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ENERGY DECAY FOR SOLUTIONS TO SEMILINEAR SYSTEMS
OF ELASTIC WAVES IN EXTERIOR DOMAINS

MARCIO V. FERREIRA, GUSTAVO P. MENZALA

Abstract. We consider the dynamical system of elasticity in the exterior of

a bounded open domain in 3-D with smooth boundary. We prove that under

the effect of “weak” dissipation, the total energy decays at a uniform rate as
t → +∞, provided the initial data is “small” at infinity. No assumptions on

the geometry of the obstacle are required. The results are then applied to a

semilinear problem proving global existence and decay for small initial data.

1. Introduction

We study the uniform stabilization of the solutions of a hyperbolic system of
equations in an exterior domain, as t → +∞. A classical example of this class is
the system of elastic waves. Let us describe the model: Let O be an open bounded
region of R3 with smooth boundary and Ω = R3 \ O. We consider the system

utt −
3∑

i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
+ ut = f(ut) in Ω× R

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω
u = 0 on ∂Ω× R

(1.1)

Here x = (x1, x2, x3) ∈ Ω, t is the time variable, u(x, t) =
(
u1(x, t), u2(x, t), u3(x, t)

)
denotes the displacement vector, Aij = [Cij

kh] are 3 × 3 symmetric matrices and
f = (f1, f2, f3) is a nonhomogeneous vector-valued function. Both Aij and f will
satisfy suitable assumptions. Associated to the initial boundary valued problem
(1.1) we have the total energy

E(t) =
1
2

∫
Ω

{
|ut|2 +

3∑
i,j=1

Aij
∂u

∂xj
· ∂u

∂xi

}
dx (1.2)

where |ut|2 = ut ·ut =
∑3

j=1 |
∂
∂tuj |2 and the dot · denotes the usual inner product in

R3. Let u be the solution of problem (1.1) in a suitable function space and assume
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for a moment that f ≡ 0. Then, a formal calculation give us that the derivative of
E(t):

d

dt
E(t) = −

∫
Ω

|ut|2 dx ≤ 0. (1.3)

Thus, we may ask: Does E(t) decays at a uniform rate as t → +∞? Furthermore,
in case the answer is affirmative then we can ask if the same result would still hold
for a class of functions f and initial data (u0, u1) satisfying suitable assumptions.
Both questions above are by now not very difficult to answer in case Ω is a bounded
domain (see for instance Racke [11] and the references therein). In our case, since Ω
is an exterior domain, the uniform stabilization requires a more detailed discussion
which is our main objective in this article. There is a large literature concerning
the decay of solutions of hyperbolic problems in exterior domains. In a pioneering
work, Morawetz [7, 8] studied the asymptotic behavior of the local energy for the
scalar wave equation in exterior domains. Assuming geometric conditions on the
obstacle and initial data with compact support she obtained uniform rates of decay.
B. Kapitonov got similar results for the system of elastic waves and the Maxwell
equations, Zuazua [13], Nakao [10] and Ikehata [4] obtained also stabilization re-
sults for scalar wave equations with localized damping (being effective only near
“infinity”). As far as we know the results we present in this article for system (1.1)
are the first of the kind for the system of elasticity. We do not assume geometric
conditions on the obstacle nor special restrictions on the Lamé’s coefficients in the
isotropic case. Our strategy relies on recent work due to Ikehata [2] for the scalar
wave equation adapted conveniently to system (1.1).

Let us make precise our assumptions on the matrices Aij and the nonlinearity f
in (1.1):

(H1) (a) Given a set of real numbers {aijkh} with i, j, k, h ∈ {1, 2, 3} satisfying
the symmetric properties aijkh = ajikh = akhij , we consider

Cij
kh = (1− δihδjk)aikjh + δikδjhaihjk

with δ`k =

{
1 if ` = k

0 if ` 6= k
and “build” the 3× 3 matrices Aij = [Cij

kh].

(b) We assume that there exist a constant C0 > 0 such that
3∑

i,j=1

Aijvj · vi ≥ C0

3∑
i=1

|vi|2 (1.4)

for any vector vi = (v1
i , v2

i , v3
i ) ∈ R3 where |vi|2 = vi · vi.

(H2) Let f = (f1, f2, f3) with fj : R3 → R satisfying the following assumptions:
Each fj ∈ C2(R3) and
(a) |f(y)| ≤ C1|y|p for every y ∈ R3

(b) |∇f(y)| ≤ C2|y|p−1 for every y ∈ R3

(c)
∑3

i,j=1 |∇
∂fi(y)

∂yj
| ≤ C3|y|p−2 for every y ∈ R3

where Cj are positive constants (1 ≤ j ≤ 3), 7
3 < p ≤ 3 and |∇f(y)|2 =∑3

i=1 |∇fi(y)|2.

Remark 1.1. In the simplest case, that is, when the medium is isotropic, the
constants aijkh are

aijkh = λδijδkh + µ
(
δikδjh + δihδjk

)
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where λ and µ are Lamé’s constants (µ > 0, λ + µ > 0). Furthermore, (1.4) holds
with C0 = µ > 0 and

∑3
i,j=1

∂
∂xi

(
Aij

∂u
∂xj

)
reduces to µ∆u + (λ + µ)∇ div u.

Remark 1.2. Due to the symmetry conditions on the numbers aijkh it follows that
A∗

ij = Aji .

2. The linear case

In this section we consider the linear problem

utt −
3∑

i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
+ ut = 0 in Ω× R

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω
u = 0 on ∂Ω× R

(2.1)

Using standard semigroup theory we can easily prove the following result.

Theorem 2.1. Let (u0, u1) ∈ [H1
0 (Ω)]3 × [L2(Ω)]3 and Aij satisfy assumption

(H1). Then, there exist a unique (weak) solution u of problem (2.1) such that
u ∈ C

(
R; [H1

0 (Ω)]3
)
∩C1

(
R; [L2(Ω)]3

)
. If (u0, u1) ∈ [H2(Ω) ∩H1

0 (Ω)]3 × [H1
0 (Ω)]3,

then, there exist a unique (strong) solution u of problem (2.1) such that

u ∈ C
(
R; [H2(Ω) ∩H1

0 (Ω)]3
)
∩ C1

(
R; [H1

0 (Ω)]3
)
∩ C2

(
R; [L2(Ω)]3

)
.

Here Hm(Ω) denotes the usual Sobolev space of order m in Ω and H1
0 (Ω) ={

u ∈ H1(Ω), u
∣∣
∂Ω

= 0
}
. Now, we want to devote our attention to the asymptotic

behavior of the total energy E(t) given by (1.2). Our result in this case is as follows.

Theorem 2.2. Let (u0, u1) ∈ [H1
0 (Ω)]3× [L2(Ω)]3 and assume that the initial data

satisfy the condition ∫
Ω

|x|2|u0 + u1|2 dx < +∞. (2.2)

Then, there exist a positive constant C such that

E(t) ≤ CI0

(
1 + |t|

)2 for every t ∈ R,∫
Ω

|u(x, t)|2 dx ≤ CI0

(
1 + |t|

)−1 for every t ∈ R

where I0 = ‖u0‖2[H1(Ω)]3 + ‖u1‖2 + ‖| · |(u0 + u1)‖2 and ‖g‖2 =
∑3

j=1

∫
Ω
|gj |2 dx

whenever g = (g1, g2, g3) ∈ [L2(Ω)]3.

As far as we know, results of this type for exterior domains are known only for
scalar wave equations and most of them require geometrical conditions on the ob-
stacle (like star-shaped condition). We need some preliminary lemmas. Obviously,
is sufficient to prove Theorem 2.2 for t ≥ 0.
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Lemma 2.3. Let (u0, u1) ∈ [H2(Ω) ∩ H1
0 (Ω)]3 × [H1

0 (Ω)]3. Then, the solution
of (2.1) satisfies, for any t ≥ 0,

E(t) +
∫ t

0

∫
Ω

|us(x, s)|2 dx ds = E(0), (2.3)∫ t

0

∫
Ω

(1 + s)|us(x, s)|2 dx ds + (1 + t)E(t) = E(0) +
∫ t

0

E(s) ds, (2.4)∫ t

0

∫
Ω

3∑
i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx ds +

1
2

∫
Ω

|u(x, t)|2 ds

=
1
2
‖u0‖2 +

∫
Ω

u1 · u0 dx−
∫

Ω

ut · u dx +
∫ t

0

∫
Ω

|us|2 dx ds,

(2.5)

∫ t

0

∫
Ω

(1 + s)
3∑

i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx ds + (1 + t)

∫
Ω

|u|2 dx

≤ C +
1
2

∫ t

0

∫
Ω

|u|2 dx ds,

(2.6)

where C is a positive constant which depends only on E(0) and ‖u0‖.

Proof. Equality (2.3) follows directly from (1.3) by integration over [0, t]. Also,
from (1.3) it follows that

(1 + t)
dE

dt
= −

∫
Ω

(1 + t)|ut|2 dx

that is, ∫
Ω

(1 + t)|ut|2 dx = − d

dt

{
(1 + t)E(t)

}
+ E(t). (2.7)

Integration of this equality over [0, t] proves (2.4). Next, we take the inner product
in [L2(Ω)]3 of system (2.1) with u to obtain

d

dt

∫
Ω

ut · u dx−
∫

Ω

3∑
i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
· u dx +

1
2

d

dt

∫
Ω

|u|2 dx =
∫

Ω

|ut|2 dx. (2.8)

Using the divergence theorem and the boundary conditions we know that∫
Ω

3∑
i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
· u dx = −

∫
Ω

3∑
i,j=1

Aij
∂u

∂xi
· ∂u

∂xj
dx.

Substitution of the above identity into (2.8) and integration over [0, t] proves (2.5).
To prove (2.6), we proceed as above: Let us take the inner product in [L2(Ω)]3 of
system (2.1) with (1 + t)u and use the divergence theorem to obtain

1
2

d

dt

∫
Ω

t|u|2 dx + (1 + t)
∫

Ω

3∑
i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx

= (1 + t)
∫

Ω

|ut|2 dx +
1
2

∫
Ω

|u|2 dx− d

dt

∫
Ω

(1 + t)ut · u dx.
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Integration of this equality over [0, t] and using Holder’s inequality implies∫ t

0

∫
Ω

(1 + s)
3∑

i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx ds +

t

2

∫
Ω

|u|2 dx

≤
∫

Ω

u1 · u0 dx +
∫ t

0

∫
Ω

(1 + s)|us|2 dx ds +
1
2

∫ t

0

∫
Ω

|u|2 dx ds

+
1 + t

4

∫
Ω

|u|2 dx + (1 + t)
∫

Ω

|ut|2 dx .

(2.9)

From (2.4) and (2.5) in Lemma 2.3, we know that∫ t

0

∫
Ω

(1 + s)|us|2 dx ds ≤ E(0) +
∫ t

0

E(s) ds (2.10)

and ∫ t

0

∫
Ω

3∑
i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx ds +

1
4

∫
Ω

|u(x, t)|2 dx

≤ 1
2
‖u0‖2 +

∫
Ω

u1 · u0 dx +
∫

Ω

|ut|2 dx + E(0)− E(t).

(2.11)

From the above inequality, and using again (2.3), we deduce that

2
∫ t

0

E(s) ds +
1
4

∫
Ω

|u|2 dx ≤ 2E(0) +
1
2
‖u0‖2 +

∫
Ω

u1 · u0 dx. (2.12)

Using the estimates (2.10), (2.11) and (2.12) we obtain from (2.9) the inequality∫ t

0

∫
Ω

(1 + s)
3∑

i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx ds +

(1 + t)
4

∫
Ω

|u|2 dx

≤ 3
∫

Ω

u1 · u0 dx + 5E(0) + ‖u0‖2 +
1
2

∫ t

0

∫
Ω

|u|2 dx ds + 2(1 + t)E(t).

(2.13)

It remains to estimate 2(1 + t)E(t). Observing that

d

dt

{
(1 + t)E(t)

}
= E(t) + (1 + t)

dE

dt
≤ E(t).

Consequently

2(1 + t)E(t) ≤ 2E(0) + 2
∫ t

0

E(s) ds ≤ 4E(0) +
1
2
‖u0‖2 +

∫
Ω

u1 · u0 dx.

Substitution of this inequalit into (2.13) completes the proof �

Lemma 2.4. Let (u0, u1) ∈ [H2(Ω)∩H1
0 (Ω)]3× [H1

0 (Ω)]3 and (u0, u1) satisfy (2.2).
Then the solution u of problem (2.1) satisfies∫

Ω

|u|2 dx +
∫ t

0

∫
Ω

|u|2 dx ds ≤ ‖u0‖2 +
4
C0

∫
Ω

|x|2|u0 + u1|2 dx

where C0 is the positive constant which appears in (1.4).

Proof. First, let us observe that whenever uj ∈ H1
0 (Ω) then Hardy’s inequality

states that ∫
Ω

|uj |2

|x|2
dx ≤ 4

∫
Ω

|∇uj |2 dx.
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Therefore, u = (u1, u2, u3) satisfies

∫
Ω

|u|2

|x|2
dx ≤ 4

∫
Ω

3∑
i,j=1

|∂uj

∂xi
|2dx ≤ 4

C0

∫
Ω

3∑
i,j=1

Aij
∂u

∂xj
· ∂u

∂xi
dx (2.14)

due to (1.4). Let w(x, t) =
∫ t

0
u(x, s) ds. It follows that w(x, t) satisfies the equation

wtt −
3∑

i,j=1

∂

∂xi

(
Aij

∂w

∂xj

)
+ wt = u0 + u1 in Ω× R+

w(x, 0) = 0, wt(x, 0) = u0(x) in Ω

w = 0 on ∂Ω× R+

(2.15)

Let us consider the inner product in [L2(Ω)]3 of the above equation with wt and
use the divergence theorem to obtain

1
2

d

dt

∫
Ω

{
|wt|2 +

3∑
i,j=1

Aij
∂w

∂xj
· ∂w

∂xi

}
dx +

∫
Ω

|wt|2 dx =
d

dt

∫
Ω

(u0 + u1) · w dx.

Integrating this equality over [0, t], using Hölder’s inequality and (2.14) implies that

1
2

∫
Ω

{
|wt|2 +

3∑
i,j=1

Aij
∂w

∂xj
· ∂w

∂xi

}
dx +

∫ t

0

∫
Ω

|ws|2 dx ds

=
∫

Ω

(u0 + u1) · w dx +
1
2
‖u0‖2

≤
( ∫

Ω

|x|2|u0 + u1|2 dx
)1/2( ∫

Ω

|w|2

|x|2
dx

)1/2

+
1
2
‖u0‖2

≤
( 4
C0

)1/2
( ∫

Ω

3∑
i,j=1

Aij
∂w

∂xj
· ∂w

∂xi
dx

)1/2( ∫
Ω

|x|2|u0 + u1|2 dx
)1/2

+
1
2
‖u0‖2

≤ 1
4

∫
Ω

3∑
i,j=1

Aij
∂w

∂xj
· ∂w

∂xi
dx +

4
C0

∫
Ω

|x|2|u0 + u1|2 dx +
1
2
‖u0‖2.

This inequality proves Lemma 2.4 because wt = u. �

Proof of Theorem 2.2. It follows from Lemmas 2.3 and 2.4 that

∫ t

0

∫
Ω

(1 + s)
3∑

Aij
∂u

∂xj
· ∂u

∂xi
dx ds + (1 + t)

∫
Ω

|u|2 dx ≤ CI0 (2.16)

for any t ≥ 0. Observing that

d

dt

{
(1 + t)2E(t)

}
= 2(t + 1)E(t) + (1 + t)2

dE

dt
≤ 2(1 + t)E(t)
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it follows that

(1 + t)2E(t) ≤ E(0) + 2
∫ t

0

(1 + s)E(s) ds

≤ E(0) + CI0 +
∫ T

0

∫
Ω

(1 + s)|us|2 dx ds

≤ 2E(0) + CI0 +
∫ t

0

E(s) ds ≤ C̃I0 .

Here we used Lemma 2.3 and (2.12), with C̃ a positive constant. This completes
the proof of Theorem 2.2. �

Remark 2.5. It is quite interesting to mention here that a similar procedure to
the one presented above was done by the first author (M.F) in [1] for the Maxwell
equations in exterior domains and the requirement (2.2) was not needed in order
to obtain uniform decay rates.

Remark 2.6. The above procedure could be extended to include the anisotropic
case, that is, when the coefficients aijkh do depend on each x ∈ Ω. In that case
Aij = Aij(x) and assumptions (a) and (b) would be required to be valid for each
x ∈ Ω with C0 > 0 independent of x ∈ Ω. As it is clear in the proof of Lemma 2.3
additional assumptions on the behavior of partial derivatives ∂

∂xi
Aij(x) would be

required to arrive to the conclusion of Theorem 2.2.

3. The semilinear problem

This section, we apply the results obtained in Section 2 to study the asymptotic
behavior of the solutions of the semilinear model. We will sketch the proof that for
small enough initial data the solution of problem (1.1) exists globally and enjoys
the same rate of decay as t → +∞ as the solution of the linear model (2.1). We will
assume that f satisfies all conditions given in (H2). Local existence will be done via
contraction arguments and the global existence as well as the asymptotic behavior
using the decay rates for the linear part obtained in Section 2. Due to the character
of the nonlinearity in problem (1.1) we will require more regular solutions. First,
let us rewrite problem (1.1) as a first order evolution system:

dU

dt
= AU + F (U), U(0) = U0 (3.1)

where U = (u, ut), U0 = (u0, u1), F (U) = (0, f(ut) + u) and A with domain
D(A) = [H2(Ω) ∩H1

0 (Ω)]3 × [H1
0 (Ω)]3 given by

A(u, v) =
(
v,

3∑
i,j=1

∂

∂xi

(
Aij

∂u

∂xj

)
− u− v

)
for every (u, v) ∈ D(A). The operator A is the infinitesimal generator of a C0 group
of operators {T (t)}t∈R in the Hilbert space X = [H1

0 (Ω)]3 × [L2(Ω)]3. The main
result of this section for the solution of problem (1.1) will be present with initial
data with compact support. However, it seems to us that using recent work due
to Todorova and Yordanov [12] and Ikehata and Matsuyana [3] for the scalar wave
equation then our result may be improved for initial data satisfying only (2.2). We
want to prove the following result.
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Theorem 3.1. Assume condition (H1) and (H2). Let (u0, u1) ∈ D(A2) with com-
pact support. Then, there exist δ > 0 such that if Ĩ < δ then problem (1.1) has a
unique global solution (u, ut) such that

(u, ut) ∈ C(R;D(A2)) ∩ C1(R;D(A)) ∩ C2(R;X)

and satisfies ∫
Ω

|u|2 dx ≤ CĨ
(
1 + |t|

)−1 ∀t ∈ R

E(t) + E1(t) + E2(t) ≤ CĨ
(
1 + |t|

)−2 ∀t ∈ R,

where E(t) is given by (1.2) and E1 and E2 will be given by (3.7) and (3.9) and
C > 0 is a positive constant. Here Ĩ depends only on the Sobolev norms (up to
order three) of the initial data.

First, we sketch the proof of existence of a local solution. Let T > 0 and consider
the space

Y (T ) = C
(
[0, T ];D(A2)

)
∩ C1

(
[0, T ];D(A)

)
∩ C2

(
[0, T ];X

)
with norm

‖U‖Y (T ) = sup
[0,T ]

‖U(t)‖D(A2) + sup
[0,T ]

‖Ut(t)‖D(A) + sup
[0,T ]

‖Utt(t)‖X . (3.2)

Clearly Y (T ) is a Banach space. Let U = (u, v) ∈ Y (T ). Using our assumptions
(H2) on f and the embedding H1

0 (Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ 6 and H2(Ω) ↪→ L∞(Ω)
we obtain the estimates

‖f(v)‖ ≤ C‖v‖p
[L2p(Ω]3 ≤ C‖v‖p

[H1
0 (Ω)]3

,

‖∇f(v)‖ ≤ C‖v‖p−1
[H2(Ω)]3‖v‖[H1

0 (Ω)]3 ,

‖ ∂2f(v)
∂xi∂xj

‖ ≤ C‖v‖p
[H2(Ω)]3 , i, j = 1, 2, 3.

We recall that ‖g‖2 =
∑3

j=1

∫
Ω
|gj |2 dx whenever g = (g1, g2, g3) ∈ [L2(Ω)]3. The

above estimates imply

f(v) ∈ C
(
[0, T ]; [H2(Ω) ∩H1

0 (Ω)]3
)
.

Now, we claim that f(v) ∈ C1
(
[0, T ].[H1

0 (Ω)]3
)
∩ C2

(
[0, T ]; [L2(Ω)]3

)
. In fact,

d

dt
f(v) =

(
∇f1(v) · vt,∇f2(v) · vt,∇f3(v) · vt

)
.

Therefore, using assumption (H2) and Hölder’s inequality we obtain

‖ d

dt
f(v)‖2 ≤

∫
Ω

3∑
j=1

|∇fj(v) · vt|2 dx

≤ C

∫
Ω

|v|2(p−1)|vt|2 dx

≤ C‖vt‖2[L2p]3‖v‖
2(p−1)
[L2p]3

≤ C‖vt‖2[H1
0 ]3‖v‖

2(p−1)

[H1
0 ]3

.
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Similarly, we can estimate

| ∂

∂xj

( d

dt
f(v)

)
| ≤ C|vt||

∂v

∂xj
||v|p−2 + C| ∂vt

∂xj
||v|p−1

for some positive constant C. Consequently,

‖ ∂

∂xj

( d

dt
f(v)

)
‖ ≤ C‖v‖p−1

[H2]3‖vt‖[H1
0 ]3

for j = 1, 2, 3. It follows from the above discussion that

f(v) ∈ C1
(
[0, T ].[H1

0 (Ω)]3
)
.

By a similar procedure we can prove that f(v) ∈ C2
(
[0, T ]; [L2(Ω)]3

)
which proves

our claim. Thus, whenever we consider an element Ũ = (ũ, ṽ) ∈ Y (T ) then, the
nonlinearity F (Ũ) =

(
0, f(ṽ) + ũ

)
belongs to

C1
(
[0, T ];D(A)

)
∩ C2

(
[0, T ];X

)
.

It follows by semigroup theory that the nonhomogeneous problem
dU

dt
= AU + F (Ũ), U(0) = U0 = (u0, u1) (3.3)

has a unique (local) solution U = (u, v) ∈ Y (T ) provided U0 ∈ D(A2).

Lemma 3.2. Assume (H1) and (H2). Let U0 = (u0, u1) ∈ D(A2). Then, there
exist T0 > 0 such that problem (1.1) has a unique solution U = (u, ut) belonging to
the space

C
(
[0, T0];D(A2)

)
∩ C1

(
[0, T0];D(A)

)
∩ C2

(
[0, T0];X

)
.

Sketch of proof. We consider the map Φ: Y (T ) 7→ Y (T ) given by Φ(Ũ) = U where
U is the solution of (3.3) and we will prove that Φ has a unique fixed point in
Y (T ) as long as we choose T sufficiently small. We achieve this in the following
way: Using the formula of variation of parameters and our assumptions of f we can
prove that the solution U of (3.3) satisfies

‖U‖Y (T ) ≤ C(U0) + CT
{
‖Ũ‖p

Y (T ) + ‖Ũ‖Y (T )

}
(3.4)

where C(U0) depends only on the norm ‖A2U0‖X and the Sobolev norms (up to
order three) of U(0) and Ut(0). Next, we choose K ≥ 1 and consider the set

BK =
{
Ũ ∈ Y (t); Ũ(0) = U0, Ũt(0) = U1, ‖Ũ‖Y (T ) ≤ K

}
where

U1 =
(
u1,

3∑
i,j=1

∂

∂xi

(
Aij

∂u0

∂xj

)
− u0 − u1

)
.

We claim that Φ(BK) ⊆ BK , if we choose T small and K large. In fact, let Ũ ∈ BK

then, from (3.4) we obtain

‖U‖Y (T ) ≤ C(U0) + CT
{
Kp + K

}
.

Now, we choose K such that C(U0) ≤ K/2 and T > 0 such that T < [2C(Kp−1 +
1)]−1. Thus ‖U‖Y (T ) ≤ K. Obviously U(0) = U0 and Ut(0) = U1 . Using the
semigroup properties and the formula of variation of parameters we can prove that
Φ is a contraction map, that is for any Ũ and W̃ belonging to BK we have

‖Φ(Ũ)− Φ(W̃ )‖Y (T ) ≤ α‖Ũ − W̃‖Y (T )
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where 0 < α = α(K, T ) < 1 as long as we choose K large and T > 0 sufficiently
small. This proves Lemma 3.2. �

Next we prove Theorem 3.1. First, we extend the local solution we found in
Lemma 3.2 to the maximal interval of existence [0, Tmax). Technically it will be
more convenient to rewrite problem (1.1) as

dU

dt
= ÃU + F̃ (U), U(0) = U0 = (u0, u1) (3.5)

with

Ã(u, v) =
(
v,

3∑
i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)
− v

)
and F̃ (U) = (0, f(ut)) where U = (u, v), v = ut. Let {S(t)} be the semigroup
associated to the generator Ã. Then Theorem 2.1 tell us that the solution of the
linear equation satisfies

E(t) ≤ CI0

(
1 + t

)−2 ∀t ≥ 0. (3.6)

In this article, we denote by C various positive constants which may vary from line
to line. Let v = ut . Taking the derivative in time of equation (2.1) we deduce that
v satisfies

vtt −
3∑ ∂

∂xi

(
Aij

∂v

∂xi

)
+ vt = 0 in Ω× [0,∞)

v(x, 0) = u1(x), vt(x, 0) =
3∑ ∂

∂xj

(
Aij

∂u0

∂xi

)
− u1(x)

v = 0 on ∂Ω× [0,+∞)

Applying the same reasoning as in the proof of Theorem 2.2,

E1(t) =
1
2

∫
Ω

{
|v1|2 +

3∑
i,j=1

Aij
∂v

∂xj
· ∂v

∂xi

}
dx ≤ CI1(1 + t)−2 (3.7)

with v = ut, where I1 depends on the Sobolev norms (up to order two) of the initial
data and the quantity

∫
Ω
|x|2

∣∣ ∑3
i,j=1

∂
∂xj

(
Aij

∂u0
∂xi

)∣∣2dx. Thus, from the equation
(2.1) we also obtain∥∥ 3∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)∥∥2 ≤ C(I0 + I1)(1 + t)−2 (3.8)

Similarly, if w = vt = utt we obtain

E2(t) =
1
2

∫
Ω

{
|wt|2 +

3∑
i,j=1

3∑
i,j=1

Aij
∂w

∂xj
· ∂w

∂xi

}
dx ≤ CI2(1 + t)−2 (3.9)

where I2 depends on the Sobolev norm (up to order three) of the initial data and
the quantity

∫
Ω
|x|2

∣∣ ∑3
i,j=1

∂
∂xj

(
Aij

∂u1
∂xi

)∣∣2dx. Let Ĩ = I0 + I1 + I2 and K > 1 such
that

‖u0‖2 < KĨ, (3.10)

E(0) + E1(0) + E2(0) + ‖Lu0‖2 + ‖Lu1‖2 < KĨ, (3.11)
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where L =
∑3

i,j=1
∂

∂xj

(
Aij

∂
∂xi

)
.

We proceed to prove Theorem 3.1: Let (u, ut) be the local solution for the semi-
linear model (1.1) obtained in Lemma 3.2. Clearly, by continuity of the quantities
on the left hand side of (3.6), (3.7) and (3.9) then in an small interval [0, t) we will
have that

(1 + t)‖u(·, t)‖2 < KĨ, (3.12)

(1 + t)2
{
E(t) + E1(t) + E2(t) + ‖Lu(·, t)‖2 + ‖Lut‖2

}
< KĨ (3.13)

are valid. We want to prove that (3.12) and (3.13) hold for any t ≥ 0. To do this we
will choose K large and after Ĩ small. Suppose that (3.12) and (3.13) are not valid
for any T̃ “near” Tmax . Therefore, there must exist T ∈ [0, T̃ ] such that (3.12) and
(3.13) hold in [0, T ) but

(1 + T )‖u(·, T )‖2 = KĨ (3.14)

and/or

(1 + T )2
{
E(T ) + E1(T ) + E2(T ) + ‖Lu(·, T )‖2 + ‖Lut(·, T )‖2

}
= KĨ (3.15)

From (3.5) it follows that

U(t) = S(t)U0 +
∫ t

0

S(t− r)F̃ (r) dr.

Consequently, from Theorem 2.2 we deduce

E(t) ≤ CĨ(1 + t)−1 + C

∫ t

0

(1 + t + r)−1J(r) dr (3.16)

where J(r) = ‖f(ur)‖ + ‖| · |f(ur)‖. Using assumptions (H2) and Gagliardo-
Nirenberg’s inequality we obtain

‖f(ur)‖ ≤ C‖ur‖p
L2p ≤ C‖ur‖(1−θ)p

( ∫
Ω

3∑
i,j=1

Aij
∂ur

∂xj
· ∂ur

∂xi
dx

)θp/2

where 0 < θ = 3(p−1)
2p ≤ 1 because 7

3 < p ≤ 3. Due to (3.12)-(3.15) it follows that

‖f(ur)‖ ≤ C
{
KĨ(1 + r)−1

}(1−θ)p{
KĨ(1 + r)−1

}θp = CKpĨp(1 + r)−p (3.17)

for any r ∈ [0, T ]. Now we use finite propagation speed valid for the solution
of problem (1.1): If suppu0 ∪ suppu1 ⊆ {x ∈ R3, |x| ≤ R} then in the interval
of existence (u, ut) = (0, 0), if |x| ≥ C1t + R where C1 = ‖A‖

/√
C0, ‖A‖2 =∑3

i,j=1 ‖Aij‖2 and C0 is as in (1.4). We estimate

‖| · |f(ur)‖2 ≤ C

∫
Ω

|x|2|ur(x, r)|2p dx

= C

∫
Ω∩{|x|≤C1r+R}

|x|2|ur(x, r)|2p dx

≤ (C1r + R)2C‖ur(·, r)‖2p
L2p

and by Gagliardo-Nirenberg it follows that

‖| · |f(ur)‖ ≤ C(C1r + R)KpĨp(1 + r)−p (3.18)
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From (3.16), (3.17) and (3.18) we deduce

E(t) ≤ CĨ(1 + t)−1 + CKpĨp

∫ t

0

(1 + t− r)−1(1 + r)−p+1 dr

≤ (CĨ + CKpĨp))(1 + t)−1

(3.19)

for any t ∈ [0, T ]. Here we used a calculus type lemma (see [11, Lemma 7.4]). Using
the formula of variation of parameters we also obtain

‖u(·, t)‖ ≤ CI0(1 + t)−1/2 + C

∫ t

0

(1 + t− r)−1/2J(r) dr

where J(r) is as in (3.16). Due to our above calculation we get

‖u(·, t)‖ ≤ CI0(1 + t)−1/2 + CKpĨp

∫ t

0

(1 + t− r)−1/2(1 + r)−p+1 dr

≤ (CI0 + CKpĨp)(1 + t)−1/2.

Next, we differentiate in time equation (1.1) and use the same sequence of ideas
given above to obtain that v = ut satisfies

E1(t) ≤ C(Ĩ + Ĩp + KpĨp)(1 + t)−2

where E1(t) is given as in (3.7). Using the equation it follows that

‖Lu(·, t)‖ ≤ C(Ĩ + Ĩp + KpĨp)(1 + t)−2

for any t ∈ [0, T ]. Finally, we differentiate twice in time equation (1.1) and repeat
the above reasoning to obtain that w = vt = utt satisfies

E2(t) ≤ C(Ĩ + Ĩp + Ĩ2p−1) + KpĨp)(1 + t)−2, (3.20)

‖Lu(·, t)‖ ≤ C(Ĩ + Ĩp + Ĩ2p−1) + KpĨp)(1 + t)−2 . (3.21)

Collecting information from (3.19) up to (3.21), we have

(1 + t)‖u(·, t)‖2 ≤ C(1 + KpĨp−1)Ĩ , (3.22)

and
(1 + t)2

{
E(t) + E1(t) + E2(t) + ‖Lu(·, t)‖2 + ‖Lut‖2

}
≤ C

(
1 + Ĩp−1 + Ĩ2p−2 + KpĨp−1

)
Ĩ

(3.23)

for any t ∈ [0, T ] and some positive constant C. Now we choose K large so that
K > C and

Ĩ < min
{(K − C

3C

)1/p−1
,
(K − C

3C

)1/2p−2
,
(K − C

3CKp

)1/p−1
}

.

With this choice, we clearly have that

C
(
1 + Ĩp−1 + Ĩ2p−2 + KpĨp−1

)
< K.

Consequently from (3.22) and (3.23), we deduce that

(1 + t)‖u(·, t)‖2 < KĨ,

(1 + t)2
{
E(t) + E1(t) + E2(t) + ‖Lu(·, t)‖2 + ‖Lut‖2

}
< KĨ

for any t ∈ [0, T ] which is a contradiction with (3.14) and (3.15). It follows that
(3.12) and (3.13) should be valid for any t ∈ [0, Tmax); therefore, the solution of
(1.1) exists globally and decays at the desired rate.
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