
IMPLEMENTATION OF A WIRELESS NETWORK DETECTOR

FOR IEEE 802.11 NETWORKS

THESIS

Presented to the Graduate Council of
Southwest Texas State University

in Partial Fulfillment of
the Requirements

For the Degree

Master of Science

By

Alexander P. Medvedev, B.S.

San Marcos, Texas

December 2002

COPYRIGHT

by

Alexander P. Medvedev

2002

ACKNOWLEDGEMENTS

I would like to thank Dr. Thomas McCabe for his supervision, ideas, and
supplying me with the right hardware during this research. I also wish to thank
Dr. Carol Hazlewood and Dr. Wuxu Peng for their participation.

IOctober 15, 2002

Table of Contents

ABSTRACT..
CHAPTER I INTRODUCTION TO THE STUDY

The Problem...
Advantages of This System
The System’s Possible Uses...................................

vii
.. 1
.. 1
.. 2
o .. J

CHAPTER II SYSTEM OVERVIEW
General..
Packet Capture..
Packet Processing...
Result D isplay...
User Interface..

CHAPTER III WIRELESS PACKET SNIFFING.
Packet sniffing overview.

........... 5

........... 6

........... 7

........... 7

.........10

.........10
Conditions for Wireless Packet Sniffing.. 12
Components of a Packet Sniffer... 13

CHAPTER IV 802.1 IB PROTOCOL SPECIFICS.. 14
General Description of the Architecture.. 15
802.1 lb General Frame Form at.. 18
Important Frames for Sniffing... :........... 21

CHAPTER V OVERVIEW OF IEEE 802.11 SECURITY.......................................'........... 22
Known Security Vulnerabilities in 802.11.. 22
Feasibility of Securing 802.1 lb Networks...1........... 24

CHAPTER VI DISCUSSION OF ACTIVE SNIFFER DETECTION TECHNIQUES.. 25
Which Sniffer is Active and Which Passive?.. 25
Detecting “Netstumblers” ..26

CHAPTER VII IMPLEMENTATION DETAILS.. 28
Project H istory...28
General... :...........29
Packet Capture...30
User Interface...31
Network Internal Nodes D iscovery...:...........32
Detecting Wireless Clients... '... 32
Internet Address Range Detection..33

CHAPTER VIII CONCLUSIONS...34
Future Research.. 34

APPENDIX A ..36
Prior Research and Systems Built...36
Advantages/Disadvantages of the Predecessors...37

APPENDIX B ..39
REFERENCES..82
V ITA ... 84

ABSTRACT

IMPLEMENTATION OF A WIRELESS NETWORK DETECTOR
FOR IEEE 802.11 NETWORKS

by .
Alex Medvedev, B S.

Southwest Texas State University

August 2002

SUPERVISING PROFESSOR: Tom McCabe

This work describes the design and implementation of an 802.11b
wireless network detector. The system puts the wireless network card into the RF
monitor mode, examines traffic, extracts and processes important network
identification information. The system is primarily designed to run on handheld
devices similar to the Ipaq Pocket PC by Compaq and Zaurus by Sharp running
the Linux operating system. The main objectives for this system were to be able
to detect wireless networks, extract most useful information about the networks,
and to be user-friendly.

VII

CHAPTER I

INTRODUCTION TO THE STUDY

The Problem

The goal of this project was to study the IEEE 802.11 protocol and build a passive

802.1 lb network detector for a handheld computer. The features o f the detector include

detection and extraction of maximum information about wireless networks and displaying

of the acquired data on the PDA’s screen. In particular, the detector, named Discoverer,

would extract the following parameters:

• SSID (Service Set Identifier);

• Channel number;

• WEP (Wired Equivalent Privacy) flag;

• Type o f the network (Infrastructure or Ad-Hoc);

• MAC address and manufacturer’s name o f the AP (Access Point). '

Additional information includes a timestamp when the network was discovered

and last seen, the number o f packets received, clients’ MAC addresses, and the IP address

range of the discovered network. A secondary goal was to determine if it was possible to

reliably detect an active wireless network scanner (Netstumbler) in range. .
i

There are several research projects that are studying detectors in wireless :

networks. For a short discussion, see Appendix A.

1

2

Advantages of This System

This system was designed to run on a handheld computer from the ground up.

With minor changes it will run on an x86 machine as well. In fact it was developed on an

x86 Linux laptop and then cross-compiled for the ARM architecture. With minimal

changes it should be portable to any UNIX system that has wireless card drivers that

support monitor mode and has wireless tools installed.

The system’s operation is undetectable by other detectors or wireless stations

because it puts the wireless network card into RF monitor mode and the card does not

emit any radio signals. It is not possible to detect the presence of this device by listening

to transmissions. This project’s software is also capable of detecting non-beaconing

access points (AP) through re-association requests. Data frames are also examined for

fuller IP network information, such as IP address range and MAC addresses. The IP

range is presented in the form of lowest and highest IP addresses transmitting on the

network; m addition, if a DHCP reply is intercepted, network mask, gateway’s IP

address, and the DNS name are extracted. This form gives a better picture of the internal

network structure and address range of a surrounding network. !

Unlike other systems, such as Kismet (see Appendix A), there is no manual

configuration file editing involved and the interface was specifically designed to be PDA

user-fnendly.

The system can discover cloaked network’s SSIDs by monitoring re-association

requests. A “cloaked” network is a wireless network that does not broadcast its SSID m

management frames. This is usually done for tighter security. The clients should already

know the SSID of the network they are trying to associate with. Thus the re-association

request, issued by the client, does contain the SSID, which is read and the network

information is updated.

3

The System’s Possible Uses

This system’s primary purpose is a quick wireless IEEE 802.1 lb network audit. It

can readily display all information that a network gives out to everyone with the right

equipment. It was not, however, intended to be a full-blown network sniffer. ;

The system can be used to help choose an unused channel at a particular location

to minimize cross talk and other interference.

It is also possible to use it to test whether the wireless network is “visible” at a

certain location. This can be achieved by monitoring the packet count parameter.

In a secure installation an Access Point should not be a clear bridge without any
j

filters enabled. Thus another use of this package would be to identify the location of

misconfigured or “rogue” Access Points by observing MAC addresses on the segment

reported by the software. If a MAC address of a particular network switch showed up, the

AP must be attached to the same segment. This is particularly useful on complex multi

switch networks.

This study confirmed that IEEE 802.11 Standard compliant devices give out a;lot of

network information that should be kept private. This is true even when 802.11 networks

are used with Wired Equivalent Privacy (WEP) to encrypt the data traffic. The study also

proved that anyone with the right equipment and motivation can learn a lot about one’s

wireless IEEE 802.1 lb network and possibly misuse the data.

4

The project and its code have been released to the public and placed on the

Internet. Most support requests from the users are about wireless card driver installation

and configuration. Features frequently requested include color support for active

networks as well as signal/noise information display to assess the signal strength and the

distance to the Access Point.

CHAPTER II

SYSTEM OVERVIEW

I
General

The system consists of two main modules: a capture module and a user interface

module. The two run as distinct processes and communicate with the help of IPC
i

message queues. The capture module collects the packets, analyzes them, and sends the

results to the user interface module that displays them and updates contents when it is

sent an update.

Packet Capture

Packet capture is performed using the libpcap library [11]
I!

fhttn://www.tcpdumn.org'). The network interface must be in promiscuous mode when

capturing packets. The promiscuous mode is not enough for the wireless cards though. It
|

will only detect Ethernet frames that fly by. In order to see all 802.1 lb headers, including

the ones not destined for this machine, the capture interface also needs to be in the Radio

Frequency (RF) monitor mode. In this mode the wireless network card can read raw

frames. It simply works as a radio receiver and accepts all frames transmitted’on the

frequency. Raw frames are passed from the driver to the user programs that can examine

and extract the necessary data. The system relies on the network card driver to calculate

checksums and assumes that all packets passed to it are valid packets.

5

6

Packet Processing

After a packet was received from the capture engine, it is analyzed and classified

by the frame analyzer. There are four main types of frames that contain information

useful for network detection: management beacon frames, management reassociation

request frames, management probe request frames, and data frames. Beacon frames

contain most of the protocol information of interest including SSID, BSSID, channel, and

encryption flag. It is possible, however, to “cloak” the network - configure an.access

point not to broadcast its SSID. This creates beacon frames with null SSID field and

makes information extraction more difficult. It is still possible to extract SSID ¡from the

reassociation requests. The reassociation requests are issued by the clients whenever they

get deassociated for any reason, for example, because of loss of signal due to distance or

other conditions. These reassociation requests contain SSID, which they send to the AP
j

while reassociating. These frames are analyzed by Discoverer, SSID extracted, and the

entry for the network updated. Finally, the data frames contain the data packets, which

usually are encapsulated Ethernet frames. The network type (Infrastructure or Peer-To-
I

Peer) is determined from the capability field of the management frames and classified

into AP or Ad-Hoc type accordingly. From the unencrypted Ethernet frames it is possible

to leam IP parameters of the network, such as IP and MAC addresses of the clients from

regular data frames and ARP requests/replies; default gateway’s addresses, DNS server

IP address, domain name, and network mask from DHCP replies. The information about

discovered networks is stored in a list. IP address detection techniques cannot he applied

to wireless networks protected by WEP.

7

Result Display

Runtime results are presented in a window in a list form. Only most important

network identification data, such as SSID, channel, WEP, and manufacturer are displayed

initially An entry may be expanded for more detailed information, which includes MAC

address of the AP, number of packets received, timestamp when the AP was first seen, IP

address range (if detected). This is done by pressing a plus sign next to the network’s

SSID. A total number of networks discovered is also displayed in the caption of the

window.

User Interface

The QPE user interface was chosen, as it is one of the most popular windowing

environments in the Linux handheld world. The user interface consists of a main window

with 4 tabs: Main, Config, Log, and About. The Main tab contains the list view of

discovered networks. The Config tab contains settable configuration information such as

wireless network card type (Cisco, Orinoco, or Prism2), the device name (ethO, ethl,

wlanO, wlanl, wifiO, wifil), which may differ from card to card, and hop interval with

default value at 300 milliseconds per channel. When the Save button is pressed the

current values are stored in /etc/discoverer.conf file. Pressing the Default button resets the

values to default values. The Log tab contains a scroll window of diagnostic; information,

and error messages that outputs information, such as network names or MAC addresses

discovered, and may indicate possible problems with setup. The About tab has the

version information and the maintainer’s e-mail address.

8

Figure 1, 2, and 3 represent screenshots of the Discoverer version 0.04.

D isco ve r^ — found 1 network
Main

SSID | Chan WEP
B-irnrakobes |l 1 N C

j-BSSID 00:90:4b :08:68:b5
I"" Type AP

Packets 171
j’-FirstSeen 04:41:18
i-LastSeen 04:42:07
\-~ Modes 2
j-WirelessClients 1

B TP range
I— LoIP 1. 1. 1.1
I -H IP 1.1.1.36
¿-■•Gateway 1. 1.1.1
l— Netmask 255.0.0.0
-•Domain pycckue.org

III E T i T i l

Q jo b c jZ 0 5:42

Figure 1 Main Screen. On an unprotected by WEP network all parameters for joining the network
can be discovered.

9

Discovefejf — found T network
Main Con rig [Log | About j

• Options----------------------------------
wlanû

Prism2

^ ! Device Name

Device Type

100 Hop Interval (ms)

Save Defaults

<5k«hc/ + Q 5:42

Figure 2 Configuration Screen. The user can select the interface name, the card type, and the channel
hopping interval in milliseconds here.

I Dia^verer — found 1 network ‘ • Ö1
.Main J .Conflg.,„ Log About,,;

card type selected: prism2
starting capture on wlanO
opened wtanO ok
new network, ssid*mrakobes
new wireless client in mrakobes:
mac«00:02 :a5:2d:70:ad
new node in mrakobes:
maoOO :02 :a5:2d :70 :ad
new node in mrakobes:
mac*00:a0:cc:d6:2d:1c
yiaddr dhcp reply in 00:90:4b :08:68:b5:
1.1.1.36
netmask: 2S5.0.0.0
gw address: 1.1.1.1
domainname: pycckue.org

(S j o b c / * Q 5:42

Figure 3 Logging Screen. The Log screen displays information about the current state of the active
modules plus recent events and errors, if any.

CHAPTER III

WIRELESS PACKET SNIFFING

Packet sniffing overview

A network sniffer is a device capable of eavesdropping on the network traffic.

Sniffers are mainly used on Ethernet networks, exploiting the fact that all

communications among machines occur on the same physical medium. In normal

communications the Ethernet cards only listen/respond to packets addressed directly for

the card or to broadcast packets addressed to all nodes. When, however, the network card

is put into promiscuous mode, the card stops filtering packets destined elsewhere and

accepts all traffic.

An analogous situation exists on 802.1 lb wireless networks. In normal operation
I

a wireless network card only accepts broadcasts and packets directly addressed to it

(Fig. 4). j

[root@laptop root]# ifconfig ethO
ethO Link encap: Ethernet HWaddr 00 : 07 :OE:B3:5C:4A

UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric!: 1
RX packets :0 errors : 0 dropped: 0 overruns : 0 frame,: 0
TX packets:4 errors : 0 dropped:0 overruns : 0 carrier:0
collisions:0 txqueuelen: 100 j
RX bytes:0 (0.0 b) TX bytes:192 (192.0 b) j
Interrupt:? Base address : 0x100

Figure 4. Wireless Network Card in Normal Operation

10

11

In the “normal” mode the link encapsulation is “Ethernet”, which means that the Ethernet

headers will be interpreted by the device driver and the higher levels will not see them.

The interface flags, according to /usr/include/net/if.h, are UP, meaning that the interface

is active; BROADCAST, meaning that the broadcast address is valid; RUNNING,

meaning that resources are allocated; and MULTICAST, meaning that multicast is

supported.

To capture all traffic on a wireless network, to which the card is associated, the

wireless interface needs to be in promiscuous mode too. It is important to note that the

card still needs to be associated with the access point or an ad-hoc network in order to see

any traffic even in promiscuous mode (Fig. 5).

ifconfig ethO promise
ifconfig ethO
ethO _Link encap:Ethernet HWaddr 00 : 07 :0E:B3:5C:4A

inet addr:1.1.1.6 Beast : 1.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:0 errors : 0 dropped:0 overruns : 0 frame:0
TX packets:8 errors:8 dropped:0 overruns:0 carrier:8

collisions:!) txqueuelemlOO
RX bytes:0 (0.0 b) TX bytes:384 (384.0 b)
Interrupt:? Base address:0xl00

Figure 5. Wireless Network Card in Promiscuous Mode

In promiscuous mode the link encapsulation is still Ethernet. A new flag appears in the

interface flags line: PROMISC, indicating that the interface will not filter out packets

destined to other nodes.

12

Conditions for Wireless Packet Sniffing

Promiscuous mode alone, however, is not enough for a wireless network card to

be able to see all packets that “traverse the air” For wireless packet sniffing to work the

network card must also be m the RF monitor mode (Fig. 6). This allows the card to

capture all frames on a channel without being associated with a network (infrastructure or

ad-hoc). :

echo "Mode: r" > /proc/dnver/aironet/ethO/Conf ig
echo "Mode: y" > /proc/dnver/aironet/ethO/Conf ig
ifeonfig ethO
ethO Link encap:UNSPEC HWaddr 00-07-0E-B3-5C-4A-00-00-00-00-00-
00 - 00 - 00 - 00 -00

inet addr:1.1.1.6 Beast:1.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:8 dropped:0 overruns:0 carrier:8
collisions:0 txqueuelen:100

RX bytes:0 (0.0 b) TX bytes:384 (384.0 b)
Interrupt:? Base address:0xl00

Figure 6. Wireless Network Card in RF Monitor Mode (Cisco card is used as example)

The link status changes to UNSPEC, which means that the raw (unmodified)

packets will be passed to the higher level application by the device driver. This is very

important precondition for an IEEE 802.11 network detector or a sniffer because all the

802.1 lb headers and all Ethernet headers are still attached to the packets. All that is left

to do is to parse these headers and extract and classify all important network information.

The MAC address of the card also changes appearance by acquiring 10 pairs of zeros and

using dashes m place of colons. Putting a wireless card into monitor mode varies

significantly from card to card and from OS to OS. A good indication that the wireless

network card is indeed m the promiscuous mode is the UNSPEC link type.

To sniff on all frequencies a software known as channel hopper is used. Channel

hoppers change receiver’s frequency cyclically while reading frames from the interface.

This allows coverage of all channels. As the frequencies are being constantly changed not

all traffic that present in the air is captured. To capture all traffic a separate receiver, i.e.

separate card, for each channel is required. There exist 14 channels that 802.1 lb,operates

on. The bands are different for Europe, US, and Japan. In the US channels from 1 to 11

are used. Channel hopping is also card type and OS dependent.

Components of a Packet Sniffer

A typical packet sniffer consists of several components: capture engine, packet

decoder, and a user interface. It also needs a mechanism for passing data between these

modules. For wireless sniffing one more component is necessary: the channel hopper.

It is sometimes possible to combine certain components in a single module. For example,

in this project the channel hopper is combined with the user interface and the capture

engine with the packet decoder. Thus this project only has 2 modules, but still it has all 4

distinctive parts. This was done for convenience. Also it avoids generation of too many

separate processes, which limits interprocess communications.

CHAPTER IV

802 1 lb PROTOCOL SPECIFICS

This chapter gives a basic technical overview of the 802 1 lb protocol. It is based

on ANSI/IEEE Std 802.11, 1999 Edition [9]. The purpose of this standard is to provide a

medium access control (MAC) and physical layer (PHY) specifications for

interconnecting wireless devices within a local area. The devices may be portable,

handheld, or fixed within the local area.

The standard defines a single MAC that interacts with the following three

physical layers (see Fig. 7): FH (Frequency Hopping Spread Spectrum) and DS (Direct

Sequence Spread Spectrum) in 2.4 GHz band and IR (Infrared) in infrared band [Ref

Breezecom].

802.2
Data Link Layer

802.11 MAC

FH DS IR PHY Layer

Figure 7 IEEE 802.11 Layers Description [Ref Breezecom]

Besides the standard functions, IEEE 802.11 MAC performs tasks typical of upper level

protocols, such as fragmentation, retransmissions, and acknowledgements.

14

Only protocol aspects relevant to the study were considered. The discussion

focuses on the MAC layer, such as frame formats, and omits the physical layer, such as

media access methods, fragmentation and reassembly, etc.

General Description of the Architecture

Wireless networks significantly differ from wired LANs [9], For example, a

wireless station does not have a fixed location and therefore the message destination is a

station, not a location. The physical layers of IEEE 802.11 are different from wired

network physical layers. For instance, the wireless physical layer has no absolute

boundaries, has dynamic topologies, is unprotected from outside signals, and lacks full

connectivity (one cannot assume that every node sees every other node). It is also less

reliable than its wired equivalent and has time-varying and asymmetric propagation

properties [9].

Moreover, since most mobile stations are battery powered, it cannot be assumed

that a particular node always stays powered on. IEEE 802.11 should appear to the LLC

(Logical Link Control) layer as an IEEE 802 LAN. Therefore the 802.11 network needs

to handle station mobility within the MAC layer.

An IEEE 802.11 network is based on a cellular technology and therefore

subdivided into cells [2]. A cell is called a Basic Service Set (BSS) and controlled by a

Base Station called Access Point (AP). Multiple access points may be connected by a

backbone (Fig. 8) forming an Extended Service Set (ESS). All data from non-802.11

networks enter the 802.11 architecture via a portal [9], which bridges the two different

15

architectures. Usually a single device combines functions of both an AP and a portal In

other words an AP serves as a bridge between segments of different architectures.

16

802.11 Components

Figure 8 Extended Service Set (ESS)

A minimum IEEE 802.11 LAN can consist of just two stations without an AP.

This can be a temporary network between two laptop computers where each station’s

signals are detectable by the others and thus communication can take place directly. This

type of network is usually formed without pre-planning for as long as the LAN is needed

and referred to as an Ad-Hoc network. The stations assume some responsibilities of an

AP in this case, for example, beacon frame generation. In contrast, the networks where

the AP is present are called Infrastructure Networks.

17

Before a station can participate on the network it first must become associated (or

synchronized) with the corresponding AP. A station discovers an AP and associates with

it by invoking the association service. The station can obtain the synchronization

information in two ways: by actively sending probe requests and waiting for a probe

response from the AP or by passively waiting to receive a beacon frame. Once an AP is

found the station goes through the authentication process and at this time the station

proves the knowledge of a password to the AP. When authenticated, the station starts the

association process, which involves exchange of information about the station and BSS

capabilities. At any given moment a station can be associated with only one AP, while an

AP can be associated with many stations dt the same time. To support BSS mobility, for

example to move between APs, the reassociation service is used. It simply “moves”

current association from one AP to another. Reassociation is always initiated by the

station. |

An AP may disassociate a station by sending a disassociation request. After

disassociation all attempts to send messages to the disassociated station will be

unsuccessful. Similarly, a station will attempt to disassociate when leaving a network.

Access and confidentiality control services in 802.11 networks are provided by

two services: authentication and privacy [9]. According to the IEEE 802.11 Standard,

authentication serves a purpose analogous to the wired media physical connection and

privacy provides the confidential aspects of closed wired media. The most commonly

used authentication mechanism in IEEE 802.11 networks is Shared Key authentication. It

requires the use of the wired equivalent privacy (WEP) with a shared secret (WEP

encryption key). WEP is also an optional privacy algorithm. Although it is not designed

as the ultimate security its goal is to provide as much security as a wire [9]. When used,

all data frames are encrypted with 40, 64, or 128-bit encryption.

802.1 lb General Frame Format

Each frame in IEEE 802.11 consists of a MAC header, a frame body, and a frame

check sequence (FCS) in a fixed order (Ref Standard) and is depicted m Figure 9. The

MAC header comprises frame control, duration, addresses, and sequence control

information. The frame body is specific to a frame type and vanes in length. FCS is a 32-

bit cyclic redundancy check (CRC).

18

Octets:
2 2 6 6 6 2 6 0-2312 4

Frame
Control

Duration/
ID Address 1 Address2 Address3 Sequence

Control Address4 Frame
Body CRC

MAC Header

Figure 9 General MAC Header I

iI
The frame control field in the MAC header is important in identifying which

network frames belong to and has the following subfields (also shown in Figure 10):

1. Protocol version field is 2 bit in length and is always 0 in this version of standard.

2. Type field is 2 bit in length and identifies the frame type: management, control, or

data. ;

3. Subtype field is 4 bit in length and in combination with the field type identifies the

frame function. For example, management frame association request or control

frame acknowledgement.

19

4 To DS field is 1 bit in length and is set to 1 in data frames destined for the

Distribution System (DS). For example, all data frames sent by a station

associated with an AP. The DS field is set to 0 otherwise.

5. From DS field is 1 bit in length and is 1 in all data frames leaving the DS and is

set to 0 in all other frames.

6. More Fragments field is 1 bit in length and is set to 1 m all management or data

frames, which have another fragment of the current MAC service data unit

(MSDU) or current MAC management protocol data unit (MMPDU) to follow.

This field is set to 0 in all other frames.

7. Retry field is 1 bit in length and is set to 1 in all retransmitted data or management

frames. It is 0 in all other frames.

8. Power Management field is 1 bit in length and indicates the power management

mode of a station in which the station will be after a successful completion of the

frame exchange sequence. A value of 1 means power-save mode, 0 - active mode.

9. More Data field is 1 bit in length and, when set, indicates to a station in power-

save mode that it has data waiting for it at the AP.

10. WEP (Wired Equivalent Privacy) field is 1 bit in length and is set to 1 in data

frames or management authentication frames if the frame body was processed by

the WEP algorithm.

11. Order field is 1 bit in length and is set to 1 in data frames containing MSDU (or

MSDU fragment) that are transferred using the StrictlyOrdered service class.

20

Octets:
2 2 4 1 1 1 1 1 1 1 1

Protocol
Version

Type Subtype To
DS

From
DS

More
Frag

Retry Pwr
Mgt

More
Data

WEP Order

■M--- ►
Figure 10 Frame Control Field

The Duration/ID field of the MAC header is 16-bit in length and, depending on

the frame type, carries either the association identity (AID) or duration value as defined

for each frame. The four address fields are 48 bit in length in MAC address format. An

address field can indicate BSSID (basic service set identifier), SA (source address), DA

(destination address), RA (receiver address), and TA (transmitter address). Some frames

do not have certain address fields. The sequence control filed is 16 bit in length and

indicates the sequence number of MSDU or MMPDU. The frame body field is variable

length (0-2312 bytes) and is specific to each frame type. The FCS field contains a 32-bit

c r c . :

As mentioned above there are 3 types of frames: management, control, and data.

Management frames are used to exchange management information, but are not

forwarded to upper layers [2]. These include beacons, association and reassociation

requests, and others. Control frames are used to control access to the medium, for

example, when a station wishes to transmit it issues a RTS (Request To Send) control

frame. The AP then replies with a CTS (Clear To Send) control frame. Finally, the data

frames are used for data transmission and normally encapsulate Ethernet traffic.

21

Important Frames for Sniffing

Not every frame carries complete network identifying information. To uniquely

identify an 802.1 lb network one needs the following: BSSID, network name(SSID),

channel, and presence of WEP. For the purpose of this study a network’s “unique

identity” is simply the configuration information needed in order to participate on the

network. It is also useful to know how many packets a network has sent since it was

discovered, the IP address range of the network, and the number of wireless/wired clients

participating in it. The frames that carry the most 802.1 lb network parameters are

management frames: beacons, probe requests, and reassociation requests. Data frames

contain MAC addresses of the transmittmg/receiving clients and, if WEP is not

configured, the IP address information, which could be extracted and examined. All other

frames carry minimal or, without thorough tracking, even ambiguous information for the

purpose of this study and therefore are not considered.

CHAPTER V

OVERVIEW OF IEEE 802.11 SECURITY |

The wireless networks also differ from their wired equivalents in several security

aspects. For example, on a wired network authentication is implicit in the fact that a

client is physically connected to the network [5]. Moreover, altering traffic, as it passes

through the wire, is not trivial. The physical topology is quite different on the wireless
I

networks, however. It is much easier to hijack sessions, filter traffic, or inject messages in

the authentication sequence in the absence of strong mutual authentication.

These weaknesses in the IEEE 802.11 design come from the fact that IEEE 802.11 is

based on IEEE 802. lx group of standards that assumed a network with a fixed physical

location.

Known Security Vulnerabilities in 802.11

There are three major security weaknesses in the IEEE 802.11 protocol [14].

The first weakness comes from the use of unencrypted 802.11 networks. Such

sessions are vulnerable to snooping and hijacking regardless of authentication methods.

Wireless 802.11 networks are easy to discover with the right equipment, such as
i

Netstumber, Kismet, or the software developed during this research. If the

communications are unencrypted and no access control is used it is simple to ¡configure

an attack machine to join the victim AP and participate on the network. All

communications can be observed in clear text with software tools that are normally used

on an Ethernet network, e.g. tcpdump or ethereal.

22

23

The second problem is weakness m the WEP encryption scheme [Ref rice

university paper]. It is well known that WEP offers only weak encryption. Also WEP

lacks support for per-packet integrity protection, thus enabling a wide variety of attacks,

such as insertion of packets into the data stream [14]. It is worth noting that only early

WEP implementations were vulnerable to key cracking by tools such as Airsnort [6]. The

latest firmware releases from most vendors prevent or eliminate all known attacks. For

example, avoiding cryptographically weak packet generation makes WEP key retrieval

nearly impossible.

Finally, the lack of authentication for 802.11 management messages is the third

and the biggest of the known security vulnerabilities of 802.11. These include beacon,

probe request/response, association request/response, reassociation request/response,

disassociation, and deauthentication. Generally speaking, all these management messages

must be authenticated; otherwise DOS (denial of service) attacks are possible. It is

possible, for example, to. deny service to a 802.1 lb client by creating a fake

deauthentication request that appears to the AP as if it was sent from the victimlmachine.

This is achieved by using the victim’s MAC address as the source address in the

deauthentication frame. When the AP receives such request, it happily deauthenticates

the client, forcing the victim to reestablish the connection. There exist tools that exploit

this and more, for instance, Airjack [12] (http://802.1 lninia.net). In addition Aiijack can

take over a connection at layers 1 (Physical: radio channel manipilation) and 2 (Datalink:
l

MAC and LLC). It inserts the attacking machine between the victim and the access point,

making the unsuspecting victim associate with the attacking machine instead of the AP

on a different channel. The attacking machine in its turn associates with the AP as the

http://802.1

24

client on the channel advertised by the AP. Thus all communications between the client

and the AP are going passing through the attack machine. It was demonstrated to

successfully implement a man-in-the-middle (MITM) attack even on encrypted 802.1 lb

networks during the Black Hat Briefings conference in Las Vegas in August 2002. The

MITM attack on encrypted networks was possible because many security solutions are

implemented with an assumption of secure levels 1 and 2. It is believed that Airjack was

also used as a DOS tool at Defcon conference that took place just days after the Black

Hat Briefings.

Feasibility of Securing 802.1 lb Networks

According to the current media coverage it seems that IEEE 802.11 has multiple

gaping holes and, therefore, insecure. All of these insecurities, however, can be

eliminated by taking reasonable security measures [6]. For example, use of wireless

sniffers and scanners can help locate unauthorized access points in the enterprise,

adoption of wireless intrusion detection systems (IDS) and monitoring tools can inform

about attempts of unauthorized access to the network, implementation of virtual private

networks (VPN) with strong authentication will prevent eavesdropping [12], and, finally,

radio signal containment and prevention signal leaks by using directional antennae would

also aid eavesdropping avoidance.

CHAPTER VI

DISCUSSION OF ACTIVE SNIFFER DETECTION TECHNIQUES

Which Sniffer is Active and Which Passive?

Wireless network sniffers can be classified in two groups: active and passive. In

short: the active send out packets or signals and the passive do not.

Active sniffers attempt to participate on the network and can only eavesdrop on

traffic belonging to the network they are associated with. Its presence can obviously be

noticed by viewing the list of associated clients. Moreover, before an active sniffer can

participate on the network it has to associate with it. And before it can associate it must

find a suitable network. This search is usually done by rapid switching channels and

sending probe requests on each frequency. This is done in hope of receiving a probe

response that contains the network information for participating on the network. It is not

hard-to detect these probe requests. The problem is that these probe requests are not

easily fingerprinted, because they look exactly as probe requests from legitimate clients.

Therefore, basing netstumbler detection on just receiving probe requests on different

channels would generate too many false alarms.

The passive sniffers on the contrary do not have to send out any packets. They

simply switch channels and listen on each frequency for a short while in hope of

receiving any 802.11 traffic. When a frame that is not classified as noise is received it is

parsed and network information extracted. Data frames that usually carry TCP/IP packets

are examined and dumped to a file for future analysis. If the goal is just the wireless

25

network detection, only limited parameters are extracted or the data frames are

completely ignored.

It is theoretically possible to detect such sniffers, even passive, due to presence of

antennae on the wireless network card [4] but the technique is quite involved and is not

very accurate.

26

Detecting “Netstumblers”

There exist many programs that are considered “netstumblers”, which can be

classified as active wireless network detectors. Their sole goal is to detect a wireless

network by issuing probe requests and reading probe responses. Most of them are written

for Linux and BSD-based systems. The original Netstumbler was written for MS

Windows and is a closed source project.

As mentioned above the probe requests that all of these netstumblers send are

indistinguishable from legitimate clients, and the MAC addresses on the wireless cards

may be altered, so that they are hard to detect. It was noted, however, that the MS

Windows original Netstumbler emits an LLC data packet containing a certain text string

(Fig. 11). The string is different for different versions of the Netstumbler.

This LLC packet is the basis for Netstumbler detection in the latest version of

Kismet. It is obvious, however, that this technique is not general and all other non-

wmdows “netstumblers” go unnoticed. This makes this technique unsuitable, for

instance, for an Intrusion Detection System (IDS).

27

IEEE 802.11
Type/Subtype: Data (32)
Frame Control: 0x0008

Version: 0
Type: Data frame (2)
Subtype: 0
Flags: 0x0

DS status: Not leaving DS or network is operating in AD-HOC
mode (To DS: 0 From DS: 0) (0x00)

.....0.. = More Fragments: This is the last fragment1

.... 0... = Retry: Frame is not being retransmitted

...0 = PWR MGT: STA will stay up

..0.....= More Data: No data buffered

.0.. = WEP flag: WEP is disabled
0...... = Order flag. Not strictly ordered

Duration: 0
Destination address: 01:60:Id:00:01:00 (01:60:Id:00:01:00)
Source address: de:ad:be:ef:fe:ed (de:ad:be:ef:fe:ed)
BSS Id: de:23:be:53:00:01 (de:23:be:53:00:01)
Fragment number: 0
Sequence number: 1474

Logical-Link Control
DSAP: SNAP (Oxaa)
IG Bit: Individual
SSAP: SNAP (Oxaa)
CR Bit: Command
Control field: U, func = UI (0x03)

000. 00.. = Unnumbered Information
......11 = Unnumbered frame

Organization Code: Unknown (0x00601d)
Protocol ID: 0x0001

Data (58 bytes)

0000 00 00 00 00 20 20 20 20 20 20 20 20 20 20 69 6e in
0010 74 65 6e 74 69 6f 6e 61 6c 6c 79 20 62 6c 61 6e tenfcionally blan
0020 6b 20 20 20 20 20 20 20 20 20 20 20 fe ca ba ab k ___
0030 ad de Of dO 00 00 00 00 00 00

Figure 11. LLC packet generated by a Netstumbler version 0.3.30 (captured by Mike Craik
<bovine®btinternet.com>). Attributes characteristic of a Netstumbler LLC packet are in bold.

CHAPTER VII

IMPLEMENTATION DETAILS

Project History

The idea for this project belongs to DL. McCabe. After interest was expressed and

the specifications for the software discussed, two Ipaq handheld computers with Orinoco

Gold wireless cards were purchased by the Computer Science department. Linux was
l

chosen as the development platform because of the free access to the source code of the

operating system and the device drivers. Presently, Linux installation on a handheld

computer is still not trivial and risky in terms of damaging the equipment [7]. It involved

installation of a Linux bootloader, followed by the kernel image with minimal system,

and then the packages required to run useful programs. These tasks were performed using

a Linux PC through the serial port. Since specific drivers were needed to run wireless

cards in the monitor mode, the Linux kernel and the drivers needed to be recompiled for

the Ipaq, (ARM architecture). This involved setting up an ARM cross-compiler and

libraries on an Intel x86 machine running Linux. Development libraries, such as libpcap,

were also cross-compiled. Orinoco wireless card drivers were patched to include the

monitor mode support. Because the Orinoco drivers for Linux are not very stable, some

informational, debugging, and version checking code was modified or excluded from the

drivers.

After everything needed was cross-compiled and installed on the Ipaq, a

command line version of the packet capture engine was written and tested on x86 and

ARM Linux. At this point several differences in how compilers generate code were

28

29

observed For example, s i z e o f (s t r u c t) turned out to calculate sizes of the same

structure differently on different platforms. These differences had to be accounted for and

incorporated in the code. Similar situations existed with the QT interface: the code that

worked on x86 produced segmentation violations on ARM or simply the graphics looked

differently. Currently though, identical code compiles and runs on both architectures

equally well.

General 1

The software developed for this project consists of two main modules: capture

and user interface. When started, the user interface reads the configuration file, applies

current settings, and forks the capture module. Depending on the card type, an

appropriate channel hopper is chosen and invoked. The capture module creates a message

queue where it puts newly found networks (message type 1) and pushes the updates of

the network list (message type 2). The user interface monitors the queue and updates the

display when new information arrives. Message queues were chosen as a method of inter

process communication because of its simplicity, ability to distinguish between message

types (an update message from a new network or an informational message), and minimal

synchronization between the two processes. The sending process puts messages in the

queue and does not block. Also, the message queue does not have to be open from the

“other end” as in FIFO pipes for example. The receiving process uses a non-blockmg

receive to check the queue for messages. If the queue is empty it simply continues

execution without blocking.

30

Packet Capture

The packet capture is performed using the libpcap library from the tcpdump.org

project [11] ('http://www.tcpdump.org'). The packet capture process is forked from the

user interface module. The network card device name is passed to the capture module as

a parameter from the user interface module. The capture module calls the

p c a p _ o p e n _ liv e () function, which opens the specified device for promiscuous

packet capture. If the device open call succeeds then a p c a p _ lo o p () function starts an

infinite capture of packets from the interface. Every time a packet is acquired, a callback

function called m y _ c a llb a c k () is executed. This function makes copies of received

data and its header for further handling and calls the p _ d a ta _ a n a ly z e r () function

that examines the captured frame and classifies it as a management (beacon, re

association request), control, data, or other frame. Based on this classification, a different

processing code is called for each type of frame.

Each, of the processing elements extracts all potentially useful information and, if

the network is new, adds it to the list of networks, and then puts it in the message queue

for the user interface to collect. If no new information was discovered, the frame count is

incremented and the frame content is ignored. The capture module also sets a timer that

goes off every second and pushes the current network list with all the up-to-date

parameters to the user interface. This forces the network list update on the display which

includes time the network was last seen, number of packets received, and any new

information that may have been discovered or changed.

http://www.tcpdump.org'

31

User Interface

The user interface was written using Qtopia from Trolltech that can be found at

http://www.trolltech.com [15]. This is a QT development kit that could be used for cross-

platform development. A designer program was used to quickly build the appearance of

the interface. This also created a base class called Discovererbase. Then a derived

class called Discoverer was created and virtual functions of the base class were re

implemented when needed. j

The user interface performs multiple tasks besides displaying the list of networks

and updating display. This includes channel hoppmg for Orinoco and Prism2-based

wireless network cards, enabling monitor mode on Cisco-based cards, reading

configuration files and saving changes, and displaying a log of recently performed

actions as a debugging aid.

When a new network appears in the message queue it is simply added to the list of

networks after the last discovered network (if any). If an update message arrives, the

network list tree is traversed for a BSSID match, then the packet count, timestamp, and in

certain cases SSID are updated with new data.

The interface was written almost entirely in the C++ programming language.

Portability issues may arise when trying to adapt the system for a non-UNIX

environment, because of calls to the sy s te m function. This function is used mainly to

perform network interface controlling actions, which are OS and card driver specific, for

example, enabling interface, changing channels, and setting monitor mode.

http://www.trolltech.com

32

Network Internal Nodes Discovery

The network internal node discovery is based on the fact that most access points

are also portals (or bridges). They usually bridge the Ethernet segment with the Wireless

segment. Therefore broadcasts made by the wired nodes are also “heard” on the wireless

segment. By examining data frames the MAC addresses of the wired nodes can also be

obtained. The wired node discovery is possible even with WEP enabled. When given

enough time it is possible to discover all nodes on the subnet.

It is also possible to determine what BSSID a particular MAC address belongs to

because a typical data frame contains the following fields: destination MAC, source

MAC, and BSSID. All three are examined for new MAC addresses that are collected,

classified, and appended to a linked list with the appropriate BSSID. Broadcast and

multicast addresses are filtered out. The Nodes counter is incremented.

Detecting Wireless Clients

The MAC addresses collected from the data frames include wired and wireless

nodes on the network. The wireless client discovery is based on the fact that wired clients

do not emit 802.1 lb specific frames, such as management or control frames.

In order to separate the wireless nodes, the discoverer watches the management

frames and if a new MAC address is found in a management frame with the same BSSID

a new wireless client is added to the list of wireless clients and W i r e l e s s C l i e n t s

count is incremented.

33

Internet Address Range Detection

The IP range detection relies on unencrypted data frames. Thus this feature is not

available on networks protected with WEP. The IP addresses are extracted from the

Ethernet headers of ARP packets and DHCP replies encapsulated into the body of

802.1 lb frames. The DHCP replies are part of the Dynamic Host Configuration Protocol

and contain all necessary information to participate on the IP network. This includes the

client's IP address and may also contain network mask, default gateway, and domain
i

name. The DHCP replies are quite rare and are usually transmitted when a client boots or

its DHCP lease expires. Therefore the ARP replies containing IP addresses of local nodes

are also of value. The data structure holding network information only keeps track of the

highest and the lowest IP numbers detected on the network. This was done to eliminate

network mask guessing, which may be quite inaccurate on subnetted networks.

Obviously, the best case scenario is to intercept a DHCP reply.

The g e t_ ip r a n g e () function is called every time a data frame is received. It

parses the Ethernet header looking for ARP and IP packets. When an ARP packet is

received p r o c e s s _ a r p () is called, an IP address extracted, and, if it is outside

discovered range, the network data structure is updated with the new IP address. The

p r o c e s s _ ip () function is called in search of new IP addresses and DHCP replies.

When a DHCP reply is found it is parsed and the client's IP address assigned by the

DHCP server is extracted; furthermore, the DHCP options field is parsed in search for

netmask, default gateway, and domain name. All other DHCP options are ignqred and

skipped.

CHAPTER VIII

CONCLUSIONS

This study achieved its goal of learning details of the IEEE 802.11 Standard and

building a wireless network detector for handheld and mobile computers. The software

created surpasses its predecessors and similar concurrent projects in a variety o f ways.

These include, for example, more precise IP range detection and enumeration of wireless

and even wired nodes. This allows easier location of misconfigured or “rogue” Access

Points and indicates other wireless network insecurities. It has become a rather useful

auditing tool featured on websites such as http://www.freshmeat.net and

http://www.zauruszone.com with many users.

This study confirmed that IEEE 802.11 Standard compliant devices give out a lot

of network information that should be kept private. This is true even when 802.11

networks are used with Wired Equivalent Privacy (WEP) to encrypt the data traffic. The

study also proved that anyone with the right equipment and motivation can leam a lot

about one’s wireless IEEE 802.1 lb network and possibly misuse the data.

Future Research

The software produced during this research only works with IEEE 802.1 lb

compliant networks simply because only 802.1 lb open source drivers were available at

the time of writing. There exist several variations of 802.11 (e.g. 802.11a and 802.1 lg).

The software can easily be adapted to detect these wireless networks as well, with very

little or no modifications. This will be a simple task because the software relies on IEEE

34

http://www.freshmeat.net
http://www.zauruszone.com

35

802.11 frame parsing The frame format (Data Link Layer of OSI) between these

variations stays the same while type of modulation and earner frequency (Physical Layer

of OSI) change. The device drivers for the other IEEE 802.11 variations should also

support the monitor mode.

Recommended improvements to the software include making display of network

list more readable, adding card specific statistics and parameters extraction, returning the

card into normal mode from REMON after sniffing, and ability to save the results of

auditing. But these are basically cosmetic changes and improvements.

APPENDIX A

Prior Research and Systems Built

There exist several projects that deal with detection and sniffing wireless

networks. The most widely known in the wireless community are Netstumbler, Airsnort,

and Kismet.

Netstumbler [13] fhttp://www netstumbler.com') is an active network detector

written for MS Windows. It actively tries to join any wireless network in the range and, if

succeeds, extracts and displays the network information: MAC, SSID, first-seen and last-

seen timestamps, network type, WEP flag, signal quality, noise, SNR (signal-to-noise

ration), and, if GPS (global positioning system) is available, the longitude/latitude. There

is a less functional PDA version of it for MS Windows CE 3.0 called Ministumbler.

Netstumblers only work with Orinoco chipset based cards because they use firmware

features of these cards to send out probe requests and read probe responses from the AP.

Netstumbler is a closed-source project.

Airsnort [1] (httD://airsnort.shmoo.coni) was designed primarily for WEP

cracking and passively collecting cryptographically weak packets for future cracking. It,

however, displays some basic wireless network information such as SSID, BSSID,

channel number, and number of packets received. After it collects enough “weak”

packets it computes and displays the shared key of the network. Airsnort is a passive

sniffer and works with most cards. It runs on Linux/BSD platforms.

Kismet [10] (http://www.kismetwireless.net) is a passive wireless network

monitoring tool. It is rich in features and can be used as a network detector or for

dumping all network traffic to a file for later analysis. It has all features of Netstumbler

36

http://www
http://www.kismetwireless.net

37

plus its advanced features include network IP range detection and saving files in ethereal

compatible format for later viewing or information extraction. Kismet is a passive sniffer

and works with the majority of wireless network cards. Kismet runs on Linux/BSD

platforms.

Commercial tools include Network Associates’ Wireless Sniffer. There is a PDA

Wmdows version of it but, unfortunately, it could not be tested due to cost involved.

IBM Corp. also built a research prototype of an 802.11 wireless LAN security
I

auditor called Wireless Security Auditor (WSA) [8] described at their web site

http://www.research.ibm.com/gsal/wsa/. The prototype information is limited and it is a

closed source project. It is not known whether it is active or passive from, the description

provided on the IBM’s website.

The main reason that most systems, including the one described here, are built for

Linux and BSD operating systems is mainly because there are no available MS Windows

drivers that can do RF monitor mode.

Advantages/Disadvantages of the Predecessors

The software packages described above are all excellent tools. Many features that

initially were to appear in this package were not available in the other software packages.

For example, IP range detection, MAC addresses of wired nodes detection, cloaked

network’s SSID detection were features, which surfaced at approximately the same time.

The tools described have their advantages as well as disadvantages.

For example, Netstumbler only runs on MS Windows and only supports Orinoco

based PCMCIA cards. It does not support other types of cards. It can only do active

http://www.research.ibm.com/gsal/wsa/

38

network detection, which involves generating traffic that can potentially be detected. The

network should be reachable by the Netstumbler’s radio to generate a response, thus the

range of Netstumblers is limited to its radio power. This is not the case with passive
|

network detectors, however, and the major limiting factor for them is the wireless card

radio sensitivity. j

The goal of the Airsnort project is encryption key retrieval and involves collection

of up to 5-10 million packets, which may not be suitable for a handheld device due to

storage constraints. It is also linked with GTK+ library, which means that this library

needs to be installed on the handheld taking up space.

Kismet is a console-based system primarily designed to run on Linux laptops. In

the author’s experience, it is extremely difficult to run Kismet on a handheld. It, however,

has a kismet_qt front-end fhttp://www.liveiournal.com/users/mspm) that appeared

recently and may be used to run kismet on a handheld device with Linux and QPE

installed.

I
I

http://www.liveiournal.com/users/mspm

APPENDIX B

/*
* discoverer/packet.h
*

* Copyright (C) 2002 Alex Medvedev <alexm@pycckue.org>
*

* header file for the capture.c and discoverer interface
*

7

#ifndef ALEXM_PACKET_H
#define ALEXM_PACKET_H

#include <ctype.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdint.h>
#include <inttypes.h>
#inciude <string.h>
#include <netinet/ip.h>
#define SSID_SIZE 32
#define MAC_ADDR_LEN 6
#define MAX_PACKET_LEN 8192
#define WLAN_DEVNAMELEN_MAX 6
#define MANUFILE "/etc/manufacturers.dat"
#define NETWORKCOUNT 100
#define MANUFAC_LEN 64
#define CAPABILITY_OFFSET 34
#define SSID_OFFSET 36
/* 802.11 packet frame header 7
typedef struct {

unsigned short version : 2;
unsigned short type : 2;
unsigned short subtype : 4;
unsigned short to_ds : 1;
unsigned short from_ds : 1;
unsigned short more_fragments : 1;
unsigned short retry : 1;
unsigned short powerjnanagement: 1;
unsigned short more_data : 1;

39

mailto:alexm@pycckue.org

40

unsigned short wep : 1;
unsigned short order: 1;

} frame_control_t;

/* 802.11 b general mac header 7
typedef struct {

//frame_control_t fc; // 2
// for some reason sizeof() miscalculates the size of this struct
II have to use offset 2 in the process_beacon()

unsigned short durationjd; 112
uint8J address1[MAC_ADDR_LEN]; II 6
uint8J address2[MAC_ADDR_LEN]; 1/6
uint8J address3[MAC_ADDR_LEN]; 116
unsigned short seq_control; II 2
uint8J address4[MAC_ADDR_LEN]; 1/6

} general_mac_hdr_t;
typedef struct {

uint8_t id;
uint8_t len;

uint8_t channel;
} channel_t;
typedef struct {

uint8_t id;
uint8_t len;
char str[32];

} ssid_t;
typedef struct {

unsigned short ess : 1;
unsigned short ibss : 1;
unsigned short cf_pojlable : 1;
unsigned short cf_poll_req : 1;
unsigned short privacy : 1;
uint8_t reserved[11];

} capability_t;
/* to count the number of clients 7
struct clientjist {

uint8_t bssid[6];
struct clientjist *next;

};
typedef struct clientjist c lie n tjis tj;
typedef struct {

struct in_addr lo jp ; // lowest ip found
struct in_addr h ijp ; // highest ip found
struct in_addr gw; //gateway
struct in_addr netmask; // netmask
char domainname[32]; // limit it to 32 char

} ip_info_t;

/* final structure 7
struct net_info_t {

char ssid[SSID_SIZE];
uint8_t wep;
uint8_t bssid[6];
uint8_t ap;
uint8_t channel;
char manufacturer[MANUFAC_LEN];
int packet_count;
int n_wclients; // wireless clients
int njclients; // all nodes in the network
client_list_t *clientw;
client_list_t *clientl;
ip_info_t iprange;
struct net_info_t *next;

};typedef struct net_info_t network_info_t;

typedef struct {
uint8_t id;

uint8_t len;
uint8_t supp_rates[8];

} supported_rates_t;

struct my_arphdr {
unsigned short int ar_hrd; /* Format of hardware address. 7
unsigned short int ar_pro; /* Format of protocol address. 7
unsigned char ar_hln; /* Length of hardware address. 7
unsigned char ar_pln; /* Length of protocol address. 7
unsigned short int ar_op; /* ARP opcode (command). 7
unsigned char ar_sha[6]; /* Sender hardware address. 7 I
unsigned char ar_sip[4]; /* Sender IP address. 7
unsigned char ar_tha[6]; /* Target hardware address. 7
unsigned char ar_tip[4]; /* Target IP address. 7

};

typedef struct {
u_int8_t op;
u_int8_t htype;

42

ujnt8_t hlen;
u_int8_t hops;
ujnt32_t xid;
u_int16_t secs;
u_int16_t flags;
struct in_addr ciaddr;
struct in_addr yiaddr;
struct in_addr siaddr;
struct in_addr giaddr;
unsigned char chaddr[16];
char sname[64];
charfile[128];
//unsigned char options[1222]; // max = 1500-(236+14+20+8)

} dhcp_msg;

#endif

43

/*
* discoverer/main.c
*
* Copyright (C) 2002 Alex Medvedev <alexm@pycckue.org>
*

* main function for discoverer
*

7

#include "discoverer.h"
#include <qpe/qpeapplication.h>

int main(int argc, char ** argv)
{

QPEApplication app(argc, argv);
Discoverer d;
app.showMainWidget(&d);
return app.exec();

}

mailto:alexm@pycckue.org

44

* discoverer/capture.c
★

* Copyright (C) 2002 Alex Medvedev <alexm@pycckue.org>
* http://www.cs.swt.edu/~am60347
*

* libpcap capture of raw frame, their analysis, and sending results to
* the user interface process
*

7
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef struct pcap_pkthdr pcap_pkthdr;
/* globals for pcap capture 7
pcap_pkthdr callback_header;
u_charcallback_data[MAX_PACKET_LEN];
network_info_t *net = NULL; /* head pointer for list of networks 7
int n_discovered = 0; /* number of networks discovered so far 7
int g_packet_count = 0; /* count all packets 7

/* struct to pass to I PC 7
typedef struct {

long int message_type;
network_info_t data;

} ui_message;

"packet.h"
<signal.h>
<pcap.h>
<stdio.h>
<stdlib.h>
<fcntl.h>
<sys/stat.h>
<sys/ipc.h>
<sys/msg.h>
<errno.h>
<stdarg.h>
<sys/socket.h>
<netinet/in.h>
<netinet/ip.h>
<netinet/tcp.h>
<arpa/inet.h>
<netinet/if_ether.h>
<netinet/in.h>
<net/ethernet.h>
<netinet/ether.h>

mailto:alexm@pycckue.org
http://www.cs.swt.edu/~am60347

/* inserts new network in the head of the list 7
void head_insert(networkJnfo_t *n)
{

/* act as a constructor too 7
/* these are default values 7
n->iprange.lo_ip.s_addr = 0x00000000;
n->iprange.hi_ip.s_addr = 0x00000000;
n->iprange.gw.s_addr = 0x00000000;
n->lprange.netmask.s_addr = Oxffffffff;
/* the main function is to insert the new network in the list 7
n->next = net;
net = n;

}

/*
* formatted messaging to the Ul module
7
void log (const char *fm t,...) /* print into a message queue "2002" 7
{

char str[64];
va jis t argp;
int qid;
ui_message msg;
va_start(argp, fmt);
vsnprintf(str, 64, fmt, argp);
va_end(argp);
memcpy(&(msg.data), str, sizeof(network_info_t));
qid = msgget((key_t)2002, 0600 | IPC_CREAT);
if (qid == -1) {

fprintf(stderr, "msgget failed, ermo = %d\n", ermo);
return;

}
msg.message_type = 3; /* 3 means informational message 7
if (msgsnd(qid, (void *)&msg, sizeof(msg), 0) == -1) {

fprintf(stderr, "msgsnd failed\n");
return;

}
}

/*
* searches for a BSSID in the list of already found networks.
* returns 0 if bssid not found in the list, 1 otherwise

int bssid_found(network_info_t *n)
{ network_info_t *temp = net;

int found = 0;
if (temp == NULL)

return 0;
while (temp != NULL) {/* compare from the end - faster 7

/* if (temp->bssid[5] == n->bssid[5] &&
temp->bssid[4] == n->bssid[4] &&
temp->bssid[3] == n->bssid[3] &&
temp->bssid[2] == n->bssid[2] &&
temp->bssid[1] == n->bssid[1] &&
temp->bssid[0] == n->bssid[0]) {

7
/* this if replaces the one above (readability)7
if (memcmp(temp->bssid, n->bssid, 6) == 0) {

found = 1;
/* just in case if this is a reassoc req 7
if (temp->ssid == NULL && n->ssid != NULL) {

strncpy(temp->ssid, n->ssid, 32);
log("found ssid=%s via re-assoc request",

temp->ssid);
:-- - temp->packet_eount++;

break; II exit from while()
} ---------------
temp = temp->next;

}
if (found)

return 1;
return 0;

}
/*
* pretty print function
* constructs and sends messages of type new
7
void pprint (network_info_t *n) /* print into a message queue "2002" 7
{

int qid;
ui_message msg;

memcpy(&(msg.data), n, sizeof(network_info_t));
qid = msgget((key_t)2002, 0600 | IPC_CREAT);
if (qid ==-1){

7

47

fprintf(stderr, "msgget failed, errno = %d\n", errno);
return;

msg.message_type = 1;
if (msgsnd(qid, (void *)&msg, sizeof(msg), 0) == -1) {

fprintf(stderr, "msgsnd failed\n");
return;

}
//fprintf(stderr, "sent about %s\n", n->ssid);

}

/*
* updates user interface with ever changing network information
* like packet count, new ip addresses, ...
*/
void ui_update()
{

int qid;
network_info_t *temp = net; i

ui_message msg;
alarm(1); - - ,
//fprintf(stderr, "alarm\n"); :
while(temp != NULL) {

memcpy(&(msg.data), temp, sizeof(network_info_t));
qid = msgget((key_t)2002, 0600 | IPC_CREAT);
if (qid == -1){

fprintf(stderr, "msgget failed, errno = %d\n", errno);
return;

}
msg.messagejype = 2;
if (msgsnd(qid, (void *)&msg, sizeof(msg), 0) == -1) {

fprintf(stderr, "msgsnd failed\n");
return;

}
//fprintf(stderr, "sent about %s\n", temp->ssid);
temp = temp->next;

} ;
} ;

/*
* checks the manufacturer datafile for a match
*/ ;
void lookup_manufac (general_mac_hdr_t *mac, char *name) !
{

}

FILE *fd;

char mac_str[9];
char str[80];
int i;
int j=0;
int found = 0;
strcpy(name, "unknown"); /* init nameO */
snprintf(mac_str, 9, "%02x:%02x:%02x", mac->address3[0], mac-

>address3[1], mac->address3[2]);
for (i=0;i<8;i++)

mac_str[i] = toupper(mac_str[i]);

if ((fd = fopen(MANUFILE, "r")) == 0) {
perror("manufacturers file :");

} else {
while (fgets(str, 80, fd)) {

j ++ ;
for(i=0;i<8;i++)

____ str[i] = toupper(str[i]);
if (!strncmp(str, mac_str, 8)) {/* if first 8 chars match */

strncpy(name, &str[9], 80);
name[strlen(name)-1] = '\0'; /* overwrite \n with NULL

7
found = 1; '
break;

}
}

- }if (fd) fclose(fd);
}

/* :
* dlsects a beacon frame
7
void process_beacon (const u_char *data)
{

general_mac_hdr_t *machdr;
capability_t *cap;
char str[33];
ssid_t *ssid;
channel_t *chan;
int channel_offset;
supported_rates_t *supp_rates;
int supp_rates_offset; j
char manuf[MANUFAC_LEN]; i
network_info_t *cur_net;

49

if (!(cur_net = (network_jnfo_t *) malloc(sizeof(network_info_t)))) {
log("malIoc() failed\ncapture module terminated");
exit (1);

}

cur_net->packet_count = 1; /* like in the constructor */
/* 1 is because we got THIS packet */
//printf("%s\n", "beacon");
ssid = (ssid_t *)(&data[SSID_OFFSET]);
stmcpy(str, ssid->str, ssid->len);
str[ssid->len] = '\0';

//printf("ssid->str = %s\n", str); I
strncpy(cur_net->ssid, str, SSID_SIZE); j

machdr = (general_mac_hdr_t *) &data[2];
memset(manuf, 0, sizeof(manuf)); ;
//memcpy(cur_net->bssid, machdr->address3, sizeof(machdr->address3));
memcpy(cur_net->bssid, &data[16], sizeof(machdr->address3)); ,
cap = (capability_t *) (&data[CAPABILITY_OFFSET]);
if (cap->privacy == 1) {

cur_net->wep = 1;
//puts("WEP is ON");

} else { |
cur_net->wep = 0;

-- //puts("WEP is OFF");
}
if (cap->ess && !cap->ibss) {

cur_net->ap = 1; i
//puts("AP");

}
else if (!cap->ess && cap->ibss) {

cur_net->ap = 0;
//puts("AdHoc");

}else {
cur_net->ap = 2;
//putsf'unknown network type");

}

supp_rates_offset = SSID_OFFSET + 2*sizeof(uint8_t) + ssid->len;
supp_rates = (supported_rates_t *) (&data[supp_rates_offset]);

channel_offset = supp_rates_offset + 2*sizeof(uint8_t) +
supp_rates->len;

chan = (channel_t *) (&data[channel_offset]);

50

cur_net->channel = chan->channel;
//printf("channel = %d\n”, chan->channel);
if (! bssid_found(cur_net)) {

/* call lookupjnanufQ here, to minimize fopen() calls 7
lookup_manufac(machdr, manuf); /* does not work 7
strncpy(cur_net->manufacturer, manuf, MANUFAC_LEN);
n_discovered++;
head_insert(cur_net);
pprint(cur_net);

} else {
free(cur_net);

}
}

/*
* disects a reassociation request
7 ;
void process_reassoc_req(const u_char *data) 1
{/* capability[16]
* listen_interval[16]
* current_AP_addr[48]
*ssid[16-272]
* supp_rates[32-80]
7

. general_mac_hdr_t *machdr;
... capability_t *cap;

char str[33];
ssid_t *ssid; >
char manuf[MANUFAC_LEN];
network_info_t *cur_net;
int ssid_offset = 34;
if (!(cur_net = (network_info_t *) malloc(sizeof(network_info_t)))) {

log("malloc() failed, capture exited\n");
exit (2);

}

cur_net->packet_count = 1; /* just in case if it is a new net 7

cap = (capability_t *) (data);
if (cap->privacy == 1) {

cur_net->wep = 1;
} else {

cur_net->wep = 0;

51

if (cap->ess && !cap->ibss) {
cur_net->ap = 1;

}
else if (!cap->ess && cap->ibss) {

cur_net->ap = 0;
}
else {

cur_net->ap = 2;
}

ssid = (ssld_t *)(&data[ssid_offset]);
strncpy(str, ssld->str, ssid->len);

str[ssid->len] = '\0';
strncpy(cur_net->ssid, str, SSID_SIZE);

log("got ssid %s from re-assoc req", ssid);
/* get current AP address 6 bytes 7
memcpy(cur_net->bssid, &data[28], slzeof(machdr->address3));
/* can't get channel info so set it to 15 (does not exist) 7
cur_net->channel = 15;
if (! bssid_found(cur_net)) {

/* call lookup_manuf() here, to minimize fopen() calls 7
lookup_manufac(machdr, manuf);

^ - strncpy(cur_net->manufacturer, manuf, MANUFAC_LEN);
n_discovered++;
head_insert(cur_net);
pprint(cur_net);

} else { —
free(cur_net);

}

}

/*
* traverses wireless clients list
* if not found adds as new
7
int check_lclient(uint8_t *cur_bssid, uint8_t *mac_to_check)
{

network_info_t *temp = net;
client_iist_t *cl = NULL;
client_list_t *cl_temp;

int found = 0;

//log("in check_client()");
if (temp == NULL)

return 0;
cl_temp = temp->clientl;

while (temp != NULL) {
if (memcmp(temp->bssid, cur_bssid, 6) == 0) {

//log("found bssid");
temp->packet_count++;

if (temp->n_lclients == 0) {
//log("empty list");
temp->n_lclients++;
if (!(cl = (client_list_t *)malloc(\

sizeof(client_list_t)))) {
log ("out of memory");
exit(3);

}
cl->next = temp->clientl;
temp->ciientl = cl;
memcpy(cl->bssid, mac_to_check, 6);
log("new node in %s:

mac=%02x:%02x:%02x:%02x:%02x:%02x\n",
temp->ssid,
mac_to_check[0], mac_to_check[1],
mac_to_check[2], mac_to_check[3],
mac_to_check[4], mac_to_check[5]);

return 2; // means that inserted a new one
} else {

cl_temp = temp->clientl;
while (cl_temp != NULL) {

if (memcmp(cl_temp->bssid,
mac_to_check, 6) == 0) {
found = 1;

}
cl_temp = cl_temp->next;

}if (found == 0) {
cl_temp = temp->clientl;
if (!(cl = (client_list_t *)\
malloc(sizeof(client_list_t)))) {

log ("out of memory");
exit(3);

}
log("new node in %s:

mac=%02x:%02x:%02x:%02x:%02x:%02x\n",

temp->ssid,
mac_to_check[0], mac_to_check[1],
mac_to_check[2], mac_to_check[3],
mac_to_check[4], mac_to_check[5]);
cl->next = temp->clientl;
temp->clientl = cl;
memcpy(cl->bssid, mac_to_check, 6);
temp->n_lclients++;
return 2;

}
}

found = 0;
}

temp = temp->next;
}
return 0; // have not found anything

}

/* \
* same as above but for wired clients
*/
int check_wclient(uint8_t *cur_bssid, uint8_t *mac_to_check)
{ ;

network_info_t *temp = net;
client_list_t *cl = NULL;
client_list_t *cl_temp;

int found = 0;
//log("in check_client()");

if (temp == NULL)
return 0;

cl_temp = temp->clientw;
while (temp != NULL) {

if (memcmp(temp->bssid, cur_bssid, 6) == 0) {
//logffound bssid");

temp->packet_count++;
if (temp->n_wclients == 0) {

//log("empty list");
temp->n_wclients++;
if (!(cl = (client_list_t *)malloc(\ |

sizeof(client_list_t)))) {
log ("out of memory");
exit(3); ;

} i
cl->next = temp->clientw;
temp->clientw = cl;

54

memcpy(cl->bssid, mac_to_check, 6);
log("new wireless client in %s:

mac=%02x:%02x:%02x:%02x:%02x:%02x\n'\
temp->ssid,
mac_to_check[0], mac_to_check[1],
mac_to_check[2], mac_to_check[3],
mac_to_check[4], mac_to_check[5]);

return 2; // means that inserted a new one
} else {

cl_temp = temp->clientw;

while (cl_temp != NULL) {
if (memcmp(cl_temp->bssid,

mac_to_check, 6) == 0) {
found = 1;

}
cl_temp = cl_temp->next;

}
if (found == 0) {

cl_temp - temp->clientw;
if (!(cl = (client_list_t *)\
malloc(sizeof(client_list_t)))) {

log ("out of memory");
exit(3);

}
log("new wireless client in %s:

mac=%02x:%02x:%02x:%02x:%02x:%02x\n",
temp->ssid,
mac_to_check[0], mac_to_check[1],
mac_to_check[2], mac_to_check[3],
mac_to_check[4], mac_to_check[5]);
cl->next = temp->clientw;
temp->clientw = cl;
memcpy(cl->bssid, mac_to_check, 6);
temp->n_wclients++;
return 2;

}
}

found = 0;
}

temp = temp->next;
}
return 0; // have not found anything

}

/*

55

* returns true if mac is Oxffffffff
* makes code less messy
*/
int check_for_broadcast(uint8_t *mac_to_check)
{

uint8_t bcast[6];
memset(bcast, Oxff, 6);
if (memcmp(mac_to_check, beast, 6) == 0)

return 1;
else

return 0;
}

/*
* inserts a new ip address in the network struct
*/
void insert_newjp(const u_int8_t bssid[6], const u_int32_t ip,

const u_int32_t gw, const u_int32_t netmask,
const char domainname[|)

{
network_info_t *temp;
u_jnt32_t addr = 0;
//puts("in insert_new_ip()");
if (!(temp = (network_info_t *) malloc(sizeof(network_info_t)))) {

log("malloc() failed, capture exited\n");
exit (2);

}
memset(temp, 0, sizeof(network_info_t));
memcpy(temp->bssid, bssid, 6);
if (! bssid_found(temp)) {

log("unknown data frame");
return; // we can't insert it because this bssid does not exist

}

temp = net;
while (temp != NULL) {

if (memcmp(temp->bssid, bssid, 6) == 0) {
//puts("found bssid match");
addr = temp->iprange.lo_ip.s_addr;
if (addr == 0 && ip != Oxffffffff) {

temp->iprange.lo_ip.s_addr = ip;
temp->iprange.hi_ip.s_addr = ip;

56

if (ip != 0 && ip != Oxffffffff && ip < addr) {
II we got a new low
temp->iprange.lo_ip.s_addr = ip;

}
addr = temp->iprange.hi_ip.s_addr;
if (ip != 0 && ip != Oxffffffff && ip > addr) {

// we got a new high
temp->iprange.hi_ip.s_addr = ip;
//puts("new hi");

}
if (gw != 0) {

temp->iprange.gw.s_addr = gw;
}
if (netmask != 0) {

temp->iprange.netmask.s_addr = netmask;
}
if (domainname != NULL) {

strncpy(temp->iprange.domainname, domainname,

}

break; // we are done, exit while loop
}
temp = temp->next;

}

}

/ * ‘ ' :
* processes arp packets
* extracts ip and mac addresses
7
void process_arp(const u_int8_t bssid[6], const u_char *data, int body_offset)
{

struct my_arphdr *arpheader;
u_int32_t s, d;
char s_addr_str[16];
char d_addr_str[16];
arpheader = (struct my_arphdr *) &data[body_offset+14];

snprintf(s_addr_str, 16, "%d.%d.%d.%d",
arpheader->ar_sip[0], arpheader->ar_sip[1],
arpheader->ar_sip[2], arpheader->ar_sip[3]);

snprintf(d_addr_str, 16, "%d.%d.%d.%d",
arpheader->ar_tip[0], arpheader->ar_tip[1],

57

arpheader->ar_tip[2], arpheader->ar_tip[3]);
//printf("s_addr = %s, d_addr = %s\n", s_addr_str, d_addr_str);
inet_pton(AF_INET, s_addr_str, &s);
inet_pton(AF_INET, d_addr_str, &d);
//printf("s = %d d = %d\n", s, d);
if (s» 2 4 != 0x00 && s»24 != Oxff)

insert_new_ip(bssid, s, 0, 0, 0);
if (d »24 !- 0x00 && d »24 != Oxff)

insert_new_ip(bssid, d, 0, 0, 0);

I*
log("ip addresses via arp: src=%d.%d.%d.%d, dst=%d.%d.%d.%d\n",

arpheader->ar_sip[0], arpheader->ar_sip[1],
arpheader->ar_sip[2], arpheader->ar_sip[3],
arpheader->ar_tip[0], arpheader->ar_tip[1],
arpheader->ar_tip[2], arpheader->ar_tip[3]);

7
}

/*
* processes ip traffic, mainly looking for DHCP replies
* once a DHCP reply is found -- parse options field, extract all good info
7
void processjpt const u_jnt8_t bssid[6], const u_char *data, int body_offset)

struct iphdr *ipheader;
struct tcphdr *tcpheader; // can be tcp or udp we do not care here
int ip_data_offset;
int tcp_data_offset;
struct in_addr s, d;
char domainname[255];
//network_info_t *n;
dhcp_msg *dhcp;
int option, offset, i;
ip_data_offset = body_offset + sizeof(struct ether_header);
tcp_data_offset = ip_data_offset + sizeof(struct iphdr);
ipheader = (struct iphdr *) &data[ip_data_offset];
tcpheader = (struct tcphdr *) &data[tcp_data_offset];

s.s_addr = ipheader->saddr;
d.s_addr = ipheader->daddr;

if (ipheader->saddr»24 != 0x00 && ipheader->saddr»24 != Oxff) {

58

insert_new_ip(bssid, s.s_addr, 0, 0, 0);
if (ipheader->daddr»24 != 0x00 && ipheader->daddr»24 != Oxff) {

insert_newjp(bssid, d.s_addr, 0, 0, 0);
}
if (ntohs(tcpheader->dest) == 68) {

/* process dhpcd response */
dhcp = (dhcp_msg *) &data[ip_data_offset+sizeof(struct iphdr)+8];
memcpy(&s, &dhcp->yiaddr, sizeof(struct in_addr));
log("yiaddr dhcp reply in %02x:%02x:%02x:%02x:%02x:%02x: %s",

bssid[0], bssid[1], bssid[2], bssid[3],
bssid[4], bssid[5], inet_ntoa(s));

/* parse dhcp options */
option = -1; // dhpcd option
offset = ip_data_offset+sizeof(struct iphdr)+8+sizeof(dhcp_msg)+4;
printffoffset = %d\n", offset);
i = 3; // elements to collect netmask, gateway, domain
memset(domainname, 0, 255);
while(i != 0 && option != 0) {

option = (u_int8_t) data[offset];
printf("option=%d\n", option);
if(option == 1) { / / netmask

memcpy(&s.s_addr, &data[offset+2],
(u_int8_t)data[offset+1]);

offset += (u_int8_t)data[offset+1]+2;
-- j~;

log("netmask: %s", inet_ntoa(s));
} i
else if(option == 3) { / / default gateway

memcpy(&d.s_addr, &data[offset+2],
(u_int8_t)data[offset+1]);

offset += (u_int8_t)data[offset+1]+2;
i--;
log("gw address: %s", inet_ntoa(d));

}
else if(option == 15) { / / domainname

memcpy(domainname, &data[offset+2],
(u_int8_t)data[offset+1]);

offset += (u_int8_t)data[offset+1]+2;
i-;
logfdomainname: %s", domainname);

} ;
else {

offset += (u_int8_t)data[offset+1]+2;
// printf("new offset = %d\n", offset);

}

59

}

insert_newjp(bssid, 0, d.s_addr, s.s_addr, domainname);
}

}

/*
* frontend to process_arp() and process_ip()
7
void get_iprange(const u_int8_t bssid[6], const u_char *data)
{ ;

int body_offset = 0;
frame_control_t *fc;
general_mac_hdr_t *machdr;
struct ether_header *ethhead;
fc = (frame_control_t *) data;
machdr = (general_mac_hdr_t *) &data[2];

I

if (fc->to_ds == 1 && fc->from_ds == 1)
body_offset = 24;

else
body_offset = 18;

ethhead = (struct ether_header *) &data[body_offset];
if (ntohs(ethhead->ether_type) == ETHERTYPE_ARP) {

process_arp(bssid, data, body_offset);
}else if(ntohs(ethhead->ether_type) == ETHERTYPE_IP)

process_ip(bssid, data, body_offset);
else

fprintf(stderr, "type 0x%04x\n", ntohs(ethhead->ether_type));

}

}

/*
* extracts macs from a data frame
* puts them into the network struct
* calls get_iprange()
7
void process_data_frame(const u_char *data)
{

frame_control_t *fc;
general_mac_hdr_t *machdr;

60

network_info_t *cur_net; I
if (!(cur_net = (network_info_t *) malloc(sizeof(network_info_t)));) {

log("malloc() failed\ncapture module terminated");
exit (4); !

}

fc = (frame_control_t *) data;
machdr = (general_mac_hdr_t *) &data[2];
if (fc->to_ds == 0 && fc->from_ds == 0) {

//log("0,0");
memcpy(cur_net->bssid, machdr->address3, 6); ;
if (! check_for_broadcast(machdr->address1))

(void) check_lclient(cur_net->bssid, machdr->address1);
if (! check_for_broadcast(machdr->address2))

(void) check_lclient(cur_net->bssid, machdr->address2);
}
else if (fc->to_ds == 0 && fc->from_ds == 1) {

//log("0,1");
memcpy(cur_net->bssid, machdr->address2, 6);
if (! check_for_broadcast(machdr->address1))

(void) check_lclient(cur_net->bssid, machdr->address1);
if (! check_for_broadcast(machdr->address3))

(void) check_lclient(cur_net->bssid, machdr->address3);
}
else if (fc->to_ds == 1 && fc->from_ds == 0) {

//log("1,0");
memcpy(cur_net->bssid, machdr->address1, 6);
if (! check_for_broadcast(machdr->address2))

(void) check_lclient(cur_net->bssid, machdr->address2);
if (! check_for_broadcast(machdr->address3))

(void) check_lclient(cur_net->bssid, machdr->address3);
}else if (fc->to_ds == 1 && fc->from_ds == 1) {

//log("1,1");
if (! check_for_broadcast(machdr->address1))

(void) check_lclient(cur_net->bssid, machdr->address1);
if (! check_for_broadcast(machdr->address2))

(void) check_lclient(cur_net->bssid, machdr->address2);
}

if (fc->wep == 0) {/* if wep enabled -- nothing to see here 7
/* try getting IP range 7
get_iprange(cur_net->bssid, data);

61

free(cur_net);}

}

/*
* extracts wireless clients mac addresses
*/
void get_wireless_clients(const u_char *data)
{

generai_mac_hdr_t *machdr;

machdr = (general_mac_hdr_t *) &data[2];

if (memcmp(machdr->address1, machdr->address3, 6) != 0) {
if (! check_for_broadcast(machdr->address1)) {

/* calling both since wireless client is a node */
(void)check_wclient(machdr->address3, machdr->address1);
(void)check_lclient(machdr->address3, machdr->address1);

}
}
if (memcmp(machdr->address2, machdr->address3, 6) != 0) {

if (! check_for_broadcast(machdr->address2)) {
/* calling both since wireless client is a node */
(void)check_wclient(machdr->address3, machdr->address2);
(void)check_lclient(machdr->address3, machdr->address2);

}
}

} ■ ;

/* :
* pcap_pkthdr only contains 3 elements
* simply print them here
* helper function
7
void p_header_analyzer(pcap_pkthdr *header)
{ printff'timestamp = %ld, caplen = %d, len = %d\n",

header->ts.tv_sec,
header->caplen, !
header->len);

}

/*
* looks in the frame control field of each frame and
* according to the packet type calls appropriate

62

* processing code
7
void p_data_analyzer(const u_char* data)
{

u_char buf[MAX_PACKET_LEN];
frame_control_t *fc = (frame_control_t *) data;
g_packet_cou nt++;

memcpy(buf, data, callback_header.len);
switch (fc->type) {

case 0: //printf("%s:", "got a management frame");
get_wireless_clients(buf);
switch (fc->subtype) {

case 2: process_reassoc_req(buf);
break;

case 5: process_beacon(buf); //probe request
// it looks like a beacon to some point
//log("probe request");
break;

case 8: process_beacon(buf);
break;

default: //log("unknown frame subtype, microwave
oven open (?)");

break;
' }

break;
case 1: printf("%s\n", "got a control frame"); :

break;
case 2: process_data_frame(buf);

break;
default: printf("fc->type was %u\n", fc->type);

break;

}
}

/*
* pcap callback function
* copies pkthdr to callback_header - timestamp, caplen, len;
* copies packet to callback_data -- the actual packet (data)
* calls p_header_analyzer() to print out the header
7
void my_callback(u_char *args, const struct pcap_pkthdr* pkthdr,

const u_char* packet)
{

memset(&callback_header, 0, sizeof(pcap_pkthdr));
memset(callback_data, 0, MAX_PACKET_LEN);
memcpy(&callback_header, pkthdr, sizeof(pcap_pkthdr));
memcpy(callback_data, packet, pkthdr->len);
p_data_analyzer(callback_data);

}

/*
* simply catch ctrl-c and act accordingly
7
void sig_int(int signo)
{

network_info_t *temp = net;
puts("caught a SIGINT. terminating...");
printffdiscovered %d networks\n", n_discovered);
printf("total packets: %d\n", g_packet_count);

while (temp != NULL) {/* compare from the end -- faster 7
printf("%s: %d\n", temp->ssid, temp->packet_count);
temp = temp->next;

}
exit(15);

}

/*
* useful diagnostics when you do not have a terminal
7
void sig_segv(int signo)
{

logfcapture segfaulted :(");
exit(11);

}

/*
* useful diagnostic for monitor mode detection
* needs to be UNSPEC, while usually it is Ethernet
7

void check_link_type(pcap_t *descr)
{

if (pcap_datalink(descr) == DLT_EN10MB) {
logfwireless card is not in monitor mode");
logf'does your driver support it? if you use cisco use"
log("kernel drivers; if you use Orinoco, use");
log("patched pcmcia-cs drivers");
exit(-1);

64

} else {
logflink type is not Ethernet, good.");

}

int main(int argc,char **argv)
{

char dev[6] = "ethO";
char errbuf[PCAP_ERRBUF_SIZE];
pcap_t* descr;
int count = 0;
struct sigaction sa_new;
if (argc > 1)

strncpy(dev, argv[1], 6);
//log("capture: dev = %s\n", dev);
signal(SIGINT, sig jnt);
//signal(SIGSEGV, sig_segv);
sa_new.sa_handler = ui_update;
sigemptyset(&sa_new.sa_mask);
sa_new.sa_flags = 0;
sigaction(SIGALRM, &sa_new, 0);
alarm(2); // call once to init timeout
descr = pcap_open_live(dev,BUFSIZ,1,-1,errbuf);
if (descr == NULL) {

log("pcap_open_live(): %s\n", errbuf);
exit(EXIT_FAILURE);

} else {
log("opened %s ok\n", dev);

}

check_link_type(descr);

count = pcap_loop(descr,-1,my_callback,NULL);
if (count < 0) {

log("pcap_loop(): %s", errbuf);
log("need to run V'ifconfig %s up\"\?", dev);
log("capture exited gracefully");
log("must restart discoverer manually");
exit(-1);

}

return EXIT_SUCCESS;

r
* discoverer/discoverer.h
*

* Copyright (C) 2002 Alex Medvedev <alexm@pycckue.org>
*

* derived class from discovererbase.h
*

#ifndef DISCOVERER_H
#define DISCOVERER_H

I

#include "discovererbase.h"
#include "packet.h"
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <stdlib h>
#include <errno.h>
#include <signal.h>
#define CONFIGFILE "/etc/discoverer.conf
struct n_info_t {

char ssid[32];
uint8_t wep;

- ' uint8_t bssid[6];
uint8_t ap;
uint8_t channel;
char manufacturer[64];
int packet_count;
int n_wclients;
int njclients;
client_list_t *clientw;
client_list_t *clientl;
ip jn fo j iprange;
struct n_info_t *next;

typedef struct {
long int message_type;
n_info_t data;

} ui_message;

mailto:alexm@pycckue.org

class final_list__t {
public:

QListVIewItem *entry;
final _llst_t *next;

class Discoverer : public DiscovererBase
{

QJDBJECT
public:

Discovered QWidget ‘ parent = 0, const char ‘ name = 0);
-Discovered);

protected:
void load_config();
void save_config();
bool save_captured();
void cisco_monitor();
void orinoco_hopper();
void hopper();
int fork_capture();
void alles_kaput();
char devname[6];
pid_t capture_pid;
pid_t hopper_pid;
final _list_t *L;
QListViewItem* add(n_info_t n);
void getnetinfo(n_info_t *n);
void log(const char ‘ fm t,...);
void dsp_net_count(const int i);
void update(n_info_t *n);
void update_ip_range(QListViewltem ‘ item, n_info_t ‘ n);
int amiroot();
void add_mac(QListViewItem ‘ item, client_list_t ‘ list);

public slots:
virtual void timerEvent(QTimerEvent ‘ event);
virtual void save_clicked();
virtual void defaults_clicked();

};

#endif

/*
* discoverer/discoverer.cpp
*

* Copyright (C) 2002 Alex Medvedev <alexm@pycckue.org>
*

* implementation of discoverer.h and main user interface code
*

7

#include "discoverer.h"
#include <stdarg.h>
#include <qmessagebox.h>
#include <qdatetime.h>
#include <qlistview.h>
#include <qtextview.h>
#include <qtabwidget.h>
#include <qcombobox.h>
#include <qspinbox.h>
#include <qheader.h>
#include <qstring.h> -
#include <string>
#include <vector>
#include <map>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define UNDEF 0
#define CISCO 1
#define ORINOCO 2
#define PRISM2 3
int hopper_req = 0;
/*
* Constructor, also decides what card is selected and whether hopper
* is needed.
7
Discoverer::Discovered QWidget ‘ parent = 0, const char ‘ name = 0) :
DiscovererBase(parent, name)
{

if (amirootQ) {
L = NULL; // network linked list empty
ListView->setSorting(-1, TRUE); // do not sort list
load_config();

if (DevtypeComboBox->currentltem() == CISCO) {

mailto:alexm@pycckue.org

}
else

}
else

}
else

}
if ((fork_capture()) != -1)

logfstarting capture on %s",
(DevnameComboBox->currentT ext()).latini ());

} else {
qWarningfyou are not root");

}
}

/* _
* destructor, destroyes the message queue, and kills all procs
*/
Discoverer: :~Discoverer()
{ int qid;

qid = msgget((key_t)2002, 0600 | IPC_CREAT);
if (msgcti(qid, IPC_RMID, 0) == -1) {

fprintf(stderr, "couldn't destroy msg, run ipcrm manually");
}
alles_kaput();

}

/*
* loads values from the configuration file
*/
void Discoverer::load_config()
{

FILE *f;
int name, type, interval;

log("card type selected: cisco");
hopper_req = 0; // for clarity
cisco_monitor();

if (DevtypeComboBox->currentltem() == ORINOCO) {
log("card type selected: Orinoco");
hopper_req = 1;
orinoco_hopper();

if (DevtypeComboBox->currentltem() == PRISM2) {
log("card type selected: prism2");
hopper_req = 1;
orinoco_hopper();

if (DevtypeComboBox->currentltem() == UNDEF) {

70

char c;
if(!(f = fopen(CONFIGFILE, "r"))) {

defaults_clicked();
return;

}
fscanf(f, "%d%c%d%c%d", &name, &c,

&type, &c,
&interval);

DevnameComboBox->setCurrentltem(name);
DevtypeComboBox->setCurrentltem(type);
HopintervalSpinBox->setValue(interval);

}

/*
* channel hopper, starts the timer using value from the drop down menu
7
void Discoverer::orinoco_hopper()
{

char cmd[40];
snprintf(cmd, 40, "%s %s %s", "/sbin/ifconfig",

(DevnameComboBox->currentText()).latin1(), "promise up");
system(cmd);
/* starts timer for timerEvent() 7
startTimer(HopintervalSpinBox->value());

}

/*
* called when the timer goes off (the value in the drop down menu)
7
void Discoverer::timerEvent(QTimerEvent *event)
{

n_info_t *n;
// calls hopper() every time timer hits
// logC'timerEvent was called");
n = new n_info_t;
if (hopper_req == 1)

hopper();
getnetinfo(n);
while (n->channel > 0 && n->channel < 15) {

logC'new network, ssid=%s", n->ssid);
add(*n);
//puts("in while");
getnetinfo(n);

71

}

/*
* saves the current configuration to the config file
*/
void Discoverer::save_clicked()
{

FILE *f;
f = fopen(CONFIGFILE, "w");
fprintf(f, "%d,%d,%d", DevnameComboBox->currentltem(),

DevtypeComboBox->currentltem(),
HopintervalSpinBox->value()
);

fclose(f);
}

/*
* resets all drop down menus to default values
*/
void Discoverer::defaults_clicked()
{

HopintervalSpinBox->setValue(30);
DevnameComboBox->setCurrentltem(0);
DevtypeComboBox->setCurrentltem(0);

} ; _ __ _ _

/*
* enables cisco monitor mode
*/
void Discoverer::cisco_monitor()
{ FILE *f;

char path[100];
char cmd[32];
snprintf(path, 100, "%s%s%s", "/proc/driver/aironet/",

DevnameComboBox->currentText().latin1 (), "/Config");
if (!(f = fopen(path, "w "))) {

log("Can't open Cisco Config file %s", path);
return;

}
fprintf(f, "%s", "Mode: r");
fprlntf(f, "%s", "Mode: y");
fprintf(f, "%s", "XmitPower: 1");
fclose(f);

}

snprintf(cmd, 32, "%s %s %s", "/sbin/ifconfig", ;
(DevnameComboBox->currentText()).latin1(), "up"); I

if ((system(cmd)) != -1)
startTimer(HopintervalSpinBox->value()); ;

else
log("cisco_monitor(): system() failed");

/* ;
* the main hopper code, physically changes channels
*/
void Discoverer::hopper()
{ istatic int i = 0;

char str[69];
. int n;

int channelQ = { 1,6,11,2,7,3,8,4,12,9,5,10};
//int channelQ = {1,7,13,2,8,3,14,9,4,10,5,11,6,12};

if(i >11)i = 0;
if (DevtypeComboBox->currentltem() == ORINOCO) {

snprintf(str, 29, "iwpriv %s monitor %d %d",
(DevnameComboBox->currentText()).latin1(), 2, channel[i]);

}else if (DevtypeComboBox->currentltem() == PRISM2) {
snprintf(str, 69,

- ' - "wlanctl-ng %s lnxreq_wlansniff channel=%d enable=true
>/dev/null",

(DevnameComboBox->currentText()).latin1 (), channel[i]);
}

if ((n=system(str)) == -1) {
log("hopper(): system() failed");

return;
} :

i++;

/*
* adds the passed network to the list
*/
QListViewItem* Discoverer::add(n_info_t n)
{ QListViewItem *entry0;

QListViewItem *entry1;
QListViewItem *entry2;

QListViewItem *entry3;
QListViewItem *entry4;
QListViewItem *entry5;
QListViewItem *entry6;
QListViewItem *entry7;
QListViewItem *entry8;
QListViewItem *entry9;
QListViewItem *entry10;
QListViewItem *entry11;
QListViewItem *entry12;
QListViewItem *entry13;
final _list_t ‘ element;
QString ssid(n.ssid);
QString channel;
QString wep;
QString manuf(n.manufacturer);
QString ap;
QString bssid;
QString packet_count; ..
QString active_clients;
QTime ts; // timestamp for printing
QString timestamp;
static int count = 0;
dsp_net_count(++count); H increment network count
//log("packet_count = %d", n.packet_count);
if (n.wep == 1)

wep = "Y";
else

wep = "N";
if (n.ap == 1)

ap = "AP";
else

ap = "Ad-Hoc";
bssid = bssid.sprintf("%02x%c%02x%c%02x%c%02x%c%02x%c%02x"

n .bss id [0],n .bss id [1],n .bss id [2],
n.bssid[3],n.bssid[4], n.bssid[5]);

ts = QTime::currentTime();
timestamp.sprintf("%02d:%02d:%02d"!

ts.hour(), ts.minute(), ts.second());

if (L != NULL)
entryO = new QListViewltem(ListView, L->entry, ssid,

74

QString(channel).setNum(n. channel),
wep,
manuf);

else
entryO = new QListViewltem(ListView, ssid,

QString(channel).setNum(n.channel),
wep,
manuf);

entryl = new QListViewltem(entryO, entryO, "BSSID", bssid);
entry2 = new QUstViewltem(entryO, entryl, "Type", ap);
entry3 = new QListViewltem(entryO, entry2, "Packets",

QString(packet_count).setNum(n.packet_count));
entry4 = new QListViewltem(entryO, entry3, "FirstSeen", timestamp);
entry5 = new QListViewltem(entryO, entry4, "LastSeen", timestamp);
entry6 = new QListViewltem(entryO, entry5, "Nodes",

QString(active_clients).setNum(n.n_lclients));
entry7 = new QListViewltem(entryO, entry6, "WirelessClients", j

QString(active_clients).setNum(n.n_wclients));
if (wep == "N") { / / IP range only possible with WEP off j

entry8 = new QListViewltem(entryO, entry7, "IPrange");
entry9 = new QListViewltem(entry8, entry8, "LolP", "0.0.0.0");
entryl0 = new QListViewltem(entry8, entry9, "HilP", "0.0.0.0");
entryl 1 = new QListViewltem(entry8, entryl 0,

"Gateway", "0.0.0.0"); !
entryl 2 = new QListViewltem(entry8, entryl 1,

"Netmask", "255.255.255.255”);
entryl 3 = new QListViewltem(entry8, entryl2,

"Domain", "unknown");
}

// do a head insert in the fina ljis t
element = new final_list_t;
element->entry = entryO;
element->next = L;
L = element;
return entryO;

}

/*
* starts the capture module, passes the capture module the interface name
*/
int Discoverer: :fork_capture()
{ !// run hopper once to invoke RFMON before capture is forked ,

// if(hopper_required) hopperQ;

75

strcpy(devname, (DevnameComboBox->currentText()).latin1());
capture_pid = fork();
if (capture_pid == 0) {

fprintf(stderr, "capture: sending interface name %s\n", devname);
execlp("capture", "capture", devname, 0);
log("fork_capture(): fork() failed\n");
return -1;

}
return 0;

}

/*
* gets a message from the queue and depending on its type performs actions
*/
void Discoverer::getnetinfo(n_info_t* network)
{ intqid;

long int msg_to_receive = 0;
uijnessage msg;
memset(network, 0, sizeof(n_info_t));
qid = msgget((key_t)2002, 0600 | IPC_CREAT);
if (qid == -1){

log("getnetinfo(): msgget failed");
- } if (msgrcv(qid, (void *)&msg, sizeof(msg),msg_to_receive,

IPC_NOWAIT) ==-1){
network->channel = 0; ;

} else { i
memcpy(network, &(msg.data), sizeof(network_info_t)); I

}
if (msg.message_type == 2) { /* got an update 7

update(network);
network->channel = 0;

}else if (msg.message_type == 3) { /* got info to log 7
log((char *)(&msg.data));
network->channel = 0;

}
}

/*
* kills the capture process
7 !
void Discoverer::alles_kaput()
{

if ((kill(capture_pid, 15)) < 0) {
log("alles_kaput: capture does not die!");
perror("alles_kaput:");
log("alles_kaput: trying kill -9");
kill(capture_pid, 9); // do not care what happens here

}
}

/*
* logs events, accepts formatted input, similar to printf
7
void Discoverer::log(const char *fm t,...)
{

char str[64j;
va jis t argp;
va_start(argp, fmt);
vsnprintf(str, 64, fmt, argp);
va_end(argp);
TextView1->append(str);

}

I* - .
* network count display in the title bar
void Discoverer::dsp_net_count(const int i)
{

QString stri = "Discoverer -- found
QString str2 = "0";
QString str3_si = " network";
QString str3_pl = " networks";
QString cap;
if (i == 1)cap = stri + str2.setNum(i) + str3_si;
else

cap = stri + str2.setNum(i) + str3_pl;
QWidget::setCaption(tr(cap));

}

/*
* updates the user interface with new information
7
void Discoverer::update(n_info_t *n)
{

77

final_list_t *temp_L = L; // final list entry
QListViewItem *temp_item = NULL; // items in the entry
QString str, bssid;
int flag = 0; // flag if update needed
QTime ts; II timestamp for printing
QString timestamp;
bssid.sprintf("%02x%c%02x%c%02x%c%02x%c%02x%c%02x",

n->bssid[0],n->bssid[1], n->bssid[2],
n->bssid [3],n->bssid [4],n->bssid [5]);

ts = QTime::currentTime();
timestamp.sprintf("%02d:%02d:%02d",

ts.hourQ, ts.minute(), ts.second());
while (temp_L != NULL) {

tempjtem = temp_L->entry->firstChild(); ;
/* if this was a re-assoc request (chan=15), get SSID */
if (temp_L->entry->text(0) == "" && n->channel == 15) {

//qWarning("channel 15");
temp_L->entry->setText(0, n->ssid);

}
while (tempjtem != NULL) {

//qWarning(tempJtem->text(0));
- - .. //qWarning(temp_L->entry->text(0));

. if (tempjtem->text(1) == bssid)
flag = 1 ; / /needs an update

"= f ” i . else if (tempjtem->text(0) == "Packets" && flag == 1) {
if (tempjtem->text(1) != str.setNum(n-

>packet_count)) { i
tempJtem->setText(1, str.setNum(n-

>packet_count));
flag = 2;

}
■- ” - }else if(tempjtem->text(0) == "LastSeen" && flag == 2) {

tempJtem->setText(1, timestamp);
}else if(tempjtem->text(0) == "Nodes" && flag == 2){

tempJtem->setText(1, str.setNum(n->nJclients));
//if (n->njclients != 0)
// add_mac(tempjtem, n->clientl);

}
else if(tempjtem->text(0) == "WirelessClients" && flag ==

2){ i
tempJtem->setText(1, str.setNum(n->n_wclients));
//if (n->n_wclients != 0)

78

// add_mac(temp_item, n->clientw);
}
else if(tempjtem->text(0) == "IPrange" && flag == 2) {

updatejp_range(tempjtem, n);
}
tempjtem = tempJtem->nextSibllng();

}
flag = 0;
temp_L = temp_L->next;

}
}

/*
* updates IP range for non-WEPped networks
*/
void Discoverer::updateJp_range(QListViewltem ‘ item, nJnfo_t *n)
{ ;

QString str;
struct in_addr a;

, char s[32];
item = ltem->firstChild();
while(Item != NULL) {

^ lf_(ltem->text(0) == "LolP") {
a.s_addr = n->iprange.loJp.s_addr;
strncpy(s, inet_ntoa(a), 16);
item->setText(1, str.sprintf("%s", s));

}
else if (ltem->text(0) == "HUP") { i

a.s_addr = n->iprange.hijp.s_addr;
strncpy(s, inet_ntoa(a), 16);
item->setText(1, str.sprintf("%s", s));

}else if (ltem->text(0) == "Gateway") {
a.s_addr = n->lprange.gw.s_addr;
strncpy(s, inet_ntoa(a), 16);
item->setText(1, str.sprlntf("%s", s));

}
else If (ltem->text(0) == "Netmask") {

a.s_addr = n->iprange.netmask.s_addr;
strncpy(s, inet_ntoa(a), 16);
item->setText(1, str.sprintf("%s", s)); i

}
else if (¡tem->text(0) == "Domain") { :

item->setText(1, str.sprintf("%s", n->lprange.domainname));
}

item = ¡tem->nextSibling();
}

}

/*
* checks for the U1D and EUID, must be 0 to continue
7
int Discoverer::amiroot()
{

if (getuid() || geteuid()) {
log("Please, run discoverer as root");
return 0;

} else {
return 1;

}
}

/*
* adds MAC addresses to the list
* not used due to impractlcally long lists in complex networks
7
void Discoverer::add_mac(QListViewItem *item, client_list_t *list)
{/* for this to work need to get rid of pointers in the network_info_t 7

QListViewItem *qtemp;
client_list_t *temp;
QString macstr;
qtemp = item->firstChild();
if (qtemp == NULL) {

temp = list;
while (temp != NULL) {

macstr.sprintf("%02x:%02x:%02x:%02x:%02x:%02x",
temp->bssid[0], temp->bssid[1],

temp->bssid[2], temp->bssid[3],
temp->bssid[4], temp->bssid[5]);
//(void) new QListViewltem(item, macstr);
qWarning ("new one");
temp = temp->next;

}
} else {

while (qtemp != NULL) {
temp = list;

80

while (temp != NULL) {
macstr.sprintf("%02x%c%02x%c%02x%c%02x%c%02x%c%02x",

temp->bssid[0],temp->bssid[1],
temp->bssid[2],temp->bssid[3],
temp->bssid[4],temp->bssid[5j);
if (macstr != qtemp->text(0))

(void) new QListViewltem(item, macstr);
temp = temp->next;

}
qtemp = qtemp->nextSibling();

}
}

}

81

discoverer QPE project file
mainly used to generate Makefile
TEMPLATE = app
CONFIG = qt warn_on debug
HEADERS += discoverer h
SOURCES += main.cpp discoverer.cpp
INCLUDEPATH += $(QPEDIR)/lnclude
DEPENDPATH += $(QPEDIR)/lnclude
LIBS += -Iqpe
INTERFACES = discovererbase.ui
TARGET = discoverer

REFERENCES

[1] Airsnort ’s website, http //airsnort shmoo com

[2] Brenner P., A Technical Tutorial on the IEEE 802.11 Protocol, BreezeCOM

Wireless Communications, 1997

[3] Fluhrer S., Mantin I., Shamir A., Weaknesses in the Key Scheduling Algorithm of

RC4, 2001

[4] Foust, R., Identifying and Tracking Unauthorized 802.11 Cards and Access

Points, ;login: the Magazine of USENIX and SAGE, August 2002 volume 27,

number 4
I

[5] Gast M., Wireless LAN Security: A Short History, The O’Reilly Network, 2002,

http://www.oreillvnet.eom/pub/a/wireless/2002/05/24/wlan.html

[6] Gast M., Seven Security Problems o f802.11 Wireless, The O’Reilly Network,

2002, http7/www.oreillvnet.com/pub/a/wireless/2002/04/19/securitv.html

[7] Handhelds.orz website, http://www.handhelds.org

[8] IBM ’s Wireless Security Auditor (WSA), http://www.research.ibm.coih/gsal/wsa/

[9] IEEE Computer Society, ANSII/IEEE 802.11 Std, 1999 Edition,

http://www.ieee.org

[10] Kismet ’s website, http://www.kismetwireless.net

[11] Libpcap website, http://www.tcpdump.org

[12] Lynn M., Baird R., Advanced 802.11 Attack, Black Hat 2002 Presentation, 2002

[13] Netstumbler’s website. http://www.netstumbler.com

[14] The Unofficial 802.11 Security Webpage, http://www.drizzle.com/~aboba/IEEE/

[15] Trolltech Inc. website, http://www.trolltech.com

82

http://www.oreillvnet.eom/pub/a/wireless/2002/05/24/wlan.html
http://www.oreillvnet.com/pub/a/wireless/2002/04/19/securitv.html
http://www.handhelds.org
http://www.research.ibm.coih/gsal/wsa/
http://www.ieee.org
http://www.kismetwireless.net
http://www.tcpdump.org
http://www.netstumbler.com
http://www.drizzle.com/~aboba/IEEE/
http://www.trolltech.com

83

[16] Stevens, W., UNIX Network Programming, Engelwood Cliffs, NJ: Prentice Hall,

1990

VITA

Alex Medvedev was born in Volgograd, Russia, on July 28, 1971. After

completing his work at Volgograd high school #92, Volgograd, Russia, in 1988, he

entered Gubkin Oil and Gas Academy in Moscow, Russia, in 1989. He received a

diploma in Petroleum Engineering in June 1994. After that he worked as an English-

Russian interpreter for various petroleum companies in Russia. In January 2001 he

entered the Graduate College of Southwest Texas State University, San Marcos, Texas.

This thesis was typed by Alex Medvedev.

