” or phenomena associated with nature in order to understand them better (Sokal 

1974). Climate is one of these systems and, if specified into logical groups, can disclose 

essential information about a region.

In 1951, the National Weather Service (NWS) divided Texas into climatic regions 

based on geographic areas not directly related to climate or weather patterns. Eight years 

later, the same organization modified the map into the ten climatic regions most popular 

today and include: High Plains, Low Rolling Plains, North Central, East, Trans-Pecos, 

Edwards Plateau, South Central, Upper Coast, Southern, and Lower Valley. For 

uniformity and political purposes, the climate boundary lines were forced to follow the
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county borders; one county cannot be in more than one region (Griffiths and Bryan 

1987). The 1959 climate classification of Texas shown in Figure 1 is the most recent 

iteration and is a well-known map.

The following question arises for the modernization of climatic regions in Texas: 

can a multivariate statistical analysis provide discrete classed regions of the macroclimate 

in Texas in order to interpret and compare with the 1959 NWS divisions map, the 

physiography, and the ecological patterns? It is hypothesized that cluster analysis and 

discriminant analysis of temperature and precipitation normals will naturally group the 

macroclimate of Texas for these types of meaningful comparisons. The map generated in 

this study and the 1959 NWS divisions map will be inspected and analyzed for 

differences and similarities. Also, the above interpretations will likely result in 

correlations with the physiography and vegetation patterns as evidenced in a hillshaded 

digital elevation model and satellite image both covering all of Texas. The purpose of 

this thesis is to define the research goals and processes for the stated problem and 

hypothesis. Incorporated is a literature review for background and significance, an 

explanation of the study area and data needs (including operational definitions), a step- 

by-step outline of the methodology, results presented with a discussion, and summary, 

conclusions, and future work sections.

The geographic research goals fit under the sub-disciplines of climatology and the 

techniques for spatial and non-spatial statistics. A new climate classification for Texas, 

in visual form, could help answer environmental and economic questions for state
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Texas Climatic Divisions

1

- L I  1 1 1

I 1 l High Plains 

I 2 I Low Rolling Plains 
| 3 | North Central 

m  East 
| 5 | Trans Pecos 

| 6 I Edwards Plateau 

| 7  | South Central 

f~8~l Upper Coast 
| 9 | Southern 

| 10 | Lower Valley

Source: National Weather Service, 1959 Adapted from Griffiths and Bryan (1987)

Fig. 1. The Texas climatic divisions produced by the National Weather Service.



agencies, research centers, and various other institutions. This study is also useful as a 

basis for understanding Texas as a region. The statistically derived climate zones could 

provide general meaning to modeling weather processes and understanding of the 

weather patterns in Texas. This study fills a void for this specific type of climate 

classification for Texas.
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CHAPTER II

BACKGROUND

The intent of this review is to present a sufficient background from the literature 

related to the purpose and objectives of this research. In the following sections, genetic 

and empirical methods of climate classification are described using previous studies 

developed to identify and distinguish climatic zones for various parts of the world. 

Genetic classifications are based on the primary climate controls, such as radiation, and 

are explanatory in purpose. Empirical classifications are more applied and tend to 

develop from the mathematical and statistical manipulation of climatic data (Griffiths and 

Driscoll 1988). Griffiths and Driscoll (1988) list four characteristics of an effective 

climate classification: (1) reduces large amounts of data to a manageable form, (2) is 

easy to apply, (3) has a well defined usage, and (4) is based on climatological principles.

Genetic Climate Classification

Traditional climate classifications are location specific and are not easily applied 

to other regions (McGregor 1993). Robinson and Henderson-Sellers (1999, 118) state, 

“The [climate classification] elements are usually chosen because they are perceived to 

be important in the context of the use to which the classification scheme is to be put.” 

Early attempts used the natural surface characteristics of the Earth such as vegetation or
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physiographic properties involved with specific land uses such as agriculture or water 

resources (Hare 1973; McGregor 1993; Leber, Holawe, and Hausler 1995).

The most well-known climate classifications are based on vegetation-induced 

measures; the claim that plant growth is a direct result of the local climate (Hare 1973). 

The Koppen classification of 1918 is the most widely used and known visual 

representation of the global climates (Wilcock 1968). Wladimir Koppen recognized the 

reactions plants have to heat, and because phenomena in nature generally respond to 

climate, this theory could be used for producing climate thresholds for placing boundaries 

on a map (Wilcock 1968). His categorization is significant not only for its 

groundbreaking numerically based classification but also for his often times disputed 

methodology (Wilcock 1968; Hare 1973; Puvaneswaran 1990). Wilcock (1968) argues 

that if one is to use Koppen’s classification in an analysis, awareness of the assumptions 

and limitations will help avoid misconceptions about the accuracy and validity of his 

development. Some American scholars feel his classification does not sufficiently 

represent the climates as related to the vegetation boundaries of the United States and so 

have altered them by changing Koppen’s threshold values (Hare 1973). Thus, scale is an 

issue if a climate classification method is applied to regions unintended by the original 

author.

A second important genetic classification was developed by C. Warren 

Thomthwaite, published in 1931 and revised in 1948 (Hare 1973). Hare (1973) 

recognizes Thomthwaite’s work as a highly developed and inclusive climate 

classification. The algorithms are based on variables that control plant growth and

6



sustainability such as moisture content in plants and soil (évapotranspiration) as well as 

temperature and rainfall (Hare 1973).

Empirical Climate Classification

Climate classification expresses complex statistical variables as simple spatial 

entities (Hare 1973). Multivariate statistics is a fairly new method for classifying climate 

regions using a more objective and non-biased approach. The automated processes 

eliminate subjective boundary assignment and do not rely on existing climatic thresholds 

or concepts (Puvaneswaran 1990; Goldreich and Raveh 1993). Steiner first utilized 

multivariate techniques in 1965 to systematize climates in the United States using only 

climatic variables (McBoyle 1973; Preston-Whyte 1974; Anyadike 1987; White and 

Perry 1989; Puvaneswaran 1990; Goldreich and Raveh 1993). Because climates are 

complex, Steiner also believed they should be classified with numerous variables to 

achieve accuracy and completeness (Puvaneswaran 1990; Garr and Fitzharris 1991). The 

most common techniques that have been used are cluster analysis followed closely by 

factor analysis and principal components analysis (Goldreich and Raveh 1993). In Table 

1, published studies using multivariate statistical climate classification are listed by 

author(s), research site, and statistical technique(s). These studies used different 

combinations of multivariate statistical methods to produce classifications. The process 

and variable selection differ considerably by study site; there seems to be no one 

consistent approach to the statistical classification of climates.
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Table 1. Multivariate Statistical Climate Classification Studies

Author(s) Study Site and Year Technique
S te in er United S ta tes , 196 5 FA, D A

M cB oyle A ustralia , 1973 F A

P res to n -W h yte South A frica, 197 4 F A

O liver, S iddiqi, and  G ow ard Pakistan , 1 9 7 8 C A , F A

A n yad ike W e s t A frica, 198 7 C A , F A

W h ite  and P erry England and W a le s , 198 9 P C A , C A

P u v an esw aran Q u een s lan d , A ustralia , 1 9 9 0 FA, C A

G a rr  and Fitzharris N e w  Z ea la n d , 1991 C A , D A

G oldreich  and  R aveh Israel, 199 3 C O P L O T , C A , F A

M cG reg o r C hina, 199 3 P C A , C A

L eber, H o law e , and H ausler T ibet, 1 9 9 5 C A , FA, D A

CA = Cluster Analysis DA = Discriminant Analysis
FA = Factor Analysis PCA = Principal Components Analysis

COPLOT = Common Plots
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Often, the results of multivariate climate classifications were compared against an 

earlier method for the same region or sub region. For example, McGregor (1993) used a 

multivariate approach involving principal components analysis and cluster analysis of 

Chinese data, and Leber, Holawe, and Hausler (1995) used different variables combining 

factor analysis, cluster analysis, and discriminant analysis for the Tibet Autonomous 

Region. Similarly, McBoyle (1973) used factor analysis to classify climates of Australia, 

while Puvaneswaran (1990) applied a similar statistical methodology (factor analysis 

combined with cluster analysis) using more weather station data for the State of 

Queensland. Usually the newly predicted climate regions were analyzed and described in 

terms of their physical geographic features but were not labeled as specific climate types. 

This procedure would mean stepping backward to the earlier methods of experimentation 

and subjective interpretation as indicated by McGregor (1993).

Classifications are mostly based on observed elements, so data limitations can 

include weather station records that are lacking in spatial and temporal extent (Wilcock 

1968; Leber, Holawe, and Hausler 1995). Weather collection points may be denser in 

heavily populated areas, resulting in spatially irregular data (Leber, Holawe, and Hausler 

1995). Different periods of record and changes in observation location and 

instrumentation could also lead to inhomogeneities in the data record (Linacre 1992).

The number and distribution of weather stations and available data are unique to each 

study.



Questions for Research
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Given the incongruent approach to climate classification presented in the 

literature, what is the most accurate or acceptable method for classifying climates? 

Because the methods are specific to climate variables and sites, what method would be 

suitable for Texas? Early studies of climate classification had to rely on limited data 

from very few existent weather stations. Could a large number of weather stations of 

sufficient record length increase accuracy in the classification process? How many and 

which climate variables should be used for an appropriate classification in Texas? 

Typically, humans collect climate data on the ground, so there is limited coverage in 

sparsely populated areas. Could regularly spaced weather station data ease the 

communication and mapping process? Finally, after the macroclimate of Texas is 

produced, how can it be described and understood? The answers to these questions 

constitute my research.



CHAPTER III

STUDY AREA AND DATA 

Study Area

Texas demonstrates great geographic variability including an elevation range of 

almost 9,000 feet containing distinctly different ecological regions. The combination of a 

large area (over 267,000 square miles) and many changes in landform throughout the 

state permits disparate climate zones, usually characterized by temperature and 

precipitation statistics (Griffiths and Bryan 1987). Familiarity with a region drives a 

researcher’s need to test or explain its natural processes in greater detail as opposed to 

studies conducted by a normative (Wilcock 1968). My personal experience and extensive 

geographic knowledge of the state of Texas yields greater insight and a stronger ability to 

analyze the macroclimate map.

Variables

A temperature recording is the measurement of the molecular activity (average 

kinetic energy) in the air at a certain location and time, while precipitation is a cumulative 

measurement of rainfall, sleet, and snow at a certain location over time. Temperature and 

precipitation are considered the main climatic elements and both significantly fluctuate 

spatially and temporally (Bomar 1983; Robinson and Henderson-Sellers 1999). These 

data are physically measured at weather stations throughout Texas. Because temperature
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and precipitation data can vary from month to month and even year to year, “normals” 

are calculated to yield an average over a 30-year period for the climatic variables, mean 

temperature and total precipitation.

Climate in Texas is influenced by location in both latitude and longitude.

Latitude lines, or parallels, run east or west across the Earth and measure north and south 

of the equator in degrees. Incoming solar radiation is more intense in south Texas than in 

the northern panhandle, so temperatures in the south are generally higher than in the 

north. Lines of longitude, or meridians, run north or south over the Earth and measure 

east and west of the prime meridian in degrees. Precipitation in Texas commonly follows 

a pattern along longitude lines due to physical relationships such as distance from the 

coast and continentality. Eastern Texas receives significantly more rainfall than the 

western edge of the state. Generally in Texas, temperature is latitudinally distributed and 

precipitation is longitudinally distributed, which in combination makes for distinct 

climate regions.
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Climate Data Set

For this study, data availability and format are important. Individuals record 

weather data daily with automatic recording devices at primary and cooperative weather 

stations across Texas. The National Climatic Data Center (NCDC) processes this 

information into various formats and makes the data accessible.

Data from the 1971-2000 normal period were used and included a large number 

of stations (n = 403 seen in Figure 2) obtained from the NCDC (2002). Monthly normals





were used from the climate data set. 1971-2000 temperature and precipitation normals 

were also collected for select New Mexico, Oklahoma, Arkansas, and Louisiana stations 

to control edge effects when surfacing the data. For the same purpose, an attempt was 

made to collect Mexico normals from the World Meteorological Organization, but 

appropriate data of this sort could not be obtained. However, weather stations along the 

Texas border are sufficient to address the edge effects at these locations.

Because temperature and precipitation are spatially continuous, class boundaries 

represent transition zones rather than discrete boundaries in the final map, even though 

the classes were defined from objective reasoning and calculation (Wilcock 1968; White 

and Perry 1989; Puvaneswaran 1990; McGregor 1993). In other words, change is not 

easily detected at the macro scale. Also, spacing of the weather stations was checked 

during data collection to avoid areas of sparse data; a uniform distribution was sought.

Digital Elevation Model

A digital elevation model (DEM) for Texas was used in this study and served two 

purposes: (1) to act as the coordinate base (30 arc-second spacing in latitude and 

longitude) for surfacing the weather data into regular raster grids and (2) for comparison 

of the final classed map to the physiography or landforms of Texas. The 30 arc-second 

resolution DEM is available from the United States Geological Survey’s Earth Resources 

Observation Systems Data Center and covers Texas completely. Because there are 3600 

seconds in one degree of latitude or longitude, this raster data set has 120 regularly 

spaced elevation values per latitude or longitude degree. In other words, every grid cell
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accounts for one topographic height for a resolution of roughly 900 meters by 900 meters 

per grid cell footprint.



CHAPTER IV

METHODOLOGY

A macroclimate results from the combination of weather observations in a large 

region over a period of time (Robinson and Henderson-Sellers 1999). Applying 

multivariate statistics to classify the macroclimate in Texas using temperature and 

precipitation variables should produce a set of spatially consistent zones. The 

methodology is basically two-fold: (1) to create generalized temperature and 

precipitation grids for mapping purposes and (2) to use cluster analysis and discriminant 

analysis to classify the grids. The software package MVMAP (Eyton 2001) was used to 

perform the statistical operations. The procedures described in this section include data 

surfacing and classification.

Data Surfacing

Because the weather stations are irregularly spaced across Texas, a surfacing 

technique was utilized to make them regularly distributed. Monthly temperature and 

precipitation values were surfaced into regular raster grids based on the latitude and 

longitude coordinates of the 30 arc-second DEM. Weather stations from the four states 

surrounding Texas were part of the data set to correct for edge effects. Sufficient 

numbers of data points along the Texas / Mexico border and along the Gulf coast 

eliminated this problem.
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An attempt was made to find the proper surfacing technique that fit the data well 

but still produced a good level of generalization. Surfacing methodologies considered 

were: trend surfacing, multiple regression surfacing, multiquadric equation surfacing, 

inverse distance weighting function surfacing, and kriging. The analytical approach 

called trend surfacing was ultimately chosen to interpolate the monthly temperature and 

precipitation values into separate regular raster grids predicted from latitude and 

longitude. The trend surface model uses a multiple-curvilinear regression equation with 

two independent variables and powered polynomial functions of the general form 

Z = f  (X,Y) (Eyton and Roseman 1971). A group of terms is added each time the 

equation increases to a higher order as shown in the following example:

1st degree: Zx = ao + a,X + a2Y

2nd degree: Z2 = Z, + a3X2 + a4XY + a5Y2

3rd degree: Z3 = Z2 + a6X3 + a7X2Y + asXY2 + a9Y3

4th degree: Z4 = Z3 + a10X4 + auX3Y + a,2X2Y2 + a13XY3 + a,4Y4

5th degree: Z5 = Z4 + a15X5 + a16X4Y + a17X3Y2 + algX2Y3 + a19XY4 + a20Y5

6th degree: Z6 = Z5 + a21X6 + a22X5Y + a23X4Y2 + a24X3Y3 + a25X2Y4 + a26XY5 + a27Y6

7th degree: Z7 = Z6 + a28X7 + a29X6Y + a30X5Y2 + a31X4Y3 + a32X3Y4 + a33X2Y5 + a34XY6 + a35Y7

(Eyton 1991)

The correlation, or strength of the relationship for each degree fit is given by the 

coefficient of determination or r2 value, which is a ratio of the explained variation to the 

total variation. For this study, the seventh degree trend surfacing equation was used to 

create all the grids because in most cases, the r2 value was highest (or closest to 1.0) as 

shown in Table 2. If, for example, the coefficient of determination was higher for the
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Table 2. Trend Surfacing Statistics

Month Temp. 7th Degree r2 Precip. 7th Degree r2

JAN 0 9601 0 9832

FEB 0 9446 0 9738

MAR 0 9327 0 9699

APR 0 9124 0 9499 (5th = 0 9533)

MAY 0 8765 0 9229 (6th = 0 9268)

JUN 0 7423 0 8445 (5th = 0 8493)

JUL 0 6441 0 7804

AUG 0 7462 (6th = 0 7463) 0 6164 (5th = 0 6294)

SEP 0 8588 0 8635

OCT 0 9196 0 9296

NOV 0 9588 0 9707

DEC 0 9651 0 9756



fifth degree equation for a particular month, the seventh was still used for uniformity 

purposes; the differences were very slight. The trend surfacing was run in the MVMAP 

module TREND on each month’s temperature and precipitation values once to obtain the 

statistics and again to surface the data with the specified seventh degree. One 

temperature grid and one precipitation grid for each month, January through December, 

resulted in a total of 24 raster data sets defined by row and column coordinates in latitude 

and longitude.
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Classification

Multivariate statistical analyses were applied to the temperature and precipitation 

raw data observations for grouping macroclimates in Texas. Cluster analysis can be used 

to divide a region into smaller homogeneous spatial units based on observations that are 

grouped together (Aldenderfer and Blashfield 1984; Rogerson 2001). This procedure 

statistically groups the variables into mutually exclusive classes by maximizing the 

variance between groups and minimizing the variance within groups. An Iterative 

Partitioning Method (IPM) called k-Means Cluster Analysis was run on the raw 

(unsurfaced) weather station data consisting of the temperature and precipitation values 

from each month, January through December. All twelve months were used in order to 

obtain a complete annual time series with an acceptable amount of variability.

The k-Means algorithm randomly “seeds” or finds cluster centroids in 

multidimensional feature space based on a user-defined number of groups. Each 

temperature and precipitation data observation is assigned to the closest cluster centroid 

(defined by the means of the variables). The cluster means are calculated again and data
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observations are reassigned to the new closest cluster. These iterations repeat until there 

is no significant change in the assignment of data observations to the clusters 

(Aldenderfer and Blashfield 1984; Lillesand and Kiefer 1994).

Determining the optimal number of groups or clusters in a k-Means Cluster 

Analysis is a problem (Aldenderfer and Blashfield 1984). To find the optimum number 

of clusters, the MVMAP module CLUSTER was run with 5 as the initial number of 

groups and 25 as the last number of groups, producing 21 runs or analyses. By 

examining the F-Ratio (between group variance / within group variance) for all groups, 

local máximums were determined (Figure 3). This instance occurred on clusters 7, 9,15, 

18, and 24, but 7 (although not a strong local maximum) was chosen to produce a 

parsimonious or manageable and interpretable solution (Table 3). CLUSTER was run 

again setting the number of clusters at seven and assigning group membership (1 -  7) to 

the original observations. Because temperature and precipitation are measured with 

different units, the data were standardized during the cluster analysis so that the data are 

all measured on the same relative scale (Aldenderfer and Blashfield 1984).

Discriminant analysis determines decision rules called classification functions to 

allocate raw observations to groups of similar properties (Klecka 1980; Mertler and 

Vannatta 2002). A discriminant analysis was first run in the MVMAP module DISCRJM 

to test the performance of the linear classification functions using monthly temperature 

and monthly precipitation as the analysis variables and the seven k-Means Clusters as the 

group variable. This statistical technique builds a set of linear functions called 

classification functions from the 24 analysis variables. A constant and a coefficient for
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Fig. 3. The local maximums from 21 cluster runs or analyses.
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Table 3. Local Maximum of Cluster Number 7

CLUSTER NUMBER 6

WITHIN GROUP VARIANCE = 5 8014

BETWEEN GROUP VARIANCE = 23 5005

F-RATIO = 4 0508 < - < 4.9015

CLUSTER NUMBER 7

W ITHIN GROUP VARIANCE = 4 8967

BETWEEN GROUP VARIANCE = 24 0013

F-RATIO = 4.9015  <—LOCAL MAXIMUM

CLUSTER NUMBER 8

WITHIN GROUP VARIANCE = 4 6555

BETWEEN GROUP VARIANCE = 22 8146

F-RATIO = 4 9005 < - < 4.9015
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each variable were obtained for each of the seven functions that were determined from 

the analysis of the structure of a covariance matrix (Klecka 1980). Each monthly 

temperature and precipitation value from every weather station were then run through the 

discrete classification functions and classified into one of the seven groups according to 

which function equaled the highest score (Klecka 1980). After each observation had 

been classified, a percent correct classification table or confusion table was generated to 

assess the accuracy of the classification functions and is discussed in the results section.

Once the classifier was put into place, each temperature and precipitation value 

from each monthly trend surfaced grid were classed and assigned a color for mapping in 

the MVMAP module COLORMAP. The 30 arc-second DEM was used to produce a 

relative radiance grid, which was utilized by the COLORMAP program to produce 

hillshading. An image raster file called a mask was applied to the classed color grid to 

control for the study area being mapped. The mask was created with the state of Texas 

labeled as the cartographic area of interest; classes within the state kept their originally 

assigned colors. All areas in the grid outside of the Texas border were assigned the mask 

background color of black. Descriptive statistics were run on the original clustered 

climate groups using the MVMAP module DESCRIBE to produce mean values per 

variable per group.



CHAPTER V

RESULTS AND DISCUSSION

Pilot Study

The purpose of the pilot study was to test the methodology and to develop 

expertise in interpreting the statistics associated with the modeling and mapping. This 

process gave the researcher experience working with the climate data before beginning 

the actual thesis work. The pilot study data set included the 1961-1990 normals for the 

annual temperature and precipitation recorded at 164 weather stations in Texas. For this 

preliminary study, the data were not surfaced. Because 1961-1990 normals were not 

readily available from NCDC at the time of data collection, the set included normals that 

were manually calculated from the departures from normals using 1996 data from the 

National Oceanic and Atmospheric Administration (1996). Julie Henry, a former 

graduate student of the Southwest Texas State University Geography Department, 

collected the data and calculated the normals.

After I chose 11 groups by examining local máximums from F-Ratios of 21 

cluster runs (5 -  25), cluster analysis was used to group the data. A discriminant analysis 

was run with an overall correct classification of 100.00%. The Texas climate centroids 

were mapped from the mean latitude and longitude values calculated for each group. The

24



25

results in Figure 4 illustrate the Texas climate centroids, which correspond well with the 

1959 NWS climatic divisions.

The pilot study proved successful and provided a good preliminary view of how a 

statistical set of climate classes can be spatially derived for Texas. Most importantly, 

however, is that the procedure revealed natural discrete climate groups in Texas. These 

early findings validated the parallel methodology proposed for the thesis research, which 

utilized 1971-2000 monthly normals and surfaced grids of climate data to obtain a more 

accurate and higher definition classification.

Texas Climate Classification Map and Statistics

The Texas climate map classed from multivariate statistical analyses is shown in 

Figure 5. Larkin and Bomar (1983, 3) list five physical reasons the state of Texas 

contains disparate climate zones: “the State being located (1) downwind from mountain 

ranges to the west, (2) proximate to the Gulf of Mexico and the southern Great Plains, (3) 

west of the center of the Bermuda high pressure cell, (4) at relatively a low latitude, and 

by (5) the changes in land elevation from the high plains and mountains to the coastal 

plains.” Corroboration of the climate regions is discussed with regard to the basic 

inferences of climatological controls such as solar radiation and the Texas land/ocean 

configuration. Knowledge about the physical processes and natural systems in Texas 

from my regional physical perspective as a native greatly aided the analysis section of the 

research. The numerical results from the multivariate statistical approach to climate 

classification are also discussed.

The results from the discriminant analysis in Table 4 indicate a 95.53% overall
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Climate Group Centroids 
with the Texas Climatic Divisions

m High Plains 
| 2 | Low Rolling Plains 

| 3 | North Central 

| 4 | East 

| 5 1 Trans Pecos 

| 6 1 Edwards Plateau 

|~~7~] South Central 

|~8~1 Upper Coast 
| 9 | Southern 

| 1Q ] Lower Valley

Fig. 4. Climate group centroids from the pilot study overlaid on the NWS Texas 
climatic divisions.
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Fig. 5. The climate classification of Texas produced from my research



Table 4. Confusion Table

% CORRECT CLASSIFICATION
(FROM ROW CLUSTER NUMBER TO 
COLUMN CLUSTER NUMBER)

1 2 3 4 5 6 7 TOTAL

1 95.52

(64)

0.00

(0)

0 00 

(0)

0 00 

(0)

4 48

(3)

0.00

(0)

0 00 

(0)

100.00

(67)

2 1 33 

(D

93.33

(70)

5.33

(4)

0 00 

(0)

0 00 

(0)

0 00 

(0)

0 00 

(0)

100.00

(75)

3 0 00 

(0)

1 47 

(1)

97.06

(66)

1 47 

(1)

0.00

(0)

0.00

(0)

0 00 

(0)

100.00

(68)

4 0 00 

(0)

0 00 

(0)

5 66 

(3)

90.57

(48)

0 00 

(0)

0 00 

(0)

3 77 

(2)

100.00

(53)

5 0 00 

(0)

4 17 

(2)

0 00 

(0)

0.00

(0)

95.83

(46)

0.00

(0)

0.00

(0)

100.00

(48)

6 0 00 

(0)

0 00 

(0)

0 00 

(0)

0.00

(0)

1.75

(D

98.25

(56)

0.00

(0)

100.00

(57)

7 0 00 

(0)

0.00

(0)

0 00 

(0)

0 00 

(0)

0 00 

(0)

0 00 

(0)

100.00

(35)

100.00

(35)

TOTAL (385)/(403)

OVERALL CORRECT CLASSIFICATION
= 95.53% (# of weather stations in each group)
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correct classification. Because the classification functions were generated from the same 

data observations as were run through them, the percent correct classification is 

overestimated. An independent set of sample observations (not used in the initial run) 

would need to be used to determine true classification accuracy (Klecka 1980).

The confusion table reveals not only the misclassification among the groups but 

also the differences between classes (Klecka 1980). Each group lists a percentage of the 

“known” observations that were correctly classed such as 90.57% for group 4. The rest 

of the misclassified stations (9.43% total) fall in groups 3 (5.66%) and 7 (3.77%), or 

group 4 was “confused” with groups 3 and 7. Observing the Texas climate classification 

map in Figure 5 shows that groups 3 and 7 border group 4, and the “confused” weather 

stations are located near the group transition zone boundaries. Because of the close 

proximity to group 4, these groups would have similar climate characteristics to this 

climate zone than group 4 would have with, for example, group 1.

Graphical Comparison

The graphs in Figure 6 display the mean temperature and precipitation values 

from each month per group along with the number of observations (weather stations) 

from the descriptive statistical procedure. Refer to the Appendix for the entire numerical 

descriptive statistical outputs, including standard deviation values, per group per variable. 

The graphs helped reveal meaningful characteristics of each group. Because the new 

climate classes resemble the NWS climatic divisions, the Climatic Division Descriptions 

in Griffith and Bryan’s The C lim ates o f  Texas C ounties (1987) were used to assess the
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Group 1 n = 67

Group 2 n = 75

Group 3 n = 68

Fig. 6. The monthly mean temperature and precipitation charts per climate group. The 
lines show temperature in degrees Fahrenheit, and the bars show precipitation in inches.
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Group 4 n = 53

Group 5 n = 48

Group 6 n = 57

Fig. 6. - Continued. The lines show temperature in degrees Fahrenheit, and the bars 
show precipitation in inches.
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Group 7 n = 35

Fig. 6 - Continued. The lines show temperature in degrees Fahrenheit, and the bars show 
precipitation in inches.



accuracy of the descriptive statistics and the spatial arrangement of the Texas 

macroclimate zones produced from this study.

The groups follow a very similar pattern throughout the year with peak mean 

temperatures in July and August, and the coolest mean temperatures in January and 

December. The main difference is the higher temperatures in group 6 compared to all the 

other groups except group 7 which is only slightly cooler than group 6 throughout the 

year. Maritime air masses slightly cool temperatures for group 7 more so than group 6. 

Groups 6 and 7 are the southernmost Texas groups and so receive greater amounts of 

incoming solar radiation resulting in the higher temperatures.

Groups 2, 3 ,4 ,6 , and 7 show a bimodal distribution for precipitation. These 

groups are situated in the central and eastern parts of the state and are effected mainly by 

rainfall in late spring and secondly by tropical disturbances from the Gulf of Mexico in 

early fall (Bomar 1983; Swanson 1995). Groups 1 and 5 in west Texas have generally 

unimodal distributions with the bulk of rainfall occurring from late spring through the 

summer and into early fall due to convective thunderstorms in the summer months 

(Bomar 1983). The group 5 region, considered a Subtropical Arid climate (Larkin and 

Bomar 1983), receives the majority of precipitation from orographic lifting due to 

mountainous topography (Bomar 1983).

Precipitation varies across the groups more than temperature. This is apparent not 

only when comparing the graphs but also by observing the separability plot (Figure 7). 

The seven groups were plotted with mean annual temperature on the x-axis and total 

annual precipitation on the y-axis to graphically display the separability between the
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groups. The data points’ structure reveals greater variability for the total annual 

precipitation than the mean annual temperature. For example, groups 4 - 2 - 5  have 

almost the same mean annual temperature but significantly different total annual 

precipitation values. Groups 4 and 5 have approximately a 30-inch range in precipitation 

but only a tenth of a F° difference in temperature; these groups are located at similar 

latitudes but at extreme longitudinal positions in Texas.

Comparison to the NWS Climatic Divisions Map

A comparison is made with the statistically derived climate map completed in this 

research and the 1959 NWS divisions map shown together in Figure 8. A very similar 

pattern exists between the two maps. Group 1 corresponds with the High Plains, group 2 

with the Low Rolling Plains, group 3 with the North Central and South Central, group 4 

with the East, group 5 with the Trans Pecos, group 6 with the Southern, and group 7 with 

the Upper Coast. The major differences are the absences of the Edwards Plateau and 

Lower Valley climate zones that are shown on the NWS map but not the map derived 

from my research. More than likely, the Edwards Plateau region was not defined on my 

map as a distinct climate class because the area is a convergence or transition zone 

between several different macroclimate types commonly called a Subtropical Subhumid 

climate (Larkin and Bomar 1983). This region fluctuates between abnormally wet and 

dry years, and the 30-year averaged data used in this study reduced the impact of these 

extremes. This climate type was not distinct enough (did not manifest itself in the raw 

station data) to appear as a separate zone in my statistically derived climate classification 

map. The Lower Valley region is likely very similar to the climate of group 6 and so was
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Texas Climatic Divisions

Source: National Weather Service, 1959

| 1 | High Plains 
| 2 I tow Rolling Plains 
I 3 I North Central 
| 4  | East 
| 5 I Trans Pecos 
I 6 I Edwards Plateau 
I 7 I South Central 
| s | Upper Coast 
| 9  | Southern 
| ip  | Lower Valley

Adapted from Griffiths and Bryan (1987)

Fig. 8. The comparison of: a, the climate classification of Texas produced 
from my research and b, the NWS Texas climatic divisions.
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not classed separately. These two differences were probably included on the 1959 NWS 

map due to common perceptions of these areas as distinct physiographic and cultural 

regions, which were the main controls behind the spatial arrangement of the NWS 

climatic divisions.

Because physiographic connections to climate were important for the NWS 

climate map, my new climate classes were overlaid on the DEM as a hillshade (refer to 

Figure 5). My map revealed only a few associations between major landforms and the 

climate in Texas. My climate classification transition zones are fairly close to 

physiographic boundaries, most apparent between groups 4 and 7 and between groups 2 

and 6. However, there seems to be no major physiographic breaks between groups 2 and 

3, groups 1 and 5, and groups 3 and 4 because the classification process utilized the 

statistical properties of the station data, not the physics operating at a particular point. 

Although documentation supports the relationship between Texas landforms and climate 

(Swanson 1995), such as orographic precipitation on the Edwards Plateau by the abrupt 

elevation change of the Balcones Escarpment, these trends are apparently not significant 

in the 30-year averaged temperature and precipitation data.

Comparison to a MODIS Satellite Image

A MODIS (Moderate Resolution Imaging Spectroradiometer) satellite NDVI 

(Normalized Difference Vegetation Index) image of Texas was also compared to my 

statistically derived Texas climate map. The cloudless MODIS image was acquired on 

October 14, 2001. The near infrared (NIR) and red (R) bands were used to calculate the 

NDVI ratio (credited to Rouse et al. 1973) utilizing the following equation:



(NIR -  R) / (NIR + R). The NDVI is a good indicator of vegetation because the NIR 

band detects a high infrared reflectance from plants and trees due to leaf skin properties, 

and the R band detects high absorption levels of visible light from leaf pigments caused 

by chlorophyll (Ray 1994). In other words, this ratio is high for healthy plants and trees 

and is indicated on the NDVI image in Figure 9b as dark green pixels. The brown areas 

indicate low NDVI values; light green pixels are in between these two extremes. The 

spatial pattern of vegetation health is similar to the general longitudinal distribution of 

precipitation because of the direct relationship between vegetation and rainfall. Groups 4 

and 7 from the statistical climate classification of Texas map (Figure 9a) correspond to 

the dark green areas on the NDVI image because these zones receive high precipitation 

totals, while groups 1 and 5 are matched with the brown NDVI areas because these 

climate classes do not accumulate as much precipitation as the other zones. Groups 2, 3, 

and 6 fall in the light green interim NDVI category.

Because climate classifications were traditionally based on the vegetation / 

precipitation dependence, a climate map of the conterminous United States classed from 

Koppen’s thresholds (generated from vegetation characteristics) by the State Climate 

Services for Idaho is included for comparison in Figure 9c. Three main types of climate 

can be distinguished in Texas on Koppen’s map: Cfa, Humid Subtropical; BSh, Tropical 

and Subtropical Steppe; and BSk, Middle Latitude Desert. Some Koppen climate maps 

show BWh, Tropical and Subtropical Desert, as a climate region in western portions of 

Texas too (Espenshade, Hudson, and Morrison 1995). These general longitudinally 

distributed climate regions in Texas correspond well with the NDVI because
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Koppen Climate Classification
for the Conterminous United States

Source Siale Climate Service« for Idaho

Climate Type
CDAf 
U S  Am

I I BSh 
t m  BSk 
m  BWh 
BS3 BWk 
BCfa

■ I C s h  
■ i  Cwa 
! 1 Cwt>

r~~icnb

I----iDsc
tmowa
r ..! Dwb
■ iD w c

c.
Fig. 9. The climate and vegetation representations for comparisons: a, the climate 
classification of Texas produced from my research; b, the NDVI of a MODIS satellite 
scene; and c, a Koppen climate classification of the conterminous United States.
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vegetation is traditionally the major control for Koppen maps.

Strengths and Limitations

The Texas macroclimate map, classed from multivariate statistics with the 1971- 

2000 data set, was analyzed to identify the classification’s strengths and limitations. The 

following are important strengths of my Texas climate classification map:

1. Climate variables (monthly temperature and precipitation normals) were used 

instead of forming transition zones based on physiographic or political 

boundaries.

2. The classification produced discrete homogeneous climate zones in Texas. The 

weather station locations were interpolated into grids to simplify the cartographic 

and therefore communication process.

3. Most climate maps display data as isolines of a single climate element as in 

Larkin and Bomar’s C lim atic  A tla s  o f  Texas (1983). The new Texas climate 

classification used a combination of two climate elements (temperature and 

precipitation) to create a more inclusive climate map.

Conversely, limitations of my Texas climate classification map exist and are listed here:

1. Temperature and precipitation normals were the only climatic elements used, but 

many other factors contribute to the climate of a region such as wind and 

evaporation variables (Larkin and Bomar 1983).

2. The new groups or classes were not subjectively labeled with common names. 

Identifying and making connections with the Texas macroclimate zones and
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familiar geographic features (physical and cultural) may present problems for the 

user.



CHAPTER VI

SUMMARY, CONCLUSIONS, AND FUTURE WORK

After a critical evaluation of climate classification literature, an attempt was made 

to naturally group the macroclimates of Texas. Trend surfacing interpolated 403 weather 

stations into regular raster grids from NCDC 1971-2000 monthly temperature and 

precipitation normals. The multivariate statistical procedures cluster analysis and 

discriminant analysis classed the original data from the 403 weather stations into discrete 

groups and established decision rules for mapping the temperature and precipitation 

grids.

A multivariate statistical analysis provided discrete classed regions of the 

macroclimate in Texas in order to interpret and compare with the 1959 NWS divisions 

map, the physiography, and the ecological patterns. The hypothesis is accepted that 

cluster analysis and discriminant analysis of temperature and precipitation normals will 

naturally group the macroclimate of Texas for these types of meaningful comparisons. 

This study was successful for disclosing the following research matters and 

considerations for statistically classifying the climate of Texas:

1. The proposed methodology for classifying climates for Texas was deemed 

appropriate based on the statistical and visual analysis of the results.
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2. The fairly large number of weather stations used in this study improved the 

accuracy in the statistically based classification process; this is a considerable 

improvement over previous statistical approaches to climate classifications that 

used small numbers of stations.

3. Two climate variables (monthly mean temperature normals and monthly mean 

precipitation normals) for January through December did a good job classifying 

the study area. Temperature and precipitation are the main climate controls, and 

the data set was inclusive for all twelve months over a 30-year period.

4. Temperature and precipitation surfaces facilitated the cartographic process and 

unlike previous studies, graphically displayed a raster grid of the climate classes 

that were overlaid on a hillshaded DEM.

5. Describing and understanding the new Texas climate classification was less 

complicated from the point of view of the map display, statistics indicated by the 

confusion table, information imparted from the mean graphs, and the overall 

perspective obtained from the separability plot.

Possible objectives for future work with this study are plentiful. Within the 

results, more descriptive statistics could be presented and evaluated. Instead of just the 

means for each variable per group, minimums, maximums, ranges, and standard 

deviations could be analyzed to draw more conclusions about the spatial differences 

between the climate classes. For example, the coefficient of variation could be calculated 

for the precipitation variables to demonstrate the structure of each class through the 

amount of dispersion expressed as a percentage (Spiegel 1961). Elevation could be
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added to the trend surfacing equation because of the variable’s effect on climate. More 

climate variables such as evaporation and wind could be added to the classification 

process as well as different data time periods. Depending on the nature of the study, the 

methodology developed in this research for producing a multivariate statistical climate 

classification could easily be applied to other states or regions.
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APPENDIX

DESCRIPTIVE STATISTICS PER CLIMATE GROUP 
PER CLIMATE VARIABLE

GROUP 1 n = 67
Climate Variable Minimum_____ Maximum______Range_________ Mean________Standard Deviation

Temperature °F
January 30.700000 46.900000 16.200000 36.364180 3.315602
February 36.200000 50.300000 14.100000 40.970140 3.025366
March 43.000000 56.200000 13.200000 48.110440 2.621145
April 51.700000 62.600000 10.900000 56.429840 2.356819
May 59.500000 70.300000 10.800000 65.459720 2.216034
June 67.100000 77.100000 10.000000 74.216420 1.747963
July 69.000000 81.600000 12.600000 77.774640 2.249525
August 67.600000 80.000000 12.400000 76.019410 2.262693
September 62.000000 72.000000 10.000000 69.047750 1.802844
October 53.300000 62.300000 9.000000 58.573120 1.935152
November 41.300000 54.100000 12.800000 46.020900 2.491908
December 32.700000 48.300000 15.600000 37.782090 3.074638

Precipitation
January

inches
.280000 .710000 .430000 .511940 .102206

February .270000 .970000 .700000 .592090 .193466
March .220000 2.220000 2.000000 1.022388 .554379
April .100000 2.470000 2.370000 1.282090 .582927
May .310000 4.560000 4.250000 2.569104 .957261
June .680000 3.960000 3.280000 2.700000 .734431
July 1.340000 3.820000 2.480000 2.469254 .394440
August 2.060000 4.020000 1.960000 2.716268 .402509
September .930000 3.460000 2.530000 2.236866 .514092
October .710000 2.390000 1.680000 1.497164 .305786
November .300000 1.360000 1.060000 .806716 .238845
December .320000 .930000 .610000 .673731 .152632



GROUP 2 n = 75
Cimiate Variable Minimum Maximum Range Mean Standard Deviation

Temperature °F
January 36.500000 47.400000 10.900000 42.124000 2.643163
February 42.200000 51.800000 9.599998 47.071990 2.383289
March 50.300000 59.400000 9.100002 54.953330 2.171674
April 59.600000 67.200000 7.599998 63.249320 1.684336
May 68.700000 75.100000 6.400002 71.589340 1.312345
June 77.000000 80.900000 3.900002 78.919990 .914232
July 79.600000 85.100000 5.500000 82.861330 1.212046
August 79.000000 84.100000 5.099998 81.840020 1.123875
September 72.200000 77.200000 5.000000 74.932010 1.069471
October 61.600000 67.600000 6.000000 64.802660 1.433818
November 48.400000 56.700000 8.299999 52.726660 1.998517
December 38.600000 49.100000 10.500000 44.144000 2.457615

Precipitation
January

inches
.570000 1.730000 1.160000 1.052533 .277577

February .730000 2.390000 1.660000 1.526267 .392498
March .760000 3.370000 2.610000 1.764800 .520127
April 1.430000 3.330000 1.900000 2.160666 .432732
May 2.570000 5.170000 2.600000 3.810933 .647893
June 2.480000 4.410000 1.930000 3.496000 .441892
July 1.100000 2.680000 1.580000 1.889733 .278275
August 1.570000 3.180000 1.610000 2.473866 .326722
September 2.140000 4.080000 1.940000 3.083600 .411261
October 1.600000 4.390000 2.790000 2.887467 .556616
November .890000 2.730000 1.840000 1.577867 .449252
December .620000 2.380000 1.760000 1.388267 .432076
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GROUP 3 n = 68
Climate Variable Minimum Maximum Range Mean

Temperature
January

°F
42.400000 53.500000 11.100000 47.548530

February 47.600000 57.300000 9.700001 51.948520
March 55.100000 63.700000 8 600002 59.448530
April 63.000000 69.700000 6.699997 66.364720
May 71.300000 76.600000 5.299995 73.842640
June 77.900000 82.000000 4 099998 80.241150
July 80.600000 85.400000 4.800003 83.649990
August 80.600000 85.200000 4.599998 83.467660
September 75 600000 80.100000 4.500000 77 891170
October 65.300000 72.300000 7.000000 68.517640
November 53.600000 62.700000 9.100002 57.677940
December 45.400000 55.200000 9.799999 46.683820

Precipitation
January

inches
1.270000 3.810000 2.540000 2.245294

February 1.450000 3.370000 1.920000 2.421324
March 1.550000 3.700000 2150000 2 665294
April 2.210000 3.890000 1.680000 3.003088
May 3.780000 5.750000 1.970000 4 862206
June 2.950000 5.030000 2 080000 3.941765
July 1.180000 2.900000 1.720000 2.027353
August 1.390000 3.340000 1.950000 2.381470
September 2.420000 5.000000 2.580000 3.377353
October 2.870000 4.810000 1.940000 4.088530
November 1.830000 4170000 2.340000 3.016029
December 1.400000 3.880000 2.480000 2.722059

Standard Deviation

2.802654 
2.391718 
2.168243 
1.678798 
1.319414 

863790 
.857491 
856054 

1.091812 
1.643179 
2190475 
2.576684

.583381

.380279

.432307

.344966

.378008

.499781

.319070

.412136

.552932

.404167

.519829

.509295
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GROUP 4 n = 53
Climate Variable Minimum Maximum

Temperature °F
January 39.400000 48.600000
February 44.700000 52.900000
March 52 300000 60.300000
April 60.300000 66.600000
May 69.000000 73.800000
June 76.600000 80.300000
July 80.600000 85.000000
August 80.000000 84.300000
September 73.300000 77.700000
October 62.600000 67.700000
November 51 000000 57.700000
December 42.300000 50.300000

Precipitation inches
January 1.880000 5.730000
February 2.230000 4.560000
March 3.070000 5.170000
April 3 130000 4 890000
May 4.290000 6.250000
June 2.780000 5 490000
July 1 810000 4 420000
August 1.680000 3 870000
September 2.980000 4.740000
October 3.750000 5.400000
November 3.030000 6.200000
December 2.600000 6 080000

Range Mean Standard Deviation

9.199997 43 420760 2.534826
8.200001 48 147170 2.244564
8.000000 55.811330 2 051776
6 299999 63.164150 1.571366
4.800003 71.269810 1.299187
3.700005 78.466040 .896449
4.400002 82.432080 .781458
4.300003 81.901890 .853224
4.399994 75.558490 1.136408
5.099998 65.122640 1 437870
6.700001 54.047170 1.878110
8.000000 45.947160 2.254447

3 850000 3.573773 .974570
2.330000 3.488680 .522507
2100000 4.117925 .513966
1.760000 3.959622 382729
1.960000 5.121132 .505393
2 710000 4.483396 .448694
2.610000 3 104906 .589973
2.190000 2 581132 .466399
1.760000 3.705848 .409302
1.650000 4.601320 .382443
3.170000 4.590566 .689714
3 480000 4.326982 754936
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GROUP 5 n = 48
Climate Variable Minimum Maximum Range Mean

Temperature °F
January 39.600000 49.100000 9.500000 44.054170
February 44.200000 54.200000 10.000000 48.985420
March 51.700000 61.100000 9.399998 56.225000
April 59.600000 69.200000 9.599998 64 041670
May 68.600000 77.600000 9.000000 72.668750
June 75.500000 83.200000 7.699997 79 706250
July 76.200000 84.300000 8.100006 81.679160
August 74.500000 83.500000 9.000000 80.152090
September 70.200000 78.100000 7 900002 74.143750
October 61.100000 68.700000 7.599998 64.550000
November 49.300000 57.500000 8.200001 52.847910
December 41.200000 50.000000 8.799999 45.097920

Precipitation inches
January .320000 .850000 .530000 .508958
February 290000 .920000 .630000 .557708
March .160000 1.070000 .910000 452917
April .080000 1.530000 1.450000 .736667
May .260000 3.180000 2.920000 1.643333
June .600000 2.840000 2.240000 1.760417
July .940000 3.040000 2.100000 1.739167
August 1.060000 2.920000 1.860000 1.947708
September 1.200000 3.630000 2.430000 2.506875
October .810000 2.270000 1.460000 1.443541
November .350000 1 150000 .800000 .641458
December .380000 .980000 .600000 .643958

Standard Deviation

2.131774 
2.083275 
2.265115 
2.281595 
2.115426 
1.853257 
1 969599 
2.072063 
1.869969 
1.811673 
1.999311 
2.059361

.125584
192986

.258160

.397735
794814
.589182
.431218
.405741
.619409
.419952
.194586
.123232
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GROUP 6 n = 57
Climate Variable Minimum_____ Maximum______Ranee_________ Mean_______ Standard Deviation

Temperature °F
January 47.400000 60.100000 12.700000 54.412280 2.912330
February 52.700000 63.800000 11.100000 58.533320 2.478020
March 61.700000 70.800000 9.100002 65.838580 2.249140
April 68.900000 76.000000 7.099998 72.061400 1.884157
May 75.800000 82.600000 6.799995 78.512280 1.714593
June 80.800000 87.600000 6.799995 83.226310 1.626598
July 83.000000 88.500000 5.500000 85.080690 1.303164
August 82.800000 87.900000 5.099998 84.899990 1.082442
September 78.800000 83.200000 4.399994 80.887720 .998584
October 69.500000 76.400000 6.900002 73.084200 1.714696
November 57.500000 69.500000 12.000000 63.663150 2.792989
December 48.600000 61.600000 13.000000 56.080710 3.034496

Precipitation inches
January .300000 3.070000 2.770000 1.244386 .544796
February .280000 2.840000 2.560000 1.387369 .524498
March .130000 2.830000 2.700000 1.253158 .573454
April .290000 3.190000 2.900000 1.763158 .590337
May .660000 4.490000 3.830000 2.926492 .775329
June 1.340000 4.960000 3.620000 3.053158 .737543
July 1.020000 3.050000 2.030000 1.764035 .467335
August 1.260000 3.560000 2.300000 2.448772 .570955
September 1.180000 6.120000 4.940000 3.587719 1.291322
October .990000 4.610000 3.620000 2.896842 .897015
November .290000 2.560000 2.270000 1.451404 .554863
December .230000 2.270000 2.040000 1.189123 .425971
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GROUP 7 n = 35
Climate Variable Minimum Maximum Range Mean Standard Deviation

Temperature
January

°F
46.400000 55.800000 9.399998 51.111430 2.417994

February 50.500000 59.000000 8.500000 54.562860 2.087482
March 58.300000 65.400000 7.100002 61.408570 1.798590
April 64.800000 70.400000 5.599998 67.637150 1.627488
May 72.700000 77.100000 4.400002 74.914280 1.277773
June 78.400000 82.400000 4.000000 80.545710 1.032401
July 81.000000 84.700000 3.699997 82.951430 846574
August 80.700000 84.400000 3.700005 82.711430 .899365
September 76.100000 81.100000 5.000000 78.448580 1.235617
October 66.000000 74.100000 8.099998 69.822850 2.060101
November 56.600000 65.400000 8.800003 60.562860 2.340002
December 49.000000 58.100000 9.099998 53.285720 2.429189

Precipitation
January

inches
2.860000 6.300000 3.440000 4.563143 .974561

February 2.450000 4.630000 2.180000 3.302857 .620888
March 2.420000 5.370000 2.950000 3.579142 .816675
April 2.170000 4.590000 2.420000 3.510857 .604997
May 3.700000 6.060000 2.360000 5.157429 .569537
June 3.960000 6.950000 2.990000 5.385429 .858082
July 2.670000 6.620000 3.950000 4.024571 .902902
August 3.160000 5.870000 2.710000 4.017429 .648554
September 3.970000 7.800000 3.830000 5.467144 .957889
October 3.460000 5.770000 2.310000 4.391143 .550564
November 3.390000 5.880000 2.490000 4.560286 .622200
December 2.390000 6.670000 4.280000 4.316857 1.128232
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