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ABSTRACT 

Emergency prediction and management are characterized by high dynamics and 

complexity, and inaccurate prediction and inefficient management can result in the loss 

of human lives and substantial environmental and economic consequences. Traditional 

methods for emergency management, such as linear regression and time series analysis, 

have limitations in handling large-scale data and conducting in-depth analysis. Machine 

learning (ML) is a branch of artificial intelligence, which plays a vital role in emergency 

management through modeling and predicting with high accuracy and efficiency.  

A novel coronavirus disease 2019 (COVID-19) has killed and infected millions of 

people around the world since late 2019. Controlling the spread of COVID-19 pandemic 

is a very important and emergent topic in the United States. Moreover, the number of 

mass shootings in the United States has risen sharply in 2020 under the COVID-19 

pandemic. Therefore, in this thesis, we explore ML models to improve emergency 

management by focusing on two different types of emergency, coronavirus pandemic 

(i.e., COVID-19) and mass shootings.  

For COVID-19, we focus on exploring the evolution algorithm and ML to model 

the effect of social distancing on the spread of COVID-19. Deep Neural Networks (DNN) 

form a powerful deep machine learning model that can process unprecedented volumes of 

data. The hyperparameters of DNN have a major influence on its prediction performance. 

Evolutionary algorithms (EAs) form a heuristic-based approach that provides an 

opportunity to optimize deep learning models to obtain good performance. Therefore, we 
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propose an evolutionary deep learning model called IPSO-DNN based on DNN for 

prediction and improve Particle Swarm Optimization (IPSO) algorithm to optimize the 

kernel hyperparameters of DNN in a self-adaptive evolutionary way. In the IPSO 

algorithm, not only a micro population size setting is introduced to improve the search 

efficiency of the algorithm, but also the generalized opposition-based learning strategy is 

used to guide the population evolution. In addition, the IPSO employs a self-adaptive 

update strategy to prevent the premature convergence and then improves the exploitation 

and exploration parameter optimization performance of DNN. In Part Ⅰ, we show that the 

IPSO provides an efficient approach for tuning the hyperparameters of DNN with saving 

valuable computational resources. We explore the proposed IPSO-DNN model to predict 

the effect of social distancing on the spread of COVID-19 based on mobility and social 

distancing metrics. The preliminary experimental results reveal that the proposed IPSO-

DNN model has the least computation cost and yields better prediction accuracy results 

when compared to the other comparison models. The experiments of the IPSO-DNN 

model also illustrate that aggressive and extensive social distancing interventions is 

crucial to help slow the spread of the COVID-19 epidemic in the United States. 

For mass shooting, we concentrate on predicting the future number of mass 

shooting incidents in the United States based on the public’s attitudes on Twitter. In 

recent years, social media plays a prominent and very important role in the spread of 

mass shooting incidents and brought about a significant contagious effect on future 

similar incidents. Therefore, we propose a self-excited contagion model based on 
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sentiment analysis of Twitter data on mass shootings. We explore different ML models to 

forecast the change in the public’s attitudes over time. These ML models include Support 

Vector Machine (SVM), Logistic Regression (LR), and the proposed IPSO-DNN model. 

The performances of different ML models are critically examined based on performance 

measures such as precision, recall, and accuracy. The results present that the proposed 

IPSO-DNN model has the significant capability to forecast the changes in public attitudes 

towards mass shootings on Twitter over time. The proposed self-excited contagion model 

is to predict the future number of mass shootings by focusing on the magnitude of 

influence of mass shootings and the spread of public attitudes on Twitter. Experiments 

indicate that the positive attitude plays an important role in analyzing and predicting 

future similar mass shooting incidents. Especially, due to the economic recession and 

people's huge pressures related to the lockdowns, the COVID-19 pandemic has 

significantly increased the number of mass shootings in 2020. Therefore, we also 

improve the proposed self-excited contagion model with the consideration of social 

distancing and the daily growth rate of COVID-19 cases to predict and analyze mass 

shootings under the COVID-19 pandemic. Experimental results of Part Ⅱ demonstrate 

that our proposed contagion models perform very well in predicting the future mass 

shootings in the United States.
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1. BACKGROUND AND OVERVIEW 

In the past few decades, the rise of unprecedented emergencies and disasters 

occurred in every part of the world, such as September 11 attacks, Fukushima Daiichi 

nuclear disaster, Hurricane Katrina, 2017 Las Vegas shooting, Australia fires, and the 

currently suffering COVID-19 pandemic. These emergencies are highly dynamic and 

complex, which make the emergency management extremely difficult as they are in the 

context of dynamic and interdependent social, infrastructure, and natural environments. 

The inaccurate prediction and inefficient management can result in the huge loss of 

human lives, substantial environmental and economic consequences. Moreover, it is 

undoubtedly a very challenging task to effectively deal with large volumes of related 

emergency data. Traditional methods for emergency prediction, such as linear regression 

and time series analysis, have limitations in handling large-scale data and conducting the 

in-depth analysis. Machine learning (ML) is a branch of artificial intelligence and has 

been proven to successfully support decision-making processes in managing a wide 

variety of complex problem domains. It lets computers mimic human learning to analyze 

large-scale data from past emergencies and disasters to generate new insights about 

current and future similar events. Therefore, ML plays a vital role in emergency 

management by modeling and predicting emergency with high accuracy and efficiency.  

Numerous scholars have researched applying ML models to improve the 

efficiency of emergency management, such as predicting the occurrence of disasters and 

determining crowd evacuation routes. However, most studies  focused on natural 

disasters, such as floods, earthquakes, and hurricanes, and there is little attention on other 

emergencies, such as pandemics and mass shootings. As we know, COVID-19 is a 
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transmissible coronavirus disease that has rapidly stricken around the world since late 

2019. The COVID-19 pandemic has caused a devastating loss of life but it has also 

devastated the global economy. Slowing the spread of COVID-19 is very essential to 

protect human lives and economic prosperity around the world. The COVID-19 

pandemic has substantially decreased the employment-to-population ratio in the United 

States. Other stresses and pressures related to lockdowns and prolonged periods of 

isolation have also carried significant burdens to human beings. The COVID-19 has a 

massive impact on crime. For instance, the number of mass shootings in the United States 

has risen drastically in 2020 under the COVID-19 pandemic. Gun violence in the United 

States results in a great number of deaths and injuries annually. According to Gun 

Violence Archive (Gun Violence Archive, 2021), mass shooting is defined as a minimum 

of four victims shot (either fatally or not) excluding any shooter or injured in the attack. 

Mass shootings in the United States have continued the general year-on-year increase in 

terms of frequency, fatalities, and injuries– but 2020 has been far worse than usual. There 

were 610 mass shooting incidents in 2020, significantly above the 417 mass shootings 

recorded in 2019, and also more than any other year over at least two decades. It is very 

critical to reduce the number of mass shootings in the United States. Therefore, in this 

thesis, we explore ML models to improve emergency management by focusing on two 

different types of emergency, COVID-19 pandemic and mass shootings. 

This thesis consists of two parts.  

Part Ⅰ is optimizing Deep Neural Networks (DNN) using Improved Particle 

Swarm Optimization (IPSO) to predict the effect of social distancing on COVID-19 

spread. There is no doubt that social distancing, such as banning gatherings, having 



 

3 

people stay at home, and closing schools perform very well in slowing the spread of 

COVID-19 pandemic. However, existing epidemiological contagion theories cannot 

explicitly measure the effect of these political decisions on the reduction of COVID-19 

cases. Therefore, we explore the DNN model to predict and analyze the effect of social 

distancing measures on COVID-19 spread. DNN is a very powerful deep machine 

learning model that includes neural networks with multiple hidden layers of abstraction to 

process large scale data. In order to improve the prediction performance, we propose an 

IPSO algorithm to optimize the hyperparameter of DNN in an evolutionary way. Social 

distancing is explicitly considered in the hybrid model IPSO-DNN. Then, we explore the 

IPSO-DNN model to show how social distancing helps slow the spread of COVID-19 

pandemic in the five selected states of the United States, such as Washington, California, 

New York, Florida, and Texas.  

Part Ⅱ is exploring the contagion effect of social media on mass shootings. In Part 

Ⅱ, we follow the definition of mass shooting which is four or more people are shot or 

killed in a single incident, at the same general time and location, not involving the 

shooter. In the United States, the number of mass shootings has been growing steadily 

over the past few years. The ever-increasing social networking sites, such as Twitter, 

have made information dissemination about mass shootings nearly effortless. This rise in 

mass shooting incidents has recently been linked to “media contagion” theory, which 

suggests that society’s never-ending news cycle has a “copycat” effect on these crimes. 

The spread of a positive attitude towards mass shootings encourages people to follow and 

imitate similar incidents, causing societal turmoil as well as harm to peace and security 

for sustainable development in the United States. Therefore, we explore the public 
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attitudes towards mass shootings on social media and measure the associated contagious 

effect systematically with the predictions of how these attitudes will change using ML 

models. We then propose the self-excited contagion models to predict the number of 

mass shootings by focusing on the magnitude of influence of mass shooting incidents and 

the spread of public attitudes on Twitter. A maximum likelihood estimation approach is 

applied to enhance the proposed model's robustness and prediction performance. 

The remainder of this thesis is organized as follows:  

Part Ⅰ: In Section 2.1, we introduce the importance of optimizing DNN using 

IPSO algorithm to predict the effect of social distancing on COVID-19 spread;  Section 

2.2 reviews the relevant literature; In Section 2.3, we present the methodology of our 

proposed model and develop the IPSO-DNN model to predict the COVID-19 pandemic 

based on social distancing influence; Section 2.4 describes the social distancing data 

which includes social distancing metrics and levels of COVID-19 spread; Section 2.5 

analyzes and discusses model performances, then explores the effect of social distancing 

on the spread of COVID-19 in the five selected states; In Section 2.6, we discuss the 

implications of our findings in Part Ⅰ and possible directions for future work.  

Part Ⅱ: Section 3.1 introduces the contagious effect of social media on mass 

shootings in the United States; in Section 3.2, we review the relevant literature of 

contagion effects on social media on mass shootings, self-excited contagion model, and 

sentiment analysis; Section 3.3 presents the methodology of collecting and pre-

processing mass shooting tweets, describes the two basic ML models and the proposed 

IPSO-DNN model to predict and classify the sentiment of mass shooting tweets, and then 

discusses the prediction accuracy results of different models; Section 3.4 describes the 
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resource of mass shooting data used in Part Ⅱ, proposes the self-excited contagion 

models, explores the contagion effect of social media and the effect of COVID-19 on 

mass shootings, as well as discusses prediction accuracy results of the proposed 

contagion models; We finally conclude the work of Part Ⅱ and discuss future research 

directions in Section 3.5.  
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2. PART Ⅰ: OPTIMIZING DEEP NEURAL NETWORKS TO PREDICT THE 

EFFECT OF SOCIAL DISTANCING ON COVID-19 SPREAD 

2.1. Introduction 

Deep learning is a sub-field of machine learning based on artificial neural 

networks, which includes processing neurons organized in input, hidden, and output 

layers. As one powerful deep learning model, Deep Neural Networks (DNN) are neural 

networks with multiple hidden layers of abstraction, which outperform other basic 

machine learning models in processing unprecedented volumes of data (Han et al., 2016). 

The hyperparameter setting of DNN has a significant influence on its prediction 

performance. The number of hidden layers, the number of neurons in each layer, and the 

activation function in each layer are three kernel hyperparameters of DNN, and their 

values need to be set appropriately to achieve high-quality results. However, most 

traditional methods tune these hyperparameters manually, which is quite time-

consuming, and the solutions are usually not equally distributed in the objective space 

(Malitsky, Mehta, & Simonis, 2013). 

Evolutionary algorithms (EAs) provide an opportunity to find the optimal or near-

optimal values of the hyperparameters of DNN models in an evolutionary way. EAs are 

the generic population-based metaheuristic optimization algorithms that simulate the 

natural evolution and they have shown to be effective in solving multiple and 

complicated tasks in many fields. EAs exhibit a tangible potential for large-scale 

parallelization and distribution in the search space that is especially important for 

optimizing the hyperparameters of complex DNN architectures. Particle Swarm 

Optimization (PSO) algorithm is one of the most important evolutionary algorithms first 
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proposed by Kennedy and Eberhart in 1995 ( Kennedy & Eberhart, 1995). PSO is easy to 

implement and shows rapid convergence towards an optimum (Shi, Liu, Cheng, Li, & 

Zhao, 2019). Nevertheless, many researchers have noticed that PSO tends to converge 

prematurely to local optima, especially when dealing with complex multimodal functions 

(Saeedi et al., 2020). This major weakness has restricted the applications of the PSO to 

comprehensively improve the performance of DNN. In order to address this challenge, in 

this Part Ⅱ we develop an improved PSO (IPSO) algorithm, which is applied to optimize 

the hyperparameters of DNN model. For the IPSO algorithm, we not only employ the 

generalized opposition-based learning strategy to guide the population evolution but also 

introduce the micro population size setting to improve the search efficiency of the 

algorithm. In addition, the IPSO explores a self-adaptive strategy to prevent premature 

convergence and thus enhances the global exploitation and local exploration ability of the 

algorithm.  

Moreover, deep learning models have achieved the state-of-the-art performance 

for various application domains over the past few years, such as solving online batching 

problems ( Cals, Zhang, Dijkman, & van Dorst, 2021), diagnosing and classification of 

faults in industrial rotation machinery (Souza et al., 2021) and forecasting supply chain 

demand (Punia, Singh, & Madaan, 2020). Deep learning has also been widely used for 

COVID-19 pandemics, including infection detection. Controlling the spread of COVID-

19 has been an important and emerging topic around the world today. Before COVID-19 

vaccines can be widely distributed, social distancing is the most powerful effort to control 

the pandemic. In Part Ⅰ, social distancing policy includes lockdowns, travel restrictions, 

quarantines, and issuing stay-at-home orders. The University of Maryland has developed 
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a social distancing scoreboard together with a map of coronavirus confirmed cases to 

show how social distancing works within communities to slow the spread of COVID-19 

in each state (Zhang et al., 2020). However, existing epidemiological contagion theories 

cannot explicitly measure the effect of these political decisions on the reduction of 

COVID-19 cases. There are few studies related to deep learning that explore the 

significant influence of social distancing on the mitigation of COVID-19.  

In this Part Ⅰ, we explore the evolutionary deep learning model, called IPSO-

DNN, to predict the effect of social distancing on the spread of COVID-19 and provide 

new insights for controlling the COVID-19. Social distancing is explicitly considered in 

the IPSO-DNN model. The effect of social distancing interventions on COVID-19 can be 

measured by two indicators, daily growth rate and time to double cumulative cases 

(Tellis, Sood, & Sood, 2020). In order to better describe how COVID-19 spreads, we 

propose to define four levels of COVID-19 spread by using these two indicators, which 

are growth, moderation, control, and containment. Our first research objective of Part Ⅰ is 

to improve the performance of DNN using the developed IPSO algorithm which employs 

the self-adaptive strategy to adjust the evolutionary process to find the optimal values of 

hyperparameters for the DNN model. Second, we apply the hybrid IPSO-DNN model to 

show how social distancing interventions help mitigate the COVID-19 spread.  

The major contributions of Part Ⅰ are summarized as follows: 

1) An improved PSO (IPSO) algorithm is developed, which employs the self-

adaptive strategy and generalized opposition-based learning ability in a micro-

population setting to conquer the weaknesses of the basic PSO algorithm. The 

proposed IPSO algorithm has significantly improved the performance of basic 
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PSO.  

2) A parameter selection method for optimizing DNN model using the IPSO 

algorithm is proposed. The proposed hybrid IPSO-DNN model optimizes the 

hyperparameters of DNN without degrading the DNN prediction precision. For 

instance, the number of hidden layers, the number of nodes in each layer, and 

the activation functions of each layer in the DNN model are properly tuned in 

an evolutionary way. It is found that the proposed IPSO-DNN model 

outperforms PSO-DNN, GS-DNN, IPSO-SVM, IPSO-LR, and IPSO-DT 

models in terms of computing time and accuracy. 

3) The evolutionary deep learning model IPSO-DNN is introduced to predict the 

effect of social distancing on the spread of COVID-19. A challenge of this 

prediction is how to measure the influence of social distancing in response to 

COVID-19 properly. Therefore, we measure the effect of social distancing in 

terms of mobility metrics and then explore our proposed evolutionary deep 

learning model IPSO-DNN to predict its influence on the spread of COVID-

19. In experiments, the IPSO-DNN model performs very well to predict the 

daily new COVID-19 cases and the spread of COVID-19 pandemic in the five 

selected states. The experimental results also explicitly show that aggressive 

and extensive social distancing is significant to help reduce COVID-19 

infections in the United States.  

 

 

 



 

10 

2.2. Literature Review  

2.2.1. Evolutionary algorithms for deep learning models. The kernel 

hyperparameter setting of deep learning models plays a significant role in prediction 

accuracy. Traditional tuning hyperparameters methods, such as the manual trial and error 

method, cannot find the optimal values of hyperparameters efficiently. Some existing 

state-of-the-art hyperparameter optimization methods, such as simple grid and random 

search (Chaves, Gonçalves, & Lorena, 2018), model-based approaches (Abbasimehr, 

Shabani, & Yousefi, 2020) and Bayesian optimization based on Gaussian processes 

(Wang, Ma, Ouyang, & Tu, 2020), show that their performances are approximately 

similar to human experts and in some cases even surpass them. However, there are still 

many challenges on how to find the optimal hyperparameters for the complex DNN 

architectures (Lorenzo et al., 2017). For example, Grid Search is a common method to 

tune the hyperparameters for deep learning but it is not efficient in searching a high-

dimensional hyperparameter space (Xu et al., 2021). EAs have been shown very efficient 

in solving a plethora of challenging optimization problems, which has the advantages of 

both searching the hyperparameter space in a random fashion and utilizing previous 

results to direct the search. Therefore, the combination of evolutionary algorithms and 

deep learning models is a very popular topic over the past few years since hybrid models 

perform very well in many optimization fields.  

Most existing studies focus on optimizing the hyperparameters of deep learning 

models in an evolutionary way. For instance, Young et al. (2015) presented the multi-

node evolutionary neural networks for automating network selection on computational 

clusters through hyperparameters optimization performed via genetic algorithm. It also 
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showed that the PSO technique holds great potential to optimize parameter settings and 

thus saves valuable computational resources during the tuning process of deep learning 

models (Qolomany et al., 2017). Ye (2017) introduced new automatic hyperparameter 

selection approach for determining the optimal network configuration for DNN using 

PSO in combination with a steepest gradient descent algorithm. Darwish, Ezzat, & 

Hassanien (2020) developed the orthogonal learning particle swarm optimization 

algorithm to find optimal values for the hyperparameters of convolutional neural 

networks. However, most evolutionary algorithms have high computational cost and 

come with premature convergence, especially when solving highly complex problems in 

the real world. DNN suffers from a great variety of hyperparameters which all have 

specific architectures. These are considered as a challenge when evolutionary algorithms 

are applied to identify the optimal or near optimal hyperparameters for the DNN. 

Although many studies researched the hyperparameter optimization of deep learning 

using an evolutionary algorithm, there is little research exploring improved evolutionary 

algorithms to enhance the performance of deep learning models. In this Part Ⅰ, we 

propose an improved particle swarm optimization algorithm to avoid the disadvantages of 

the PSO algorithm with a self-adaptive strategy to optimize the hyperparameters of the 

DNN model. 

 

2.2.2. Particle swarm optimization algorithm. Particle swarm optimization 

algorithm is a simple yet powerful evolutionary algorithm for global optimization used in 

many real-world research areas, such as logistics and supply chain management, and 

engineering design optimization. It also has received increasing attention for the use of 
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optimizing the parameters for machine learning techniques because of its fast-

convergence and easy implementation. However, the PSO algorithm tends to fall into 

local optima and its performance is affected by the control parameters and velocity 

updating strategy. Therefore, many works have been proposed to improve PSO in order 

to avoid the problem of premature convergence. Accelerating convergence speed and 

avoiding the local optimal have become two most important and appealing goals in the 

PSO research. A number of variant PSO algorithms have, hence, been developed to 

achieve these two goals (Gang, Wei, & Xiao, 2012). Major strategies include control of 

algorithm parameters and combination with auxiliary search. Moreover, some researchers 

used a self-adaptive method by encoding the parameters into the particles and optimizing 

them together with the position during run time (Pornsing, Sodhi, & Lamond, 2016). For 

instance, an Adaptive Particle Swarm Optimization (APSO) algorithm with all 

automatically adjusted parameters of inertia weight, cognitive coefficient and social 

coefficient was developed to search for better solutions in scheduling problems (Hop, 

Van Hop, & Anh, 2021). Zhang, Li, & Wang (2017) proposed an immune particle swarm 

algorithm based on adaptive search and the algorithm can dynamically adjust the subscale 

size and automatically adjust the search range using the maximum particle concentration 

value. 

Nevertheless, so far, it is seen to be difficult to simultaneously achieve both goals 

of accelerating convergence speed and avoiding the local optimal. For example, Liang, 

Qin, Suganthan, & Baskar (2016) introduced comprehensive-learning PSO (CLPSO) 

focuses on avoiding the local optimal but brings in a slower convergence and the higher 

computational cost of the algorithm. Therefore, in order to improve the algorithm 
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performance and reduce the computational cost for DNN, an IPSO algorithm with a 

micro-population size setting is proposed in this Part Ⅰ. The self-adaptive strategy with 

generalized opposition-based learning ability is applied in the IPSO algorithm to adjust 

the population evaluation based on the particle updated rate of population in each 

iteration. This strategy can balance global exploitation and local exploration in the 

algorithm to prevent premature convergence. Moreover, the IPSO employs the 

nonparametric statistical tests to choose its best parameters for optimizing the DNN 

models. Finally, the proposed optimized evolutionary deep learning model IPSO-DNN is 

developed to find the optimal values for the hyperparameters of the DNN in a self-

adaptive evolutionary way. 

 

2.2.3. Deep learning application for COVID-19 research. Since COVID-19 

first outbroke in mainland China, it has developed into a global pandemic, infecting 

millions of people around the world. Over the past few months, deep learning has shown 

good performance in the application of COVID-19 research. For instance, the multi-

objective differential evolution algorithm has been applied to tune the initial parameters 

of convolution neural networks to identify the COVID-19 patients from chest CT images 

(Singh, Kumar, & Kaur, 2020) and deep learning techniques have been introduced to link 

potential patients to suitable clinical trials (Dhayne et al., 2021). Nevertheless, although 

many studies have focused on exploring the deep learning techniques for the COVID-19 

infection detection, there is little research to measure the effect of social distancing on the 

spread of COVID-19.  

Social distancing has been implemented around the world as a major community 
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mitigation strategy. Many researchers have studied the relationship between social 

distancing measures and the epidemics. For instance, the social distancing index  has 

been constructed to evaluate people’s mobility pattern changes along with the spread of 

COVID-19 (Pan et al., 2020). In addition, Te Vrugt, Bickmann, & Wittkowski (2020) 

developed an extended model for disease spread based on combining an SIR model with 

a dynamical density functional theory where social distancing is explicitly considered in 

it. A developed method was implemented to monetize the impact of moderate social 

distancing on deaths from COVID-19 (Greenstone & Nigam, 2020). Fong et al. (2020) 

presented the systematic reviews of the evidence base for effectiveness of multiple 

mitigation measures, which shows that more drastic social distancing measures might be 

reserved for severe pandemic. Farboodi, Jarosch, & Shimer (2020) provided a 

quantitative framework for exploring how individuals trade off the utility benefit of social 

activity against the internal and external health risks that come with social interactions 

during a pandemic While many studies indicated that social distancing is one of the most 

important measures in response to COVID-19, a big challenge is how to measure the 

influence of social distancing properly and what factors will be the major ones that 

determine the influence. In this Part Ⅱ, we measure the effect of social distancing in terms 

of mobility metrics and then explore our proposed evolutionary deep learning model 

IPSO-DNN to predict the influence on the spread of COVID-19.  
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2.3. Proposed Approach 

2.3.1. Improved particle swarm optimization algorithm. 

2.3.1.1. Basic particle swarm optimization algorithm. PSO is an iterative 

algorithm that engages a number of simple entities, iteratively over the search space of 

some functions, and it uses a simple mechanism that mimics swarm behavior in birds 

flocking to guide the particles to search for globally optimal solutions. The population of 

PSO is called a swarm and its individuals are called particles. The swarm is defined as a 

set of N particles ( 1,2, , )i i = ... N . A swarm of particles is represented as a potential 

solution, and each particle i is associated with two vectors. One is velocity vector 

represented as 1 2( , , )i i, i, i,Dv ,v ... v=v and the other is position vector, represented as

1 2( )i i, i, i,D= x ,x ,...,xx , where D denotes the dimensionality of the solution space. The velocity 

determines the next direction and distance to move. PSO remembers both the global best 

position found by all particles as well as the historical best position found by each 

particle during the search process. The velocity and the position of each particle are 

initialized by random vectors within the corresponding ranges. During the evolutionary 

process, the velocity and position of particle i on dimension d are updated as 

1

1 2 g1 ( ) 2 ( )t t t t t t

i i i i iw v c r c r+ =  +   − +   −v p x p x
                                                     (1) 

1 1t t t

i i i

+ += +x x v
                                                                                                         (2) 

where w is the inertia weight, c1 and c2 are the acceleration coefficients, and r1 

and r2 are two uniformly distributed random numbers independently generated within 

[0,1] for the dth variable. In the equation (1), 
t

ip is the position with the best fitness found 

so far for the ith particle, and g

t
p is the best position in the neighborhood. 

1t

i

+
v  is the new 
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updated velocity of particle i by the end of iteration t. 
1t

i

+
x  is the new updated position of 

particle i by the end of iteration t and t= 1,2,… indicates the iteration number. 

As mentioned before, rapid convergence is one of the main advantages of PSO. 

However, this can also be problematic if an early solution is local optimal. The swarm 

may stagnate around the local optimal without any pressure to continue exploration. 

Therefore, we develop an IPSO algorithm with generalized opposition-based learning and 

self-adaptive update strategy in the micro-population size setting to balance the global 

exploitation and local exploration in order to avoid premature convergence and also 

enable the swarm to accurately search out local optimum with the lowest computational 

cost. 

 

2.3.1.2. Generalized opposition-based learning. Opposition-Based Learning 

(OBL) (Tizhoosh, 2005) is a new concept in computational intelligence and is normally 

applied to the current population during the evolution. OBL is usually hybridized with 

different EAs, such as artificial bee colony algorithm (El-Abd, 2012) and differential 

evolution (Wang, Rahnamayan & Wu, 2013). The main idea behind OBL is the 

simultaneous consideration of a candidate solution x and its corresponding opposite 

solution x* which will provide another chance for finding a candidate solution closer to 

the global optimum. In the evolutionary process, let 1 2( , ,..., )Dx x x=X be an n-dimensional 

space, where xi ∈[ai, bi] and i = 1, 2, …, n. The opposite vector of X is denoted as 

* * * *

1 2( , ,..., )nx x x=X . The opposite point of x is denoted as x* and defined as 

*

i i i ix a b x= + −
                                                                                                         (3) 

Generalized opposition-based learning (GOBL) strategy is to transform 
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candidates in current search space to a new search space (Wang, Wu, & Rahnamayan, 

2011). By simultaneously evaluating the candidates in the current search space and 

transformed search space, it could make the solution jump out from the current search 

domain and avoid any information gathered during the search. In the GOBL approach, let 

Xi = (xi,1, xi,2,…, xi,D) be a solution for dimension D in the current search space S, xij∈[aj, 

bj]. The new solution ijxGO
 in the transformed space S* is defined as 

 ( ) , [ , ], 1,2,...ij j j ij ij j jk a b a b j D= + −  =x x x
GO

                                           (4) 

where k is a random number coming from a uniform distribution in [0,1], which 

can help obtain a good performance of solution in the search space. 

[ ( ) , ( ) ]ij j j j j j jk a b b k a b a + − + −x
GO

is the generalized opposite candidate solution in the state 

space. The GOBL strategy has been shown that it can effectively help evolutionary 

algorithms to jump out of the local optimal and improve the algorithm performance 

(Chen et al., 2016). 

 

2.3.1.3 Self-adaptive strategy. The performance of PSO algorithm highly depends 

on the control of parameters and velocity update strategy. In order to control the PSO 

objectively and optimally, a self-adaptive updated strategy is integrated into the GOBL 

approach for real-time monitoring algorithm evolution process based on the actual 

evolution rate of particles in the swarm. During an IPSO process, a population updated 

rate z in each iteration is defined by the ratio of the actual updated number of particles in 

the swarm for each iteration, as in 

a
z

N
=

                                                                                                                     (5) 
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where a is the number of updated particles in each iteration and N is the number 

of particles in the population.   

If z is higher than a selected probability p, the global best position g

t
p  is used to 

update the velocity and position. If the updated rate z is less than or equal to a selected 

probability p which means there is a larger probability that PSO would jump into the 

local optimal, then the candidate particle ijx
GO

 instead of g

t
p  in the velocity updated 

strategy is employed to guide the population evolution. To be more specific, 

1

1 21 ( ) 2 ( )t t t t t t

i i i i GO iw v c r c r+ =  +   − +   −v p x p x
                                            (6) 

where 
t

GOp  is the generalized opposition-based point of g

t
p in the search domain. 

The basic steps of the proposed IPSO algorithm include: 

Step 1: Initialization. Establish the initial values of micro- population size, two 

acceleration coefficients (c1 and c2), maximum number of iterations, select probability p, 

and update probability z; calculate the fitness value for each particle and set the personal 

best (pi) and global best (pg) for the population. 

Step 2: Employ self-adaptive strategy. Calculate the new update probability z 

based on Equation (5) and generate the opposition-based learning particle (pGO) as in 

Equation (4). 

Step 3: Update the position and velocity of particles. If z ≤ p, then the new 

velocity is updated according to Equation (5); otherwise, the new velocity is updated by 

Equation (1). After we get the new velocity, the new position is updated based on 

Equation (2). 

Step 4: Update pi and pg. Calculate the fitness value for each particle. If the fitness 

value of the new location is better than the fitness value of pi,  the new location is updated 
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to be the pi. Then, if the currently best particle in the population is better than the pg, the 

best particle replaces the recorded global best. 

Step 5:  Stop and output. Repeat Step 2, Step 3, and Step 4 until the global best 

solution does not change anymore or the maximum number of iterations has been 

reached. Then, we finally return the global best solution. 

 

2.3.2. The proposed hybrid IPSO-DNN model. 

2.3.2.1. Deep neural networks. Deep learning (Goodfellow, Bengio, Courville, & 

Bengio, 2016) deals with algorithms to endow machines with intelligence without 

explicit programming. DNN models have multiple hidden layers located in-between the 

input and output layers. The units in the hidden layer are fully connected to the input 

layer, and the output layer is fully connected to the hidden layer. Moreover, the activation 

function (Wang, Giannakis, & Chen, 2019) is between the input feeding the current 

neuron and its output going to the next layer. Activation functions are mathematical 

equations that determine the output of neural network. The function is attached to each 

neuron in the network and determines whether it should be activated or not, based on 

whether each neuron’s input is relevant for the prediction of models. There are many 

types of activation functions in DNN models, such as Sigmoid, Tanh, and Softmax 

function.  

Let L be the number of hidden layers, Ni be the number of neurons in layer i and N 

={ N1, N2, …, NL}, Ai be the activation function in layer i and A  ={ A1, A2, …, AL}. 

Parameters L, N, and A are very important and have major influences on the performance 

of DNN models. Therefore, we propose the IPSO algorithm to optimize the 
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hyperparameters of DNN models with self-adaptive strategy and then explore the 

evolutionary deep learning hybrid model, called IPSO-DNN, to predict the effect of 

social distancing on the spread of the COVID-19. The DNN model is shown in Figure 1. 

 
Figure 1.  A DNN Model with N Hidden Layers 

 

2.3.2.2. Hybrid IPSO with DNN. To better establish an IPSO-based parameter 

optimization system for the DNN model, the IPSO algorithm is explored to find the 

optimal hyperparameters for the DNN model and the finally optimized IPSO-DNN model 

predicts the effect of social distancing on the spread of COVID-19 and output the 

prediction results. The flowchart of the hybrid model IPSO-DNN is illustrated in Figure 

2.  It consists of three major stages. 

Stage I. Prerequisites: data scaling and splitting. Firstly, one advantage of scaling 

is to avoid features in large numeric ranges dominating those located in smaller numeric 

ranges. Another trait is to avoid numerical difficulties during the calculation. Using the 

standardization of scaling technique, we center the features at mean 0 with standard 

deviation 1 so that the features take the form of a normal distribution, which makes the 

DNN model easier to learn a mapping from input variables to an output variable.  
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Secondly, the COVID-19 social distancing dataset (which will be discussed later in 

Section 2.4) is divided into two parts, training and testing dataset. The training dataset is 

employed to train the DNN model, so the optimized parameters will be obtained. The 

testing dataset is applied to the optimized model and output the resultant accuracies. In 

Part Ⅰ, the ratios of the training and testing dataset are 0.7 and 0.3, respectively. 

Stage II. IPSO for parameter optimization of DNN model. In this step, the input is 

the COVID-19 social distancing training dataset and the output is the optimal 

configuration in terms of the number of hidden layers, the number of neurons in each 

layer, and the activation function combinations of hidden layers of the DNN model. The 

minimized fitness function of IPSO is defined as the mean squared error (MSE), which is 

computed as 2

1

1
( )

n

i i
i

MSE y y
n



=

= − . When the termination criteria are satisfied, the IPSO 

algorithm  outputs the optimized parameters of DNN model; otherwise, the next 

generation of IPSO algorithm proceeds.                                                                                                  

Stage III. Model prediction. The output of IPSO algorithm is the optimized 

parameters of DNN model and it is used to predict the COVID-19 social distancing 

dataset. The optimized DNN model is applied to predict the four spread levels of 

COVID-19 and daily new cases based on the social distancing metrics. Finally, the 

prediction accuracy and error results are obtained from the optimized IPSO-DNN model. 
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Figure 2.  Flowchart of the Proposed IPSO-DNN Model 

 

2.4. Data 

From the University of Maryland COVID-19 Impact Analysis Platform 

(Maryland Transportation Institute, 2020), we obtained 603,456 county-level data with 

the related information of social distancing in all counties of the United States. The whole 

dataset contains eight social distancing metrics and the new daily COVID-19 cases in 

every county from January 1 to July 10, 2020.  



 

23 

2.4.1. Social distancing metrics. The major non-pharmaceutical interventions, 

and social distancing policies are essential strategies of the public health response to the 

COVID-19 pandemic around the world. From the evidence of implemented social 

distancing measures in many countries, such as China and Italy, there is no doubt that 

social distancing is considered an effective way to mitigate the spread of COVID-19. 

Social distancing related measures include avoiding mass gathering, closing schools and 

non-essential business, issuing mandatory stay-at-home orders, and having travel 

restrictions. This social distancing takes many forms, and the nature is to keep people 

apart from each other by confining them to their homes in order to reduce contact rates. 

Therefore, in this study, from COVID-19 Impact Analysis Platform, the values of 

mobility and social distancing metrics which represent people’s reactions to social 

distancing policies are considered as the effect of social distancing on the spread of 

COVID-19. The platform aggregates mobile device location data from more than 100 

million devices across the nation on a monthly basis to study human mobility behavior 

amid the COVID-19 pandemic. The basic metrics in our research are selected to cover 

the frequency, spatial range, and semantic of people’s daily travel. The eight basic 

mobility and social distancing metrics are described in Table 1 (Zhang et al., 2020). 
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Table 1. Description of Eight Social Distancing Metrics 

Social Distancing Metrics Description 

Percentage of residents 

staying home 

Percentage of residents that make no trips more than 

1.61 km away from home. 

Daily work trips per person 

Average number of work trips made per person. A work 

trip is a trip going to or from one’s imputed work 

location. 

Daily non-work trips per 

person 
Average number of non-work trips made per person. 

Distances traveled per person 
Distances in kilometers traveled per person on all travel 

modes (car, train, bus, plane, bike, walk, etc.) per day. 

Trips per person Average number of all trips taken per person per day. 

Percentage of out-of-county 

trips 
Percentage of all trips that cross county borders. 

Percentage of out-of-state 

trips 
Percentage of all trips that cross state borders. 

Transit mode share Percentage of rail and bus transit mode share. 

 

2.4.2. Spread levels of COVID-19. Moreover, in order to better describe the 

spread of COVID-19 as to measure the effect of social distancing in the United States, 

this study explores four measurable levels (i.e.,  containment, control, moderation, and 

growth) based on two performance indicators, which are the daily growth rate and the 

time to double cumulative cases. The daily growth rate is the percentage increase in 

cumulative COVID-19 cases, while the time to double cumulative cases is the number of 

days for cumulative COVID-19 cases to double at the current growth rate. The four levels 

of COVID-19 spread include containment, control, moderation, and growth that are 

defined in Table 2. 

Table 2. Definition of Four Levels of COVID-19 Spread 

Indicators                 Containment Control Moderation Growth 

Daily growth rate 

(%) 
<=0.1% and <=1% and <=10% and 

Daily growth rate 

stays above 10% 

or time to double 

cumulative cases 

stays below 7 

days 

Time to double 

cumulative cases 

(days) 

>=700 >=70 >=7 
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The full COVID-19 social distancing dataset then contains eight input social 

distancing metrics and two output variables, which are the new daily COVID-19 cases 

collected from the COVID-19 Impact Analysis Platform and four levels of COVID-19 

spread. The example dataset of Baldwin County, Alabama from April 30 to May 9, 2020, 

is shown in Figure 3. 

 
Figure 3.  The Exemplary Social Distancing Dataset of Baldwin County, Alabama 

 

2.5. Model Performance 

2.5.1 Parameters analysis for IPSO algorithm. To choose the appropriate 

parameters in the proposed IPSO algorithm, two nonparametric statistic tests, Friedman’s 

test (Friedman, 1937) and Iman-Davenport’s test (García, Molina, Lozano, & Herrera, 

2009), are used to analyze the sensitivity of the parameters in this section. The maximum 

number of fitness evaluation is 3,000, the learning coefficients of c1 and c2 are with the 

value of uniformly distributed between [0,1], and a total of 50 experimental runs for the 
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fitness function are set in Python, except for two analyzed parameters (i.e., micro-

population size and selected probability p). The significance level of these non-

parametric statistical experiments is 5%. 

 

2.5.1.1. Micro-population size analysis. In this research, the effect of micro-

population size is investigated because the smaller population size is the lower 

computational cost of the IPSO algorithm will be. We select the population size from the 

micro-population set {5,6,7,8,9,10} to verify the performance of IPSO. The statistical 

analysis results are shown in Table 3 and Table 4. From Table 3, we can see that the 

micro-population size has no significant effect on the overall performance of the 

proposed algorithm, indicating that the size of the micro-population is less sensitive to the 

IPSO algorithm and the algorithm is relatively robust. However, from Table 4, we 

conclude that when the population size is 8 and the overall performance of the IPSO 

algorithm is the best. 

Table 3. Results Obtained by Friedman and Iman-Davenport Tests under Different 

Micro-Population Sizes 

Friedman 

value 
𝜒2 value p-value Iman-Davenport value value in FF p-value 

   3 11.0705 0.70 0.5806 2.3683 0.7146 

 

Table 4. Ranking Results Obtained by Friedman’s Test under Different Micro-

Population Sizes 

Population size 5 6 7 8 9 10 

Ranking 4.08 3.81 3.35 2.92 3.35 3.50 

 

2.5.1.2. Self-adaptive selected probability analysis. In this experiment, the 

influence of selected probability p is investigated, because p can balance the exploration 

and exploitation capabilities of IPSO. A small selection probability will prompt the IPSO 
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to perform a local search, while a larger selection probability will encourage the IPSO to 

conduct a global exploration, and the selection probability setting will affect the overall 

performance of the proposed algorithm. Since the population size in the proposed 

algorithm is eight, this paper selects parameters from the set {0.125, 0.25, 0.375, 0.5, 

0.625, 0.75, 0.875, 1} for the simulation testing. The statistical results are shown in Table 

5 and Table 6. It can be seen from Table 5 that the choice of selection probability p has a 

non-significant effect on the optimization performance of the IPSO algorithm. However, 

from Table 6 that when the selection probability is 0.75, the overall performance of the 

IPSO algorithm is the best, so the selection probability p of IPSO is set to be 0.75. 

Table 5. Results Obtained by Friedman and Iman-Davenport Tests under Different 

Selected Probabilities 

Friedman 

value 
𝜒2 value p-value Iman-Davenport value value in FF p-value 

3.1538 14.0671 0.8704 0.4308 2.1206 0.8803 

 

Table 6. Ranking Results Obtained by Friedman’s Test under Different Selected 

Probabilities 

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 

Ranking 4.65 4.29 4.84 5.04 4.27 3.65 4.31 4.31 

 

2.5.2. Model comparisons. In order to evaluate the performance of the proposed 

IPSO-DNN model, we compare the IPSO-DNN model with other models. To be more 

specific, PSO-DNN, GS (Grid Search) -DNN, IPSO-SVM (Support Vector Machine), 

IPSO-LR (Logistic Regression), and IPSO-DT (Decision Tree), and all the above six 

hybrid models prediction accuracy results obtained from the COVID-19 social distancing 

dataset are fully evaluated. The whole social distancing dataset contains all eight social 

distancing metrics, the new daily COVID-19 cases, and the four spread levels of COVID 

in all 3,006 counties of the United States. Moreover, the hyperparameters of DNN that 
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are optimized in this Part Ⅱ include: 1) number of hidden layers on the range [1, 100]; 2) 

number of neurons in each layer on the range [1, 8]; 3) activation functions consist of 

Sigmoid, ReLU, Softmax, and Tanh; and 4) the learning rate of DNN model on the range 

[0.01, 0.99].  

All the experiments were conducted using Python language on a 4-core machine 

with 3.60 GHz Intel® Core™ i7-7700 CPU and 16 GB RAM. In the case of IPSO and 

PSO, the algorithm terminates when the maximum number of iterations 100 is reached or 

when there is no difference between the mean squared errors of two consecutive 

iterations. For the hybrid models, the models terminate when the maximum running time 

1440 minutes is reached.  

The performance of hybrid IPSO-DNN model on the validation and test stages is 

examined using accuracy and the following three error measures, which are mean bias 

error (MBE), mean absolute error (MAE), and root mean squared error (RMSE).  

First of all, the accuracy helpful to evaluate performance of deep learning model 

is based on the element from a matrix known as confusion matrix. A confusion matrix is 

a table that is often used to describe the performance of a classification model on a set of 

test data for which the true values are known. The “accuracy” of performance of hybrid 

IPSO-DNN model are defined as following: 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
, where “TP” is for 

True Positive, “FP” is for False Positive, “TN” is for True Negative, and “FN” is for 

False Negative. It is the most common measures of classification process, which can be 

calculated as the ratio of correctly classified example to total number of examples.  

Furthermore, MBE indicates whether the model over- or under-predicted in 

general. 
1

1
( )

n

i i
i

MBE y y
n



=

= − .The lower MBE is the better the prediction model is.  But you 
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might have zero as some differences are positive and others are negative MAE and 

RMSE measure residual errors, which give a global idea of the difference between the 

observed and forecast values. They are defined as 
1

1 n

i i
i

MAE y y
n



=

= − , 2

1

1
( )

n

i i
i

RMSE y y
n



=

= −  where 

n is the total number of observations, 𝑦𝑖̂ is the prediction value and the yi is the actual 

value of a data point. The lower the absolute values of the MBE, MAE and RMSE 

indicate that IPSO-DNN model is better.  

1) Comparison with IPSO-SVM, IPSO-LR, and IPSO-DT  

In the first scenario, we compare the performance of IPSO algorithm based on 

optimizing parameters technique for the deep learning models and three different 

machine learning models to explore the effect of social distancing for COVID-19. SVM 

is a basic machine learning technique which trains the dataset with feature vectors and 

uses large margin for classification. In this Part Ⅱ, RBF kernel function is selected as the 

SVM for regression (Yu, 2017). Logistic Regression (LR) technique is applied to 

describe data and analyze the relationship between one dependent binary variable and on 

or more nominal ordinal interval or ratio-level independent variables. Decision Tree (DT) 

uses the tree representation and each leaf node corresponds to a class label and attributes 

are represented on the internal node of the tree. 

From Figure 4 and Figure 5, we observe that the IPSO-SVM model fails in the 

experiments to explore the effect of social distancing for COVID-19 according to the 

termination criteria. The learning time required of IPSO-LR, IPSO-DT and IPSO-DNN 

models are 148, 186, and 102 minutes on  predicting the four spread levels of COVID-19, 

respectively; are 163, 205, and 125 minutes on projecting the new daily COVID-19 cases, 

respectively. These figures also illustrate that a higher accuracy can be achieved when the 
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proposed IPSO-DNN model while has a minimum computing time compared to the 

IPSO-LR and IPSO-DT models. This clearly exhibits the superiority of the DNN model 

over basic machine learning models in terms of deal with large-scale dataset. Thus, the 

proposed IPSO algorithm can serve as a promising candidate for parameter tuning of the 

DNN model for the large-scale COVID-19 social distancing data analysis. 

2) Comparison with PSO-DNN model  

In the second scenario, the basic PSO algorithm is used to find the best 

parameters for the DNN model to explore and predict the effect of social distancing for 

COVID-19. The population size of PSO is 30 and other parameters are defined as the 

same as IPSO algorithm. The reason of different population size between PSO and IPSO 

is that the larger the population size, the more scattered the search performed in the PSO 

algorithm. With a larger population size each generation takes more function calls, and a 

larger part of the search space may be visited (Piotrowski, Napiorkowski, & Piotrowska, 

2020). Therefore, we set the population size of PSO to 30 instead of 8 to give a better 

outcome when comparing with the IPSO method. From Figure 4, we can see that the 

accuracy of the IPSO-DNN model is higher than the PSO-DNN model. The generalized 

opposition-based learning and self-adaptive strategy improve the performance of IPSO 

algorithm to optimize the parameters of DNN model. For the PSO-DNN, as there is no 

self-adaptive exploitation strategy to help the basic PSO algorithm to jump out of local 

optimal and the search and optimization ability is also limited. From Figure 5, the 

learning time required of the PSO-DNN model is 202 and 227 minutes on the four levels 

of COVID-19 spread and the new daily COVID-19 cases prediction, respectively, which 

show that the computing time of IPSO-DNN is much less than the PSO-DNN model, it 
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indicates the micro-population setting in the IPSO algorithm decreases the compute cost 

of PSO algorithm. The results demonstrate that the proposed strategy of  PSO in the 

IPSO-DNN model make it outperforms PSO-DNN model on the COVID-19 social 

distancing prediction. 

3) Comparison with GS-DNN model  

In the third scenario, the selectable parameter ranges of GS to optimize the DNN 

model are as the same as the IPSO-DNN model. The GS algorithm is a common 

approach for selecting parameter values of the DNN models. However, the GS approach 

is time consuming and does not perform well in DNN hyperparameter optimization. 

From Figure 4, we know that the prediction accuracy of the GS-DNN model is less than 

IPSO-DNN both on the prediction of new daily COVID-19 cases and levels of COVID-

19 spread. From Figure 5, the learning time required of the GS-DNN model to predict the 

new daily cases is 1,350 minutes and to forecast the four levels of COVID-19 spread is 

1,030 minutes. Therefore, we can see that the performances of GS-DNN on prediction 

accuracy and computing time both are worse than that of IPSO-DNN model. The main 

reason is that the proposed IPSO-DNN model performs parameters in an evolutionary 

way, which has the ability to balance the local exploitation and global exploration ability 

during the parameter optimization.  Therefore, we learn that our proposed IPSO-DNN 

model outperforms the GS-DNN model as the proposed approach has the advantage of 

exploring optimization parameters. The results manifest that our proposed IPSO based 

parameter selection technique can be computationally efficient to determine the 

hyperparameters of DNN model. 
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Figure 4.  Comparison Accuracy Results of Different Models 

 

Figure 5.  Comparison Computing Time Results of Different Models 

Table 7 summarizes the performance of six models in terms of the results of 

MBE, MAE, and RMSE that indicate related error performance of models. First, for the 

daily new COVID-19 cases, our proposed IPSO-DNN model performs very well in the 

prediction of new COVID-19 cases per day. The performance of PSO-DNN, GS-DNN, 

and IPSO-LR is similar in new cases prediction. The IPSO-SVM model fails to explore 

the new COVID-19 cases based on the effect of social distancing in the setting of limited 
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computation time. Although the results of the MAE and RMSE are similar in the IPSO-

DNN and IPSO-DT models, the MBE result of the IPSO-DT model is negative that 

indicates the model under-predict the daily new COVID-19 cases in this situation. The 

above results show that the self-adaptive strategy can help IPSO algorithm to adjust the 

prediction direction to find out optimization parameter for DNN model. Furthermore, for 

the prediction of COVID-19 spread levels, IPSO-SVM model still cannot performs the 

analysis of social distancing metrics in a limited experience time. The IPSO-DT is also an 

under-predicted model to predict the spread of COVID-19 based on the influence of 

social distancing according to the result of the MBE. The performances of PSO-DNN, 

GS-DNN, IPSO-LR are similar in the prediction of daily new cases and spread levels for 

COVID-19. However, the proposed IPSO-DNN model outperforms the other compared 

models in the MBE, MAE, and RMSE results. The summary results demonstrate that the 

proposed IPSO-DNN model provides better prediction results than other compared 

models as the proposed methods have the advantage of employing optimal parameters. 

And it also shows that the IPSO model with self-adaptive strategy and generalized 

opposition-based learning strategy is significant to predict the effect of social distancing 

on COVID-19 spread. 

Table 7. Results of Six Models for COVID-19 Social Distancing Prediction 

Model 
Daily new COVID-19 cases Levels of COVID-19 spread 

MBE MAE RMSE MBE MAE RMSE 

IPSO-DNN 4.6767 4.8177 45.0471 0.4160 0.4755 1.0313 

PSO-DNN 6.4295 6.8436 52.6956 0.6932 0.6636 1.2112 

GS-DNN 7.4152 7.4152 65.8293 0.7569 0.7575 1.3121 

IPSO-SVM - - - - - - 

IPSO-LR 6.3868 6.4229 55.5791 0.6291 0.6562 1.2086 

IPSO-DT -0.5064 5.7326 45.7731 -0.0336 0.6385 1.1933 
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2.5.3. Results and discussions. In our experiments, we focus on predicting and 

analyzing the effect of social distancing on the spread of COVID-19 using the proposed 

IPSO-DNN model in the selected five states, Washington, California, New York, Florida, 

and Texas in the United States. The COVID-19 social distancing county level dataset is 

collected and processed from the first confirmed case date to July 10, 2020 in the selected 

five states. Stay-at-home order, reopening state, and social distancing restrictions in each 

state are explicitly considered in this experiment. All experimental environment and 

parameters are set as the same in section 2.5.2. We predict the daily new COVID-19 

confirmed cases and the spread of COVID-19 under the different social distancing 

measures adopted by each state and then analyze the distinct COVID-19 outcomes of 

taking social distancing interventions in the selected five states in the United States. The 

results of accuracy and error measures obtained from IPSO-DNN model are indicated in 

Figure 6 and Table 8. The detailed description of COVID-19 social distancing in the 

above selected five states is illustrated as follows.  

 

Figure 6.  Accuracy Results of All Selected Five States Obtained from IPSO-DNN 
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Table 8. Results of Five States for COVID-19 Social Distancing Prediction 

State 
Daily new COVID-19 cases Levels of COVID-19 spread 

MBE MAE RMSE MBE MAE RMSE 

Washington 6.2397 6.2397 23.9902 0.3738 0.5447 1.1004 

California 26.2249 26.2249 30.1224 0.2756 0.5359 1.0723 

New York 27.0441 27.5170 35.2950 0.1264 0.5069 0.9628 

Florida 16.9829 18.0634 89.2466 0.2382 0.5958 1.0907 

Texas 4.7137 5.2478 47.3079 0.3268 0.3877 0.9545 

 

1) Washington 

Since the Centers for Disease Control and Prevention (CDC) confirmed the first 

case of 2019 Novel Coronavirus in the United States was occurred in the state of 

Washington on January 21, 2020, the COVID-19 pandemic first begins to outbreak in the 

state of Washington (Branswell, 2020). Because there was no vaccination useful for 

COVID-19 pandemic in that time, therefore Washington state issued a stay-at-home order 

on March 23 and reopened the state step by step on May 31 later. Using the IPSO-DNN 

model, we can obtain the prediction results of the effect of social distancing on the spread 

of COVID-19 in Washington state. Firstly, from Figure 6, we can see that our proposed 

IPSO-DNN model acquires 72.45% and 76.46% accuracy in the prediction of  new daily 

COVID-19 cases and levels of COVID-19 spread, respectively. In Table 15, the results of 

error measures MBE, MAE, and RMSE are 6.2397, 6.2397, and 23.9902 on the 

prediction of new daily COVID-19 cases, respectively. And the results of these error 

measures are 0.3738, 0.5447, and 1.1004 on the forecasting of COVID-19 spread levels, 

respectively. The above prediction results manifest that the optimized IPSO-DNN model 

can self-adaptive tuning parameters of DNN for Washington state to achieve more than 

70% prediction accuracy with little errors.  

Secondly, Figure 7 presents that the spread of COVID-19 has slowing down with 

the efforts of related social distancing measures, though these aggressive interventions do 
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not show immediate results, which are essential to control COVID-19 in the future. The 

duration of adopting restricted social distancing is 69 days in Washington. From levels of 

COVID-19 spread, we can know that the number of new cases in Washington kept 

growing for 34 days from February 29, 2020 to April 2, 2020. And after issued stay-at-

home order on March 23, there was a distinctively outcome that the spread of COVID-19 

has been moderated for 32 days and controlled for 30 days in Washington. However, 

reopening the state on May 31 which means that social distancing orders would not be 

taken as aggressively as before, so that the progress of control this coronavirus has been 

slow down and the level of cumulative COVID-19 cases still increased in Washington till 

to the end, July 10, 2020. Therefore, following a spike in COVID cases in July, 

Washington announced a pause to the Safe Start reopening plan. 

Finally, in Figure 8, we can see that the effective social distancing measures 

mitigate the spread of COVID-19 pandemic with a significant decline in the new daily 

COVID-19 cases and extend the time to double the cumulative cases in Washington 

during social distancing period. In addition, we can learn that reopening Washington state 

reduces the implementation efforts of social distancing policies and changes the mobility 

metrics values in the state, which also makes the daily new COVID-19 cases increasing 

and the time to double the cumulative cases decreasing from May 31, 2020 to July 10, 

2020. After social distancing, the daily new COVID-19 cases are decreasing in 

Washington state. We can see that there is a relationship between social distancing and 

the spread of COVID-19, In general, if social distancing intervention has been 

implemented strictly and longer, COVID-19 infections would decrease quickly in an even 

shorter time. The above results also manifest that our proposed IPSO-DNN model has the 
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ability to adjust the prediction direction continually to predict the effect of social 

distancing on the spread of COVID-19 pandemic based on the changing value of mobility 

and social distancing metrics in Washington. 

 

Figure 7. Cumulative COVID-19 Cases & Daily Growth Rate in Washington 

 

 

Figure 8. Daily New Cases & Time to Double Cumulative Cases in Washington 

2) California 

California is the second state where the COVID-19 pandemic outbroke after the 

first state Washington in the United States. Its first case of coronavirus was confirmed in 
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Orange County on January 26, 2020. On March 19, California became the first state to 

issue a stay-at-home order, mandating all residents to stay at home except to go an 

essential job or shop for essential needs in the United States (Linder, 2020). In California, 

social distancing interventions only last for 44 days. From the experiment results, Figure 

6 indicates our proposed IPSO-DNN model can obtain more than 70% prediction 

accuracy both on new daily COVID-19 cases and COVID-19 spread levels  in California. 

Table 8 shows that for predicting the new daily COVID-19 cases in California, the results 

of MBE, MAE, and RMSE are 26.2249, 26.2249, and 30.1224, respectively; for 

predicting the levels of COVID-19 spread, the results of these error measures are 0.1264, 

0.5069, and 0.9628, respectively. The reason for our proposed IPSO-DNN model 

performs better on COVID-19 spread levels prediction than new daily COVID-19 cases 

is that there are more distinct outcomes of social distancing intervention on controlling 

the spread of COVID-19 in California. 

Figure 9 demonstrates that social distancing mitigates the COVID-19 within two 

weeks, however, due to the limited time of implementing social distancing compared to 

Washington state, only moderation but not control of COVID-19 engendered in 

California during this period. For instance, after the stay-at-home order and related strict 

social distancing rules were issued on March 19, the efforts of social distancing take 16 

days to effectively slow down the spread of COVID-19 and just moderate not control 

COVID-19 spreads for the following 96 days in  California. Recently, California is 

largely closing again amid a spike in COVID-19 cases across the state on October 10. 

Compared to Washington state, we can learn that not only the aggressive social 

distancing but also long-lasting social distancing interventions are required to control the 
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spread of COVID-19. The new daily COVID-19 cases and time to double the cumulative 

cases are described in Figure 10. There is no doubt that social distancing plays an 

important role in decreasing the daily new cases and increasing the time to double the 

cumulative cases in California. The results obtained from the proposed IPSO-DNN model 

demonstrate that the significant effect of social distancing on mitigating COVID-19 in 

California, and more importantly, the duration of social distancing interventions needs to 

be lasting longer to help flatten the COVID-19 pandemic curve. 

 
Figure 9.  Cumulative COVID-19 Cases & Daily Growth Rate in California 

 

 
Figure 10. Daily New Cases & Time to Double Cumulative Cases in California 
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3) New York 

Although Washington and California COVID-19 outbroke before New York, 

New York actually was the first hotspot state of COVID-19 pandemic in the United 

States due to its soaring cases of COVID-19 in just a few days. New York became the 

U.S. epicenter of the novel coronavirus outbreak, which killed tens of thousands of state 

residents and left hundreds of thousands more infected with COVID-19. Although on 

July 10, New York still has the most COVID-19 cumulative cases, which is 401,193 

cases, in the United States. However, according to our analysis results, New York 

actually has already controlled the spread of COVID-19 pandemic for the foreseeable 

future. The aggressive social distancing interventions are the only way New York 

obtained moderation and control event in the COVID-19. Under the New York state’s 

plan, all four phases of the reopening require New Yorkers to adhere to social distancing 

guidelines, including wearing masks or face coverings in crowded public spaces, on 

public or private transportation, or in for-hire vehicles (Gold and Stevens, 2020). In this 

Part Ⅰ, we consider the date when all counties in New York enter the Phase 1, the start of 

the reopening process, as the reopen date of New York state, which is June 8, 2020.  

In New York, the duration of strictly social distancing is 78 days which is the 

longest among the selected five states in the United States. New York is also the only one 

state that mandate people to wear masks or face coverings in public whenever social 

distancing was not possible in the beginning. Table 8 indicates the results of MBE, MAE, 

and RMSE is 27.0441, 27.5170, 35.2950 on the forecasting of daily new cases, 

respectively; and 0.1264, 0.5069, and 0.9628 for the levels of COVID-19 spread 

prediction, respectively. From Fig 6, it presents that the prediction accuracy is 69.51% for 
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the daily new cases and 78.97% for the levels of COVID-19 spread. The accuracy result 

of COVID-19 spread levels is higher than the new daily COVID-19 cases, presumably, 

the new cases soaring up abruptly in such a short time that makes it hard to project. 

Figure 11 and Figure 12 illustrate New York has controlled the spread of COVID-

19 and its new daily COVID-19 cases continue to decrease with implement aggressive 

social distancing interventions for 78 days. After social distancing, the days of 

moderation and control of COVID-19 are 33 days and 63 days, respectively. It is obvious 

that social distancing helps to flatten the COVID-19 curve in New York. Moreover, it 

makes sense that the number of new daily COVID-19 cases has continued decline and 

flattened. However, we can see from Figure 12 that the time to double cumulative cases 

does not steadily increase. It means that even if New York state has controlled COVID-

19 pandemic, it may be vulnerable to contagion from other states who fail to control the 

COVID-19 or not conduct aggressive social distancing interventions. The above results 

explicitly explain how social distancing flattens the COVID-19 pandemic curve in New 

York using our proposed IPSO-DNN model. 

 

Figure 11. Cumulative COVID-19 Cases & Daily Growth Rate in New York 
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Figure 12. Daily New Cases & Time to Double Cumulative Cases in New York 

4) Florida and Texas 

Florida and Texas have emerged as new hotspots in the COVID-19 pandemic in 

the United States due to the explosion of COVID-19 cases after reopening states in the 

early May. These two states are also the states where the related social distancing politics 

are not adopted very strictly and reopening the states are more fast than other selected 

states. The date when stay-at-home order issued were both April 2 in Florida and Texas 

and the date of reopening state was on May 4 in Florida and May 1 in Texas. The sharp 

rise in COVID-19 cases in Florida and Texas illustrate the risk of letting people pack 

together in places such as bars and movie theaters, and the need to take a cautious 

approach to reopening (Olson, 2020). Until now October 6, Florida and Texas still keep 

recording a sharp increase in COVID-19 infections for many days (Provan, 2020). 

Especially, Texas has overtaken California as US state with second-highest death toll on 

September 21. The durations of practicing social distancing on Florida and Texas are just 

31 days and 28 days, respectively. And there is not strict reopening social distancing 
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guideline in these two states. 

From Figure 6, we can know that the prediction accuracy result of Florida 

obtained from IPSO-DNN model that is 70.03% on new daily COVID-19 cases and 

77.19% on the levels of COVID-19 spread. Meanwhile, the accuracy of Texas on the 

prediction of new daily COVID-19 cases and COVID-19 spread levels is 80.84% and 

82.37%, respectively. It is noticed that the IPSO-DNN model performs better in Texas 

than in Florida. Perhaps it is because Texas paused the state’s reopening plan after 

reporting record increase in COVID-19 cases and hospitalizations in June (Jasmine, 

2020). Therefore, Texas adopted more strict reopening guidelines and the values of 

mobility are more stable to predict the spread of COVID-19 than Florida. From Table 8, 

for predicting new daily COVID-19 cases, the result of MBE, MAE, and RMSE is 

16.9829, 18.0634, and 89.2466 in Florida, 4.7137, 5.2478, and 47.3079 in Texas, 

respectively; for estimating the levels of COVID-19 spread these results are 0.2382, 

0.5958, and 1.0907 in Florida,  0.3268, 0.3877, and 0.9545 in Texas, respectively. In 

general, these evaluation results demonstrate that our proposed model performs very well 

on the spread of COVID-19 in the United States. 

In Figure 13 and Figure 15, we can see that the COVID-19 is still rapid spreading 

in Florida and Texas. Although these two states still suffer the COVID-19 pandemic, 

there is a significant development of social distancing in mitigating the spread of 

COVID-19. From Figure 14 and Figure 16, the results illustrate that Florida and Texas 

perform very bad in reducing the COVID-19 cases due to the lack of restrict social 

distancing guidelines. The new daily COVID-19 confirmed cases in Florida and Texas all 

speed up and the time to double the cumulative cases has not reduce significantly after 
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reopening the state. It indicates that the consequence of COVID-19 outbreaks due to a 

lack of lasting and aggressive social distancing interventions. Therefore, we learn that 

social distancing plays a vital role in mitigating the spread of COVID-19 pandemic in 

these states. 

Table 8 shows the summary results of the MBE, MAE, and RMSE evaluation 

measures acquired from our proposed IPSO-DNN model in the above selected five states. 

The performance of IPSO-DNN on predicting levels of COVID-19 spread in all five 

states is better than the daily new COVID-19 cases. It is possible that the value of daily 

new cases is more random than levels of COVID-19 spread. In general, IPSO-DNN 

model performs very well on the prediction of COVID-19 based on social distancing 

influence in all the selected five states. Therefore, it reveals that the effect of social 

distancing can be represented as mobility metrics which has a significant influence on the 

COVID-19 spread. The duration of social distancing is also crucial to control this 

COVID-19 pandemic. 

 

Figure 13. Cumulative COVID-19 Cases & Daily Growth Rate in Florida 
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Figure 14. Daily New Cases & Time to Double Cumulative Cases in Florida 

 

 

Figure 15. Cumulative COVID-19 Cases & Daily Growth Rate in Texas 
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Figure 16.  Daily New Cases & Time to Double Cumulative Cases in Texas 

 

2.6. Conclusions and Future Work  

The kernel hyperparameters significantly influence the performance and have to 

be set and tuned for the DNN model. It is quite time consuming and computational 

expensive for traditional methods to select the optimal hyperparameters for DNN. 

Therefore, we utilize the advantages of global and local exploration capabilities from 

Evolutionary Algorithms (EAs) to improve the hyperparameter configuration for deep 

learning models. Particle Swarm Optimization (PSO) is a potent and efficient 

evolutionary method to help the DNN model to find the optimized hyperparameters. 

However, the PSO tends to converge prematurely on local optima, especially in complex 

multimodal functions. Therefore, we propose a hybrid IPSO-DNN model, which employs 

improved PSO to optimize the parameters of the DNN model, by conducting a self-

adaptive strategy and generalizing opposition-based learning in the micro population 

setting. We also analyze the parameters (i.e., micro-population size and the value of 
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selected probability) on two nonparametric statistic tests, Friedman’s and Iman-

Davenport’s tests to find out the best parameters of IPSO algorithm to improve the 

performance of DNN.  

In Part Ⅰ, we explore the IPSO based parameter value selection technique 

optimizes the DNN model by selecting the number of hidden layers, the number of 

neurons in each layer, and the activation functions in each layer. Our results show that the 

proposed IPSO-DNN model is useful and efficient in exploring the effect of social 

distancing in deep learning on the spread of COVID-19. We demonstrate the 

performance of our proposed hybrid model outperforms than other comparison models, 

such as IPSO-SVM, IPSO-LR, IPSO-DT, PSO-DNN, and GS-DNN, in terms of 

prediction accuracy and computing time. The results obtained indicate that the proposed 

self-adaptive strategy can help IPSO algorithm to adjust the prediction direction and find 

out optimization parameter for DNN model. 

The developed model also explains how social distancing helps Washington, 

California, New York, Florida, and Texas to flatten the COVID-19 curve in detail and 

shows that social distancing is essential to control the spread of COVID-19, and the 

duration and degree of implement social distancing interventions also matter. Therefore, 

our proposed IPSO-DNN model provides an effective method for tuning the 

hyperparameters of DNN in a self-adaptive evolutionary way and holds great potential to 

predict the effect of social distancing on the spread of COVID-19.  

As for future work, we intend to explore the IPSO and other improved 

evolutionary algorithms to optimize larger DNN or other deep learning techniques, such 

as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) for 
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solving multiple and challenging tasks in the emergency management. We will also 

consider many new powerful activation functions, such as Softplus, MPELU, PreLU, 

EreLU to improve the performance of deep learning models. Moreover, there are some 

other improved versions of PSO algorithm, for instance, the proposed exploiting 

barebones PSO (BBePSO) and a dynamic exploiting barebones PSO (DBBePSO) that 

performance very well on optimizing hyperparameters.  Furthermore, we would consider 

normalizing the COVID-19 social distancing data to improve model performances and 

further explore the effect of social distancing on the spread of COVID-19 in the United 

States. Therefore, we will focus on developing evolutionary algorithms and the 

systematic adaptation schemes in hyperparameters configurations which will balance the 

exploration and exploitation of the hyperparameter space in the deep machine learning 

models. 

 

 

 

 

 

 

 

 

 

 

 



 

49 

3. PART Ⅱ: EXPLORING THE CONTAGION EFFECT OF SOCIAL MEDIA ON 

MASS SHOOTINGS 

3.1. Introduction 

Incidents of mass shooting violence galvanize public attention. There has been 

extensive coverage of many mass shooting incidents in the United States in which large 

number of people injured or killed over the past decades. Although there is no universally 

accepted definition of a mass shooting, we follow the definition of Congressional 

Research Service, that is, a multiple homicide incident in which four or more victims are 

murdered with firearms—not including the offender(s)—within one event, and at least 

some of the murders occurred in a public location or locations in close geographical 

proximity (e.g., a workplace, school, restaurant, or other public settings), and the murders 

are not attributable to any other underlying criminal activity or commonplace 

circumstance (e.g., armed robbery, criminal competition, insurance fraud, argument, or 

romantic triangle) (Krouse & Richardson, 2015). These mass shootings are rare events – 

they constitute less than 15% of all mass killings in the United States and are responsible 

for less than 0.5% of all firearm homicides (Duwe, 2020) – however, they have far-

reaching impacts on citizens’ mental health, anxiety, and live lost (Lowe & Galea, 2017). 

In the United States, the number of mass shootings has grown steadily over the 

past few years. This rise in mass shootings has been linked to the “media contagion” 

theory, which suggests that society’s never-ending news cycle has a “copycat” effect on 

these crimes (Surette, 2014). It is important to note that the primary media circulating this 

news are not just television and newspapers anymore, but also social media platforms and 

online news sources, which become the largest part of communication platforms and 
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information sources in the world. These new media, including Facebook, Twitter, and 

online blogs, have made the spread of information about mass shootings nearly effortless. 

It is no coincidence that connections have been made between social media milestones 

and the number of mass shooting incidents in the United States.  

The spread of information on social media has a contagious effect on crimes. 

Taking Parkland school shooting on Valentine’s Day in 2018 as an example, survivors 

and witnesses sent videos and news of the events on Snapchat, Facebook, Instagram, and 

Twitter. In addition, related online communities developed members who treat the 

shooters as heroes and create fans and followers who obsess about the shooters, wanting 

to imitate them in terms of how they dress, what expressions they use, and how many 

people they kill (Raitanen & Oksanen, 2018). Two weeks after the Parkland school 

shooting, 638 copycat threats targeted schools nationwide. These threats are often joking 

or hoaxes that spread through social media, but they can still be harmful. Moreover, 

online platforms like Twitter incite gun violence and spread the manifestos of multiple 

mass shooters to the public. In general, the spread of  mass shooting incidents on social 

media is very contagious and has a bad impact on society. Furthermore, the heavy social 

media use leads to higher rates of loneliness, anxiety, and depression, which precipitate 

mental health factors that could increase the incidence of similar violent events. 

Therefore, social media plays a significant role in facilitating mass shootings incidents, 

and if harnessed properly, social media could be used to prevent mass shootings. 

As discussed above, the self-excitation contagion effect is found in mass shooting 

incidents, as the spread of related gun violence information on social media has a 

contagious effect on mass shootings. Therefore, in Part Ⅱ, we explore the spread of mass 
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shooting news and opinions on social media platforms (e.g., Twitter) and how the 

contagious effect on these incidents is developed. The well-known self-excited contagion 

model proposed by Hawkes (Hawkes, 1971) has been applied to a wide variety of 

applications, such as gang violence, civilian deaths, social media data, and financial 

markets. In this contagion model, recent prior events increase the probability of another 

event happening in the near future. The first research objective of Part Ⅱ is to propose a 

self-excited contagion model to predict the future number of mass shooting incidents in 

the United States. Second, we explore the contagion effect of social media (i.e., Twitter) 

in the proposed contagion model by focusing on sentiment analysis of Twitter data in 

mass shootings. In addition, as we know that there was a COVID-19 pandemic outbreaks 

in the United States in the unique year of 2020. Despite the response policy of stay-at-

home orders and lockdowns to the coronavirus pandemic, according to the mass shooting 

data provided by the Gun Violence Archive (Gun Violence Archive, 2021), mass 

shootings in the U.S. have risen sharply of 2020 and there were 610 mass shooting 

incidents, this gun violence killed nearly 20,000 Americans, more than any other year in 

at least two decades. Therefore, in order to better predict mass shootings under the 

COVID-19 pandemic, we also improve the proposed self-excited contagion model with 

the consideration of social distance practices and daily growth rate of COVID-19 cases in 

2020. 

The major contributions of Part Ⅱ are summarized as follows: 

1) Sentiment analysis on Twitter data using ML models is conducted to forecast the 

change in public attitudes towards mass shootings over time. One of the major 

challenges when applying sentiment analysis is how to improve prediction 
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performance, and we propose to use the improved ML model. Therefore, Support 

Vector Machine (SVM), Logistics Regression (LR), and IPSO-DNN model are 

explored to classify and predict a data corpus of 5,287,396 related mass shooting 

tweets collected from 2013 to 2020. Sentiment prediction results demonstrate that 

the proposed IPSO-DNN model outperforms SVM and LR models in predicting 

the accuracy of public attitudes towards mass shootings on Twitter. The IPSO-

DNN model provides an insight to improve the performance of sentiment analysis 

on social media data. Furthermore, experiments present that a positive attitude, 

such as thinking about mass shooting incidents in a positive way and intending to 

copycat them in the future, is essential to analyze and predict the number of mass 

shootings in the United States. 

2) A self-excited contagion model is proposed to explore the contagion effect of 

Twitter on mass shootings. The goal of this proposed contagion model is to predict 

the future number of mass shooting incidents in the United States. The proposed 

contagion model employs a Power-law kernel function, which fully considers the 

spread of mass shootings on Twitter and the influence magnitude of each mass 

shooting incident to explore the contagious effect of Twitter data on mass 

shootings. Experimental results show that the proposed contagion model has a 

remarkable ability to predict future mass shootings in the United States. It is also 

found that the spread of opinions on social media has a convincing contagious 

effect on mass shootings. 

3) In order to explore the effect of COVID-19 on mass shootings in 2020, we also 

improve the proposed contagion model to enhance the prediction performance of 
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future mass shootings under the COVID-19 pandemic. A challenge of this 

improvement is how to quantify the impacts of COVID-19 on mass shootings. 

Therefore, we measure the effects of COVID-19 on mass shootings by introducing 

the social distancing index and the daily growth rate of COVID-19 cases into the 

improved contagion model. Results demonstrate that COVID-19 has had a 

significant impact on mass shooting incidents in the United States in the unique 

year of 2020. In experiments, the improved contagion model performs very well in 

predicting the number of mass shootings under the COVID-19 pandemic in 2020.  

 

3.2. Literature Review 

3.2.1. Contagion effect of media on mass shootings. Studies indicate that the 

more media attention the gun shooters get, the more likely the event will inspire a future 

mass shooting incident. A contagion effect has been suggested in which the occurrence of 

a mass shooting increases the likelihood of another mass shooting in the near future. For 

instance, Lankford & Tomek (2018) found that media coverage of a mass shooting may 

increase the frequency and lethality of future shootings in more than two weeks. Jetter & 

Walker (2018) explored mass shootings between January 1, 2013, and June 23, 2016, and 

found that 58% of mass shootings can be explainable by news coverage, which will 

systematically cause future mass shootings. Moreover, the media coverage systematically 

raises the number of mass shootings in the following four to ten days and the effect 

reverts to statistical insignificance after approximately 12 days. Murray (2017) suggested 

that the entertainment-oriented news coverage of mass shootings will provide sources of 

information and scripts for potential killers to guide them in formulating motives and 
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organizational behaviors for their violent acts. McGinty, Webster & Barry (2013) tested 

the effects of news stories about mass shootings on public attitudes towards people with 

serious mental illness and support for gun control polices. Meindl & Ivy (2017) provided 

an overview of generalized imitation and discussed how the way the mass shooting is 

reported by the media can increase the likelihood of another shooting event.  

In recent decades, the emergency of several new forms of media (e.g., websites, 

social media, blogs, smartphone applications) has revolutionized the communication and 

social interaction paradigms (Ortiz & Khin, 2018). Especially, social media platforms, 

such as Twitter, Facebook, and Instagram, constitute a major platform for communicating 

and expressing opinions, and people increasingly rely on social media platforms to learn 

news and information. Social media is used as the main discussion channel by millions of 

people every day. However, little is known about the contagion effects of information 

dissemination on social media. Relevant studies of social media have been only focused 

on its emotions, information diffusion, and politics, such as Xiong et al. (2018) proposed 

an emotional independent cascade model, in which individual emotions can affect the 

subsequent emotions of his/her friends to show the detailed process and characteristics of 

emotional contagion in social media, and Stieglitz & Dang-Xuan (2013) examined 

whether the sentiment occurring in social media content is associated with a user’s 

information sharing behavior, and carried out the research in the context of political 

communication on Twitter. There is little research analyzing the contagion effect on 

social media. Moreover, with the onset of the COVID-19 pandemic, social media has 

rapidly become a crucial communication tool for mass shooting information generation, 

dissemination, and consumption. Despite the United States response to the coronavirus 
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pandemic using stay-at-home orders and lockdowns, the number of mass shooting 

incidents has been greatly increased under COVID-19 pandemic in 2020. Therefore, it is 

very emergent and vital to explore the contagion effect of social media on mass shootings 

in the United States. 

 

3.2.2. Contagion model. Contagion effects, similar to “copycat” effects, refer to 

behaviors that can be “contagious” and spread across a population. Hawkes (1971) was 

the first one to develop the well-known self-exciting process based on the counting 

process, in which the intensity function explicitly depends on all previous events. The 

self-excited Hawkes process has wide applications. For example, Lewis et al. (2012) 

developed a self-exciting point process model to characterize temporal patterns of violent 

civilian deaths. Mitchell & Cates (2009) simulated time series for the Hawkes process 

provides to analyze the dynamics of YouTube viewing numbers. Mohler et al. (2011) 

illustrated the implementation of the self-exciting point process model in urban crimes, 

and used a fully nonparametric estimation methodology to gain insight into the form of 

the space-time triggering function and temporal trends in the background rate of burglary. 

Dassios & Zhao (2012) considered the risk process of claim arrival modelled by the 

dynamic contagion process, which is a generalization of the Cox process and the Hawkes 

process in the finance and insurance. Rizoiu et al. (2018) established a novel connection 

between the epidemic model and the Hawkes point processes for online information 

modeling in geophysics and finance. 

Research on the contagious effects of gun violence has become popular recently, 

but more attention is still needed on this topic. In the context of gun violence, the 
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contagion effect can be explained as if a single mass shooting (or other gun violence 

incident) can increase the probability of other similar instances in the near future. For 

instance, Towers et al. (2015) demonstrated the self-excitation contagion model of mass 

shootings. According to the recent prior events, media coverage may increase the 

probability of subsequent events. Lee (2018) explored mass shootings and media 

contagion theory, and analyzed media activity from mass shootings. The evidence 

showed that the increased social media usage aligned with the increased number of mass 

shootings. However, there is no relevant research focusing on predicting future mass 

shooting incidents involving the study of social media data. Therefore, we will fill this 

research gap by exploring a self-excited contagion model integrated with sentiment 

analysis of Twitter data on mass shootings to predict the future number of mass shootings 

in the United States. 

 

3.2.3. Sentiment analysis of Twitter data. Sentiment Analysis is a natural 

language processing tool where the dataset consists of emotions, attitudes, or assessments 

that consider the way a human think (Pang & Lee, 2008) and has been widely used in 

various domains. There is a huge explosion today of 'sentiments' available from social 

media including Twitter, Facebook, message boards, blogs, and user forums. The 

sentiment information is very useful for companies and individuals to monitor reputation 

and get timely feedback about products and actions. Sentiment analysis has been widely 

applied to emergency management, marketing, politics, online shopping, and public 

relations over the past few years. For instance, Neppalli et al. (2017) performed sentiment 

analysis of tweets posted on Twitter during the disastrous Hurricane Sandy and visualize 
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online users' sentiments on a geographical map centered around the hurricane. However, 

little attention to sentiment analysis has been paid to gun violence. The most relevant 

work is Wang et al. (2016) which focused on mass shooting and the public attitudes 

towards gun-control policy. To the best of our knowledge, we are the first to predict the 

future number of mass shooting incidents based on the sentiment analysis of Twitter data 

on mass shootings. 

Applying sentiment analysis using ML techniques on Twitter is the new 

upcoming trend with researchers recognizing the advantage of ML and the scientific trials 

and its potential applications. For instance, Amolik et al. (2016) proposed a highly 

accurate model of sentiment analysis of Twitter data with respect to movie reviews, with 

the help of feature vector and supervised machine learning classifiers. Neethu & Rajasree 

(2013) analyzed Twitter data by creating a new feature vector in sentiment analysis and 

compare its performance with different classifiers based on machine learning approach. 

Pak & Paroubek (2010) built a performed sentiment classifier by using corpus which is 

automatically collected in tweets, to determine the sentiment polarity in a document. Go, 

Gautam & Yadav (2014) applied semantic analysis to select feature list, and then 

compare the measurement of the precision parameters on different machine learning 

techniques. Kouloumpis & Moore (2011) took a supervised machine learning approach to 

investigate the utility of linguistic features for detecting the sentiment of twitter data. 

Mittal & Goel (2012) applied sentiment analysis and machine learning techniques to 

explore the correlation between public sentiment and market sentiment for the stock 

prediction. In Part Ⅱ, one of the major challenges when applying sentiment analysis is 

how to improve prediction performance accuracy and we propose to use the improved 
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machine learning model. 

 

3.3. Sentiment Analysis of Twitter Data using Machine Learning Models 

3.3.1. Twitter data. First, we collect the Twitter data on mass shootings. As we 

mentioned above, Twitter activities after mass shootings cause “digital waves”, such as 

the creation of incident specific hashtags, the establishment of certain trends, and the 

posting and sharing of millions of tweets. Twitter has provided an application 

programming interface (API) that can be used by developers to access and read Twitter 

data. A streaming API is also offered to access real-time Twitter data. However, with 

Twitter's search API, people can only collect 180 requests every 15 minutes in the past 

seven days, with a maximum number of 100 tweets per claim in the free version. 

Therefore, we use three Python packages, which are TwitterScraper, GetOldTweets3, and 

Tweepy to collect Twitter data to avoid such restrictions. We retrieved  5,287,396 tweets 

related to mass shootings from Twitter over the past 8 years (i.e., from 2013 to 2020) in 

the United States. The keywords include but are not limited to “shooting”, “mass 

shooting”, “gun”, “gun shooting”, “killing”, and locations where these incidents 

occurred. For example, the Elpaso mass shooting happened on August 3, 2019. The 

keywords we have used are “Elpaso” and “shooting”, and we set the time window from 

August 3, 2019 to August 13, 2019 and acquired 29,496 tweets. The exemplary raw 

dataset is listed in Figure 17.  
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Figure 17.  Examples of the Twitter Raw Dataset 

Secondly, we pre-process the Twitter data to make the data more appropriate to 

understand. The sentiment analysis on Twitter data is a difficult task, because the tweets 

contain a lot of opinions about the data which are expressed in different ways by 

individuals. The quality of the data affects the results. Therefore, all the URLs, 

@username, hashtags, and punctuations in the tweets are eliminated and replaced with 

normal text. Exemplary processed mass shootings tweets are shown in Table 9. 

Table 9. Data Preprocessing of Mass Shootings Tweets 

Username … Tweets Processed tweets 

… … 
What is your plan to reduce 

#Mass shootings ? 

What is your plan to reduce 

mass shootings? 

… … 
A good 100 kills would be nice 

@gunshooter. 

A good 100 kills would be 

nice. 

… … We want C.H.A.N.G.E We want change. 

 

Finally, we label the Twitter data and extract the sentiment feature. Natural 

language processing (NLP) is a branch of artificial intelligence that deals with the 

interaction between computers and humans using the natural language. In this research, 

we use the following two ML libraries to label the sentiment of tweets and by manually 

checking to obtain higher performance. 

 1) TextBlob labeling: It is a Python library and offers a simple API to access its 

method and perform basic NLP tasks. The polarity of TextBlob is a float value within the 

range [-1.0, 1.0], where 0 indicates neutral tweets, 1 indicates a very positive sentiment 
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and -1 represents a very negative sentiment. 

 2) Valence Aware Dictionary and sEntiment Reasoner (VADER) labeling: 

VADER is a lexicon and rule-based sentiment analysis tool that is especially attuned to 

the sentiment expressed in social media. It not only outputs the positivity and negativity 

score but also positive, negative, and neutral sentiment results. VADER text sentiment 

analysis uses a human-centric approach, and combining qualitative analysis and empirical 

validation by using human raters and the wisdom of the crowd. 

Moreover, we convert the positive sentiment of keywords and phrases, such as 

“pray”, “wish”, and “stay strong” to neutral sentiment in the mass shootings tweets 

dataset. The sentiment results of the whole dataset are shown in Figure 18. The 

percentage of Neural, Negative, and Positive attitude tweets are 25%, 56%, and 19%, 

respectively. 

 
Figure 18. Sentiment Results of Mass Shooting Tweets  

The mass shooting tweets are mainly in text format; but for sentiment analysis of 

the tweets using ML models, numerical matrices are required. Thus, the Term frequency 

– Inverse document frequency (TF-IDF) method is applied to convert the Twitter data to 
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numerical vectors. TF-IDF reflects the importance of a word in the corpus or the 

collection. The value of TF-IDF increases with the increase in the frequency of a 

particular word in the document. In order to control the generality of more common 

words, the term frequency is offset by the frequency of words in corpus. Term frequency 

is the number of times a particular term appears in the text. Inverse document frequency 

measures the occurrence of any word in all documents ( Tripathy, Agrawal & Rath, 

2016).  In part Ⅱ, the TF-IDF is applied to transform the text document into a numerical 

vector, which is then considered as input to the supervised ML classifiers. 

 

3.3.2. Machine learning models. There are three ML models, i.e., SVM, LR, as 

well as the IPSO-DNN model which is proposed in Part Ⅰ that are explored to classify and 

predict the public attitude towards mass shootings in Part Ⅱ. SVM, LR, and the basic 

Artificial Neural Network in the proposed IPSO-DNN model are defined as following: 

1) Support Vector Machine (SVM): SVM is a popular technique which trains the 

dataset with feature vectors and uses large margin for classification. It separates Twitter 

data using a hyper plane. SVM uses the discriminative function defined as: 

( ) ( )Tg x w x b= +
                                                                                                 (7)                                          

where x is the feature vector; w is the weights vector, b is the bias vector, and they 

are learned automatically on the training set.  ϕ is the non-linear mapping from input 

space to high dimensional feature space. ‘w’ and ‘b’ are learned automatically on the 

training set. 

2) Logistic Regression (LR): The logistic regression technique is applied to 

describe data and analyze the relationship between one dependent binary variable and one 
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or more nominal ordinal, interval, or ratio-level independent variables. The formula of 

the logistic regression function is: 

 log ( ) ln( )
1

p
it p

p
=

−
                                                                                                  (8)  

where p is the probability parameter between 0 and 1. 

3) Artificial Neural Network (ANN): ANN is the basic model that later came to 

be deep learning for DNN. The artificial neuron contains inputs, synapses, neuron, and 

output process. The multilayer neuron network has multiple hidden layers. The flow of 

ANN that only has one layer showed in the Figure 19. 

 

Figure 19. The Flow Chart of Artificial Neural Network 

where w is the weight, ϕ is the decision function determines true or false with 

numerical representation 1 and 0, respectively.  

In Part Ⅱ, IPSO-DNN is applied to classify the dataset of mass shooting tweets, 

the parameters helpful to evaluate performance of supervised machine learning algorithm 

is based on the element from a matrix known as confusion matrix. A confusion matrix is 

a table that is often used to describe the performance of a classification model on a set of 

test data for which the true values are known. For example, the terms such as “True 

Positive (TP)”, “False Positive (FP)”, “True Negative (TN), “False Negative (FN)” are 

used to compare label of classes in this matrix. Based on the values obtained from 

confusion matrix, performance measures such as “precision”, “recall”, “f1-score”, and 
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“accuracy” are found out for evaluating performance of any classifier. They are defined 

as follows: 

1) Precision: It measures the exactness of the classifier result. It is the ratio of 

number of examples correctly labeled as positive to total number of positively classified 

example. 

TP
Precision

TP FP
=

+
                                                                                                  (9) 

2) Recall: It measures the completeness of the classifier result. It is the ratio of 

total number of positively labeled example to total examples which are truly positive. 

Re
TP

call
TP FN

=
+

                                                                                                   (10) 

3) f1-score: It is the harmonic mean of precision and recall. It is required to 

optimize the system towards either precision or recall, which have more influence on 

final result. 

 
2*Pr *Re

1
Pr Re

ecision call
f

ecision call
=

+
                                                                                      (11) 

(4) Accuracy: It is the most common measures of classification process. It can be 

calculated as the ratio of correctly classified example to total number of examples. 

 
TP TN

Accuracy
TP TN FP FN

+
=

+ + +
                                                                               (12) 

The flow chart of methodology is presented in Figure 20. 
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Figure 20. The Flow Chart of Sentiment Analysis using Machine Learning Models 

 

3.3.3. Results and discussions. 

1) Support vector machine 

Table 10 presents the classification and prediction performance measures in terms 

of precision, recall, f1-score, accuracy for the SVM model. From Table 10, we can see 

that the precision accuracy of neural sentiment tweets is 0.84, which is lower than the 

precision accuracy of negative and positive sentiment tweets. The recall of SVM is better 

than LR but gives a lower accuracy than the proposed IPSO-DNN model. The overall 

prediction accuracy is 0.86. The experiment results show that SVM performs well on 

predicting and classifying the mass shooting tweets. 
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Table 10. Prediction Performance Results of SVM on Mass Shooting Tweets 

Performance Precision Recall f1-score 

Negative 0.88 0.78 0.83 

Neutral 0.84 0.90 0.87 

Positive 0.88 0.90 0.89 

Macro avg 0.87 0.86 0.86 

Weighted avg 0.87 0.86 0.86 

Accuracy 0.86 

 

 2) Logistics regression 

The prediction performance results of the LR model on mass shooting tweets are 

exhibited in Table 11. As we can see from the performance measures, the recall accuracy 

of negative tweet is 0.74, which is lower than other two sentiments. Both macro average 

and weighted average accuracy of LR for predicting mass shooting tweets are 0.86. The 

overall prediction accuracy of the LR model is 0.86. The performance results demonstrate 

that the LR model has a good ability to classify the sentiment of mass shooting tweets. 

Table 11. Prediction Performance Results of LR on Mass Shooting Tweets 

Performance Precision Recall f1-score 

Negative 0.87 0.74 0.80 

Neutral 0.83 0.91 0.87 

Positive 0.89 0.91 0.90 

Macro avg 0.86 0.86 0.86 

Weighted avg 0.86 0.86 0.86 

Accuracy 0.86 

 

3) The proposed IPSO-DNN model 

The prediction performances of the proposed IPSO-DNN model in terms of 

precision, recall, and f1-score measures are provided in Table 12. In Table 12, the overall 

accuracy of the proposed IPSO-DNN model is 0.89. We can know that the proposed 

IPSO-DNN model performs very well on classifying and predicting the sentiments of 

mass shooting tweets. The recall and f1-score for predicting the negative, neutral, and 

positive tweets are all higher than 0.84. The proposed IPSO-DNN model is very much 
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capable to learn and model non-linear and complex relationships. Therefore, it will obtain 

better accuracy in more complex classifications with large amounts of data. 

Table 12. Prediction Performance Results of the Proposed IPSO-DNN Model on Mass 

Shooting Tweets 

Performance Precision Recall f1-score 

Negative 0.78 0.95 0.85 

Neutral 0.94 0.84 0.89 

Positive 0.96 0.88 0.92 

Macro avg 0.89 0.89 0.89 

Weighted avg 0.90 0.89 0.89 

Accuracy 0.89 

 

The performance comparisons of SVM, LR, and the proposed IPSO-DNN model 

in terms of the accuracy, precision, and recall measures are presented in Figure 21, Figure 

22, and Figure 23, respectively. From Figure 21, we can know that the prediction 

accuracy of SVM, LR, and IPSO-DNN for sentiment analysis of mass shooting tweets 

are 86%, 86%, and 89%, respectively. According to the prediction performance results, 

we can see that the proposed IPSO-DNN model has better precision compared with the 

SVM and LR models, but slightly lower recall on predicting neutral and positive tweets. 

As shown in Figure 22, the precision results obtained by IPSO-DNN model in predicting 

neutral and positive tweets are better than those of SVM and LR. This is probably 

because that SVM and LR are just non-probabilistic linear classifiers, which have good 

prediction results when analyzing a single word.  Moreover, we can learn from Figure 23 

that SVM and LR perform same in classifying the sentiments of mass shooting tweets. 

The above experiments indicate that the three ML models all perform very well on 

sentiment analysis of Twitter data in mass shootings. However, the proposed IPSO-DNN 

model enhances the prediction performance of sentiment analysis in Twitter data on mass 

shootings. Three possible reasons why the proposed IPSO-DNN model is superior to LR 
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and ANN in this analysis are as follows: 

Firstly, the proposed IPSO-DNN model employs an improved Particle Swarm 

Optimization algorithm to optimize the hyperparameters of DNN, making the IPSO-DNN 

model more effective in the high-dimensional space where the number of dimensions is 

greater than the number of samples. Secondly, Neural Network requires a large number 

of input data if compared to SVM. The more data fed into the network, the better it will 

generalize and accurately make predictions with fewer errors. On the other hand, SVM 

and LR require much fewer input data. Moreover, LR performs badly in solving non-

linear problems since its decision surface is linear. Finally, the IPSO-DNN model is 

relatively memory efficient to predict and classify the mass shooting tweets. ANN with 

multiple hidden layers called Deep Neutral Networks (DNN) is able to learn hidden 

relationships without imposing any fixed relationships in the data. Therefore, it performs 

better in predicting the higher volatility and non-constant variance data. 

 
Figure 21. The Accuracy Performance Comparison of Different ML Models 
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Figure 22. The Precision Measures Comparison of Different ML Models 

 
Figure 23. The Recall Measures Comparison of Different ML Models 

 

3.4. Self-excited Contagion Models Integrated with Twitter Prediction 

3.4.1. Mass shootings data. In this section, we describe the mass shooting 

incidents in the United States over the past 8 years and along with a description of the 

source of mass shootings data used in this Part Ⅱ. Since there are currently no 

comprehensive federal repositories of data on mass shootings in the United States, we 

rely on the mass shootings data compiled by private organizations. From 2013, some 

comprehensive mass shooting database of all mass public shootings have been created 
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that examine community-level socio-ecological factors of where mass public shootings 

take place, including, but not limited to, crime rates, measures of social inequality, 

community mobility, availability of mental health resources, and prevalence of gun 

stores.  

Therefore, in this Part Ⅱ, we research mass shooting incidents that between 2013 

to 2020 from the Gun Violence Archive mass shooting data. It provides more accurate, 

unbiased, unfiltered data on gun violence in the United States. The Gun Violence Archive 

study did not rely solely upon the Federal Bureau of Investigation (FBI) data from the 

FBI Supplemental Homicide Reports, but also collect hundreds of media reports, police 

documents, and other resources daily to compile a list of mass shooting incidents that 

involved four people or more shot or killed, not including the shooter. 

The whole mass shooting incident data is shown in Figure 24. There are 2,950 

mass shooting incidents in the United States from 2013 to 2020. From Figure24 , we can 

see that mass shooting incidents steadily increase over the past 8 years. Especially, 

despite the United States response to the COVID-19 pandemic using sporadic stay-at-

home orders and lockdowns, mass shootings in the United States have risen sharply in 

2020. There have been 610 mass shootings in 2020, which is the most mass shooting 

incidents recorded from 2013 to 2020 in the United States. Data from the Gun Violence 

Archive presents that the number of mass shootings first spiked in April 2020 and has 

stayed high since. The rise in mass shootings results in the more damage to families, 

communities, and the nation. Therefore, it is very significant to predict future mass 

shootings in the United States and reduce future similar tragedies as could as possible. 
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Figure 24. The Number of Mass Shootings from 2013 to 2020 in the United States 

 

3.4.2. The proposed contagion model. According to the attitude classification 

and prediction about Twitter data using ML models from Section 2.3.2, in this section we 

develop the self-excited contagion models to predict the future number of mass shooting 

incidents in the United States. In a self-excited contagion model, recent prior events 

increase the probability of another event happening in the near future. We propose a self-

excited contagion model that employs a power-law distribution to simulate this process 

for predicting future mass shootings. The proposed contagion model explores the 

contagious influences on future possible similar incidents with the consideration of public 

attitudes toward mass shootings on Twitter.  

The notation of proposed self-excited contagion model is shown in Table 13. In 

this proposed contagion model, a positive attitude rate p from the prediction results of 

ML models and a magnitude of mass shooting influence indicator m are introduced based 

on a Hawkes self-excited process model (Rizoiu et al., 2017). The larger positive attitude 

rate, the more similar mass shootings will happen in the future. The value of m is the sum 
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of injured and killed in each mass shooting incident. The formulations of proposed self-

excited contagion model are presented in Equations (13) and (14). Equation (13) is the 

event intensity function of the proposed contagion model, in which ( )t is conditional 

intensity of a non-homogeneous Poisson process over time t. Equation (14) shows the 

developed power-law kernel function ( )x  that measures the contagious effect of mass 

shootings over time. Figure 24 indicates that contagion effects of mass shootings decay 

over time in the proposed power-law kernel function. The spread of public attitude and 

magnitude of mass shooting influence are introduced in this kernel function to explore 

how public attitude impact on future mass shootings.  

In the experiments shown in Section 3.4.4, several comparison contagion models 

with negative attitude rate and without the attitude rate indicator are applied to indicate 

how significant it is to spread positive attitudes on social media to have an impact on 

mass shootings. Moreover, a maximum likelihood estimation approach (Wang, Kaplan & 

Abdelzaher, 2012) is applied to enhance the proposed model’s robustness and prediction 

performance. In short, the proposed self-excited contagion model focuses on the 

magnitude of influence on mass shootings from the available dataset of mass shooting 

incidents and the spread of public attitudes toward mass shootings on Twitter over the 

past 8 years in the United States.  
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Table 13. The Notation of the Proposed Self-Excited Contagion Model 

Notation Interpretation 

( )t  Conditional intensity of a non-homogeneous Poisson process. 

( )
im t

 
Triggering kernel. Contribution of event the (m, t) to the total event rate, 

calculated at time t + ti. 

t The mass shooting incident occur time (days). 

k 
The effect of mass shooting incidents, which scales the subsequent events 

occurred rate, k >0. 

p Positive attitude rate toward mass shootings in a time period, 0 < p <1. 

m The number of being killed and injured in each mass shooting incident. 

  The warping effect for mass shootings,  >0. 

( )k pm 

 The magnitude of mass shooting incidents influence. 

c 
The waiting times. Temporal shift cutoff term so that keep ( )

im t bounded 

when t ≈0, 𝑐 > 0. 

1+  The power-law exponent, describing how fast an event is forgotten,  >0. 

 

The formulation of the proposed self-excited contagion model is shown as 

follows: 

(1) The event intensity function of contagion:  

( ) ( )
i

i

m i
t t

t t t 


= −                                                                                          (13)   

(2) The power-law kernel function of contagion model: 

(1 )( ) ( ) ( )x k pm x c  − += +                                                                            (14) 

 
Figure 25. The Change of Contagious Effects in Power Law Kernel Function 
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3.4.3. Improved contagion model for COVID-19. In order to analyze the reason 

of why mass shootings have sharply risen under the COVID-19 pandemic in 2020, we 

improve the above proposed contagion model to better predict the number of mass 

shootings in the COVID-19 situation. In Part Ⅱ, social distancing index and daily growth 

rate of COVID-19 cases are introduced to the improved contagion model. Firstly, social 

distancing related measures include avoiding mass gathering, closing schools and non-

essential business, issuing mandatory stay-at-home orders, and having travel restrictions. 

The social distancing takes many forms, and the nature is to keep people apart from each 

other by confining them to their homes in order to reduce contact rates. From the 

University of Maryland COVID-19 Impact Analysis Platform, we can obtain social 

distancing index that takes value from 0 to 1. 0 indicates no social distancing is observed 

in the community, while 1 indicates all residents are staying at home and no visitors are 

entering the county (Maryland Transportation Institute. 2020). Secondly, daily growth 

rate of COVID-19 cases is the percentage increase in cumulative COVID-19 cases in the 

United States (Tellis et al., 2020). There is a possibility that the spread of COVID-19 

hampered anti-crime efforts, and the attendant shutdowns compounded unemployment 

and stress at a time when schools and other community programs were closed or online. 

The additional notation of the improved contagion model under the COVID-19 pandemic 

is described in Table 14. Equation (15) presents the proposed Power Law kernel function 

of the improved contagion model formulation. We can learn from it that the larger the 

social distancing index, the less mass public shootings in the future, and the larger the 

daily growth rate, the more future similar mass shooting incidents.  
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Table 14. The Additional Notation of the Improved Contagion Model for COVID-19 

Notation Interpretation 

s 
Social distancing index, it represents the practice degree residents and 

visitors are social distancing, 0 < s <1.  

d Daily growth rate of COVID-19 in the United States. 0 < d <1. 

 

The proposed power-law kernel function of the improved contagion model: 

 
(1 )( ) ( ) ( )dx sk pm x c − += + 

                                                                            (15) 

 

3.4.4. Results and discussions. In order to evaluate the performance of the 

proposed self-excited contagion models on predicting future mass shootings in the United 

States, we conduct several experiments with some comparison variant models. All the 

experiments in this section are conducted using R language on a 4-core machine with 

3.60 GHz Intel® Core™ i7-7700 CPU and 16 GB RAM. All models independently run 

30 times in experiments. The significance level of these non-parametric statistical 

experiments is 5%. 

1) The proposed contagion model prediction results 

In this experiment, we compare the performance of the proposed contagion model 

with positive attitude rate, one variant contagion model without public attitude, and one 

variant contagion model with negative attitude rate on predicting the number of mass 

shootings from 2013 to 2020. The public attitude rates are obtained from sentiment 

analysis of Twitter data on mass shootings using the proposed IPSO-DNN model. The 

comparison prediction results are shown in Figure 26. From Figure 26, we can see that 

the prediction accuracy results of positive attitude, non-public attitude, and negative 

attitude contagion models are 0.82, 0.60, and 0.51, respectively. The results demonstrate 

that the proposed contagion model has a great potential to predict future mass shooting 
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incidents and the spread of positive attitudes toward mass shootings plays a very 

significant role on measuring contagious effects of social media on mass shootings. 

 
Figure 26. Prediction Accuracy Results of Different Contagion Models 

2) The improved contagion model prediction results 

In order to fully evaluate the prediction performance of the improved self-excited 

contagion model under the COVID-19 pandemic in 2020, we conduct several 

experiments to predict the number of mass shootings based on different time frames. As 

we discussed above, the proposed contagion model integrated with positive sentiment 

prediction results outperforms other comparison models. Therefore, we compare the 

prediction accuracy of the first proposed contagion model with the second improved 

contagion model for the COVID-19 in 2020 in this experiment. The prediction results are 

shown in Table 15. As we can know from Table 15, the prediction accuracy obtained 

from the improved contagion model from 2013 to 2020 are 0.84, 0.85, 0.83, 0.81, 0.86, 

0.85, 0.87, and 0.71, respectively. We can learn that the prediction accuracy results of 

this proposed contagion model in 2020 is the lowest when compared to the accuracy of 

each year from 2013 to 2019. Moreover, in order to better analyze the effect of COVID-
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19 on mass shootings, we conduct extra experiments and learn that the prediction 

accuracy from 2013 to 2019 and from 2013 to 2020 are 0.87 and 0.75. These prediction 

results all indicate that the proposed contagion model has the ability to predict the 

number of mass shootings from 2013 to 2019, however, it performs very badly on 

predicting the number of mass shooting incidents in 2020 when the COVID-19 pandemic 

involved. Therefore, we explore the improved contagion model that employs two features 

of COVID-19 pandemic, one is social distancing index and the other is daily growth rate 

of COVID-19 cases, to predict the number of mass shootings in 2020. The improved 

contagion model enhances the performance accuracy from 0.71 to 0.88. It is a significant 

improvement on measuring the contagious effect of social media on mass shootings 

under the COVID-19 pandemic. The experiment results also prove that not only the 

spread of positive attitudes towards mass shootings on Twitter, but also the social 

distancing measures and the spread of COVID-19 both are essential to analyze and 

predict future mass shootings under the situation of coronavirus pandemics. 

Table 15. The Prediction Results of Different Contagion Models from 2013 To 2020 

Years The proposed contagion model 
The improved contagion model 

for COVID-19 pandemic 

2013 0.84 

 

2014 0.85 

2015 0.83 

2016 0.81 

2017 0.86 

2018 0.85 

2019 0.87 

2020 0.71 0.88 

 

3.5. Conclusions and Future Work 

Social media plays a very significant role on the spread of mass shootings over 

the past decades in the United States. The spread of information on social media has a 
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contagion effect on crimes. However, compare to traditional media, less attention of the 

contagion effect of social media on mass shooting incidents has been given over the past 

few years. Therefore, in Part Ⅱ, we explore the public attitudes toward mass shootings on 

social media and measure the associated contagious to predict the future number of mass 

shootings. 

Firstly, we conduct sentiment analysis of Twitter data on mass shootings, collect 

and pre-process the related mass shooting tweets in Python, as well as extract people’s 

opinions towards mass shootings on Twitter. We then explore different machine learning 

(ML) models to forecast the change on the public’s attitudes over time, including the 

Support Vector Machine (SVM), Logistic Regression (LR) and the proposed IPSO-DNN 

model. The performance results show that the proposed IPSO-DNN model have a good 

ability to classify and predict the sentiments of mass shooting tweets.  

Secondly, we develop a self-excited contagion model to predict the number of 

future mass shootings by focusing on the magnitude of influence of mass shootings and 

the spread of public attitudes on Twitter. The experiment results demonstrate that 

sentiment analysis  is crucial to measure and predict the contagious effect of social media 

on mass shootings in the United States. Moreover, in order to explore the contagious 

influences on future possible similar mass shooting incidents under the COVID-19 

pandemic in 2020, we also improve the proposed contagion model that employs social 

distancing index and daily growth rate of COVID-19 cases for mass shooting prediction. 

The results demonstrate that the proposed self-excited contagion models perform very 

well on predicting future mass shootings in the United States. 

In the future work, for the sentiment analysis, the ensemble classifier technique 
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tries to combine different ML classifiers to do the best classification and prediction. 

Therefore, we will consider combining ML models and exploring other improved 

evolutionary algorithms to optimize other powerful deep learning models to obtain a 

higher accuracy on predicting the sentiment of Twitter data on mass shootings. For the 

mass shooting prediction, we will explore the relationship between mass shootings and 

location information of tweets, mental health treatment, and gun control policy. In 

addition, we will collaborate with local law enforcements to develop a “social media 

early alerting tool” to proactively identify and reactively monitor mass shooting threats 

across platforms in the United States. 
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