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1. INTRODUCTION

As an undergraduate at Texas State University-San Marcos in an introductory topology

course, Dr. Sukhjit Singh presented an exercise to the class of finding all the topologies on

a three-element set.

Definition 1. A topology on a set X is a collection T of subsets of X having the following

properties:

1. /0 and X are in T .

2. The union of elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T . [8]

Most of my classmates tried to use brute force to tackle the problem. The brute force

method would require the student to look at

P(P(X)) = P({ /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}), which has a total of 256

elements to check for the properties of a topology.

Rather than perform such a time-consuming process, I drew a graph, G. I found it

necessary to make vertices of two types. The first type was the single element subsets of

P(X)�{ /0,X}= {{a},{b},{c},{a,b},{a,c},{b,c}}. So

V1(G) = {{{a}}},{{b}},{{c}},{{a,b}},{{a,c}},{{b,c}}}.

The second type was the two element subsets of P(X)�{ /0,X} where both elements have

the same cardinality. So we have that V2(G) is the set:

{{{a},{b}},{{a},{c}},{{b},{c}},{{a,b},{a,c}},{{a,b},{b,c}},{{a,c},{b,c}}}.

As this notation is cumbersome, we will often make use of the following representations:
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{{a}} is represented by a

{{a,b}} is represented by ab

{{a},{b}} is represented by a : b

{{a,b},{a,c},{b,c}} is represented by ab : ac : bc.

Thus

V (G) = V1(G)[V2(G)

= {a, b, c, ab, ac, bc, a : b, a : c, b : c, ab : ac, ab : bc, ac : bc}.

The edge set of G, E(G), is define by the rule v1 $ v2 for some v1,v2 2V (G) if

v1 [ v2 [{ /0,X} is a topology on X . For example, we have an edge from a to bc because

a[bc[{ /0,X}= {{a}}[{{b,c}}[{ /0,X}= { /0,{a},{b,c},{a,b,c}}. My original

sketch is seen in Figure 1.

Now consider the topologies on X . The only topology with 2 open sets is the indiscrete

topology { /0,X}. The topologies with three open sets are all accounted for by

{v[{ /0,X}|v 2V1(G)}. Topologies with four open sets are represented on the graph by

the edges between vertices in V1(G). The topologies with five and six open sets are then

the edges drawn between vertices in V1(G) and V2(G) or edges drawn between two

vertices of V2(G), respectively. The inclusion of any more sets beyond six would force the

topology to be the discrete topology.

As this was an exercise to count the number of topologies on a three element set, I first

counted the number of edges drawn, arriving at a total of 21 topologies. The elements of

V1(G), when unioned with { /0,X}, were also topologies in their own right, as mentioned

above. Counting each of these, this added another six topologies for a total of 27. Only the
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discrete and indiscrete topologies were not pictured in the graph. These two more

topologies brought me to the final total of 29 topologies on a set of three elements.

The effectiveness of this construction for the purpose of counting topologies became an

interesting question to me that I would continue to ponder throughout my undergraduate

career: would the use of graphical representations be able to aid in the unanswered

question of how to count topologies on a finite set? Even if not, what could be gleaned

about the construction of topologies from the representative graphs? It was these

questions which ultimately led me to a recursive definition for T0 topologies on a finite set.

Figure 1: Original Graph of the Topologies on X = {a,b,c}
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2. TERMINOLOGY AND NOTATIONAL CONVENTIONS

Throught the course of this paper, we will make use of terminology and notation from the

fields of graph theory and topology. When the construction is the work of the author, the

definitions will be given in text. Presented here are standard definitions and notation

considered background material for the following chapters.

We begin with an exploration of graphical representations. As described by West, a graph

G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation that

associates with each edge two vertices (not necessarily distinct) called its endpoints [14].

Early representations used, such as the nucleus and shell graphs of Chapter 3, are

undirected graphs. Using the elements of the power set of X , or the set of all possible

subsets of X , we define a vertex set. For the relation which defines our edge set we turn to

the definition of a topology, given in Definition 1.

This early work will focus largely on distinct, or labeled, topologies, which is a

collection of all of the unique permutations of the elements of X into the open sets of a

topology T . For example, when considering labeled topologies, the collections

{ /0,{a},{a,b}} and { /0,{b},{a,b}} would be separate topologies on {a,b}. Later in the

paper, we will refine our representations and only consider the equivalent, or unlabeled,

topologies on X . In these instances, the two topologies above would not be considered

distinct. As we progress, we will utilize Hasse diagrams to explore the unlabeled

topologies on a finite set. These directed graphs are a rendering of a partially ordered set

whose edge set relation is defined by the cover relation of the partially ordered set. These

graphs are transitive, meaning that if x < y and y < z for some vertices x,y,z 2V (G) and

some cover relation <, then x < z.

Lastly, we will return to the undirected, loopless graph structure and examine the degrees

of a vertex v, d(v), or the number of edges incident to v. These graphs will be found to be

k-regular, meaning every v 2V (G) has degree d(v) = k.
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3. NUCLEUS-SHELL GRAPHS

Starting my exploration from the graph in Figure 1, I defined my topological graphs by the

following rules:

1. For the graph G

X

, let V (G
X

) be some subset of P(X)�{ /0,X}.

2. Let the edges of E(G
X

) be defined by v1 $ v2 if v1 [ v2 [{ /0,X} is a topology on X ,

for some v1,v2 2V (G
X

).

Note that the question as to which selection of subsets of P(X) which will serve as V (G
X

)

is a complicated. As shown in the graph in Figure 1, not all of the 256 possible subsets of

P(X) are drawn. This issue is discussed in greater detail below.

When |X |= 1 or 2, the graphical representations are trivial given our above notational

restrictions. They are, however, detailed below. Once |X |> 2, a greater organizational

structure is needed. For certain vertices, as discussed in the introduction, v

i

2V (G
X

),

v

i

[{ /0,X} is a topology on X . This is not necessarily the case for all vertices however. I

defined two concepts in an attempt to simplify this complex problem: the nucleus and

shell graphs.

Definition 2. In a G

X

, the nucleus, N|X |, is the full subgraph of G

X

in which

V (N
n

) = {A|A is a non-empty proper subset of X}. Thus V (N
n

) consists of all the

singleton subsets of P(X)�{ /0,X}. Note that V (N
n

) =V1(Gn

), as defined in the

introduction.

Example 1. For n = 3, V (N3) =V1(G3) = {a,b,c,ab,ac,bc}. Similarly, for n = 4,

V (N4) = {a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd}.

Thus every topology with three or four open sets on a given X

n

is represented as a vertex

or an edge of N

n

. Note that |V (N
n

)|= 2n �2, as these are the number of non-empty,

proper subsets of X .
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Note that we have an edge (u,v) 2 E(N|X |) if and only if u ⇢ v, v ⇢ u, or u = v

c. Thus we

can count the number of edges in N

n

. The number of pairs (u,v) such that u = v

c is

2n�2
2 = 2n�1 �1. Also, the number of pairs (u,v) with u ⇢ v is

n�1
Â

k=2

�
n

k

�
(2k �2) = 3n �3 · (2n)+3. Thus the number of edges in N

n

is defined by the

mapping

f (n) = 3n �3 ·2n +2n�1 +2.

Example 2. Let X1 = {a}.

Since X1’s only topologies are the discrete and indiscrete topologies, neither of which are

drawn in this method, there is no graphical representation. Since there is no graph, the

total number of edges is f (1) = 0, to which we add 1 for the discrete and indiscrete

topologies, which coincide in this case, giving us the total number of topologies on a set

of one element: 1.

Example 3. Let X2 = {a,b}.

The graph of topologies on X2 = {a,b} is the isolated vertices a and b. An edge drawn

between them would represent the topology { /0,{a},{b},{a,b}}, which is the power set

of X2 and therefore is not pictured. However, each of these vertices would form a topology

in and of themselves. This graph is N2, the first instance of a nucleus subgraph.

Thus, the topologies on X2 are formed by each of the two vertices in the nucleus, plus the

discrete and indiscrete topologies, for a total count of 4 topologies.

As I began to examine the graph of the topologies, I developed the concepts of the nucleus

and shells of the graph in order to better organize my system in anticipation of attempting

to graph the topologies of larger sets. I will first show the nucleus, N3, then its single shell

S

2
3, and finally the complete graph. It is known that there are 29 labeled topologies on this

set [9].
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N3, pictured in Figure 2, contains 2n �2 = 6 vertices.

We see in the graph of N3 below the f (3) = 9 edges representing the topologies with four

sets, six of the edges representing subset relationships between the vertices and three

representing vertex pairs which partition X .

a bc

b

ac c

ab

Figure 2: Nucleus Graph, N3

These values, plus the fact that each vertex in the nucleus is a topology when combined

with /0 and X3, gives a total of 15 distinct topologies.

My plan was to define shells around this nucleus by making the kth shell, S

k

n

, consist of

some judicious choice of k element subsets of P(X
n

). I define S

2
3 to be the pairs of open

sets of the same order.

a:b ab:bc

b:c

ac:bca:c

ab:ac

Figure 3: Shell Graph of two open sets, S

2
3
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Thus, all topologies of three open sets, such as { /0,{a},X3}, are counted by the vertices of

the nucleus, all topologies of four open sets are counted by the edges of the nucleus, and

all topologies of six open sets are counted by the edges of S

2
3. Once these two subgraphs

are combined together, the edges connecting the nucleus to the shell will give us all the

topologies of five open sets.

a:b

ab:bcb:c

ac:bc

a:c ab:ac

bc b

ab

aac

c

Figure 4: Nucleus-Shell Graph on X3 = {a,b,c}

The nucleus contains, as stated above, 15 topologies; S

2
3 contains 6. The two are joined

together by 6 five set topologies, such as a : b $ ab = { /0,{a},{b},{a,b},X}. This gives

a total of 27 topologies pictured, plus the discrete and indiscrete topologies, for a total of

29 labeled topologies.

After such a successful representation, I attempted to expand this construction to

X4 = {a,b,c,d}.

Example 4. In Figure 5, we have the graph N4. I chose to render the graph in three

dimensions for the sake of clarity. The outer edges in the diagram connect sets u and v

with u ⇢ v and the inner edges connect sets u and v with u = v

c. It is also clear that

permutations of N3 is an often repeated subgraph; in fact, every vertex of N4 lies on at

least 2 subgraphs isomorphic to N3.
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a

ab

ac

ad

abc

abd

acd

b

bc

bd

bcd c

cd

d

Figure 5: Nucleus Graph, N4

Thus the nucleus gives a total of 57 labeled topologies on X4, still far from the 355 known.

When attempting to construct the first shell, S

2
4, several difficulties in construction

occurred.

Using the same method of choosing subsets of P(X) to serve as the vertices of S

2
4, I

attempted to determine, before construction, the number of vertices in S

2
4. Since S

2
4 will

contain the pairs of elements of the same cardinality, the vertices of S

2
4 are shown in Table

1 below.
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Table 1: Vertices of S

2
4

Cardinality of sets Example Total
1 a : b 6
2 ab : bc 12
2 ab : cd 3
3 abc : abd 6

So, prior to construction of S

2
4, V (S2

4) contains 27 vertices. Furthermore, not all topologies

on five sets would be captured by this selection of vertices for S

2
4.

For example, when constructing the topology

{ /0,{a},{a,b},{a,b,c},X4},

which in the Nucleus-Shell system would be a edge connecting a vertex in N4 to a vertex

in S

2
4, how should the topology be represented? As the edge a $ ab : abc, ab $ a : abc, or

abc $ a : ab? It seemed I could not, as I had done before, solely choose vertices of pairs

of open sets of the same cardinality.

Figure 6: Possible edges of G

X4 which form the topology T = { /0,{a},{a,b},{a,b,c},X
n

}

Each choice dramatically altered the overall shape and construction of S

2
4, as this choice

determined the vertices that would be available to construct the topologies of six open sets

whose representative edges would lie wholly in S

2
4. In the pursuit of simplicity, I attempted

to minimize the number of vertices needed for S

2
4. However, in any construction, the shell

was not as well organized as the nucleus had been, making the joining of the two graphs,
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as had been seen with N3 and S

2
3, unenlightening. Another downfall of this construction,

which was used initially to count the number of topologies on a three element set, is that

for the construction of these graphs for n � 4 it is necessary to have all the topologies on

the set before work begins. No obvious pattern had presented itself to allow me to

extrapolate the topologies, or their graph structure, for higher values of n.

With the shell construction abandoned, greater attention was paid to the nucleus graph.

With this came the realization that all topologies on X were paths on the nucleus graph

and that the shell structure was truly redundant. As seen in Figures 7 and 8, the topology

{{a},{b},{a,b},{b,c}}[{ /0,X
i

} corresponds to a path on N3 and on N4, respectively.

Figure 7: T = { /0,{a},{b},{a,b},{b,c},X3} highlighted on N3

However, while every topology can be drawn as a path on the nucleus graph, not every

path is in turn a topology on X .

Again, it seemed that the nucleus graph, even with the outer shell structure abandoned,

would not prove a fruitful path of inquiry. This led to a question: could the topologies on a

set of n elements be used to construct the topologies on a set of n+1 elements? I had

already seen that each topology was the union of smaller topologies on the set, or the

union of edges on a graph forming a path, and that any topology on n elements had a

11



Figure 8: T = { /0,{a},{b},{a,b},{b,c},X4} highlighted on N4

correlate on n+1 elements, as seen in Figures 7 and 8. This led to my first attempt at a

recursive definition for the construction of the topologies on n+1 elements from the

topologies on an n element set.
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4. A RECURSIVELY DEFINED SET OF TOPOLOGIES

In the nucleus and shell graphs, needing to have all the topologies on the finite set proved

to be a major hurdle in representing the topologies graphically. Finding all the topologies

on a set through a brute force method is already tedious on a set of 4 elements, and

quickly became infeasible as the number of elements increases. For these reasons, my

research focus shifted to trying to find a means of generating the topologies on a set of

n+1 elements from the topologies on a set of n elements. Working with the nucleus-shell

graphs did present some interesting relationships between topologies on sets differing by

one element.

Let X

n

be a set with n elements, let x /2 X

n

and let X

n+1 = X [{x}. Then for any topology

{ /0,A1, ...,A
k

,X
n

}, where each A

i

is a non-empty, proper subset of X

n

, the set

{ /0,A1, ...,A
k

,X
n

,X
n+1} is a topology on a set of n+1 elements. Also,

{ /0,{x},A1 [{x}, ...,A
k

[{x},X
n+1} is a topology on X

n+1. If for all sets A

i

,A
j

in a

topology on X

n

we have that A

i

\A

j

6= /0, then { /0,A1 [{x}, ...,A
k

[{x},X
n+1} is a

topology on the set X

n+1 as well. Given these realizations, the following definitions are

made.

Definition 3. Let X

n

be a finite set, T a topology on X

n

, and and A

i

is a non-empty proper

subset of X

n

in T . Define the sets xT, x̂T, and x0T, for some singleton x /2 X

n

as follows:

xT = {A

i

[{x}|A
i

2 T}[{ /0,X
n+1},

x

0
T = xT\{x},

x̂T = T [{X

n+1}.

It is necessary to make further distinctions on the type of sets which compose the topology
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T . Whether or not these classify topologies is dependent on the presence of non-empty

open sets with an empty intersection.

Definition 4. T is a conjoint topology on X means that for all non-trivial proper subsets A

and B of X , if A and B are in T then A\B 6= /0.

Proposition 1. If T is a topology on X

n

, then we have the following:

i) xT is a topology on X

n+1,

ii) x̂T is a topology on X

n+1,

iii) x

0
T is a topology on X

n+1 if and only if T is conjoint,

iv) xT [ x̂T is a topology on X

n+1,

v) x

0
T [ x̂T is a topology on X

n+1 if and only if T is conjoint.

Proof. Let X

n

be a finite set, x /2 X

n

, such that X

n+1 = X [{x}.

Note first that { /0,X
n+1} is a subset of xT,x0T, and x̂T , by construction, and as such,

{ /0,X
n+1} is a subset of any possible unions of these sets. Thus, we need only check for

each case closure by set union and intersection for each set.

i) Let B,B0 2 xT . Then

B[B

0 = (A
i

[{x})[ (A
j

[{x}) for some A

i

,A
j

2 T

= (A
i

[A

j

)[{x}

and

B\B

0 = (A
i

[{x})\ (A
j

[{x}) for some A

i

,A
j

2 T

= (A
i

\A

j

)[{x}.
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Since A

i

[A

j

,A
i

\A

j

2 T , then (A
i

[A

j

)[{x} and (A
i

\A

j

)[{x} 2 xT . Thus xT is

closed under unions and intersections. Thus xT is a topology on X

n+1.

ii) Now from the construction of x̂T , it is clear that for any topology T on X

n

, T [{X

n+1}

is a topology on X

n+1.

iii) By a similar argument as had been made for xT , the set x

0
T is closed under unions and

intersections. It need only be shown that in a conjoint topology, there are no sets in x

0
T

such that their intersection is {x}.

Assume that there are sets C,C0 in x

0
T such that C\C

0 = {x}. Then

C = A

i

[{x},C0 = A

j

[{x}, where A

i

,A
j

6= /0. Then we have that

(A
i

[{x})\ (A
j

[{x}) = (A
i

\A

j

)[{x}. So C\C

0 = (A
i

\A

j

)[{x}= {x}. However,

A

i

\A

j

6= /0, since T is a conjoint topology. Thus C\C

0 6= {x}. So x

0
T is a topology on

X

n

[{x}= X

n+1.

iv) Let D,D0 2 xT [ x̂T .

If D,D0 2 xT or D,D0 2 x̂T , then, as shown above, the set xT [ x̂T is closed under unions

and intersections. Assume, without loss of generality, that D 2 xT , D

0 2 x̂T . Then

D = A

i

[{x} and D

0 = A

j

, for some A

i

,A
j

2 T . So we have that

D[D

0 = (A
i

[{x})[A

j

= (A
i

[A

j

)[{x}

2 xT

⇢ xT [ x̂T

15



and

D\D

0 = (A
i

[{x})\A

j

= (A
i

\A

j

)[ ({x}\A

j

)

= A

i

\A

j

2 x̂T

⇢ xT [ x̂T

so xT [ x̂T is a topology on X

n

[{x}= X

n+1.

v) By similar argument, we have x

0
T [ x̂T is a topology on X

n+1 as long as T is conjoint,

shown in case (ii).

We now investigate whether every topology on an n+1 element set can be obtained by

applying of the the operations T ! xT,T ! x

0
T,T ! x̂T,T ! xT [ x̂T, or T ! x

0
T [ x̂T

to an n element set. Letting T
X

n

be the collection of all topologies on X

n

and T

n,k be the

kth topology on X

n

, the following examples will serve to better illuminate the sets defined

above.

Example 5. Let X0 = /0. Then the only topology on X0 is T0,1 = { /0}. Let X1 = {a}. Then

the only topology on X1 is T1,1 = { /0,{a}}. We note that T1,1 = aT0,1.

Then T
X1 = {T1,1}.
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Choose b /2 X . Then we have

bT1,1 = { /0,{b},{a.b}}

b̂T1,1 = { /0,{a,b}}

b

0
T1,1 = { /0,{a},{a,b}}

bT1,1 [ b̂T1,1 = { /0,{b},{a,b}}

bT1,1 [b

0
T1,1 = { /0,{a},{b},{a,b}}.

Let X2 = {a,b}. The topologies on X2, and their expressions using the above operations,

are as follows:

T2,1 = { /0,{a,b}}= b̂T1,1

T2,2 = { /0,{a},{a,b}}= b

0
T1,1

T2,3 = { /0,{b},{a,b}}= bT1,1 [ b̂T1,1

T2,4 = { /0,{a},{b},{a,b}}= bT1,1 [b

0
T1,1.

Note that bT1,1 ⇠= b

0
T1,1 ⇠= bT1,1 [ b̂T1,1.

Applying our operation to the labeled topologies on {a,b} we obtain the following 17

labeled topologies on {a,b,c}.
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1. {{ /0},{a,b,c}}

2. {{ /0},{c},{a,b,c}}

3. {{ /0},{a,b},{a,b,c}}

4. {{ /0},{a,c},{a,b,c}}

5. {{ /0},{b,c},{a,b,c}}

6. {{ /0},{a},{a,b},{a,b,c}}

7. {{ /0},{b},{a,b},{a,b,c}}

8. {{ /0},{c},{a,b},{a,b,c}}

9. {{ /0},{c},{a,c},{a,b,c}}

10. {{ /0},{c},{b,c},{a,b,c}}

11. {{ /0},{a},{b},{a,b},{a,b,c}}

12. {{ /0},{a},{a,b},{a,c},{a,b,c}}

13. {{ /0},{b},{a,b},{b,c},{a,b,c}}

14. {{ /0},{c},{a,c},{b,c},{a,b,c}}

15. {{ /0},{a},{c},{a,b},{a,c},{a,b,c}}

16. {{ /0},{b},{c},{a,b},{b,c},{a,b,c}}

17. {{ /0},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

This list contains at least one copy of each of the 9 inequivalent topologies possible on a 3

19



element set, which are listed below.

T3,1 = { /0,{a,b,c}}= c

0
T2,1

T3,2 = { /0,{c},{a,b,c}}= cT2,1

T3,3 = { /0,{a,c},{a,b,c}}= c

0
T2,2

T3,4 = { /0,{c},{a,c},{a,b,c}}= cT2,2

T3,5 = { /0,{a},{b},{a,b},{a,b,c}}= c

0
T2,4

T3,6 = { /0,{a},{a,b},{a,c},{a,b,c}}= c

0
T2,2 [ ĉT2,2

T3,7 = { /0,{a},{c},{a,b},{a,c},{a,b,c}}= cT2,2 [ ĉT2,2

T3,8 = { /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}= cT2,4 [ ĉT2,4

T3,9 = { /0,{c},{a,b},{a,b,c}}= cT2,1 [ ĉT2,1

To obtain all the equivalent topologies on {a,b,c}, we could apply our operations to {a,c}

using b, and to {b,c} using a.

From this work I hoped to prove that all topologies on a set X

n+1 were in fact one of the

above defined sets derived from a topology on X

n

. However, a counter-example was found

when examining the recursion from X3 to X4.

Let X4 = {a,b,c,d},X3 = {a,b,c} and consider the topology T = { /0,{a},{b},{a,b},X4}

on X4. Let T

0 be some topology on X3.

Since {a} 2 T we cannot have T = dT

0 or T = d

0
T

0. Since X3 /2 T , and X3 2 d̂T

0 for all

T

0, we cannot have T = d̂T

0,T = dT

0 [ d̂T

0 or T = d

0
T

0 [ d̂T

0.

This construction would not ultimately work to produce all of the topologies on X

n+1 from

the topologies on the set X

n

.

However, this counter-example provided insight into the way that a topology can be

broken down into topologies on a set of cardinality one less. Rather than working from X

n

20



to X

n+1, the opposite direction was pursued in order to determine if there was some

pattern to why the recursive definition had failed.
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5. PARTITIONING TOPOLOGIES

As the recursive definition of the last section failed to capture all topologies, we study

further how topologies on an n+1 element set are related to topologies on an n element

subset. The goal is to obtain insight into how to make a recursive definition for producing

all the finite topologies.

Given any topology T on a set X and an element a 2 X there are two natural ways to

obtain a topology on the set X �{a}. Observe that the sets in T which contain a are closed

under unions and intersections, so those sets together with /0 form a sub-topology on X

and we can obtain a topology on X �{a} by deleting a from every set in the sub-topology.

Similarly we note that the sets in T which do not contain a are also closed under unions

and intersections, so by taking these sets together with X �{a} we obtain a topology on

X �{a}.

More formally, we define three sets S

a

,S
ā

, and S̄

a

as follows: S

a

= {A

i

2 T̄ |a 2 A

i

},

S

ā

= {A

i

2 T̄ |a /2 A

i

} and finally S̄

a

= {A

i

�{a}|A
i

2 S

a

}.

Definition 5. Let Ta = S̄

a

[{ /0,X} and Tā = S

ā

[{ /0,X}.

We record our initial observations in the following proposition.

Proposition 2. Let T be a topology on a set X and let a 2 X. Then T

a

and T

ā

are

topologies on X �{a}.

Example 6. Let T = { /0,{a},{b},{a,b},{a,c,d},X4}. For each choice of an element of

X4, the partitioning can produce different (though not necessarily inequivalent) topologies

on X3, some three element set, as shown below:
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T

a

= { /0,{b},{cd},X3} for X3 = {b,c,d}

T

ā

= { /0,{b},X3}

T

b

= { /0,{a},X3} for X3 = {a,c,d}

T

b̄

= { /0,{a},X3}

T

c

= { /0,{a,d},X3} for X3 = {a,b,d}

T

c̄

= { /0,{a},{b},{a,b},X3}

T

d

= { /0,{a,c},X3} for X3 = {a,b,c}

T

d̄

= { /0,{a},{b},{a,b},X3}.

It is easy to see that T

ā

⇠= T

b

⇠= T

b̄

, T

c

⇠= T

d

, and T

c̄

⇠= T

d̄

.

Next we examined whether there were certain properties of T which would be preserved

by the partitioning process. Most notably the T0 property was preserved.

Lemma 1. Every T0 topology contains a singleton set.

Proof. Let T be a T0 topology on a set X and assume that T does not have a singleton set.

Let A, |A|� 2, be the non-empty set in T with the fewest number of elements.

Let a1,a2 2 A, a1 6= a2.

Then there exists a B 2 T such that, without loss of generality, a1 2 B and a2 /2 B since T

is a T0 topology.

Then a1 2 A\B and a2 /2 A\B. This implies that |A\B|< |A|, which is a contradiction.

Thus, T contains a singleton set.
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Proposition 3. If T is a T0 topology on X

n+1, then for some a 2 X

n+1, T

a

is a T0 topology

on X

n

.

Proof. Let T be a T0 topology on X

n+1.

By Lemma 1, there exists an a 2 X

n+1 such that {a} 2 T . Then we have from Proposition

2 we have that T

a

is a topology on X

n

. It will suffice to show that T

a

is T0 on X

n

.

Let u,v 2 X

n

. Then u,v are distinct points with respect to T . So, there exists an open set

U 2 T such that, without loss of generality, u 2U,v /2U . Since {a} 2 T then

W =U [{a} 2 T

a

and u 2W �{a} and v /2W �{a}.

Thus T

a

is a T0 topology on X

n+1 �{a}= X

n

.

By a simple counter-example, however, we see that T

ā

is not necessarily T0 if T is. Letting

T = { /0,{a},{a,b},{b,c},{a,b,c},{b,c,d},X4} we have that T

ā

= { /0,{b,c},X3}, which

is not a T0 topology on X3 = {b,c,d}. However, in the case of the topology

T = { /0,{a},{b},{a,b},{b,c},X3}, T

ā

= { /0,{b},{b,c},X3} is a T0 topology. Ultimately,

the conditions under which T

ā

preserved the T0 property led to the definition of a maximal,

complete chain, which is explored in the following section and became the central focus

of my research from this point forward.

I turned to contemporary research to try and help elucidate some of the reasons why the

construction worked for some topologies and not for others. In [5], Erné showed that

T (n), the number of topologies on a set of n elements, is asymptotically equal to T0(n),

the number of T0 topologies on n elements. For smaller n, Evans et al. [6] and Renteln

[10] reduced the computation of T (n) to the number of partially ordered set on n elements.

These values are connected by the following formula:
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Let T (n) denote the number of distinct topologies on a set with n points. The

number of distinct T0 topologies on a set with n points, denoted T0(n), is

related to T (n) by the formula

T (n) =
n

Â
k=0

S(n,k)T0(k)

where S(n,k) denotes the Stirling number of the second kind.

Since all the topologies on X

n+1 are enumerated in terms of all the T0 topologies on

X0 . . .Xn

I decided to focus on just the T0 topologies.
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6. MAXIMAL COMPLETE CHAINS

Solely considering T0 topologies on a finite set, I examine their Hasse diagrams.

Uniformly, these Hasse diagrams contained a nested collection of sets whose order

increased by one at each level of the diagram, from /0 to X

n

. It was this feature, seen in

Figure 10 and 11, which is defined as a maximal, complete chain (or MC-chain).

Figure 9: Sample Hasse diagrams of topologies on the set X5, [4]

Definition 6. Let T = { /0,A1,A2, ...,An�1,Xn

} be a topology on X

n

. Then T is a maximal,

complete chain (or MC-chain) if for all A

i

2 T , |A
i

|= i, and A

i

( A

i+1, where A0 = /0 and

A

n

= X

n

.

For example, on the set X = {a,b,c,d}, the set { /0,{a},{a,b},{a,b,c},{a,b,c,d}} is a

maximal, complete chain.

Example 7. Pictured below are two more examples of MC-chains, highlighted in the

Hasse diagrams of two T0 topologies on X5 and X6. The first represents the unlabeled T0

topology

{ /0,{a},{a,b},{a,c},{a,d},{a,b,c},{a,b,d},{a,c,d},{a,b,c,d},{a,b,c,d,e}}

with the MC-chain { /0,{a},{a,b},{a,b,c},{a,b,c,d},{a,b,c,d,e}} highlighted. In each

Figure, one can see that there are in fact several possible MC-chains in each T0 topology.

This property of MC-chains will be discussed more fully later in the section.
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Figure 10: Hasse diagram of a T0 topology on X5, MC-chain highlighted

Figure 11: Hasse diagram of a T0 topology on X6, MC-chain highlighted

Lemma 2. All maximal complete chains are T0 topologies.

Proof. Let T be an MC-chain on the set X

n

. Then /0,X
n

2 T . Also, for any A

i

,A
j

2 T ,

A

i

( A

j

or A

j

( A

i

. Without loss of generality, assume the former.

Then A

i

[A

j

= A

j

and A

i

\A

j

= A

i

, both sets in T . Thus, T is closed under unions and

intersections.

Finally, assume that for some x,y 2 X

n

, x,y /2 A

i

and x,y 2 A

i+1. However, this would

imply that |A
i

|+2 = |A
j

|, in which case T is not an MC-chain. Thus, for any x,y 2 X

n

,

there exists some A

i+1 such that x 2 A

i+1,y /2 A

i+1.
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Thus, T is a T0 topology.

Remark 1. An MC-chain is a minimal T0 topology on a set of n elements.

Letting T be a proper subset of some MC-chain A , we note that if we omit any set

A

i

2 A , then the two elements in A

i+1 �A

i�1 are topologically indistinguishable.

It should be noted that similar constructions have been used in modern research in finite

set topology. In [1], the Adamenko and Velichko use a topological quiver, or T-quiver,

from /0 to X

n

. While slightly different in its construction from an MC-chain, the T-quiver

serves the same purpose - creating a path of open sets in a T0 space. The authors asserts

that “[a]t the kth level of an arbitrary T-quiver of T0-topology, there are vertices

corresponding to k-element open sets”, which is, in terms of MC-chains, the fact that

|A
i

|= i. The major difference between the T-quivers and MC-chains is only that some

union of MC-chains would make up a T-quiver. They go on to prove that for any topology

on an n-element set, it can only be T0 if its corresponding T-quiver has n levels.

Adamenko considers the empty set as the zero level of the T-quiver, so this statement is

equivalent to Lemma 3 below, that T is T0 if it contains an MC-chain.

Lemma 3. If T is T0 on X

n

, then T contains a maximal complete chain.

Proof. Proof by induction.

As n = 1 is a trivial case, we start with n = 2.

So X2 = {x1,x2}. There are two inequivalent T0 topologies on X :

{ /0,{x1},{x1,x2}}

{ /0,{x1},{x2},{x1,x2}}
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The first is a maximal, complete chain (MC-chain) and is also a subset of the second. So

for our base case the proposition holds.

Assume that for all k < n the proposition holds where n > 2.

Let T be a T0 topology on X

n

.

By Lemma 1, T contains a singleton set {x1}.

Let Y = X

n

�{x1} and define T

x

= {A�{x1}|A 2 T}.

Since T is T0 on X , T

x

is T0 on X �{x1}= Y .

Since T

x

is T0 on a set Y of n�1 elements and n�1 � 2, T

x

contains an MC-chain

/0 : x2 : x2x3 : ... : x2...xn

on Y , by the induction hypothesis.

This give us the MC-chain /0 : x1 : x1x2 : x1x2x3 : ... : x1x2...xn

as a subset of T on X

n

.

So we have that each T0 topology contains at least one MC-chain. Examination of the

Hasse diagrams shows that in fact all sets of a T0 topology are a member set of an

MC-chain.

Figure 12: T0 topology on X5, some distinct MC-chains highlighted
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Theorem 1. Every open set in a T0 topology is an element of an MC-chain.

Proof. Let T be a T0 topology on X

n

.

Then there exists an MC-chain A = { /0,A1,A2, ...,An�1,X} that is a subset of T .

Let B 2 T such that B /2 A .

Then there exists an A

i

2 A such that B ⇢ A

i

and an A

j

2 A such that A

j

⇢ B, even if

these are trivially /0 and X , respectively. Thus, we have already the following subsets of A

as parts of our MC-chain which contains B: { /0, ...,A
j

} and {A

i

, ...,X}.

Note that B\A

i

= B.

Consider the sequence of sets

/0, A1 \B, A2 \B, . . . , A

n�1 \B, B, B[A1, B[A2, . . . , B[A

n�1, X

n

. Each set in the

sequence is either equal to the previous one, or is the union of the previous set with a

singleton. Therefore if we remove the duplicates, we obtain an MC-chain containing B.

Since every T0 topology T contains an MC-chain, these are the only minimal T0

topologies. Also, we have that every set in T is in some MC-chain, which is visually

apparent in the Hasse diagrams as each node lies on a direct path in the diagram of length

n+1 from the empty set to X . Thus we may say the following.

Remark 2. Every T0 topology is a union of MC chains.

It should be noted that the converse doesn’t hold. Consider the MC-chains on X3:

A = { /0,{a},{a,b},X3} and B = { /0,{c},{b,c},X3}. Their union is not even a topology

on X3, as it lacks the open sets {{b},{a,c}}.
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Once we have that each T0 topology is the union of MC-chains, and since the set P(X), the

power set of X , is T0 on X , P(X) is the union of, specifically, n! distinct MC-chains. By

“distinct”, we mean that for two MC-chains A ,B, there exists at least one set B 2 B such

that B /2 A . However, the intersection of the MC-chains need not be empty.

The question then became whether or not there was some method in which these

MC-chains could be used to form the topologies on a set X

n

. The development of

MC-chains was for the purpose of finding a recursive definition with which the topologies

on a set could be produced. If each set in a T0 topology is part of an MC-chain, could a

relationship between these MC-chains be found for the purposes of recursion? It became

necessary to make a more rigorous definition for the specific relationship between the

MC-chains which whose union forms a T0 topology.

Definition 7. Two MC-chains A ,B are adjacent if they differ by only one set.

Note that given any topology T , Definition 7 defines a graph structure G on the set of all

MC-chains of possible on a set X . When |X |= n the graph has n! vertices because

MC-chains are in a one-to-one correspondence with the ways to arrange the elements of X

in order. Also, two MC-chains are adjacent if and only if the corresponding orderings of X

are related by swapping two adjacent spots in the ordering. So the graph has n! vertices

and is (n�1)-regular. Given a topology T on X we consider the full sub-graph G

T

consisting of the MC-chains and adjacency edges which are in the topology T .

Theorem 2. For any topology T on a finite set X, the graph G

T

is connected.

Proof. Let A ( T be an MC-chain, where T is a non-minimal T0 topology on X

n

. Since T

is non-minimal, there exists a set B 2 T such that B /2 A . By Theorem 1, let B 2 B, an

MC-chain in T . Thus A ,B are distinct vertices of G

T

.

Let A

i

2 A and B

i

2 B, where i is the smallest value such that A

i

6= B

i

. We note that

|A
i

|= |B
i

|= i.
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We will consider this problem in cases.

First, assume A

i

[B

i

= A

i+1. Then C = { /0,A1,A2, ...,Ai�1,Bi

,A
i+1, ...,An�1,Xn

} is an

adjacent MC-chain to A on the graph G

n

.

Now, assume A

i

[B

i

6= A

i+1. Note that there exists some smallest possible set A

i+ j

2 A

such that B

i

⇢ A

i+ j

. So B�A = {B

i

,B
i+1, ...,Bi+ j�1}, and thus has order j. Then

consider the MC-chain C1 = { /0,A1, ...,Ai

, A

i

[B

i

, A

i+1 [B

i

, ...,A
i+ j�1 [B

i

, A

i+ j

, ...,X
n

}.

The set A

i+ j�1 [B

i

is the last set of C1 which is not also an element of A . So

C1 �A = {A

i

[B

i

, A

i+1 [B

i

, ...,A
i+ j�1 [B

i

}, and |C1 �A |= j�1. Thus the process

has produced an MC-chain C1 which has one few set of difference from A than B has.

Continue this construction recursively, taking the first set of C1 which is not in A and

taking its union with all the sets of higher order in A �C1 to produce C2. Thus we have

the following sequence of MC-chains:

B = { /0,A1, ...,Bi

, ...,B
i+ j�1, A

i+ j

, ...,A
n�1,Xn

}

C1 = { /0,A1, ...,Ai

, A

i

[B

i

, ...,A
i+ j�1 [B

i

, A

i+ j

, ...,A
n�1,Xn

}

C2 = { /0,A1, ...,Ai

, A

i+1, A

i+1 [B

i

, ...,A
i+ j�1 [B

i

, A

i+ j

, ...,A
n�1,Xn

}
...

...

C
k

= { /0,A1, ...,Ai+ j�1, A

i+ j�1 [B

i

, A

i+ j

, ...,A
n�1,Xn

}

A = { /0,A1, ...,Ai+ j�1, A

i+ j

, A

i+ j+1, ...,An�1,Xn

}

for some k 2 N. This sequence corresponds to a path on G

X

n

from A to B.
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Thus we have arrived at the fact that all T0 topologies correspond to a connected subgraph

of G

n

. With this in mind, we revisit the notion of a recursive definition. However, our

focus remains on T0 topologies.
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7. RECURSIVE DEFINITION OF T0 TOPOLOGIES

In this section we show how an extension of the operations considered in Chapter 4 will

lead to generating all of the T0 topologies on a set X with n+1 elements from those on a

set with n elements.

We know every topology on an n+1 element set contains the MC-chain

/0 : x1 : . . . : x1 . . .xn

: x1 . . .xn

x

n+1. Given some T0 topology T on X

n+1, let

T

⇤ = {A 2 T |x
n+1 /2 A}. Then T⇤ is a topology on X

n

.

We note that in fact T

⇤ is T0 on X

n

. If u 6= v are in X

n

, then there exists sets A,B 2 T such

that u 2 A,b /2 A or u /2 A,v 2 A. Without loss of generality, assume the former. But then

A1 = A\ x1x2 . . .xn

2 T

⇤ and u 2 A1 and v /2 A1.

Now suppose that U and V are in T

⇤ and U [{x

n+1},V [{x

n+1} 2 T . Then

(U \V )[{x

n+1}= (U [{x

n+1})\ (V [{x

n+1}) is in T also. So the collection of sets

U 2 T

⇤ such that U [{x

n+1} 2 T is closed under intersection. We obtain a minimal such

set W 2 T

⇤ by taking the intersection of all the sets with this property.

We also note that if we start with any T0 topology T

⇤ on X

n

, such that x

n+1 /2 X

n

and

W 2 T

⇤, then T = T

⇤ [{A[{x

n+1}|A 2 T

⇤ and W ⇢ A} is a T0 topology on X

n+1.

In terms of the Hasse diagrams, we may interpret this as follows. We take the Hasse

diagrams of the inequivalent topologies on a set with n elements. In each diagram select a

vertex v. We take the set U of all vertices u such that v  u. For each u 2U , we introduce

a new vertex u

0, which represents the addition of {x

n+1} to the set represented by u and

draw an edge from u to u

0. We also draw edges from u

0
1 to u

0
2 whenever there is an edge

from u1 to u2.

In this manner we obtain all the Hasse diagrams for the unlabeled topologies on the set of

n+1 elements.
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Definition 8. Let T
n

= {T0 topologies on X

n

}. Let S

n

= {(T,A)|T 2 T
n

and A 2 T}.

Define the mapping L : S

n

! T
n+1 by

L(T,A) = {B|B 2 T}[{B[{x

n+1}|B 2 T,A ✓ B},

for some x

n+1 /2 X

n

.

Theorem 3. L is onto.

Proof. Given a T0 topology T on a set with n+1 elements we follow the notation of the

preceding discussion. We find an element x

n+1 which is the last to occur as an element of

a set of some MC-chain, the T0 topology T

⇤ on X

n

= X

n+1 �{x

n+1} and a minimal set

W 2 T

⇤ such that W [{x

n+1} 2 T . Then L(T ⇤,W ) = T .

Then we can recover T from T

⇤ and W by the relation T = T

⇤ [{A[{x

n+1}|A 2 T

⇤ and

W ⇢ A}.

Thus we have found a recursion such that, given the T0 topologies on X

n

, all of the T0

topologies on X

n+1 can be produced. There is necessarily some double counting, as will

be shown in the following example.

Example 8. Let T2 = {T2,1,T2,2,T2,3} be the set of T0 topologies on the set X2, where

T2,1 = { /0,{a},X2},T2,2 = { /0,{b},X2},T2,3 = { /0,{a},{b},X2} and X2 = {a,b}. Choose

c /2 X2. I will show that the recursion defined above produces all five inequivalent T0

topologies on X3.

First we will apply the recursion to T2,1. Note that since T2,1 is homeomorphic to T2,2, the

T0 topologies produced by T2,2, in this process would also be homeomorphic to those

produced by T2,1. For that reason, the process is not shown for T2,2. In the Figure 13

below, we selected in turn each element A of T2,1. From there we construct the Hasse
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diagrams for a T0 topology on X3 by letting S = {{c}[B|A ✓ B 2 T2,1} and then taking

the union of S and T2,1.

The process is repeated then repeated for T2,3 in Figure 14.

Figure 13: Recursion on T2,1 and the produced T3,i topologies, A,S highlighted.

Figure 14: Recursion on T2,2 and the produced T3,i topologies, A,S highlighted.

As can be seen, T3,1 ⇠= T3,5 ⇠= T3,6, yet all the elements of T3 are produced.

We also have from our previous formula which relates the number of topologies on a set

X

n

to the number of T0 topologies on {X0,X1, ...,Xn

} that all non-T0 topologies are

produced from T0 topologies. It is in this way that the Stirling numbers of the Second

Kind S(n,k) are required [7], as S(n,k) is the number of partitions of n elements into k

open sets.

Example 9. Consider the indiscrete topology on X

n

, T = { /0,X
n

}. When n = 1,

T = { /0,{a}} and T is the power set on X1, therefore T0. It is from this T0 topology that the
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indiscrete topology is produced for all n > 1. There is only one way to partition n

elements into 1 set, since no element can be placed in { /0}. Thus, S(n,1) = 1 for all n.

As n increases, the complexity of producing non-T0 topologies from T0 topologies

increases as well.

Example 10. Consider the T0 topology T = { /0,{a},{b},{a,b}} on X2. To produce

topologies on X3, we find all the possible partitions of {a,b,c} into two open sets (as no

element may be placed in /0 and all elements must be placed in X3). This gives us the

S(3,2) = 3 following topologies on X3:

T1 = { /0,{a},{b,c},{a,b,c}}

T2 = { /0,{b},{a,c},{a,b,c}}

T3 = { /0,{c},{a,b},{a,b,c}},

which our recursive definition from Chapter 4 failed to produce.

See Appendix A for the Hasse diagrams for the unlabeled topologies on X2,X3,X4,

produced in this fashion, as well as the diagrams for the unlabeled topologies on X5 [4].
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8. SUMMARY

After some unsuccessful efforts we found a recursive definition for generating all T0

topologies on finite sets. Our initial goal was to obtain a graphical representation of all the

topologies for small finite sets.

Mimicking earlier work, the author initially attempted to construct a graph of each T0

topology on X3, with edges defined by v1 $ v2 if v1 ⇢ v2 or v2 ⇢ v1, as seen in Figure 15.

As before, P(X3) is not pictured. For higher values of n this construction quickly becomes

too cluttered to be of any value. While there are only 19 inequivalent T0 topologies on a

set of three elements, there are 219 on a set of four elements. It is for this reason that this

construction was quickly abandoned in favor of a simpler, more compact approach, as the

author had done in abandoning the previous shell structures.

a,aba,b,ab

a,ab,ac

a,ac a,c,ac

b,ab

b,ab,bc b,bc

b,c,bc

c,ac

c,ac,bcc,bc

a,b,ab,bc

a,b,ab,ac a,c,ab,ac

a,c,ac,bc

b,c,ac,bcb,c,ab,bc

Figure 15: Graph of labeled T0 topologies on X3

For that reason, we return to the graph of all MC-chains described in Definition 7, which

we denote here by G

n

for chains on a base set with n elements.
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a,ab b,ab

b,bc

c,bcc,ac

a,ac

Figure 16: G3

Example 11. Let X3 = {a,b,c}. Then |V (G3)|= 6, and each element of V (G3) has

degree 2. Pictured below in Figure 16 is G3.

The construction was then extended to X4. The resulting 24-node 3-regular graph is

depicted in Figure 17.

While an elegant representation, the graph G

n

has some of the same constraints on its

analysis as N

n

did. Firstly, while every T0 topology is a connected subgraph of G

n

, not

every connected subgraph is in turn a T0 topology. So yet again we encounter the issue of

how to specifically construct a subgraph of G

n

such that the resulting union of vertices

gives a topology. In G

n

every vertex represents a minimal T0 topology, which has n+1

open sets. Every pair of adjacent edges represents a topology with n+2 open sets. Any

vertex together with any subset of its immediate neighbors gives a representation of a T0

topology obtained by taking the union of all the chains represented by those vertices. The

simplest connected subsets of G4 which do not represent topologies are some paths with

four vertices. For example, the path (d,cd,bcd)� (c,cd,bcd)� (c,bc,bcd)� (b,bc,bcd)

does not represent a topology. The singleton sets with elements b and d are represented,
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a,ab,abc

b,ab,abc

a,ac,abc

a,ab,abd

c,ac,abc

a,ac,acd

b,ab,abd

a,ad,abd

c,ac,acd

a,ad,acd

d,ad,abd

d,ad,acd

b,bc,abc

b,bd,abd

c,bc,abc

b,bc,bcd

c,bc,bcd

b,bd,bcd

d,bd,abd

d,bd,bcd

c,cd,acd

c,cd,bcd

d,cd,acd

d,cd,bcd

Figure 17: G4

but not the union of these sets.

The initial goal of presenting graphical representations of topologies quickly proved

intractable. However we did find many interesting relationships between the topologies,

and graphical structures which illustrated these relationships for small sets. And while we

succeeded in giving a recursive rule to generate all finite T0 topologies, we can produce a

topology on n+1 elements from one on n elements in many different ways. The

enumeration of the T0 topologies remains a challenging problem.
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APPENDIX A: UNLABELED HASSE DIAGRAMS OF TOPOLOGIES

A.1 TOPOLOGIES ON X2

A.2 TOPOLOGIES ON X3

A.3 TOPOLOGIES ON X4
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A.4 TOPOLOGIES ON X5

1

1. Draw the Hasse diagrams for all the 139 different topologies for a set of five
elements X = {a, b, c, d, e}.

Solution.

For set of 5 elements, the Hasse diagrams of the 139 different topologies are:

X

∅
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

τ14 τ15 τ16 τ17 τ18 τ19 τ20 τ21 τ22 τ23 τ24 τ25

τ26 τ27 τ28 τ29 τ30 τ31 τ32 τ33 τ34 τ35 τ36

τ37 τ38 τ39 τ40 τ41 τ42 τ43 τ44 τ45 τ46 τ47

τ48 τ49 τ50 τ51 τ52 τ53 τ54 τ55
τ56 τ57
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2

τ58 τ59 τ60 τ61 τ62 τ63 τ64 τ65 τ66 τ67

τ68 τ69 τ70 τ71 τ72 τ73
τ74

τ75 τ76 τ77 τ78 τ79 τ80 τ81 τ82 τ83

τ84 τ85
τ86 τ87 τ88 τ89 τ90 τ91

τ92 τ93 τ94 τ95 τ97 τ98
τ99

τ100 τ101 τ102 τ103 τ104 τ105 τ106 τ107
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3

τ108 τ109 τ110 τ111 τ112 τ113 τ114

τ115
τ116 τ117 τ118 τ119

τ120 τ121 τ122 τ123 τ124 τ125

τ126 τ127 τ128 τ129 τ130

τ131 τ132 τ133 τ134

τ135 τ136 τ137 τ138
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4

τ139

All images for Appendix A.4 were produced by Choo, [4].
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