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C H A P T E R  I

INTRODUCTION

1.1 Glossary of Symbols.

The symbol: means:

J

E1

E2

En

£

the set of counting numbers.

the set of all points on a straight 

line or the set of all numbers 

associated with these points.

the set of all points in a plane.

the set of all points in a three- 

dimensional space.

the set of all points in an n- 
dimensional space.

belongs to or is of the class of.

iff if and only if.

C° the set of all continuous functions.

implies.

1
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The symbol: means:

[a,b] the set of points such that a point 
x e [a,b], iff, x is a, x is b, or 

else x is between a and b, where 

a, b e E .

(a,b) the set of points such that a point 

x £ (a,b), iff, x is between a and 

b, where a, b £ E*.

Com 1 domain of

V neighborhood.

V* deleted neighborhood.

V the del operator.

D f

1.2 Definitions.

the derivative of f.

The statement that: means:

1. a set A is a subset A and B are each sets such that if
of the set B, denoted 

by A C  B
x £ A, then x E B.

2. A ■ B A and B are each sets such that

A C  B and B C  A
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The statement that: means:

3. A U B is the union of A U B is the set of all points x

two point sets A and B such that x e A or x e B.

4. Art B is the intersec­ Art B is the set of all points x

tion of two point sets such that x e A and x e B.

A and B

5. V(x;r) is a neighbor­ V(x;r) is the set of all points

hood of a point x e En y e En such that if r > 0, then 

|y - x[ < r.

6. V*(xjr) is a deleted V*(x:r) is the neighborhood V(x:r)
neighborhood of a point minus the point x.

x e En

7. x is an accumulation x is a point in En such that every

point of a set S e En HP*deleted neighborhood V*(x:r) of x 

contains at least one point of S.

8' j m 1*2,3,...,n, r 1, if i - j
is the Kronecker delta a \ » i,j “ 1,2,3,...,n. 

<•0, if i 4 j

9. a function f from En f is defined in a neighborhood V(x;r)

to E* is differentiable of x and there exists a vector a

at a point x (independent of h) such that for any 

point x + 1i of V*(xjr), 

f (x + ?i) * f(x) + a’li + ?(x;h)*li,

where $(x;K) * t>.
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Notation: The term a*h is called the differential of f at x and h

•$»*and is denoted by d f(x;h). The vector a is called the derivative 
of f at x and is denoted by D f(x).

1.3 Algebra of Vectors.

The statement that: means:

Vn is an n-dimensional 

vector space

Vn is the set of all n-tuples of 

numbers which belong to specified 

by x - (xj,x2,...,xn), where x^ £ E ,

k = l,2,...,n, and are called vectors.

x + y is the sum of two x + y = (Xj+yj,x2+y2>...,xn+yn).
vectors, x ■ (x^,x2>...,xn)

and y - (yr y2,.*. ,yn),
each of which belongs to
Vn , n e J,

r x is the product of r r x * (rxj,rx2,...,rxn).

and x, where r £ E^ and 

x * Cx^»x2’* * * »*n) ^ V , 
n £ J,

x ■ y, where x^ = y^, for all k » l,2,...,n.

x ■ (Xj,x2,...,xn) and

y - (y1»y2>“ **yn)» each
of which belongs to Vn, 

n £ J,
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The statement that: means:

x ~ y is the difference 
of two vectors

x ** (x. )Xi<i • • • ,x ) andl z n
y ■ ^ 1 ^ 2 .... yn)» each
of which belongs to Vn, 
n e J,

X - y = (xr y p X 2-y2.... V V *

|x| is the absolute value
ISI - [ ? *k2 f  •of the vector

x - (xj'Xj.... xn) e Vn,
n e J,

t k«l k J

$ is the zero vector 0 is the vector such that |t>| * 0.

u is a unit vector u is the vector such that |u| ■ 1.

a set of vectors 1) u , i * l,2,3,...,k, are linearly

V  u2, tt3, . . . uk independent, and

constitutes a basis 2) each vector of Vn can be expressed
in Vn as a linear combination of the

u_£} i ® * > )k*

V is the del operator V is the operator
in E3 **► “►u- D + u~ D + u* D j where 1 Xj 2 «2 3 x3

4* -f 3 Uj, u2, u3 is a basis in E .
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2.4 Assumed Properties.

QProperty 1. If each of x and y e V , then x + y E v .

Property 2. If each of x and y e V , then x + y * y + x,

Property 3. If each of x, y, and z e Vn , then 

x + (y + z) = (x + y) + z.

^

Property 4. If x e V , and 0 is the zero vector, then x + 0 * x.

Property 5. If x e Vn, and r e e \  then r x e Vn,

Property 6. If x £ VR, then (1) x => x.

^

Property 7. If r, s e E , and x e V , then (r + s) x = r x + s x.

Property 8. If r e Ej, and x, y each e Vn, then 

r (x + y) * r x + r y.

Property 9. If x e V , n e J, then |- x|

Property 20. If x e Vn, n e J, and c e E^, then |c x| * |c| |x|

Property 12. If x and y e V , n e J, then |x + y| <_ |x| + |y|.

Scalar Properties.

Definition. The statement that x*y is the scalar (dot) product of 

two vectors x « (xj,x2»...,xr) and y ■ (y1,y2»*»*»yn)» each of which

e Vn , n e J, means x*y *» E x^ y^.
k»l
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Property 12. If x ana y each e V , n e J, then x#y * y*x. 

Property 13. If x and y each e Vn, n e J, and r e E*, then
.*» «*. -v(r x)*y = r (x*y).

Property 14. If x, y, and z each e Vn, n e J, then 

x*(y + z) « x»y + x*z.

Property 15. If x e Vn, n e J, then x*x >_ 0, and x*x * 0, Iff,
«► ■£ x * 0.

Property 16. If x and y e Vn, n e J, then jx»y| <, |x| |y|, and 

|x*yI * |x| jyJ, Iff, x - 0, y » 0, or x = y.

Properties of Vector Cross Products.

Definition. The statement that x x y is the vector cross product of
. N _ . t /_ . \ „ „3two vectors -*X * (x21

means
•*

ui u2 u3
XXy m xi CM x3

yi y2 y3

x2 x3 X1 x3 X1 x2

y2 y3
U1 +

yl y3
u2 +

yl y2
u3 ’

Property 17. If x and y each e V , then x x y ■ - (y x x).

3 1Property 18. If x and y each e V , and r e E , then
(r x) x y » r (x x y).

Property 19. If x, y, and z each e V , then
XX  (y + z) «* (x X y) + (x X z),
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Property 20. If x and y each e V^, then |x x y| £  |xj | y(.

-*• «► •*» 3Property 21. If x, y, and z each e V
-*• -»• -* x x (y x z) »

then

1.5 Assumed Theorems.

n 11.5.1 Theorem. If a function f from E to E is differentiable
*■* , _ _0 at x, then f e C at x.

1.5.2 Theorem.

1. f is a function from En to E^.

2. g is a function from En to E*.

3. f is differentiable at a point x in E .

4. g is differentiable at x.
««►—  y f + g and f g are differentiable at x, and 

d [f + g] (x;li) = d f(x;&) + d g(x;S),

t [f + g](x) « D f(x) - D g(x),

d [f g] (x;S) ® f(x) d g(xj^) + g(x) d f(x;$); and

D If g] (x) ■ f(x) D g(x) + g(x) D f(x).

1.5.3 Theorem.

1. f is a function from En to E^.
2. f is differentiable at x e En.

3. g is a function from E to E .

4. g is differentiable at f(x).

"" ~S  g • f is differentiable at x, and
d [g o f] (x;-&) » d g(f(x);df(x;1»)), and 

$ Ig ® f] (x) » D g(f (x)) D f (x) .
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1.5.4 Mean Value Theorem.

1. f(x) E C°, a <. x b.
2. f’(x) exists, a < x < b.
..\ f (b) - f (a) = (b - a) f * (a + 0 (b - a)), where 0 < 0 < 1.

1.5.5 First Fundamental Theorem of Integral Calculus. 

If f e C° on an interval I, and a, t e I, then

D / f(x) d x * f(t), t e I, 
a

1.5.6 Second Fundamental Theorem of Integral Calculus. 
If F' e C° on an interval I and a, b E I, then

/ F'(x) d x - F(b) - F(a),
a

1.5.7 Theorem. 
,o1. f(x) E C , a <  it < b.

•— .S f(x) is uniformly continuous on [a,bj.

1.5.8 Theorem.
1. u(x) ■ g(x), a < x < b.
2. y(x) “ f(u), u(a) <. u ^  u(b).

3. g’(x) exists, a <, x b.
4. f f(u) exists, u(a) <, u <. u(b). 
 S y ’(x) - f'(u) g’(x).



C H A P T E R  II

LIMITS AND CONTINUITY OF 
VECTOR-VALUED FUNCTIONS OF A VECTOR

2.1 Definitions.

2.1.1 Definition. The statement that 1 is a vector-valued function 

of a vector means I is a correspondence from a set A of vectors to a 

set B of vectors such that to each vector a e A, there corresponds 
only one vector 1(a) e B: i.e., I is a mapping of the set A into the 
set B. If A is a set in En and B is a set in E10, then we call 1 a 
function from En to Em . If 1 is a function from En to Em , then 

1(1) » (fj(x), f2(x), f3(x), . . . »  fffl(x)), where ffc(x),
k « l,2,3,...,m, is a function from En to E^ with domain Dom 1 and 

rule of correspondence that f^x) is the k component of the vector 
f(x).

2.1.2 Definition. The statement that S is the limit of the function 

1(1) at a, written i*s t(h - b, means a is an accumulation pointX̂ B

of Dom 1 and if e > 0, there exists a S > 0 such that if x e Dom 1 
and 0 < |x - a| < 6, then |l(x) - 1| < e.

2.1.3 Definition. If 1 and g are two vector-valued functions from
t i n t  n l  ^ -fE to E , and <j> is a function from E to E , then f + g, f - g, f*g,

1 x g, and <(> 1 are defined as follows:
10
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The domains of f ± g, f*g, and f x g are all I>om f A Dom g, and 
Dorn [<j> ?] is Dom $ A Dom ?; and
if x e Dom [? ± g], then [? ± g](x) * ?(x) ± g(x); and 

if x e Dom [?*g], then [?*g](x) • ?(x)»g(x); and
and g are functions from E to E , and x e Dom [f x g], then 

[? x g] (x) ■= f(x) x g(x); and

if x e Dom [<$> ?], then [<j> ?] (x) » <}>(x) t(x).

2.1.4 The statement that [? « g](x) is a vector-valued function
of a vector means if g(x) is a function from E to E and f is a

function from E10 to E^, then [? o g] (x) is a function from En to
lf% aM̂ft e>n|p*E*% with rule of correspondence [f o g](x) - f(g(x)), where 

Dom [f © g] is tx I x e Dom g, g(x) e Dom f}.

From the definitions of the operations above, it is seen quite 

easily that if I - (f^f^fj,... ,fn) and g - (g1,g2»g3»**-.gin)» 
then

? + g - (f1+g1,g2+g2,f3+g3,...,fln+gm),

1 - g * (fr gl,f2"g2’f3“83’**,,fiifgm)’

<p t ■ (<j>f 3,<|>f 2»<i>f3,.. • »$fj„)» where 4> f^ means the product of the

functions <(>(x) and f^Cx),

" J n  fk *k’

? * 8 - (*2*3“f3*2»f38r fl83»fl82"f2*l)-
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2.2 Limit Theorems.

2.2.1 Theorem.
1. £ ■ (b,,b9,...,b ) e Em .1 *2 m
2. ll(x) * (f. (x) ,f _(x),... ,f (x)) is a function from En to E1i c in
3. a is a point of accumulation of Dom ?.

4. ?(x) ™ b. x-*a

---\ fk(x) * f°r esch k ■ l,2,3,...,m.

,m

Proof:

Since l(x) » S, then given e > 0, there exists a 6 > 0 such that 

if x e Dom t and 0 < |x - a| < 6, then |?(x) - b| < e or

[ 2 (ffc(x) - bk)21 H » |f (x) - b| < e.
Lk®l J

Then, 2 <fk (x) " V *  < if 0 < |x - a| < 6. 
k®l

Hence, we can conclude that (fk(x) - bk) < e , k » l,2,3,...,m, 

and |fk(x) - bk | < e, k « l,2,3,...,m, if x E Dom f and 

0 < |x - aj <6.

Thus, fk (x) ** b^i k ■ 1,2,3,... ,m.

2*2*2 Theorem*

i« b * (h* «bnf • i • )b ) 0 E * l c m
2. ?(x) “ (f-(x),f9(x),...,f (x)) is a function from En to E®l c m

3. a is a point of accumulation of Dom ?.
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4* fv<*> * bk» where k » l,2,3,...,n.x*a iV A/ k

f (x) - b.l±$ *-■-+*
x-*-a

Proof:

Now, if f^(x) ■ b^, k ■ 1,2,3,...,m, then if e > 0, then 

corresponding to > 0, there exists <5̂  > 0 such that if x e Dom f 

and 0 < |x - a| < 6^, then |f^(x) - bjJ < ^  » k * 1»2>3>-••»®.

If we choose 6 = min {6^/, k ■ l,2,3,...,m, then, if x e Dom f and
0 < |x - a| < 6, then

IKS) - t| - [ j ; (fk<5> - V 2] 15 < [1 ^  ]' 88 e.

Thus, f(x) ■ b. * x+a.

2.2.3 Theorem.
1. a and $ are each vectors.
2. For each e > 0, (a - ? j < e.
-..\ a * b.

Proof:
Either a * b, or else a ^ b.
Let us assume that a ^ d , then a - b # 0, (a - bj j1 0, and we have 
|a - £| = d > 0, d e E1.
Let e - d, then from the hypothesis, |a - 1a| < d.
Hence, we have a contradiction, and thus we must reject our assump- 
tion and accept the only other possibility; i.e., that a * b.
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2.2.4 Theorem.

1. f and g are functions from En to Em.
2. a is an accumulation point of Dom f A Dom g.

3. &  1(1) - t-

i. it® g(5) - T.x-*a ®

& f«> * £  S* i ± i.
Proof:
Let f(x) » (f1(x),f2(x),...,fjn(x)),

g(x) - (g^xj.g^x)....8m (x))*

L ® (lf| y and

1 * (T1’T2....V -
Now, ?<x) ± g(x) ® (f1(x)±g1(x),f2(x)±g2(x),...,fm(x)±gm(x)).

From hypothesis (1) and 2.2.1, we know that f̂ (x) = L̂ ,

k **

Now, from hypothesis (2) and 2.2.1, we know that g^(x) * T^, 

k * 2)2|3)««*ffli*

Hence, |Jj (fk(x) * 8k<x)} * ^  * Tk’ k * 1»2*3.... «•

Thus,

iif (i(S) * i(5»

" (rt*£l ^ )±gl ^ ' ’ (£2^ ±82 ® J> • • • >

■ <■-: 4 T1* l2 4 t2........ \  1 V
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“ (Lj) 1*2 f • • * * ~ (Tj $ T2 > • • * 1 T^)

« L ± T •

Hence, (? ± g) (x) =■ L ± T

ill ?<s> * g *  s < s > .

2.2.5 Theorem.
1. l(x) and g(x) are each functions from En to E01.
2. a is an accumulation point of Dost f A Dorn g.

3. &  ?<;> - 1 .

4. g(x) = T.

itf P*g) <*> * iif ̂ <*> • iif 5<*)» l • t.x-*-a x+a

Proof:
Let f(x) ■ (f1<x),f2(x),...,fm(x)>, 

g(x) ■ (g1(x),g2(x),...,gm (x)),

£ - (I*1#L2.... Lffl), and

Now,
(?*g) (x) * fjgj + f2g2 + . . . + f ^ ,  where ffcgk» k ■ l,2,3,...,m, 

means Che products of the functions f^(x) and g^(x).

Hence,

(*•»)<*> - (fl«l + £2*2 +

4*1 ft x+a 1* + IHx+a '282
. + y $ f 8x-*a me



Hence,

iif (?•!) (i) - t-f - ?<S) • I *x-*-a x-*a

2.2.6 Theorem.
«► «*>» **► Yl 31. f(x) and g(x) are each functions from E n to E .

2. a is an accumulation point of Dots f H  Dos* g.

3. l(x) - t.

4. 16) = 1

ij; p  * a  &  - * * *•

Proof;
Let f(x) » (f1(x),f2(x),f3<x)), 

g(x) • (g1(x),g2(x),g3(x)), 

i B (Lj ,L2,L3), and 

T - (Tj .Tj.Tj).

Now, from hypothesis (1) and 2.2.1, we know that f^(x) 

k - 1,2,3.

Also, by hypothesis (2) and 2.2.1, we know that g^(x)

k = 1,2,3.
Now,

x 1) * ^2®3~^3®2>̂ 3®1_^1®3’̂ 1®2"^2®1^’

Thus,
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^J(f X |)(J> - ( ^ C f 2g3-f3g2>4 if(W £l % )4 if(fli!2-'£28l)5- 
Now, from the limit theorems regarding real-valued functions of 
vectors3 we know that

£f(? X a  (I) - a 2 Ij - I3 Tj, L3 Ij - lj I3, l, T2 - 12 Tj)

* £ x f .

2.2.7 Theorem.
1. f(x) is a vector-valued function from En to Em .
2. a is an accumulation point of Dorn f.

3. ? (x) ■ t>.x+a
t is unique.

Proof:
Either b is unique or else 0 is not unique.
Assume that b is not unique, then there exists a vector b 1 ^ b such

that * 2  » S ’, which means if e > 0, then corresponding to ,

there exists a 6* > 0 such that if a is an accumulation point of

Dom t, and 0 < |x - a| < 6’, then |f(x) - $ ’| < ^  .
Now, from hypothesis (3), we know that ?(x) « 1j, then correspond-

ing to "2, there exists a 6" > 0 such that if a is an accumulation

point of Dom f and 0 < |x - a| < 6", then |?(x) - b| < y  .

Choose 6 » min (6*,6”), then if 0 < |x - a| <6, then 
\t-P\ - \t - l(x) + l(x) -$»|

< |l(x) -$\ + If<S) - P\
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Hence, from this result, since b and b ’ are constant vectors, from 
2.2.2, we know that b' = b, which contradicts our assumption, and 
thus b is unique.

2.2.8 Theorem.
1. f is a vector-valued function from En to E™.
2. <(> is a real-valued function from En to E^.

3. a is an accumulation point of Dom ? A Dorn <p.

4. 1(5) - t

}  *(J) C(x) . l i .

Proof s

Now <f>(x) ?(x) - (<Kx)f1(x),<Kx)f2(x),...,<Kx)fin(x)). 

From hypothesis, f(x) * A and <j>(x) » B.

Let A ■ (Aj, A2, . . . »  Am), then

?<*) ■ (Aj, A2> • • . , A^), and 

*k(x) " Ak» k * l»2,3,...,n.

Hence, <j>(x) t(x) - (^(x)fj (x) ,<j)(x)f 2(x) ,... ,<Kx)fm (x))

■ fI < * > » (x) f 2 (x),... (x) fm (x) )

* (B A f̂ B A2 $ ♦ * * f B Affi)

“ B (Aj9 A21 • * * * Affl)

- B t.
Hence, the theorem is proved



2.3 Continuity Definitions.

2.3.1 Definition. The statement that a vector-valued function f
*■> ->*of a vector is continuous at the point a in Dorn f means for each 

e > 0, there exists 5£ > 0, such that if x e Dom f and Jx - a| < 6 
then Jl(x) - 1 (a) | < e.

Remark. In the case a is not an accumulation point of Dom f and 

if f(a) exists, then f is continuous at x » a. When a is an 
accumulation point of Dom 1, then the definition is equivalent to

£ * 1 6 )  - Id).

2.3.2 Definition. The statement that a vector-valued function f 
is continuous on a set S e Dom f means the restricted function ?g

(the set of values of 1 on the set S) is continuous, where 1_ isb
the function with domain, Dom 1 0  S, such that fg(x) ■ l(x), if 

x e Dom I H s .

2.4 Continuity Theorems.

2.4.1 Theorem.
1. 1 ■ (f.(x),f«(x),...,f (x)) is a function from En to E°.4 Z IQ

2. a e Dom 1.
3. t e C at x ■ a.
---S f^ e C° at x ■ a, where k * l,2,3,...,m.

Proof:
Since f E C at x » a, and a e Dom f, then for each e > 0, there 

exists a { > 0 such that if x e Dom 1 and |x - a| < 6 , thenCS» w



|l(x) - 1 (a)| < e.
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t
m -̂i %
E (fk(x) “ £^(a))ZJ ■ |l(i) - 1(a)| < e, where x e Dom 1

and |x - a| < 6 , so,

® -► -* o 2
r (fk(x) - fk(a)r < ez ,

k=l

(fkd) - fk(l))2 < e2, or

|fk(x) - fk(a)| < e, if x e Dom 1 and |x - a| < 6£.

Hence, e C° at x ■ a, k «■ l,2,3,...,m.

2.4.2 Theorem.

1. 1 » (f. (x) ,f0(x),... ,f (x)) is a function from En to Em.m

2. a e Dom 1.

3. f^ e C° at x • a, k ■ l,2,3,...,m.
. rt _0 -► *+--- \ f e C  at x * a.

Proof:

Since fj, e C° at x ■ a, k *= 1,2,3..... then if e > 0, then corre-
e fv\ 4, 4sponding to pp , there exists a 6^ > 0 such that if x e Dom f

and |x - a| < 6^ ,  then |fk(x) - ffc(a) | < .

Let 6 * min {5^^}, then if x e Dom 1 and |x - a| < 5, then

I ~ | ^ 1 f 2j 3* * * * *i&i and

|l(x) - 1 (1)1 » k "  (fk(l) - fk(l))2] h
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Therefore, |?(x) - f(a)| < e, if |x - a| < 6, and hence, 
f e e  at x *= a.

2.4.3 Theorem.
If the functions ?, g, from En to Em , are each continuous at 
x ■ a, then f + g is continuous at x «* a.

Proof:
Let f = (fj(x),f2(x),...,fin(x)), and

g - (g1(x),g2(x),...,gffl(x))

where x e E and x e Dorn f f\ Dorn g.

Now,

* + g » (fj + gr  f2 + g2, • • • , fm + gm).

Since ? and g e C° at x ® a, then f^ and g^, k ■ 1,2,3,... ,ia, e C°

at x « a, from 2.1.4.
Hence, the function f^ + g^, k ® 1,2,3,...,m, e cl

•>at x » a.
««►+ g is continuous at x fit •

2.4.4 Theorem.
If the functions ?, g, from En to E®, are each continuous at
*►*♦ ♦■*> -*■ •* x » a, then f - g is continuous at x « a.

Proof:
Let ? m (f2(x),f2 (x),...,fa (x)), and 

g » (gj(x),g2(x)....gm(x)),

where x e En and x e Dom ? 0 Dorn g.
Now,

? - g ■ (fj “ g2. f2 “ *2» • * ' » fm “ ^



Since ? and g E C° at x » a, then f^ and 

at x = a from 2.4.1.
Thus, the - g^, k » 1,2,3..... e C°

•jt “+• +Hence, f - g is continuous at x « a.

^ m 1*2,3,.

at x = a,

,m, e C°
22

2.4.5 Theorem.
If the functions f, g, from En to Em, are each continuous 
at x * a, then f • g is continuous at x * a.

Proof:
«*► «•)» *“►Let f B (f2(x),f2(x),•.•,fffl(x)), and

g - (g1(x),g2(x),...,gm(x)),

where x e En and x e Dorn f A  Dorn g. 
m

Now, f * g » £ fk gk *k*=l

Since f and g are each continuous at x *» a, then from 2.4.1, f^ 

and g^, k ■ l,2,3,...,m, are continuous at x ** a, and gv £ C

at x = a, k ■ 1,2,3,...,m.

k *k

m
Hence, E f. g. is continuous at x ■ a, and thus, 

k**l K
it + . . ■+■f • g is continuous at x * a.

2.4.6 Theorem.

If the functions f, g, from En to E , are each continuous at 
x » a, then f * g is continuous at x * a.

Proof:

Let I - (fj(x),f2(x),...,fffl(x)>, and 
g -  (g1(x),g2(x),...,gm (x)),
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Since f and g are each continuous at x * a, then from 2.4.1, and
*■>»are continuous at x « a, where k * l,2,3,...,m.

Hence, f283 - *382’ £383 ~ *383 ~ f2gl are each continuous at

x * a, and thus, f * g is continuous at x * a,

2.4.7 Theorem.
1. ? is a function from En to Em.
2. f e C at x ■ a.

3. 0 is a function from En to E^.
* , _o ■> -+4. <f> e C at x ■ a.

k ® 1,2,3,...,m.
Since we have a product of continuous real-valued functions of

Proof:
Let I « (fj, f2, f3, . . . , fm), then 

4> ? = Ofrfj, <|>f2, <j>f3, . . . , <J>fm).

Since <|> and ? are continuous at x "a, then e C° at x *■ a

by 2.4.1, k ** l,2,3,...,m, and <J>(x) f^Cx) e C° at x = a,* • * * $

vectors at x *» a, then by 2.4.2, f e C° at x - a.
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2.4.8 Lemma.

1. 1 is a continuous function from En to Em with domain D.
2. A is open relative to R » 1(D).
--- y 1*(A) * {x | l(x) e a } is open relative to D.

Proof:
Let x E 1*(A), and let y ■ l(x ).o o o
Since A is open relative to R and yQ e A, there exists a neighbor­

hood V(yQ;e) such that V(yQ;e)fl R C A .  Also, since 1 e C° at xq, 

corresponding to E > 0, there exists 6 > 0 such that x e V(x q j6) O  D 

implies 1(1) e V(yo;e)f) R C A .

Thus, V(x q ;6) H  D Is contained in 1*(A); and hence, 1*(A) is open 

relative to D.

2.4.9 Theorem.
1. 1 is a continuous function from En to Em .

-*2. E is any connected subset of Dom f.
-.. \ f(E) is a connected set.

Proof:
Let us assume E is the domain of f.
Suppose, then that f(E) is not a connected set. Then, there exist 
two disjoint sets A and B, both open relative to 1(E), such that 
f (E) « A U B.

By 2.4.8, the sets f*(A) and 1*(B) are open relative to E. Also, 

these sets are disjoint, and E « 1*(A U B) ■ 1*(A) U  f*(B). This 
means that E is not connected. Thus, we have a contradiction, and 
must conclude that 1(E) is a connected set.
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2.4.10 Theorem.

1. I is a function from En to Em.
2. x, y E Dom f.

3. |?(x) - ?(y)| < |x - y|, for all 
 S ? e C° in Dom 1.

Proof:
Suppose y e Dom ?.

«a|k>Let e > 0, then if x e Dom f, and we take 6 
|x - y| < 6 = e, then we have |?(x) - ?(y)| 
Hence, £ e C° at y e Dom t, and thus ? e C°

4̂

x, y e Dom f.

« e, then if

< I* - y| < e.
in Dom 1.



C H A P T E R  I I I

MATRICES

3.1 Definitions.

3.1.1 Definition. The statement that A is an m x n matrix of real 
numbers means A is a function with domain the set of pairs of integers 
{(i,j) | 1 < i < a, 1 ^  j ^  n} and with range in e\  and a function 
value A(i,j) is an entry of the matrix and will be denoted by ^, 
and where the matrix is described by displaying the entries in a 
rectangular array:

A

3.1.2 Definition. The statement that two matrices A and B are 
equal means A and B are each m x n matrices, and A(i,j) » B(i,j);
i.e., their corresponding entries are equal.

Remark. We will write the matrix A in the abridged notation:

A ■ (^ij)*  ̂B 1,2,3,...,m, j ° 1,2,3,..>,n.

3.1.3 Definition. The statement that A + B is the sum of two 

m x n matrices A «* (a^) and B *> (b^j), i ■ l,2,3,...,m,

26
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j - l,2,3,...,n, means A + B * (a^ + b^), i “ l,2,3,...,m,

j m 1 >2|3j•••jS*

3.1.4 Definition. The statement that r A is a matrix, where 
A - (a^), i m l,2,3,...,m, j * l,2,3,...,n, and r e E* means 
r A is the m * n matrix [r A](i,j) * r A(i,j), i * l,2,3,...,m,
j * 1,2,3,...,n.

3.1.5 Definition. The statement that 0 is the zero matrix means 

0 is the matrix (6^j) such that 0(1,j) “ 0, i « 1,2,3,...,m, 
j ~ 1,2,3,...,n.

3.1.6 Definition. The statement that - A is the additive inverse 
of an m x n matrix A means - A is the matrix such that 
[“ Aj (i, j) ■ — A(i, j), i ** 1,2,3,. ..,m, j * l,2,3,...,n.

Remark. We note that the vector space consisting of all 1 * n
1 umatrices of numbers of E is isomorphic to E : i.e., there is a one- 

to-one correspondence between the 1 * n matrices and the vectors in 
En such that the operation of addition and multiplication by a number 
of E* are preserved under this correspondence.

mifrtLet a - (a^, aj, . . . »  a^) correspond to A ■ (a^ a ^  ••• a^ )„.

iff, a^ « aij* *or j “ l,2,...,n. Then if a and b correspond to
A and B, respectively, then

a + b *> (a^ + b^, aj + bj» • ■ . * an + bR) corresponds to

A + B » (au +bu  a12+b12 * * * aln+bln^* an<i

r a » (râ , raj, . . . »  raQ) corresponds to

r A » (rau  raj2 ’ * * raln^°



28
Since 2 * n matrices have the characteristics of vectors in En, 
we will identify a 1 * n matrix with the corresponding vector;
1 x n matrices are called row vectors. In a similar manner, we can 

set up an isomorphism between the space of n x 1 matrices and En. 
Thus an n x 1 matrix may be identified with the corresponding 
vectors in En, and thus n x 1 matrices are called column vectors.
In general, the vector space consisting of all m x n matrices of

2 mtinumbers in E is isompophic to E .

3.1.7 Definition. The statement that A B is the product of an 
m * n matrix A and an n x p matrix B, m, n, p E J, means AB is the

m x p matrix C ■ such that cij
n
Z

k-1 ik Dkj» 1 ® 1,2,3,...,m,

5 1,2,3, » » i,P-

Remark. If A is a 1 * 1 matrix, the following one-to-one correspon­
dence follows: A corresponds to its single entry a^. We can see
that the operations of addition and multiplication are preserved 
under the correspondence between 1 x 1 matrices and the set of num­
bers of E*. Then, we can identify a 1 x 1 matrix with the numbers 
of E* which is its single entry.
If A is an 1 x n matrix and B is an n x 1 matrix, and a and b are 
corresponding vectors in En, then the scalar product a • S corre­
sponds to A B.

3.1.8 Definition. The statement that a real-valued function 
defined on a set ft of all matrices with entries from e\  denoted 
by ft ft, is a matrix norm means for all matrices A, B which belong 
to ft and numbers r of then



(1) IIAt! > 0, if A *  0 , and Well = 0;
(2) «r All - |r| IIAII;
(3) If A + BW <. UAH + NBlI, where A and B are each m x n matrices; and
(4) II A BB <_ HAH BBII, where A is an m * n matrix and B is an n * p 

matrix, m, n, p e J.

Remark. If we identify vectors in En with n x 1 matrices (or 1 x n 
matrices), then the matrix norm could be the Euclidean distance:
|x| > 0, if x ^ 0, and |(5| ■ 0;

|r x| - |*| Ix|;
|5 + 5I £ 1*1 + IyI (Triangle Inequality); and 
|x • y| <, |x| ]y| (Schwarz Inequality).
Also, for vectors in En, we may define a vector (matrix) norm by 

the rule llxll ■ |xj| + { j + • . . + lxnl-

We see very readily that this definition satisfies (1) - (4) of 
3.1.8. For example,
llx + yll - |xa + y2| + |x2 + y2| + . . . + |xn + yn |

£  i*3l + |y3l + l*2l + ly2l + • • • + l*J + lynl
<i*ll + «y».

3.1.9 Definition. The statement that a matrix A is the limit of

the matrix-valued function F at x, written F ■ A or f (y) “ A3c y *«x»

means, corresponding to each e > 0, there exists a 6 > 0 such that 

whenever y e Dorn F and 0 < |y - x| < 6, then IIf (y) - All < e.

29
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Remark. It should be observed that if F = (f^), 1 * 1,2,3,... ,1b, 
j = l,2,3,...,n, is an m x n matrix-valued function, then A is an 
m * n matrix.

3.2 Matrix Theorems.

3.2.1 Theorem.
1. A is an m x n matrix.
2. B is an n x p matrix.
3. C is a p x q matrix.

A (B C) (A B) C .
Proof:
A (B C) and (A B) C are each m * q matrices. 
Also, for i = 1,2,3,..in, and j = 1,2,3,. ..,q,

n
= z A(i,k)
k=l
n P» Z 
k**l aik Z

r»l

n P- Z Z a„
k-1 r*l ik

P n
= z
r«l

Z
k*=l aik

P r n= E 
r«l 2Lk«]i ai l

* Z [A B](i,r) C(r,j) 
r*»l

- [(A B) C](i,j) .
Thus, A(B C) - (A B) C .
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3.2.2 Theorem.

1. A Is an ro x n matrix.
2. B is an n x p matrix.
3. C is an n x p matrix.

--- y A (B + C) - A B + A C .
Proof:
A (B + C) and A B + A C are each m x p matrices.

For each (i,j) such that i * l,2,3,...,m and j » l,2,3,...,p, we 
have

n
tA(B + C)] (i,j) » Z A(l,k) [B + C](k,j) 

k»l

- X  aik <bk j + v

83 kf2 (aik bk J + aik ckj)

“ M  *ik ^  + k-3 "ik
- [A B + A C](i,j) .

Thus, A (B + C) = A B + A C .

3.2.3 Theorem.
1. A is an m x n matrix.
2. B is an m x n matrix.
3. C is an n x p matrix.

--- S (A + B) C * A C + B C .
Proof:
(A + B) C and A C + B C are each m x p matrices.
For each (i,j) such that i ■ 1,2,3,...,m and j ■ l,2,3,...,p we have
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n

[(A + B) Cl (i,j) - Z [A + Bj (i,k) C(k,j)
k»l

= <aik + bik) ckj

n
■ W k  + b ik ckj>

■ j j  *ik ^ + j 2 »ik =kj

- [A C + B C](i,j) .
Hence, (A + B) C - A C  + B C  .

3.2.4 Theorem.
1. A and B are each m x a matrices.
2. C and 0 are each n * p matrices. 
--- S (A + B) (C + D) = A C + B C

Proof:
Using the two preceding distributive laws,
(A + B) (C + D) « (A + B) C + (A + B) D 

• A C  + B C  + A D  + B D  . 
Hence, (A + B) (C + D) * A C t B C + A D +

3.2.5 Theorem.
The real-valued function defined on 

with real entries by the rule I All =

+ A D  + B D  .

we have

B D .

the set Q of all matrices 
* m n
Z Z a,. , where

Li=l j-1 1J ->

A is an m x n matrix, is a matrix norm.
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Proof:
If we identify the si * n matrix A e with a vector in Emn, then HAH 
is just the Euclidean length of this vector and properties (3), (2), 
and (3) are fundamental properties of length of a vector. To prove

tre A ■ (a^), B " ^jk^' ^ e nproperty (4) holds, if C - A B,

2 ? r m n 
«Air HBir - 2 2 f 2Li=l J-3 4c-l

m n n P
- 2 2 2 2 “iji**l j=l k=l r“l

and 11A Bll2 * Hell2 -
m
2

P
2 clri»l r*»l

m P r n8* 2 2 zi=l r«*l Lj-:
m n n

= 2 2 2
i=»l j=l k«=l

2 2  _ m n n p 2 2
Then, IIAIT HBir - IIA Bir = 2 2 2 2 a,/ b.

i=l j*l k-1 r=3 Kr

m n n p
- 2 2 2 2 a., b, a., b,
1-1 3-1 k-1 t-1 «  Jr lk *

m it n p „
m h £ 2 E E (a. • b* - ^ik ̂ .*r)

i»l j«l k«l r»l  ̂ ^
> 0.

Hence, B All2 II Bll2 .> HA Bll2 and JlA Bll <JlAH II Bll, so property (4) 
holds.

Remark. The matrix norm in 3.2.5 is called the Euclidean Matrix
Norm.
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3.2.6 Theorem.

1. A is an m * n matrix, m, n e J.
2. F is an m * n matrix-valued function of a vector.
3. x is a point of accumulation of Dom F.

F * A, iff, f,, - a.,x x ij ij
i ® 1,2,3,...,m, and j ® 1,2,3,...,

for each 

n.
Proof:

If F ■ A, then for any e > 0, there exists 6 > 0 such that

r m n %
llF(y) - AH * £ Z (f,.(x) - a ..)2 < e, whenever x e Dom F

4*1 j»i ^  «  J

and 0 < jy - x| < 6.
Hence, | ( y )  — â  ̂̂  ̂ for each i ® l,2,3,...,m, j * l,2,3,*..,n,

if 0 < |y - x| < 6.
This shows that

f^j(y) a where i = l,2,3,...,m and j = l,2,3,...,n.

limIf f1:J(y) ■ a^, i a l,2,3,...,m, and j = l,2,3,...,n, then for

e > 0, there exists 6^  > 0 such that |f,ĵ (y) - a^| < ,

i « l,2,3,...,m, j ■> l,2,3,...,n, whenever y e Dom F and 
0 < |y - x| < 6^  .

Let 6 “ min {6^}, i « 1,2,3,...,m and j ■ 1,2,3,...,n.

Then, whenever y e Dom F, and 0 < |y - x| < 6, we have



HF(y) - A# -
' m n
£ £

i-i=l
■ m n
E £

j-1

« « w

e
mn

< e.

So, F(y) - A.



C H A P T E R  I V

THE DIFFERENTIAL AND DERIVATIVE

4.1 Definitions and Theorems.

4.1.1 Definition. The statement that a function f from En to E is 
differentiable at the point x means f is defined in a neighborhood 
V(x;r) of x and there exists a matrix A (independent of h) such that 
for any point x + h of V*(x;r),

(1) 1(5 + t) - 1(5) + A S + *<5;h> h, where *(5ih> - 8.

The term A h is called the differential of f at x and h and is 
denoted by d ?(x;ft). The matrix A is called the derivative of ? 

at x and is denoted by D f(x).
*¥•In (1) all the vectors are column vectors, A and $(x;h) are m x n 

matrices, and 6 is the m x n zero matrix.
Equation (1) can be written

'fjC* + UA /a11 a12 * * • aln\ ( M
f 2 (x + h) ✓“SCM . / a21 a22 * ' • a2n\ h2

•
•

S3
•
• + ............................1 * a * • »  * I •

a♦

\fm(x + h)j
•

i V 1*
1 • a • • •  * 1

\aml am2 ’ " * amn/
a

\h\ ni
/<t>1;l(x;h) <J»32(x;h) • • • <f>-jn(x;h)

f h A
<j>21(x;ii)

a

<f>22(x;£)
•

«*►
* • •
•  * *  •

h2
*
•

• • •  *  *  * 
• • • *»n

•

■ h , n /
36
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ft • h\ /^(U)  • t\

“2f2(x)

\ * . W /

-»■ -> a~ • h !2(x ;U)

s  • » / I_(J;S)m

(fjCx) + Xj * h + £j(x;h) • h 
f2(x) + a2 • h + $2(x;h) • h

if (x) + a • t + | (x;h) • h/1 Tn Til TTI wm m ' m
Thus, equation (2) is equivalent to
(2) ffe(x + U) ■ fk(x) + afc * £ + <t>k(x;h) * h , k *» 1,2,3,, * * tfHt

where ak * (akl’ ak2* * * * » akn)’ and
!k(x;£) «= (4>kl(x;S) 4>k2(x;h)  ̂9 ^ " 1 >2f 3f <• t )IQ»

if $(x;£) 0 , then for each k, k «* 1,2,3,... ,m,mn

V*;̂  ■ ^
Thus, if ? is differentiable at x, then each of the component 
functions fk is differentiable at x, and similarly, if

$k(x;li) « $ for each k - l,2,3,...,m, then $(x;h) » 0̂ .

This shows that 1 is differentiable at x if each component function 
fk is differentiable at x. Thus, we haves

4.1.2 Theorem.
1. ? « (fj,f2,...,f ) is a function from En to Em .

2. t is differentiable at x.

Each component function fk , k - l,2,3,...,m, is 
differentiable at x.
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4.1.3 Theorem.

1. f = (fj,f2,...,f ) is a function from En to Em .
«►2. Each component function f^(x) is differentiable at x.

^ f is differentiable at x.

Remark: If f is differentiable at x, then each component function
f^(x) is differentiable at x and the vector a^ is D f^fx),

k - 1,2,3,...,m.
Hence,

(3) D f(x)

j(x) D2 fj(x) . . .  D f,n 1
2(X) D2 f2(x) . . .  D f 0n 2

\Dj fjx) Dj f^x)

» » »e • •

•  *  * Dn fJX>n in

and

d f (x;h) = D f (x) h

/*► «*1 /D fj(x) • h I
D f2(x) • h

■

s s

*
f (x) • h)

fd fjCxjhjI
d f2(x;̂ I)

d f (x;h)Jin
The matrix-valued function defined by

r°l fl 
D1 f 2

D2 f 2 

D2 f 2 t * •

*  •  •
• m •
* *  •

D1 £» D2 £m

Dn £l
D„ f2

Dn £mj

is known as the Jacobian matrix of the function 1 from En to Em.
We have shown, then, that if ? is differentiable at x, then the 
derivative of ? at x is the value of the Jacobian matrix of I at x.
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Let us suppose that F is a matrix-valued function defined on an 
open set E in En. Then we have:

4.1.4 Definition. The statement that a matrix-valued function F,
defined on an open set E on En, is continuous at the point x of Eo
means F(x) - F(x ).x+x o'o

We see, then, that F is continuous at x q in E, iff, each entry f ^  

is continuous at xq. Then, from 4.1.3, we see that the following 

theorem is obtained.

4.1.5 Theorem.
1. ? is a function from En to Em.
2. The Jacobian matrix of t is continuous on an open set E.
...? is differentiable on E; i.e., corresponding to each

x e E, there is a neighborhood V(x;r)C E such that 
for any x + 1i e V*(x;r),
?(x + h) = f(x) + D f(x)^h + $(x;h) h,

where $(x;ft) * 0. Moreover, for any closed set

F C  E and any e > 0, there exists a 6 > 0 such that 
ll$(x;S)H < e whenever x, x + ̂  E F and 0 < |h| <6.

Proof:
Let x e E, and let V(x;r) be a neighborhood of x contained in E.

i aTake h such that |h| < r. We know, from the theory of real-valued 

functions of a vector, that if f is a function from En to E*, and 
if D+ f exists on an open set containing the closed line segment 
from x to x + hu, where u is a unit vector, then there exists a
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number 0 e (0,1) such that f (x + hu) - £ (x) = h f (x + 0hu).

Applying this mean value theorem for i * 1,2,3,...,m, we have
f^x + ft) - f^x) - f^x + hjUj + . . . + bnun) - fj(x)

“ fA(x + h ^  + . . . + bnun)

- f. (x + h«u« + . . . + h u )x z z n n
*■>+ f 4 (x 4- h-u* * . * * + h u )* « « ti n

-► *¥ *■>- £,(x + h*uQ + . . * + h u )l J J n n
+ • ♦ . + f.(x + h u )  + f.(x)i n n x

“ hl D1 fi(* + 6ilhA  + h2“2 + • ‘ ‘ + V n >
+ h2 D2 fA(x + 0i2h2u2 + h3u3 + . . . + h u n)

+ * * ‘ + hn Dn fi<* + einS?n) ’
where 0^  e (0,1), i » l,2,3,...,m, j * l,2,3,...,n, and u^ is the

unit vector with j**1 component 1 and all other components 0«
Since the partial derivatives f^ are continuous on E, then

-K0^ f^x + 0 ^ h^u^ + . . . + hnun) - fA(x) + (j)̂  (x;h),

where ^  ^(xjft) - 0.

Then,
f ^ x  + ft) - f^x) - hj {Dj f^x) + (^(xjft)} + , . .

+ hn (Dn f^x) + (j>ln(x}^)}

■ it f^x) • ft + ^(x;ft) * ft,

and

?(x + ft) - ft(x) = D ft(x) ft + $(x;h) ft .
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Since each partial derivative f^ is continuous on any closed set
F C E ,  then it is uniformly continuous on F. Hence, corresponding 
to £ > 0, there is a 6^  > 0 such that x, x + e F and |h| < 6^̂  

imply that

•Dj fi(* + 0ijh/ j  + • • • + V n) -DjfiCx)! - |<i>ij(£;S)| < ^  

Let 5 » min {6^}. Then x» x + 1i e F and 0 < jh| < 5 imply

ll$(x;h)H r ■ n 2 -► 1 * r:Z Z 4>./(x;h) <
li»l j=i J I*

m n 2 
Z Z 
1 j-1 «.

1 *S = e, and thus,

and our proof is complete.

4.1.6 Definition. The statement that a function ? from En to Em
1c *3? Icis of class C on an open set E, written f e C on E, means each of

the components f^, i ■ 1,2,3,...,m, is of class C ' on E; i.e., all
the k**1 order partial derivatives of f^ are continuous on E for each
i * 1,2,3,...,m.

4.1.7 Theorem.
If f is differentiable at x, then f is continuous at x.

Proof:
**>>»If f is differentiable at x, then for any point x + h in some 

deleted neighborhood of x,
l(x + h) = t(x) + A ft + $(x;li) h, where $(x;li) “ 8.

Thus, l(x + h) « ?(x), and hence, 1 is continuous at x.



4.1.8 Theorem,
1. f is differentiable at x.
2. g is differentiable at x.

-> -► -►—  —y f + g is differentiable at x and
D (1 + g)(x) * D l(x) + D g(x), and
d (? + g)(x;h) - d f (x;h) + d g(x;h).

Proof:
and g are each differentiable at x, there exists some 

neighborhood V(x;r) of x such that for any point x + h in V*(x;r)

?(x + ?i) = ?(x) + D ?<x) h + $(x;1>) h, where $(x;h) « 9, and

g(x + h) » g(x) + D g(x) h + 'f(x;li) h, where ¥(x;h) - 0.

Then, if x + h e V*(x;r),
(? + g)(x + h) ■ ?(x) + D f (x) h + $(x;h) h + g(x) + D g(x) h

+ t

- (i + g)(x) + {D l(x) + D g(x)} h
+ ($(x;h) + ?(x;h)} h .

Since jjĵ  {4>(x;ll) + f(x;1i)} » 8, then ? + g is differentiable at 

and
D (t + g)(x) » D ?(x) + D g(x), and
d (? + g)(x) ■ d ?(x;S) + d g(x;£).

4.1.9 Theorem.
1- 1 is a function from En to Em .
2. g is a function from En to Em .
3. ? is differentiable at x.
4. g is differentiable at x.
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— .r * g is differentiable at x, and

D (? • g)(x) « f(x) • D g(x) + g(x) • D ?(x), and 
d (f • g)(x) = f (x) • d g(x;h) + g(x) • d ?(x;£).

Proof:
Let f * (fjCxJjfjCx),...,^^)), and 

g = (g1(x),g2(x),...,gin(x)).

Then I • g - fj gj + fj g2 + • • ’ + fm *„,•

D (t • g)(x> - D (fj gj + f2 g2 + ••• + fm gm>

* f j D g| + gj D f j + ^  D ^ &2 ® ^2 ^ *

+ f D g + g D fm &ra m

* (£j D gj + f2 D g2 + . . • + fB 5 sj

+ (gj 5 f, + g2 5 t2 + . . . + S y

= f • D g + g • D f , and

d (? • S)(S) - 1(1) • d SdiS) + I(J) • d f <x;h).

4.1.10 Theorem.
1. 1 is a function from En to E^.
2. g is a function from En to E^.
3. f is differentiable at x.
4. g is differentiable at x.
___ x g is differentiable at x, and

D (1 x g)(x) ■ ?(x) x d g(x) + [D ?(x)] x g(x), and
d <f + g)(J) - l(J) x d S(S;h) + [d ?(S;S)] x |(J).

Proof:

Let ?(x) ■ (f1(x)Jf2(x),f3(x)), and 

g(x) ■ (g1(x),g2(x),g3(x)).
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Then f

D (1 x

Then,

4.1.11

8 1

*1

g) (x) - D

u2 u3
f2 f 3 > i

g2 83
-»■ -»■

U1 u2 u3
fl f2 f3

*1 82 83

0 0 0 ul
-►
u2

-¥
U3

88 fl f2 f 3 + D f2 D f2 S f 3

8l g2 83 ®1 82 83

2

D 8j 5 8,

U3
f3

D g3

U1 U2 U3 ui U2
-*•
u 3

5 f l ° f2
■*
D f 3

f i f 2 ^ f 3

8 l g2 g3 s 8 l D 82 D 83

= D f x g + f x D g  
“ f(x) x d g(x) + [D ?(x)] x g(x). 

i (? x g)(x) » f(x) x d g(x;h) + [d !(x;h)] x g(x).

Theorem.
1. 1 is a function from En to E10.
2. u is a function from En to E*.
3. ? Is differentiable at x.
4. u Is differentiable at x.

--- ^ u ? la differentiable at x, and
D (u ?)(x) - u(x) D t(x) + [D u(x)] ?(x), and 
d (u ?)(x) = u(x) d ?(x;S) + {d u (x;^)] £<x) •



45
Proof:

Let 1 = ....f xs?’ then

u ? »  (uf j ,uf 2 ».. • »ufffl), and 

D (u ?)(x) * (D uf., D u f „  . . . , D u f )

- (u $ f. + f. 5 u, u D f„ + f. D u....u D f + f Du)1 1  £ £ l& HI
= (ill f1( u D  f„ . . . , u D f )

+ (fj D u, f2 D u, . . . , f^ D u)

■ u (D fj, D f2, . . . t $ f m ) + (D u) (fj, f2......... £ffl)

- u(£) D l(x) + [D u(x)] ?(x).

4.1.12 Theorem.
1. ?(x) ■ c Is a constant function from En to E10.

■A D c ** 0 
-f ran

Proof:

'1* 21

constants.

Now, D ?(x) * D c

* $ O ,to where the V k - 1,2,3,...,m, are

Id i ci d2 ca * • • Dn cl\
D1 c2 d 2 o2 • • •

D”.C2•• *♦ *• * • • • :
>D1 cm D2 cm • « • D c / n m /
0

0

0

0

*  * ♦

* • •

Ol
0

♦  * «
* t *• * •

:
0 /

- emn
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We will consider the composition of vector-valued functions of a 

vector.

**♦* <-)»4.2.1 Definition. The statement that f ® g is the composition of 
1 with g, where g is a function from En to E® and f is a function 
from E® to E*5 means 1 ° g is the function from En to with rule 
of correspondence (1 ® g)(x) ■ l(g(x)) and with domain
Dom (1 o g) m {x | x e Dom g, g(x) e Dom 1). If f “ (f^^,...»fp)»

then 1 • g ■ (fj 0 g> f2 0 8» • • • * f ® g)

4.2.2 Theorem.

1. g is a function from En to E®.
- 1 im -> t2* 7 g ■ b.a
3. I is a function from E® to E^.
4. 1 e C° at 1.
5. a is an accumulation point of Dom (1 o g).

■ ■     y ^i® 1 ® g ^ (S).

Proof:
Let e > 0. Since 1 c C° at 1, there exists a number r > 0 such 
that |?(y) - 1(1) j < e whenever y e Dom 1 and |y - 1| < r.

Since *i® g ■ 1, there exists a number 6 > 0 such that£1
|g(x) - 1| < r whenever x e Dom 1 and 0 < |x - a| <6.

If x e Dom (1 ® g) and 0 < |x - a| <6, then |g(x) - b| < r, and

|t<g<*» - H ) \  < e .

Thus, *i® l o g *  1(1).a

4.2 The Chain Rule.
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1. g is a function from En to Em .
„ •> _o ■+■2. g e C at a.
3. f is a function from Em to Ep.

4.2.3 Theorem.

* ***■ n  -K ,-* .4. f e C at g(a).
•t ^ O "►f o g e C at a.

Proof:
If a is not an accumulation point of Dorn f o g ,  then I o g is 

continuous at a.
If a is an accumulation point of Dorn f o g ,  then, since
Dom f o g C  Dorn g, a must be an accumulation point of Dom g and

J g ■ 8(a)•

Then, by 4.2.2, 4> f o g » f(g(a)) « (f o g)(a), and, hence,
fit

± “► o ef o g e C at a.

Now, we will state the Chain Rule for differentiating the compos! 
tlon of functions.

4.2.4 Theorem.
1. g is a function from En to Em .
2. g is differentiable on an open set E.
3. ? is a function from Em to^Ep.
4. 1 is differentiable on an open set containing g(E).
-—  y t o g is differentiable on E, and for each x e E,

the following formulae are true:
D (? o gXx) ■ D t(g(x)) D g(x), and 
d (? • g)(x) - D ?(g(x» d g(x;h) = d ?(g(x);dg(x;ii)).
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Proof:
Take x e E. Since f is differentiable at g(x), there exists a p x m 
matrix A such that for all points g(x) + k in some deleted neigh- 
borhood V*(g(x);s) of g(x),
(1) ?(g(x) + £) « 1(g(x)) + [A + $(£)] 1c, where $(£) ■ 6.

We will define $(($) to be the p x m zero matrix 6 and observe that
4aJk|i ^

$ is continuous at 0. Also, (1) will hold for all g(x) + k e
V(g(x);s). Since g is differentiable, then g is continuous at x,

—>• <*>*and there exists a neighborhood V(x;r) of x such that
g(V(x;r)) V(g(x);s), and there exists an m x n matrix B such that,
for all x + 1 e V*(x;r),
(2) g(x + H) ■ g(x) + [B + VCh)] H, where « 0.

aĴ i -mîw «â|k «â iNow, take x + h in V*(x;r), and let k(h) * g(x + h) - g(x).

Then, t(E) - t.

From (1) and (2), we obtain
(t o g>(x + 1) - l(|(x) + U h )

” ?(g(x» + [A + $>(1c(ii))3 £(1i)
- ?(g(x)> + [A + *(£<£))] [B + ?<£)] h 
* ?(g(x» + A B t + 0($) h.

Since 0(£) - mUZ)) B + A ¥(£) + $(£(£)) ¥(£)] - 0, 

f « g is differentiable at x.
If we use the fact that A ■ D ?(g(x)) and B » D  g(x), we have 
D <? o g)(x) - D ?<g(x)) D g(x), and

d (? ® g)(x) » D ?(g(x)) d <g(x);h) ■ d ?(g<x);dg(x;£)), and the 
proof is complete.
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•̂ r 4* •*j* *4 —J*Remark: From D (f ° g)(x) ■= D f(g(x)) D g(x), we see that the entry 

V £i . «)fa) in the i row and the j cojuwn of D (£ . g) <*)
<4 4 4* th 4" 4is the i row of D f(g(x)) times the j column of D g(xj; l.e.,

(3) ^  (fi o ?)<x) « D f1(g(x)) • Dj g(x),
where g « (D̂  gr  Dj g2, . . . , g^).
We call (3) the Chain Rule, also.



C H A P T E R  V

LINE INTEGRALS

5.1 Introduction.

The line integral is an important type of integral which appears in 

many physical applications. This type of integral is an integral 
of a vector-valued function of a vector along some curve in the 
domain of the function. In our development, we will restrict our­
selves to the consideration of functions and curves which are of 
the type which occur commonly in physical applications. Line inte­
grals are called, sometimes, curvilinear Integrals. The integral 
is a generalization of the ordinary Riemann Integral, in which the 
interval [a,b] is replaced by a curve in En described by a vector-

4 -valued function x * (Xj^.Xg,... ,xn). In this generalization, the 

integrand is a vector-valued function f » (fj^jfg*. • • »fn) , and is 
a function from En to En which is continuous on an open set contain­
ing the curve C described by the mapping x of [a,b], and C is a 
smooth curve in En; i.e., we assume that x' is continuous and non­

zero on [a,b]. We write the integral / f • d x, and the dot in this
C

symbol is used purposely to suggest an inner product of two vectors. 
The fact is, line Integral's can be considered as generalizations of 

Riemann-Stieltjes integrals in which both the integrand f and the 
Integrator x are vector-valued functions, and in fact, they could

50
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be defined and developed in an analogous manner to that in which the 
RS-integrals are defined and developed. Some of the theorems would 
be very analogous and could be proved analogously to those which 
corresponded in the theory of RS-integrals. We will make a differ­
ent approach, however.

5.2 Definitions and Theorems Concerning Line Integration.

5.2.1 Definition. The statement that / ? • d x is the line inte-
C

gral of "I along the smooth curve C which is described by the mapping

x of [a,b] means | 1 * d x * | f(x(t)) • $(t) d t.
C a

4- r , -*•Remark: Since we assumed that x is continuous on [a,b] and that f
is continuous on C, the integral on the right in our definition
exists.
From the definition of the line integral and the properties of the 
Riemann integral, it is shown quite easily that

J c f ' d x « c  / f * d x ,  andC C
(f + g) • d x = / f * d x  + / g * d x .

C C C
If C is the smooth curve described by x * g(t), t e [a,b], then we 
denote - C by the curve traced out in a direction opposite to that 
of C; i.e., - C is described by x ■ g(- t), t e [-b,-a]. Bence,

J f ' d x » - / l(g(-t)) • i(-t) d t.
-C -b
If we let u » -t, we obtain
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a b •

/ 1 • d x = J f(g(u)) • t(u) d u = - / f(g(u)) * g(u) d u 
-C b a

- - J f • d x.
C

Also, if the curve C is composed of the curves Cj and C£; i.e., if 
C is traced out by tracing out Cj and then G2, then

j l - d S - j  1 - d 3 + ;  t - d ? .
C Cj c2

Suppose C is described by the mapping x of [a,c], and [c,b], respec­
tively, where c e (a,b), then

b
/ ? • d x ■ / f(x(t» • x(t) d t 
C a

* / ?(x(t)) • x(t) d t + / l(x(t)) • $(t) d t 
a c

= J I • d £ + J  ? • d x .
C1 C2

We can extend the definition of the line integral to a path composed 
of a number of smooth curves which do not necessarily form a smooth 
curve.

5.2.2 Definition. The statement that a curve C is a piecewise 
smooth curve means C is a curve consisting of a finite number of 
smooth curves.

5.2.3 Definition. The statement that / I • d x is the line inte-
C

gral of a function t with respect to a curve C composed of the smooth
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curves C., k = 1,2,3,...,m, means / ? • d x - Z / 1 * d x ,
K C k=l Cfc

where ? is continuous on an open set containing C.

5.2.4 Theorem.
1. f is continuous on an open set E.

■4*
2. ana X2 e E*

~£3. f « D g on E,
my my4. C is any piecewise smooth curve in E from x^ to x2«

.^ f f * d x ■ g(x,) - g(x.).
C

Proof:
my

Let C be described by the mapping x of [a,b] and let h(t) ■ g(x(t)). 

Then, h'(t) - D g(x(t)) • x(t), and

/ f * d x  = / D g * d x  = / D g(x(t)) • x(t) d t 
C C a

b
- / h'(t) d t
a

» h(b) - h(a)
*» g(x2) - g(X.j).

Remark: In this theorem we applied the Second Fundamenaal Theorem
of Integral Calculus to the function h* which is a piecewise continu­
ous function on [a,b]. A function is piecewise continuous on [a,b] 
if it is continuous at all but a finite number of points of [a,b] 
and at each point of discontinuity the right-hand and the left-hand 
limits of the function exist. Although the Second Fundamental 
Theorem is stated, usually, for functions with continuous deriva­



tives, the theorem is true in the case where the derivatives are 
piecewise continuous functions.
Theorem 5.2.4 states in its conclusion that the line integral of a 
function which is the derivative of some function g depends only on 
the values of g at the endpoints x^ and Xg of the curve, and this 
means that in this case, the line integral of such a function is 
independent of the piecewise smooth curve in C which joins x^ and 

so in this case we say that the line integral in question is 
independent of the path in E.

5.2.5 Definition. The statement that C is a closed curve means C 
is a curve which is such that its endpoints coincide.

5.2.6 Corollary.
1. f is a continuous function on an open set E.
2. 1 - D g on E.
3. C is a piecewise smooth closed curve in E.

--- \ / I • d x - 0.

Proof:
«►If C is a closed curve, then the endpoints x^ and X2 coincide, and

*from 5.2.4, we have J f • d x = g(Xj) - g(Xj) " 0.
C

5.2.7 Definition. The statement that f • d x is an exact differ­

ential on an open set E in En means there is a function g from En 
to E such that f *» D g on E, and hence,
?(x) • d x = D g(x) • d x = d g(x;dx).
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Note that Theorem 5.2.4 shows that if ̂  • d x is an exact differen-

tial on E, then the line integral J £ • d x is independent of the
C

path in E.
If f e C on E and there exists a function g such that f * D g on E,

2then g e C on E, and hence, g - g on E, i,j - l,2,3,...,n, 
or what is the same, f_j » f  ̂on E, i = l,2,3,...,n.

This gives a necessary condition for 1 • d x+ to be an exact differen- 
tial on E. Hence, if fj(x) # Dj f^(x) for some x e E and some i 
and j , then 1 is not the derivative of a function on E.

However, continuity and equality of the partial derivatives f̂  

and f^ are not sufficient to ensure that f * d x is an exact 
differential on E. Some restriction must be replaced on the open 
set E.
It is true, also, that the converse of Theorem 5.2.4 does not hold 
unless there is some restriction placed on E. The set E is arcwise 
connected if for any two points x^ and Xg of E there is a piece-

-I* «■#*wise smooth curve in E with endpoints x^ and X2> It is possible to 
show that if a set E is arcwise connected, then it is connected.
The converse is not true in general.
If E, however, is open and connected, then E is arcwise connected.

5.2.8 Theorem.
1. ? is continuous on an open connected set E.

/ •&»f * d x is independent of the path C is E.
C

1 * d x is an exact differential in E.
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Proof:
Let x e E. Then if x e E, let g(x) * J £ • d x, where C is a 

0 C
piecewise smooth curve from x q to x and lies in E. Since the 
integral is independent of the path In E, the value g(x) does not 
depend on the choice of the curve C. Now consider a particular 
point x in E and let be a piecewise smooth curve from x q to x 
and lying in E. Since E is open, there is a neighborhood V(x;<$) 
of x which is contained in E. Hence, for |h| <6, the line segment 
C2 ■ {x + t h u^ | t e (0,1)}, where uk is the unit vector in the 
direction of the X^-axis, and lies in E. Let be the path 
composed of Cj and C£» and we have

gtx + h uk) - g(x) = / f • d x - / f • d x = / f • d x

/ f(x + t h u, ) • h u, d t
0 K K

h / f.(x + t h u, ) d t

» h fk(x + 0 h u^), for some 0 £ (0,1), using 
in the last step the First Mean Value Theorem for Integrals. 
Since I e C° on E, then

n .  «<* + h V  - «<*>
fr*0 h fk(x + e h uk)

■ ffc(x);
i.e., l>k g(x) - fk(x), which shows that S g ■ 1 on E. 
Hence, ? • d x is an exact differential on E.
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5.3 Applications to Mechanics.

Let "f be an force field; i.e., I is a function which assigns to
«m|p» ^each point x in some region E of E the force F(x) which acts on a

particle at this point. We will define the work done by the force
3field in moving a particle along a curve C in E . The work done by 

a force in moving a particle from one position to another is the 
component of the force in the direction of motion multiplied by the 
distance moved. Let C be a smooth curve described by the equation 
x ■ x(t), a £  t £ b. At the point x(t) the component of the force

in the direction of motion is F(x(t)) x'(t)
|r<t)| where x'(t) is

a unit tangent vector in the direction of the parameter increasing. 
So, if we take a partition {t. | k « 0,l,2,...,n} of the interval1C y IX
[a,b], the work done by the force field in moving a particle along 

C is approximately £ F(x(tk>n)) - x'(tk>n) where

t. . < t. < t. , k * l,2,3,...,n. If these approximating sums*aa Rftl 3=55 KjH
approach a limit which is a number as the norm of the partitions 
approach zero, then this limit is defined to be the work done by 
the force field. If we assume F(x(t)) is piecewise continuous, then

b
this limit exists and is / F(x(t)) • x'(t) d t «* / F • d x.

a C
Hence, the work done by a force field F moving a particle along a

C is defined to be / ? • d
C

curve x.
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Remark: In order to ensure the existence of the line integral

P • d x , we will assume throughout this section that F e C 
C
defined on an open set E and C denotes a piecewise smooth curve 
contained in E.
If x^ and Xg are the endpoints of the curve C, then this line

*2/ -►F • d x .
$CX1

Remark: Newton's Second Law of Motion states that a particle of
mass m subject to a force field F will move according to the equa- 
tion m x(t) ■ P(x(t)), where x(t) is the position of the particle 
at time t.
Hence,

m x(t) * jc(t) * h m Dt (x(t) • x(t)}

* #(5(t)) • 2(t) .

(1) H m |v(t2)|2 - k m |v(t1> | / #<5<t»
t.

x(t) d t

x(t,)
- J 1 d x.

The quantity % m |v(t)|2 is called the kinetic energy of the particle 
at time t. Hence, (1) states: As a particle moves along its

■ J*trajectory,C from x(t^) to x(t2), the change in kinetic energy is 
equal to the work done by the force field.

5;3.1 Definition. The statement that the force field F defined on 
an open set E is conservative means the work done along each closed
curve of E is zero
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This definition states that the force field F is conservative if the 
work done in moving a particle from one position to another is inde­
pendent of the path along which it moves. If F is conservative and 
the domain of F is an open connected set E, then Theorem 5.5.2 
implies that there exists a real-valued function U defined on E,
called a potential function, such that D U * - F on E. Also from

**♦*Theorem 5.2,4, if F has a potential function U, then F is conserva­
tive, and 
*2
J+ F ' d x - U(x.) - UCx,) .
CX1
Hence, when the force field is conservative, we can write

x2 ^
H m |v(t2>|2 - h m jv(tj)j2 » l^ F • d x as

CX1

k m |v(t2)|2 + U(x(t2>) ■ h m |v(r2) j2 + UCxC^)).

This is the Law of Conservation of Energy: If the force field is
conservative, the sum of the kinetic energy and the potential energy 
is a constant.
If U is a potential function for F, then F * - D D, and this relation 
implies that, at a point on the surface through x, U is constant.
Such a surface is called an equipstential.
We will clsse this chapter with some problems relating to conserva­

tive force fields.
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Problem 1. At a point x the force acting on a particle of mass m 
due to the earth’s gravitational field is F(x) * - m (0,0,g). Show 
that this force field is conservative.
Solution:
We must show that there is a potential function U such that 
- D O  » Such will be the case, iff, Dj U ■ 0, D2 U » 0, and 

U * mg. A solution of these equations is U(x,y,z) * m g z.
Hence, the force field is conservative. The equipotential surfaces 
are clearly horizontal planes.

Problem 2. Suppose a particle of mass m with initial velocity 

(a,0,b) and initial position (0,0,0) moves under the influence of 
the gravitational force field F(x,y,z) • - m (0,0,g). Verify the 
Law of Conservation of Energy.
Solution:
The particle moves according to Newton's Law, F = m a.
Hence, if x(t) is the position of the particle at time t, 
x(t) » (0,0,-g)

$(t) = (a,0,-gt + b)

x(t) » (at,0,-5j|gt2 + bt).

At time t, since U(x,y,z) ■ m g z, then
h m |v(t)|2 + U(x(t)) ■ h m (a2 + g2t2 - 2bgt + b2) + m g (-%gt2 + bt)

■ h m (a2 + b2) .

Remark: In a conservative force field a particle is in stable equi­
librium at points where the potential energy has a relative minimum.
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Problem 3. In the gravitational force field F(x,y,z) = - m (0,0,g) 
determine the points on the surface whose equation is 

2 29 x + 4 y - y z + 4 « 0, where a particle of mass m is in stable 
equiligrium.
Solution:
The potential function is U(x,y,z) * m g z, where m > 0 and g > 0, 
and we will determine the point where z has a relative minimum. Now,

2
5 3C *1* 4z - f (x,y) ■ 4 y + ........ , and we must test f(x,y) for a relative

minimum. We have 

Dj f (x,y) * » 0

D2 f (x,y) - 4  - 2—  = 0,
y

and thus, x » 0, and y - ± 1.

Since f(x,y) » ̂  , D.. f(x,y) ■ - , and
y y

2 2D22 f(*ty) * —2 (9 x +4), then the expression
y

(Djj f) (D22 f) - (D12 f)2 > 0 at the points (0,1) and (0,-1).

Also, f has a relative minimum at (0,1) and a relative maximum at 
(0,-1). Thus, the only point of stable equilibrium on the given 
surface is the point (0,1,8).



C H A P T E R  V I

VECTOR FIELDS

6.2 Introduction.

Often in the applications of mathematics to physics and engineering 
we deal with the concept of vector fields. In the mathematical 
sense, a vector field is a vector-valued function defined on some 
set. As an example, suppose that to each point x in the atmosphere
there is assigned a vector v(x) which represents the wind velocity,

««►then this defines a vector field. If v(x) is expressed in terms of
its components relative to some basis we can write

v(x) ■ Vj(x) Uj + U2 + V,j(x) Uj.

The components v^, v̂ , v^ are three real-valued functions called 
scalar fields. The temperature, for example, of each point of the 

atmosphere defines a scalar field.
In physical problems involving vector fields one must know not only 
the vector v(x) at each point x, but also how this vector changes 
as one moves from one point to another. We have at our disposal 
the machinery of partial derivatives to study this change, and this 
can be applied to the components of v. In general, these partial 
derivatives do not depend on the choice of the basis relative to 
which the components have been determined. Thus, partial deriva­
tives are not entirely satisfactory for describing certain physical
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quantities, and in particular when these quantities have meaning 
independent of the basis. We have recourse, then, to special com­
binations of the partial derivatives, known as the divergence and 
curl, to describe the behavior of vector fields. The divergence 
and the curl are independent of the basis (if the basis is orthonor­
mal), and they have a definite physical significance. We will 
define and study these concepts.

6.2 The Gradient Field in En.
If $ is a real-valued function (a scalar field) defined on an open 
set S in En, the gradient of denoted by V $, or by grad $, is a 
vector-valued function defined by
(1) grad $(x) - V $<x) - (Dj$(x),D2$(x),...,Dn$(x)),

at each point x in S where these partial derivatives exist.
The following properties of the gradient are consequences, 
immediately, of the definition:

6.2.1 Theorem.
1. $ and ¥ are real-valued functions such that V $ and V ¥ 

both exist on an open set S in En.
--- } (a) 7 ($ + ¥ ) «  7 $ + V ¥

(b) V ( $ • ¥ ) « < &  V ¥ + ¥ 7 $

(c) V(-f) - -il-U  - A .O l  , at polnts;

f(x) 4 0.

In case n ■ 3, the gradient has a useful geometric Interpretation. 

Suppose c is a constant, and consider the set S of points x in Sv
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where $ (x) ■ c. In some cases Sc is a surface. If Sc has a tangent 
plane at a point a - (a3,a2,a3), then from elementary calculus, the 
equation of this plane is
DjfcfaMxj - a^) + D2$(a)(x2 - a2) + D3$(a)(x3 - a3) » 0.

Then V 4>(a) is normal to the plane (and thus normal to S£) at the
point a. The tangent plane exists whenever V $(a) * 3.
The scalar field $ whose gradient is V $ is called the potential
function of the vector field V $. The corresponding surfaces Sc
are called equipotential surfaces (or level surfaces). In this 

2case of E fields, each set S& is a plane curve called an equipo­
tential line (or level line). The equipotential surfaces (lines) 
are orthogonal to the gradient vector at each point a where

V $(a) * 15.

6.3 The Curl of a Vector Field in E^.

6.3.1 Definition. The statement that curl 1 is the curl of the 
vector-valued function f ■ (fj,f2,f3) defined on an open set S in
3 4>

E means curl f ■ (D2f3 " D3f2’ D3*l ” D1^3’ D1^2 “ D2*l^’ whenever

the partial derivatives on the right exist. 
Symbolically, we can write

u,
curl t “ V x 1

u„
D. D,
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6.3.2 Theorem.

1. f and g are vector fields on an open set S in I .
**♦*

2. curl £ and curl g exist on S.
. y curl (1 + g) « curl t + curl g.

Proof:
Let f » and

**►
g - (82.82*83)*

3

curl (f + g)

-*•
U1

**>
u2

**•
u3

D D D
X1 x2 x3

L + gl f 2 + g2 f3 + g3

{\  (t3 + g3J * D*3 (f2 + g2>} “l

- \  « 3  + g3> - Dx 3 «1 + gl)} “2 

+ \  (f2 + g2> - \  <fl + gl)J “3

\  £3 + \ 2 g3 " Dx3 £2 ' Bx3 s2) “l

- ®x3 £3 + %  g3 ' %  £1 - Dx3 gl> “2 

+ ®Xj f2 + Dx3 g2 - Dx2 £1 - Dx2 Si5 “3

{® x 2 £3 * Dx3 f2) U1 " ® x 3 f3 ' Dx 3£1> u2

+ ®Xj f 2 -  %  V  “3}
+ { ®x2 ®3 -  ”x3 g2> “1 '  ®x3 *1 '  %  g3> S2+ ®x3 g2 - Dx 2 gl> V

curl f + curl g .
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6.3.3 Theorem.

1. 1 is a vector field defined on an open set S in E^.
2. $ is a scalar field.
3. curl ? exists on S.
4. 7 $ exists on S.
... V curl ($?)*»$ curl ? + V $ x ?.

Proof:

From the definition of curl we know, since ? » ^l'^2'^3^* that

curl (4> t) -

1 u2 u3
) D
x2 x3

ff2 $f2 #f3

{D„2<«3> - “1 - u2

+ f®,; <®f2) " “j

{» Dx f3 + (D„ 4) f„ - 4 D_ f, - (D„ 4) f,} ux„ 2 2' 1

‘ l* “x/3 + £j ' * V1 " V ’ £l> “2
*» V2 + ‘V’£2 ‘ * V1" (V5 fl> “3

■ * (Dx2£3} “1 + (Dx2®) f3 U1 - * (Dx3£2) U1

- (px i) £2 Z1 - 4 (dX]£3) I2 - » Xi») £3 lz

* 1 ®x3fl> Z2 + <Dx/> fJ :2 + 4 <Dx1£2> “3

+ o>Xi*) t2 s3 - ♦ (D^fj) :3 - (dX2») f3 s3
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- ^ ‘V 3* 1 ' * V 2>5l>' {1(V 3>“2 ' * V 1^ 1

+ - ♦ C D ^ j j t y  + ( ( D ^ ^ E jSj - ® X3* ) * A }

- t(\ « f3"2 - + t ®  *>*2S, - ©  « f j V

* V 3 ' V 2)Ui ■ * < V 3 ‘ V 1’"2

+ * V 2 ' V 1^ 3 + 1 V >f» ' V )f^ >  

- { © „ » * ,  -

+ t(V )f2 - ® x / )fl)S3

■ 4 curl t + (V 4) x t.
Hence, curl (4 ?) • 4 curl 1 + (V 4) * ?.

Remark: The curl can be given a physical interpretation? for
example, suppose a rigid body to be rotating about a fixed axis 
with constant angular velocity w. The basis (ui*u2»u3) is chosen 
so that the velocity vector x* of a point P of the body is given by
X* - (<l) Uj) x x ■ - (0 X2 Uj + 4) Xj u2,

where x ■ x^ u^ + u2 + x^ u^ is the position vector OP

The vector w * to u^ is called the angular velocity of the body.

curl x’ ■

x ’ is
-► -* ■+
U1 U2 u,

D1 D2 D,

““x2 OJXj 0

» 2 a Uj ■ 2 (ii,

This means that the curl of the velocity of a rigid body rotating 
with angular velocity w is 2 10.
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6.3.4 Theorem.

- * ■ 2  31. <j>(x) e C on an open set S of E .
^  curl (grad $) = (5.

Proof;
grad <j>(x), n ■ 3, is 
grad <Kx) * CD^(x), D^Cx),D3<j)(x)). 
Hence,

curl (grad <j>)

V

U1 U2 U3
D.. Bn D„1 2 3

d 3$ D3*

D1 D2
m*. D1 °3 D1 D2

» U1 " u? +
D2<j> i

Dl^ D3̂*
£ Da<j> D2<f>

(DaD2<|) - D2Da4*) ua - (D1D3<j) - D3Da(|>) u2

+ (d1d 2<|> - d 2d 24») u3

» 0 Uj + 0 u2 + 0 Uj

2 3since <J» e C on an open set S In E .

6.3.5 Definition. The statement that a vector field f is irrota- 
tlonal means curl ? * 5.

6.4 The Divergence of a Vector Field in En.

**►Consider the equation V x g « f. One might ask: When is a given 
vector field ? the curl of another vector field g? A necessary and 

sufficient condition for solving such an equation can be stated



simply in terms of a scalar field known as the divergence, whose 
properties we will develop.

6.4.1 Definition. The statement that div ? is the divergence of a
vector function ? - (f.,fA,f_,...,f ) which is a vector field definedi 4* J n
on an open set S in En means div ? - D^f^ + *^2 + • * • + ®n^n’ 
whenever the partial derivatives on the right exist.

Remark, div 1 is written, also, as V • ?, and

div 1 - V • ? - E D f, .
k-1 Xk k

69

6.4.2 Theorem.
1. 1 and g are vector fields defined on an open set S in En.
2. div t and div g exist on S.
---S div (1 + g) - div ? + div g.

Proof:
From the definition of divergence, we know that

div 1 - E D f. , where ? » (f.,f„,...,f ), and . . x. k ’ 1’ 2’ * n ’k-1 k

+ n +
div g - E D g. , where g - (g.,g2...... •

k-1 xk K 1 1 n
Then,

n
div <? + g) - E D (f. + g.)

k-1 xk K K

- E (D f + D g ) 
k-1 k k K
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Thus,

6.4.3

Proof: 
Let 1

V (<f> J

Hence,

6.4.3

n n
- 2  D f. + 2 
k-1 xk k-1

D k

- div f + div g. 
div (? + g) - div f + div g.

Theorem.
1. 1 is a vector field defined on an open set S of En.
2. <J> is a scalar field defined on S.
3. div ? exists on S.
4. V <(> exists on S.
—.S div (<J> ?) *» div ? + (V <f>) • 1.

* (^2*^2****

I - (<t>f2,4»f2* • * • *^fn  ̂’

:>
n
2 D 

k-1 s
4> fk

n2
k-1

{<J> D. f. + xfc k (D <J>) fk}

div (<J> 2)

n n
■ ♦ 2 0 f. + l 

k-1 xk K k-1 «  fk

- <J> div ? + (V (J>) • ?. 
4> div t + (V 4>) • t.

Theorem.
1. t - (fjjfj,^) is a vector field defined on an open set 

S of E3.
2. 1 has continuous cross-derivatives on S.
---S div (curl 2) - 0.
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Proof:
We know that

U1
->*
u2

«*•
U3

-* D D Dcurl f «t X1 X2 X3

fl f 2 f3

curl f = V x | »
IO
Hi - D}

+  < v * '  V 1* “ 3

Now, div (curl f) - V • (V x ?)
- D (D f, - D f_) + D (D f, - D f J  

Xj *2 ^ x3 2 x2 x3  ̂ X1 *

+ D (D f0 - D f.)Xj Xj 2 X2 1

- D  D f- - D D f,, + D D f, - D D f. x̂  Xg 3 Xj Xj 2 x2 Xj 1 X2 Xj 3
+ D D f „ - D D f. 

x3 xl 2 x3 x2 1

- (D D f, - D D f_) + (D D f0 - D D f0)Xj x2 3 x2 Xj 3 x3 x1 2 Xj x3 2
+ (D D f, - D D f.)X2 Xj 1 X3 Xg 1

- 0 + 0 + 0

- 0, since ? has continuous cross derivatives on S. 
Hence, div (curl ?) - 0.
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6.4.5 Theorem.

1. "I ■ is a vector field defined on an open set

S of E3.
2. fj, f^t and f^ £ C* on S.

3. div t(x) * 0, for each x in S.
• — -*> There exists a vector field g - (g3,g2,g3) such that 

curl g * ?.

Proof:
We will construct g explicitly as follows:

Let y ■ (y1»y2»y3) b® a fixed point in S. For each point 
x • (xj,x2,x3) in S, define

x3 x2
" / ^2^xl’̂ 2,t3̂  t3 ” / ^3^xi,t:2*^3^ ^ "̂2 *

y3 y2

Then, taking the derivatives,
(1) D3 g1(x1,x2,x3) - f2(x1,y2,x3), and

D2 81(x1,x 2,x 3) - - f3(x3,x2,y3) •

Now, place

x- r x
g (X ,X2,X ) - /

^3
J ®3f3^tj,X2*t3) d tj
I7l

d t.

Taking the derivatives, we have

(2) D3 g2(x1,x2,x3) » / DjfgCtj^.Xj) d t
?1

and
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(3) a / ®3^3^xi»x2**3^ ^
y3
f3(x1,x2,x3) - f3(x1,x2,y3),

Then, define

g3(x1,x2,x3) - - /
y2 Wl

/ ®2^2^tl*^2,x3̂  ^ ”̂1 d *2

f j (xi »t2,x3^ ^ C2
y2
x„ - x

+ /
y2 1̂ 1

Taking the derivatives, we have
x.

dv

(4) D2 g3(x2,x2,x3) * *■ J ®2^2^tl*X2,X3̂  ^ *̂1 ^^^x^
yl

^ / {®2f 2 (t^ ,x2 ,x3) ■I’ D^£^(t3,x2,x3)} d tj
yl

and

(5) Dj ggCxj.Xg.Xj) - - / D2f2(x1,t2,x3) d t2
y2

+ / div f (x^t^Xg) d tr 
xn

- / D2f2(x3,t2,x3) d t2
y2

- f2(x) + f2(x1,y2,x3).
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From (4) and (2) we have 
D2 g3(x) - D3 g2(x) ■ fj(x).

From (1) and (5) we have 
D3 g3(x) - D2 g3(x) * f2(x).

From (3) and (1) we have 
Dj g2(x) - D2 g3(x) » f3(x)•

Thus, curl g(x) • ?(x), and our proof is complete.

6.4.6 Definition. The statement that a vector field ? is solenoldal 
means div 1 * 0.

6.5 The Laplacian Operator.

If <J> is a scalar field defined on an open set S in En , then the
definition of divergence gives the formula
div (V (J») « D-,4) + D„J> + . . . + D <J>, ii nn
whenever the partial derivatives on the right exist.
The divergence of the gradient is expressed symbolically as V*V <j>,

2 2and is written usually as 7 <{>. The operator V is called the
Laplacian operator, and when applied to scalar fields yields the

2result given above. The partial derivative equation D <J> ■ 0 
is called Laplace's equation.
A function <f> is harmonic on S if it satisfies Laplace's equation on
S.

2The operator 7 can be applied, also, to a vector field 
1 » (fj,f2,f3....f ) by defining

72 £ - <72f1, 72f2, 72f3, . . . , 72fn).
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The four operators: gradient, curl, divergence, and Laplacian are

related by the following identity: 
curl (curl *1) « grad (div f) - f.

6.6 Surfaces.

3In order to consider further the study of vector fields in E we
2need the use of surface integrals. The surface integral is the E 

analog of a line integral in which the path of integration is a 
surface instead of a curve.

A surface, speaking generally, is the locus of a point which moves 
in space with two degrees of freedom of movement. Several ways of 

describing such a locus by mathematical formulae exist. If we use 

the usual x y z cartesian coordinate system of analytic geometry, 
we can obtain a surface by imposing one restriction on a variable 

point (x,y,z), written in the form F(x,y,z) = 0, and an equation of 

this kind is called an implicit representation of the surface. If 

we are able to solve this equation explicitly for one of the varia­

bles x, y, z in terms of the other two variables, say z in terms of 
x and y, we obtain an equation of the form z ■» f(x,y), and we have 
what is called an explicit representation of the surface. We can, 
apparently, write such a representation in the form which is an 
implicit equation as f(x,y) - z ■ 0.

While these two representations are useful and fairly common in use, 

a different way of describing surfaces is more useful for theoretical 
purposes. This is the parametric representation or vector represen­

tation of a surface. In such a representation, we have three 
equations in which x, y, and z are expressed as functions of two
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parameters, say u and v:
x = x(u,v), y - y(u,v), z - z(u,v).

2This means the point (u,v) varies over some E region R in the uv-
plane, and the corresponding points (x,y,z) trace out a portion of 

3a surface in E space. This procedure is analogous to representing 

a space curve by three parametric equations which involve only one 
parameter.

The question arises, naturally, as to what restrictions must be 
placed on the functions defined by this parametric representation 

discussed above. Serious complications result in the theory when 

any attempt is made to obtain a great amount of generality in regard 

to these surfaces. We will, accordingly, place considerable 

restriction on the types of surfaces which we are intending to con­
sider in this investigation. However, most of the familiar surfaces 

of solid analytic geometry will be covered under the scope of the 

definitions we are going to make.

In order to use the vector notation more effectively, we will write 

(x^x^x^) instead of (x,y,z) and (tj»t2> instead of (u,v).

6.6.1 Definition. Let f be a rectifiable Jordan curve in E and 
let R be the union of T with its interior. Suppose there exists an 
open set R' which contains R and vector-valued functions 

x ® (xj.x^x^) such that x e C on R . Then the image of R under x, 
say S ■ x(R) is called a parametric surface described by x. If, 

also, x is one-to-one on R, then S is a simple parametric surface.

In such case the image of T will be a rectifiable Jordan curve 

called the edge of S.
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Remark: The definition above is too general for our purposes, so we
will impose the following further restrictions on the function x.

*«►Define vectors x and D2 x as follows:

(1) Dj x(t) « Dj Xj(t) u2 + Dj x2(t) u2 + D1 x3(t) Zy

D2 x(tT * D2 Xj(t) Uj + D2 x2(t) u2 + D2 x3(t) u3,

where t * e R * Points x(t) on S, where the cross
product Dj x(t) x D2 x(t) t 0, are called regular points of x, and

points where x(t) x D2 x(t) « 0 are called singular points of x.
We will assume in our development that all excepting possibly a 

finite number of points of S are regular points of x.

Let us consider a horizontal line segment in Re Its image under x 

is a curve (called a t^-curve) which lies on the surface S. The 

vector Dj x represents the vector velocity of this curve. In like 

manner, D2 x is the velocity vector of a t2-curve, obtained by 
setting tj as a constant. There is a t, curve and a t2 curve 

passing through each point of the surface. The restriction.

Dj x(t) x D2 x(t) f 0 means that the velocity vectors Dj x(t) and 
D2 x(t) are not collinear at this point. Thus, for each regular 
point, x(t) and D2 x(t) determine a plane called the tangent plane 
to the surface at the point x(t). The vector Dj x(t) x D2 x(t) is 
normal to this plane.

The cross-product Dj x x D2 x plays an important role in the theory 
of surfaces. Its components can be expressed as Jacobians by means 

of the following theorem.
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6.6.2 Theorem.

If Dj x and D2 x a7e defined as in (I) of this section, then

( 2) D, x x D, x
$(x 2,x3) + d(x3,x1) ^ ^(x1,x2) +
Htv t2) U1 + U2 + i(tlft9) u3'1 * 2 1' 2

Proof: 

We have

(2) Dj x x D2 x
U-
DjXj

D2x1
D1x2

D2x2
DjXj

D2*3

Djx2 D1x3 Dlxl DjX3

D2x2 D2x3
"l "

D2x1 D2x3
u*

DjXj DjXj

D2x1 D2x2
U„

^(x2,x3) + i(x3,x1) ^ ^(Xj.Xg) ^
a(ta,t2) U1 + ^(tlft2) u2 + *(ta,t2) U3

6.7 Explicit Representation of a Parametric Surface.

Suppose we write (2) of the preceding section in the form 
Da x(t) x D2 x(t) » Jj(t) ua + J2(t) u2 + J3(t) u3, where

t « (ta,t2) e R, and where Ja, J2, J3 denote the corresponding 
Jacobians. At a regular point not all three of these Jacoblans can 
be zero. Suppose, to fix the ideas, that J3(tQ) O  at an interior 

point of R, and write the vector equation of S as three scalar 

equations, say
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(3) Xj - x1(t1,t2) =0, x2 - x2(t1,c2) * 0, 

x3 - x3(tr  t2) * 0.

Since J3(?o) ^ 0, we can solve the first two equations in (3) for t^

and t2 in terms of x^ and x2; i.e., if y^ ■ x3(tQ) an<* y2 * x2^Co^’
2then there is an E neighborhood V(y^,y2) and a vector-valued func­

tion g = (gj,g2) such chat the equations

(4) tj * gJ(x1,x2)f and t2 *> g^Xj.xp

are valid whenever (Xj,x2) e V(y3>y2), and when we substitute (4)

into (3), the first two equations in (2) are satisfied identically.
The third equation in (2) becomes

(5) x3 » x3(g1(x1>x2),g2(x;l,x2)) = <j)(x1,x2), say.

This implies that we have, always, an explicit representation of S, 
at least locally, in a neighborhood of each regular point.
It can happen that equation (5) describes ail of S. In such a case, 
we can identify the t^t^plane and the x^x^plane and the vector 

equations of S can be written,
(6) x(t) * t^ Uj + t2 u2 + <j>(t3,t2) u3, where t e R.

When a parametric surface is described by an equation of the form (6), 
the set R is called the projection of S on the x3x2-plane. When (6) 
holds, we see that the fundamental vector product becomes 

Dj x x d 2 x » - D-j <j» Uj - D2 <p u 2 + u .

Hence, the vector x x D2 x , has always, a positive component in

the Uj direction. Similar statements to the above hold if we inter­
change the roles of x2 and x3 or those of Xj and %y
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6.8 Area Number of a Parametric Surface.

Let us consider a parametric surface S described by a vector-valued
function x defined on a region R of E^. Let us write Vj * Dj x(t)

—► «*̂*and * D2 x(t), where t * (tj,t2) e R. If we consider t^ and t2 
ar representing time, then, when t̂  increases by At^, a point 

originally at x(t) moves along a tj-curve a distance equal, approxi- 
mately, to |^| At^ (since |Vj| represents the velocity along the 
tj-curve). Similarly, in time At2 a point of a t2-curve moves a 

distance equal, approximately, to Iv̂ l At2* Thus, a rectangle in R 
having area At^ At2 is traced onto a portion of S that is approxi­
mately a parallelogram whose sides are the vectors ^  At^ and 

^2 At2» The area number of the parallelogaam determined by the 

vectors V^ At j and ^  Atg is len8th their cross product} 
namely,

|<^ Atp x (v2 At2)| » \V1 x ^ 1  Atj At2

» |D1 x(t) X D2 x(t)I Atj At2 •

Thus, the number |Dj x(t) x d 2 x(t)| represents what is called a 
local magnification factor for area, and this observation suggests 
the following definition for surface area.

6.8.1 Definition. Let S be a parametric surface described by a
•* 2vector-valued function x defined on a region R in E . The area 

number of S is defined to be the value of the following double 

integral:

// |D1 x(t) x d 2 x(t)| d (tj.tj) ■
R
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6.9 The Sum of Parametric Surfaces.

Let Rj and Rj be two closed regions in E^, the boundaries of which are 

r2 and F2, respectively, and F^ and T  ̂are rectifiable Jordan curves. 

Let us assume that the inner region of F ̂ is outside that of and 

T2 is an arc joining two distinct points. Let Sj and S2 be 

parametric surfaces described by vector-valued functions x and y 

defined on R^ and R2, respectively. Assume that x and y map F^H F2 

onto the same arc; i.e., assume that x(Fjfir2) •> y(rjflr2). Let 

Cj ■ x(r^) and C2 ■ y ^ )  be the edges of Sj and S2 and assume, 

further, that Sj fi Sg ■ A  Cj* This means that S^ and S2 must 

intersect at least along part of an edge, but at no points other 

than points of C2. The union U S2 is called the sum of the

surfaces and S2 and is denoted by + Sj*

If Cj A  C2 - C1 - C2 » then the sum + S2 is called a closed

surface. Otherwise, the set (C^ U ~ (C^ fl C2) is called the

edge of Sj + S2. In our investigation, we will restrict ourselves 

to the consideration of those surfaces Sj + S2, whose edges are the 

union of at most a finite number of simple closed curves.

If the sum Sj + ^  is not a closed surface, then it has an edge 

(say C) and we can define (Sj + Sj) + Sj, where is an appropriate 

parametric surface. We must assume that the regions Rj and R2
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associated with and S2 have exactly one arc in common. The func­

tions which describe S2 and must map R2 fl Rj onto the same set,

and we must have (S^ + S2)0  = C When these conditions

hold, the union (Sj + S2) U  is called the sum (Sj + S2) + S^.

The addition can be shown to be associative. We can extend the 

process to a finite number of summands, provided that the addition 

is not defined if one of the summands is a closed surface. We 

will restrict our work to surfaces formed in this way by adding a 

finite number of parametric surfaces. In addition, we will assume 

the edge (if any) is the union of a finite number of simple closed 

areas. The area of a sum of parametric surfaces is defined to be 

the sum of the areas of the individual parts.

6.10 Surface Integrals.

Suppose S to be a parametric surface described by a vector-valued 

function x - (x^,x2,x^> defined on a region R in E . At the regular 

points we can define two vector-valued functions n^ and n2:

D1 z<t> * D2(1) n-(t) - 1---— ------ —̂ r ,
jOj x(t) X d2 x(t)i

n2(t) ■ - r!j (t), where t e R.

For each t, both vectors n^(t) and n2(t) are unit vectors normal

to the surface
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6.10.1 Definition. Let ? = (fj.f2.f2) be a vector-valued function 

defined on the parametric surface S described above. Define
._ y  ~y ..r.y- Tl̂ -

F(t) * f(x(t)>, where t e R, and let n denote either of the two 
normals n^ or n2 described by (1). The surface integral of f • n

over S. denoted by // ? * n d a, is defined by the following
S

equations

(2) // I • n d cr - // F(t) • n(t) |Dj x(t) * D2 x(t)| d (tj,t2), 
S R

whenever the double integral on the right exists.

Due to Theorem 6.6.2. the double integral in (2) can be written as 

the sum of three double integrals,

* « / / »R
^ (*2 >*3)

1 d t̂l,t2  ̂+ F21C

a(x3,x1)
Htv t2) d ^ l ’V

<K x .,x2)
+ // *3 I T t t )  R J d (t|»^2^  *

where the plus or minus is used according as n « n j ,  or n * n2,

respectively.
If S is described explicitly by an equation of the form 
x(t) » tj Uj + t2 u2 + ^(tj.tg) Uj, we have

jfi • n d O - + // (- F.D^ 
S R 11

F2»2* + V  d (tj.t^ .
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6.11 Triple Integrals.

3Let V be a region In E enclosed by a surface S, and suppose that 

f(Xj,X2>X2  ̂ *s a function which is single-valued and continuous in

V. Let us make a partition A^ of V into n subregions n, 

k * l,2,3,...,n, with respective volumes AV. , where the norm of 

the partition, HA (I, is the diameter of the V, of maximum diameter,

k - 1’2’3.... "• Let *k,n * (*i,n-xk,n-xk;n) be a P01"* of Tk.n'

k * l,2,3,...,n. Then, we will define the triple integral of f 

over V to be

(1) /// f d V * BA „ .n E f(x£ »x{! ,*"• ) AV. ,' iJi, HA U-*0 . . k,n* k,n* x,n' k,n*V n k«l ’ ’

when this limit exists.

This limit is independent of the manner in which V is divided to 
subregions, since f is single-valued and continuous in V.

We are interested in triple integrals which have integrands which 

are vector functions. Thus, if £ ■ (fj,f2»fg) *s a vector field

which is single-valued and continuous in V, we will have, following 
the definition of integration of vectors,

(2) /// I d V - u. J F. d V + u, / F, d V + u» | F, d V .
V x y x * y 4 J y J

The triple integrals are evaluated using the methods developed in

elementary calculus.

6.12 Green's Theorems.

2 3We will consider Green's Theorems in both E and E in this section.



26.12.1 Green's Theorem in E .
21. S is a closed region in E bounded by a curve C.

2. I is a vector field which is continuous and has continu­

ous first derivatives in S.
3. t is a unit tangent vector to C in the positive direc­

tion.
4. u^ is a unit vector which forms with unit vectors u^ and 

U£ a right handed triad.
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--- S If u., • (V x $) d a - / f • t d s .
s J c

Proof:
We will note that the conclusion of the theorem can be written

We will prove* first, that

(2)
S ax2 9

in the case where C can be intersected by a straight line parallel 

to the x2 axis in two points at most. Suppose there are two points

D and E where the tangent to C is parallel to the Xg-axis. Let d

and e be the abscissae of D and E, respectively. These points 
divide C into two parts C' and C". At a general point x • ( x ^ ^ )

in S we will introduce an element of area lying in a strip parallel 

to the X2-axis, the left edge of the strip Intersecting C' and C"

at the points x' • (x^.xp and x" - (x^xp, respectively.

Then,
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x,

S x2
2 F.

; - i d ,
a 1*3

x2 - 2 d x,

e r I x2
" /
d

[F1 (xl’x2>j „ 
x2

e
- /d

F1{x1,xp d x} 

d
* - / Fj (x j ,x £) d 

e

Let us consider, now, the case where C can be intersected by a 

straight line parallel to the x2-axis in note than two points• Here 

we need only to join the points F and G where there are tangents 

parallel to the x2~axis by a curve K which is contained in S and 
which cannot be intersected by a straight line parallel to the 

x2-axis in more than one point. The curve K divides S into two 
parts for both of which (2) holds. Hence, if we apply (2) to both 
portions, the two line Integrals over K cancel, and we establish, 
thus, (2) for the entire region S. In a similar manner, we can 
establish (2) for the case where several curves such as K are 
required. We can proceed likewise when S is multiply connected;

i.e., when S has holes and C consists of several isolated parts.

In a manner analogous to the above, we can prove 
F

(3) // •—  d S * - | P, d x, .
S *1 C Z 1



Then, subtracting (3) from (2), we have (1), which completes our 
proof.

36.12.2 Green's Theorem in E .
31. V is a closed E region bounded by a surface S.

2. $ is a vector field which is continuous and has continu­
ous first derivatives in V.

3. n is the unit outer normal vector to S.

--- \ fjj V • F d V - // t • n d a .f V s

Proof:

This theorem is called, also, the divergence theorem, and can be 
written in the form
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We will prove, first, that

(2) d V /} b-n« d a, 
S J 3

in the case where S can he intersected by a straight line parallel 
to the x^-axls in two points at most. Let T be the projection of S 
on the plane. On S there is a curve C consisting of points
where the tangent plane to S is parallel to the x^-axis. The curve 
C divides S into two parts S' and S". At a point x * (x^^.Xg) 

in V we will Introduce an element of volume lying in a prism 
parallel to the x^-axis, the vertical line through x meeting S' 

and S" at the points x' * (x^^jXg) and x" - (x-j^.xjp.

Thus,
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<« /// j r i v • //V ®X3 T
f 3 ^ .
x„ «)x3 X3 d (x2 »xj)

// { { X j » X £ ( X j * X £ f X ^ ) } d (^2*^1^

Let n' be the unit outer normal vector at x' and let dS* be the 

area number of the element cut from S' by the vertical prism. 

Let us define n" and dS" at x" in a similar manner. Then, 
d(*2,Xj) = d S' - - n" 4 S \

and we can write (3) as 

JF,
H { j ^ iV m //. '3<*i.*2.*3> "3 <* s' + //, »3<*l'x2'*3> °3 d S"

■ // Fj Hj d a .
S

Let us consider, now, the case where S can be intersected by a 
vertical line in more than two points. In such cases, we can 

divide V into a number of regions V2* ̂ 3’ . . . » vm by inter­
secting V by a number of surfaces k^, , k^, . . . , so chosen
that the boundary of each of the regions V^, i * l,2,3,...,m, can 
be intersected by a vertical line in at most two points. The proof 
above of (2) applies, then, to the regions V^, i » 1,2,3,...,m.
If we proceed in this manner, the surface integrals over the k^, 
i ■ 1,2,3,... ,m, cancel, and we establish, thus, (2) for the 
region V.

In a similar manner to the above, we can prove that

JF i F(4) /// 7“  d V - // b„ n2 d a , and /// — ■ d V « /| b, n, d a.V *x2 S V * 1  S



When we add equations (2) and (4), we obtain (1), and our proof is 
complete.

Remark. If f is a scalar field with continuous second-ofder deriva­

tives, then we can set F = V f and substituting in

/;; 7 • I d V - // f • a d a,
V s

we obtain

/// V • (V f) d V - // V f • n d cr,
V S

or,

(5) /// <7 • 7) f d V - // D f d a,
V S

2where V • V is the Laplacian operator V and f is the directional 
derivative of f in the direction of the outer normal to the surface
S.
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6.12.3 The Symmetric Form of Green's Theorem.

Let f and g be scalar fields with continuous second derivatives in 

a closed region V bounded by a surface S. Then, we can apply 
Green's Theorem as stated, but with the vector F replaced by 
f V g. We have

CD /// V • (f 7 g) d V - // £ 7 g • n d a .
V S

However, V * V g ■ f (7 • V) g + V f • 7 g 

- f  72 g + 7 f  • 7 g.

Also, Vg • n is equal to the directional derivative g of g in 

the direction of the outer normal n to S. Thus, (1) becomes
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(2) /// (f V2 g + V £ • V g) d V = // f Dn g d a .
V S n

In a similar manner, by making an interchange of f and g in the 
above relation, we have

(3) /// (g £ + V g • V f) d V - // g D f d a.
V S

Subtraction of (3) from (2) gives

(4) /// (f V2 g - g V2 f) d V * // (f V g - g Dn f) d 0 .
v s

This equation is known as the symmetric form of Green's Theorem.

6.13 S tokes' Theor em.
1. S is a closed region on a surface.

2. C is the boundary of S.

3. n » (nj,^,^) is the unit vector normal to S on the 

positive side.

4. The positive direction on C is that in which an observer 
would travel to have the interior of S on his left.

5. t is the unit vector tangent to C in the positive direc­

tion. "
6. F is a vector field with continuous first derivatives in 

the closed region S.

--- s // t * (V x f) d a « / I • t d s,
s c

where the integration around C is carried out in the 

positive direction.

Proof:

The theorem can be written, also, in the form
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(1) ff {nl (dx2 ^ 3 "* + n2 <J*3 " ^  + n3 (̂ *  ” Ix^* d ff

■ / (bj d x^ + b2 d x2 + bj d X3) 
C

First, we will prove that

(2) // n • (V x Pj ^  d fl - | Fj d Xj ,
S C

in the case when S is a regular surface element and the positive 
side of S is the side on which the unit normal vector n points in

mj,

the direction of increasing X3. t is the unit tangent vector of 
C and the region Sf of the xjX2 plane is the region into which S 
projects.
Now,

(3) // n • (V * Fj Uj) d 0 ■ // n • (u2 - U3 j ~ )  d a .

Suppose the equation of the surface is X3 ■ g(x^,x2). Then, on S, 

we have Fj Cx j .Xj .Xj Cx j .Xj)) ■ c1(x1>x2),

... *C1 <rl . >*1 *x3(A) -r  = -r—  + ---- -r 
<̂x2 ^x2 ^X3 ^x2 *

^ 1Then, we substitute from this equation for r— — in equation (3),
d x2

and obtain

(5) // n • (V x Fj Uj) d S « - // n • Uj d^x2

^x3 aFi+ ;/ n • (u2 + u3 —  d S

- - Ij + I2 ,
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where Ij and I2 are the two integrals on the right-hand side of 
equation (5).
We will consider Ij. We have n* d S * n^ d S » d S', where
d S’ is the projection of d S on the x^x2 P*ane' Since is a
function of Xj and x2 only, we have

By Green's Theorem in the plane, we have

(6) /bj(*j,x2

/ ‘l d *1

,x3(x1,x2)) d Xj

Now, consider I2« The position vector of a point x on S is 
x * x^ Uj + x2 u2 + x3(x^,x2> u3 .

Hence,

)*1
and

(7) / / *S
i L i ! i
&*2 ^x3

d a

However, the vector —  is tangent at x to the curve of intersection

of S and a plane parallel to the x2x^ plane. Thus, this vector is 
tangent to S and is perpendicular to the unit normal vector n, and

we have n • * 0.
*x2

Thus, equation (7) means I2 ■ 0, and from equations (5) and (6), 

we can conclude that the conclusion (2) is true.
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If the positive side of S is so chosen that the unit normal vector 
*n points in the direction of decreasing x^, the proof of

jf n • C7 x Fj d a » / Fj d Xj is similar to that above, the 
S C

only differences in the proof being that in the present case n^ 

is negative and the direction of integration around the curve C is 
opposite to that in the proof above.
If the surface S is not a regular surface element, we divide it 
into a number of regular surface elements S^, k » l,2,3,...,m, by 
a number of curves L^, k = l,2,3,...,m. The proof above for (2) 
applies to the regions S^, k = l,2,3,...,m. If we apply (2) to 
these regions, and add, the line integrals over L^, k * 1,2,3,...,m, 

cancel, and we have equation (2) is true for the region S.
In a manner similar to that employed above, we can prove

(8) // n • (V x F2 u 2) d a = / F2 d x 2
s c

and

// n ♦ (7 x Fj u3) d a ■ / Fj d Xj .
S C

On the addition of equations (2) and (8), we have equation (1), 
and our proof is complete.

6.14 Integration Formulae.

3We have established Green's Theorem in E and Stoke's Theorem.

These theorems are integration formulae written in the form

(1) /// V • t d V - // n • ? da ,
V S

and
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(2) // (n x 7) • I d O * / t • F d S .S C
Each of these formulae involves a vector field ?, and (1) represents 
a transformation from a triple integral to a surface integral, and 
(2) represents a transformation from a surface integral to a line 
integral. We will introduce, now, four other integration formulae 
in the form of two theorems.

6.14.1 Theorem.
31. V is a closed region in E bounded by a surface S with 

the unit outer normal n as in the case of Green's
3Theorem in E .

2. f is a scalar field with continuous first derivatives 

in V.

3. F is a vector field with continuous first derivatives 
in V.

■..\ (3) jfj V f d V = // n f d a  , and
V s

(4) / | / 7 x f d T «  j / n x J d f f  .
V S

Proof:
Let c be a constant vector field. If, in equation (1) of this 
section, we set F « f c, we have

(5) / / / V » ( f c ) d V « / / n * f c d a .
V S

However, V '(f c) * ? f • c, since c is a constant vector.

Then, equation (5) can be written

c * {//J 7 f d V - / / n f d < j } « * 0  .
V S
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Since c Is a constant vector, then

/// V f d V - // n f d a - 0,
V S

and thus we have equation (3).

To prove (4), we Introduce, as in the proof of (3), the constant 
vector field c, but In equation (1) we replace F by F * c to obtain

(6) /// V • (I x £) d V - // n • (£ x c) d a .
V S

Since c is a constant vector, by the permutation theorem for scalar 
triple products, we have

V • (? x c) - c • (V x ?), and 
n • <? x t) . t ■ (i x f) .

Thus, equation (6) can be written

c • {/// V * ^ d V - / / n * i F d ( j }  "0.
V S

Since c is a constant vector, we can conclude that (4) is true. 

6.14.2 Theorem.
1. S is a closed region lying on a surface and bounded by 

a curve C.
2. n is the unit positive normal vector to S.
3. t is the unit positive tangent vector to C, as in the 

case of Stoke's Theorem.
4. f is a scalar field with continuous first derivatives 

in S.
5. F is a vector field with continuous first derivatives

in S
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—.\ (7) // ( n x ? ) f d O » | t f d S
1 S C

(8) // (n x V) x f d 0 = / t x F d S.
S C

Proof;
To prove (7) and (8), we replace F in equation (2) be f c and then 
by F x c. The procedure follows that of the previous proof:

6.14.3 A Compact Form for the Integration Formulae.

The six integration formulae which we have derived may be written 
very compactly in the form

(9) /// V* I d V * // n* T d 0,
V S

(10) // (n x V)* T d a - J t* T d S ,
S ' C

where T can denote a scalar field or a vector field, and the 

asterisk has the following meanings: if T is a scalar field, then
* denotes the multiplication of a vector and a scalar; and if T 
denotes a vector field, then * denotes either scalar or vector 

multiplication.

6.15 Irrotational Vectors.

A vector field ^(x^Xg.Xg) is irrotational in a region V in E^, 
iff, everywhere in V, we have

(1) 7 x I • S.
Suppose <j> is any scalar field with continuous second derivatives; 

and let us write ? * V

Then,
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? x |  » 7  x V ij) “ "5;

hence, a vector $ defined as the gradient of a scalar field is
irrotational.
We will show that an irrotational vector field has rhe following 

properties:
(a) Its integral around every reducible circuit in V is zero;

To prove property (a), we will consider a general circuit in V 
which is reducible; i.e.» it can be contracted to a point without 

leaving V. Suppose S is a surface which lies entirely in V and is 
bounded by C. Let us assume F has continuous first derivatives, 
then Stokes' Theorem gives

J $ » t d S » J / n # (V x I) d 0 * 0,
C S

by (1).
To prove property (a), let x be a general point in V, and let x q 
be a given point. Also, let C' and C" be any two paths in V from 

xq to x. Property (a) informs us that the line integral of F from 

xQ to x is the same for paths C' and C" and hence has the same 
value for all paths in V from xQ to x. Thus, if we write

then ({> depends only on the coordinates (x̂  ̂ . x ^ )  of x. If we take 
the derivative of equation (2) with respect to S, we have

(b) When V is simply connected ? is the gradient of a scalar field.

(2)



But rj|r is the directional derivative of (f), and is equal to
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V $ * <Dg *) •

Hence, equation (3) can be written as (V <p - * Dg x « 0, and

since Dg x is an arbitrary vector, then

(4) f m V t ,

and the proof is complete.
The function <j> is called a scalar potential function.

6.16 Solenoidal Vectors.

We say a vector field F = FCx^^jX^) is solenoidal in a region V, 
iff, everywhere in V we have 

(1) V • I - 0.
Suppose <£ is a vector field with continuous second derivatives, 
and let us write 

f ■ ? x |,

Then, V • ? » V • (? x |) » 0.

We will show that if ? is any solenoidal field, there exists a 
vector field such that f ■ V x <£,
In order to prove this result, we must solve the scalar equations
(2) F1 ■ \  *3 - \  h-

(3) F2 • \  *i ' \  *y

(4) F3 ’ \  *2 ' \  *1‘

for <|>j, <j>2» and <j>g, where Fj, Fg, and F^ are given functions subject 
to the condition
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(5) F, + D F. + D 0.

Let us choose <j>3 = 0. Then, from equations (3) and (4) by partial 
integrations with respect to x^, we have

X1
(6) <j>2 ■ / F3 d + ^2 x̂2,x 3̂  *

al

<f>2 " “ / F2 d *1 + ^3^x2,x3̂a,

where a^ is a constant and \p2 and ^3 are functions of x2 and x^

whose choices are arbitrary. To satisfy (2), we must have 
xt*1

1 * ~ / ^x« F2 + "x, *3y “ "1 ' "x- T3 "x, Y2a1 2 “  "3
D, F,) d x, + - D ip, .

Using equation (5), we can write

F1 •  I Bx, F1 d ; 1 + Dx 2 *3 -  Dx3 *2
al 1

f 1(x 1,x 2,x3) - b1(a1,x2,x3) + Jp3 - Dx^ ip2 .

This equation is satisfied if we choose

tj>2 “ 0,

X1
ip3 - / F1(aI,x2,x3) d i2 ,

a2

where a2 is a constant.

Then, we have
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“ 0,

X1
<J>2 ■ / F3(x1,x2,x ;j) d Xj ,

al

X1 X2
4>3 “ “ / F2(x1,x 2,x 3) d x3 + / F1(a1,x2,x3) d x2 ,

al a2

where all the integrations are partial integrations, and and a2 

are constants.
The function $ is called a vector potential function.

In the proof above, we made several selections which were arbitrary, 
and this indicates that the solenoldal vector field f does not 
possess an unique vector potential function. To understand this 
fact, we let be one vector potential function corresponding to 

the solenoldal vector field ?, and let f be any scalar field.

Then,
V x (| + V f) = 7 x $ + y x V f ■ ? x | .

Thus, $ + V f is a vector potential function* also, corresponding 
to the vector field ?.
If ? is any vector field having continuous second derlvaties in

*■>»a region V, then it is possible to show that F can be expressed as 
the sum of an irrotational vector and a solenoldal vector, although 
we are not offering a proof of this result in the present investi­
gation.
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