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FINITE ORDER SOLUTIONS OF
COMPLEX LINEAR DIFFERENTIAL EQUATIONS

ILPO LAINE & RONGHUA YANG

Abstract. We shall consider the growth of solutions of complex linear homo-
geneous differential equations

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0

with entire coefficients. If one of the intermediate coefficients in exponen-
tially dominating in a sector and f is of finite order, then a derivative f (j) is

asymptotically constant in a slightly smaller sector. We also find conditions
on the coefficients to ensure that all transcendental solutions are of infinite
order. This paper extends previous results due to Gundersen and to Beläıdi

and Hamani.

1. Introduction

It is well known that all solutions of the linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0 (1.1)

are entire functions, provided the coefficients A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) are
entire. A classical result, due to Wittich, tells that all solutions of (1.1) are of finite
order of growth if and only if all coefficients Aj(z), j = 0, . . . , k−1, are polynomials.
For a complete analysis of possible orders in the polynomial case, see [6]. If some
(or all) of the coefficients are transcendental, a natural question is to ask when and
how many solutions of finite order may appear. Partial results have been available
since a paper of Frei [2]. In its all generality, however, the problem remains open.
Our starting point for this paper is a result due to Gundersen in [3]:

Theorem 1.1. Let A0(z) 6≡ 0, A1(z) be entire functions such that for some real
constants α > 0, β > 0, θ1 < θ2 we have

|A1(z)| ≥ exp((1 + o(1))α|z|β),

|A0(z)| ≤ exp(o(1)|z|β)

as z →∞ in the sector S(0) : θ1 ≤ arg z ≤ θ2. Given ε > 0 small enough, let S(ε)
denote the sector θ1 + ε ≤ arg z ≤ θ2 − ε. If f is a nontrivial solution of

f ′′ +A1(z)f ′ +A0(z)f = 0 (1.2)
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of finite order, then the following conditions hold:

(i) There exists a constant b 6= 0 such that f(z) → b as z →∞ in S(ε). Indeed,

|f(z)− b| ≤ exp(−(1 + o(1))α|z|β).

(ii) For each integer k ≥ 1,

|f (k)(z)| ≤ exp(−(1 + o(1))α|z|β)

as z →∞ in S(ε).

This result has been recently generalized to the higher order case (1.1) by Beläıdi
and Hamani, see [1], as follows:

Theorem 1.2. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z) be entire functions such that for
some real constants α > 0, β > 0, θ1 < θ2, we have

|A1(z)| ≥ exp((1 + o(1))α|z|β),

|Aj(z)| ≤ exp(o(1)|z|β), j = 0, 2, 3, . . . , k − 1,

as z → ∞ in S(0). If f is a nontrivial solution of (1.1) of finite order, then the
following conditions hold, provided ε > 0 is small enough:

(i) There exists a constant b 6= 0 such that f(z) → b as z →∞ in S(ε). Indeed,

|f(z)− b| ≤ exp(−(1 + o(1))α|z|β).

(ii) For each integer k ≥ 1,

|f (k)(z)| ≤ exp(−(1 + o(1))α|z|β)

as z →∞ in S(ε).

A natural question is now to ask about a counterpart of Theorem 1.2 in the case
that the coefficient in the same sense as in Theorem 1.2 is As(z) instead of A1(z).
We are going to present such a counterpart in this paper, see Theorem 2.1 below.
As the proof now is more complicated than the corresponding proof of Theorem
1.2, see [1], we express the growth conditions for the coefficients more explicitly. In
fact, making use of o(1) only as in Theorem 1.2 might leave some doubts on the
necessary uniformity in the course of the proof.

2. Notation and results

Given ε > 0, and θ1, θ2 ∈ [0, 2π), θ1 < θ2, we denote by S(θ1, θ2, ε), resp.
S(R, θ1, θ2, ε), the sector {z|θ1 + ε ≤ arg z ≤ θ2 − ε}, resp. the truncated sec-
tor S(θ1, θ2, ε) ∩ {|z| ≥ R}. If the sector boundaries are clear, and there is no
possibility of confusion, we apply the shorter notations S(ε), resp. S(R, ε). In the
proof of Theorem 1 below, we agree that whenever stating that r ≥ rj to indicate
that |z| = r has to be large enough, we always assume that rj ≥ rj−1. Hence, in
such a situation, all corresponding previous conditions for r ≥ rj−1 remain valid,
without saying this explicitly in what follows.

Theorem 2.1. Let θ1 < θ2 be given to fix a sector S(0), let k ≥ 2 be a natu-
ral number, and let δ > 0 be any real number such that kδ < 1. Suppose that
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A0(z), . . . Ak−1(z) with A0(z) 6≡ 0 are entire functions such that for real constants
α > 0, β > 0, we have, for some s = 1, . . . , k − 1,

|As(z)| ≥ exp((1 + δ)α|z|β), (2.1)

|Aj(z)| ≤ exp(δα|z|β) (2.2)

for all j = 0, . . . , s − 1, s + 1, . . . , k − 1 whenever |z| = r ≥ rδ in the sector S(0).
Given ε > 0 small enough, if f is a transcendental solution of finite order ρ < ∞
of the linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (2.3)

then the following conditions hold:
(i) There exists j ∈ {0, . . . , s − 1} and a complex constant bj 6= 0 such that

f (j)(z) → bj as z →∞ in the sector S(ε). More precisely,

|f (j)(z)− bj | ≤ exp(−(1− kδ)α|z|β) (2.4)

in S(ε), provided |z| is large enough.
(ii) For each integer m ≥ j + 1,

|f (m)(z)| ≤ exp(−(1− kδ)α|z|β) (2.5)

in S(3ε) for all |z| large enough.

Remark. In Theorem 2.1, it may happen that j < s − 1. Indeed, f(z) = ez + 1
satisfies

f ′′′ + 2e−zf ′′ − ezf ′ + (−2 + ez)f = 0. (2.6)

Obviously, (2.6) fulfills the assumptions of Theorem 2.1 in the sector 2π
3 < θ < 3π

4 .
In this example, A2(z) = 2e−z is the dominating coefficient, while we have j = 0.

Remark. The following two theorems are natural counterparts to [3, Theorem 5],
and [1, Theorem 1.6], respectively to [1, Theorem 1.7].

Theorem 2.2. Let A0(z) 6≡ 0, A1(z), . . . , Ak−1(z), k ≥ 2, be entire functions, let
α > 0, β > 0 be given constants, let δ > 0 be a real number such that kδ < 1 and
let s be an integer such that 1 ≤ s ≤ k − 1. Suppose that (i) ρ(Aj) < β for j 6= s
and (ii) for any given ε > 0, there exists two finite collections of real numbers (φm)
and (θm) that satisfy φ1 < θ1 < φ2 < θ2 < · · · < φn < θn < φn+1 = φ1 + 2π, such
that

n∑
m=1

(φm+1 − θm) < ε, (2.7)

|As(z)| ≥ exp((1 + δ)α|z|β) (2.8)

as z → ∞ in φm ≤ arg z ≤ θm, m = 1, . . . , n. Then every transcendental solution
f of (2.3) is of infinite order.

Invoking the iterated order ρp(f) := lim supr→∞(logp T (r, f))/ log r for entire
functions, we add our final theorem which is a simple extension of [1, Theorem 1.7].

Theorem 2.3. Let A0(z), . . . , Ak−1(z) be entire functions such that for some in-
teger s, 1 ≤ s ≤ k − 1, we have ρp(Aj) ≤ α < β = ρp(As) ≤ +∞ for all j 6= s.
Then every transcendental solution f of (2.3) satisfies ρp(f) ≥ ρp(As).
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3. Preparations for proofs

To prove Theorem 2.1, we need two preparatory lemmas. The first one is a
simple extension of [3, Lemma 4]. See also [5, Lemma 3].

Lemma 3.1. Let f(z) be an entire function, and suppose that |f (k)(z)| is unbounded
on a ray arg z = θ. Then there exists a sequence zn = rne

iθ tending to infinity such
that f (k)(zn) →∞ and that∣∣∣∣ f (j)(zn)

f (k)(zn)

∣∣∣∣ ≤ 1
(k − j)!

(1 + o(1))|zn|k−j , (3.1)

provided j < k.

Proof. Let M(r, θ, f (k)) denote the maximum modulus of f (k) on the line segment
[0, reiθ]. Clearly, we may construct a sequence of points zn = rne

iθ, rn →∞, such
that M(rn, θ, f (k)) = |f (k)(rneiθ)| → ∞ as n → ∞. For each n, we obtain by
(k − j)-fold iterated integration along the line segment [0, zn],

f (j)(zn) =f (j)(0) + f (j+1)(0)zn + · · ·+ 1
(k − j − 1)!

f (k−1)(0)zk−j−1
n

+
∫ zn

0

. . .

∫ zn

0

f (k)(t)dt . . . dt.
(3.2)

Therefore, by an elementary triangle inequality estimate,

|f (j)(zn)| ≤|f (j)(0)|+ |f (j+1)(0)|rn + . . .

+
1

(k − j − 1)!
|f (k−1)(0)|rk−j−1

n +
1

(k − j)!
|f (k)(zn)|rk−j

n .
(3.3)

The assertion immediately follows. �

Lemma 3.2. Given α > 0, β > 0, K ≥ 1
2 and 0 < η < 1

2 , the integral I(r) :=∫ +∞
r

exp(−Kαtβ)dt converges. More precisely, if β > 1, then I(r) ≤ exp(−Kαrβ),
whenever rβ−1 ≥ 1

Kαβ and if β ≤ 1, then I(r) ≤ exp(−(K − η)αrβ) for any given
η ∈ (0, 1/2), provided ηαrβ ≥ (1− β) log r + log 2

αβ .

Remark. Observe that the lower bound obtained for r above is independent of
K, in both cases. Moreover, if we take r large enough, say r ≥ r0 ≥ rδ, then
I(r) ≤ exp(−(K − η)αrβ), in both cases again.

Proof. Clearly,

I(r) =
∫ +∞

r

exp(−Kαtβ)dt =
Kαβrβ−1

Kαβrβ−1

∫ +∞

r

exp(−Kαtβ)dt

≤ − 1
Kαβrβ−1

∫ +∞

r

−Kαβtβ−1 exp(−Kαtβ)dt

=
1

Kαβrβ−1
exp(−Kαrβ).

(3.4)

If now β > 1, it suffices to have Kαβrβ−1 ≥ 1, as required. If β ≤ 1, we may write
the above estimate for I(r) as

I(r) ≤ 2
αβ

r1−β exp(−ηαrβ) exp(−(K − η)αrβ). (3.5)

Provided 2
αβ r

1−β exp(−ηαrβ) ≤ 1, we again have the required estimate. �
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4. Proofs of theorems

Proof of Theorem 2.1. Boundedness of f (s) in S(ε). Recall first that by [4],
Corollary 1, there exists a set E ⊂ [0, 2π) of linear measure zero such that for all
k ≥ s ≥ 0, all j = s+ 1, . . . , k, and all r ≥ r1,∣∣∣f (j)(z)

f (s)(z)

∣∣∣ ≤ |z|(j−s)(ρ−1+ε) ≤ |z|kρ (4.1)

along any ray arg z = ψ such that ψ ∈ [0, 2π) \ E, provided 0 < ε < 1.
Suppose now, for a while, that |f (s)(z)| is unbounded on some ray arg z = φ ∈

S(0) \ E. By Lemma 3.1, there exists a sequence of points zn = rne
iφ, rn → ∞

such that f (s)(zn) →∞ and so∣∣∣f (j)(zn)
f (s)(zn)

∣∣∣ ≤ 1
(s− j)!

(1 + o(1))|zn|s−j ≤ 2|zn|k (4.2)

for all j = 0, . . . , s − 1 and all n large enough, say |zn| ≥ r2. From (2.3), we next
conclude that

|As| ≤
∣∣∣f (k)

f (s)

∣∣∣ + |Ak−1|
∣∣∣f (k−1)

f (s)

∣∣∣ + · · ·+ |As+1|
∣∣∣f (s+1)

f (s)

∣∣∣
+ |As−1|

∣∣∣f (s−1)

f (s)

∣∣∣ + · · ·+ |A1|
∣∣∣ f ′
f (s)

∣∣∣ + |A0|
∣∣∣ f

f (s)

∣∣∣. (4.3)

Combining now (2.2), (4.1) and (4.2) with the above estimate (4.3) for As, it is
straightforward to see that |As(zn)| ≤ exp(3δαrβ

n) for all n large enough in the
sequence zn on the ray arg z = φ, contradicting (2.1). Therefore, |f (s)(z)| remains
bounded on all rays arg z = φ ∈ S(0) \ E. By a standard application of the
Phragmén–Lindelöf principle, we conclude that f (s)(z) is bounded, say |f (s)(z)| ≤
M , in the whole sector S(ε).
Preliminary estimate for |f (m)(z)|, m ≤ s. We now proceed to show that
|f (m)(z)| = O(|z|s−m) on any ray arg z = φ ∈ S(0) \E, for all m ≤ s. Of course, it
suffices to consider m < s. By (s−m)-fold iterated integration along the ray under
consideration, see (3.3),

|f (m)(z)| ≤|f (m)(0)|+ |f (m+1)(0)||z|+ · · ·+ 1
(s−m− 1)!

|f (s−1)(0)||z|s−m−1

+M

∫ |z|

0

. . .

∫ |z|

0

dt . . . dt = O(|z|s−m).

(4.4)

Proof of the second assertion for m = s. Writing now (2.3) in the form

f (s) =
1
As

(f (k)+Ak−1f
(k−1)+· · ·+As+1f

(s+1)+As−1f
(s−1)+. . . A1f

′+A0f), (4.5)

and recalling (4.1), (4.4), the boundedness of f (s) and the assumptions (2.1) and
(2.2), we conclude that whenever r ≥ r3, we get

|f (s)(z)| ≤ exp(−(1− δ)α|z|β) (4.6)

along any ray arg z = φ ∈ S(ε) \ E. By the Phragmén–Lindelöf principle again,
(4.6) remains true in the sector S(2ε), proving the second assertion in the case of
m = s.
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Proof of the second assertion for m > s. We may now restrict ourselves to the
sector S(3ε). We assume that r ≥ r4 is large enough to satisfy that for an arbitrary
z = reiθ ∈ S(3ε), the disk Γ(z) of radius at most ρ = maxs<m≤k((m− s)!)1/(m−s),
centered at z, is contained in S(2ε), i.e. we must take r4 ≥ ρ/ sin ε. Given now
m > s, we may use (4.6) in the Cauchy formula to see that

|f (m)(z)| ≤ (m− s)!
2π

∫
Γ(z)

|f (s)(ζ)|
|z − ζ|m−s+1

dζ. (4.7)

By the selection of ρ above, we may combine (4.6) and (4.7) to conclude that

|f (m)(z)| ≤ exp(−(1− δ)α|z|β). (4.8)

Proof of the first assertion for j = s− 1. Fix now θ ∈ S(2ε), and define

as :=
∫ +∞

0

f (s)(teiθ)eiθdt = lim
R→∞

∫ R

0

f (s)(teiθ)eiθdt. (4.9)

By (4.6), it is not difficult to see that as ∈ C. Moreover, the definition of as

is independent of θ. Indeed, integrating f (s)(ζ) along the sector boundary 0 →
Reiφ → Reiθ → 0, and using (4.6) to conclude that the integral of f (s)(ζ) over the
arc [Reiφ, Reiθ] tends to zero as R → ∞, the independence from θ immediately
follows. Define now bs−1 := f (s)(0) + as, and suppose that bs−1 6= 0. Let z = reiφ

be an arbitrary point in S(2ε) such that r ≥ r4. Then, since

f (s−1)(z)− bs−1 =
∫ z

0

f (s)(ζ)dζ −
∫ +∞

0

f (s)(teiφ)eiφdt, (4.10)

we may apply (4.6) and Lemma 3.2 to conclude that

|f (s−1)(z)− bs−1| =
∣∣∣∫ z

0

f (s)(ζ)dζ −
∫ ∞

0

f (s)(teiφ)eiφdt
∣∣∣

=
∣∣∣∫ z

∞
f (s)(teiφ)eiφdt

∣∣∣ ≤ ∫ ∞

|z|
|f (s)(teiφ)|dt

≤
∫ ∞

r

exp(−(1− δ)αtβ)dt

≤ exp(−(1− 2δ)αrβ),

(4.11)

provided that r ≥ r4. Since we assumed that bs−1 6= 0, we have completed the
proof of the first assertion in this case.
Proof of the first assertion for j < s − 1, the first part. We now have
bs−1 = 0. To continue, we define as−1 replacing f (s) by f (s−1) in (4.9), and
bs−2 := f (s−2)(0) + as−1. To estimate f (s−2)(z) − bs−2, we apply Lemma 3.2
and |f (s−1)(z)| ≤ exp(−(1− 2δ)αrβ) in place of (4.6) exactly as in (4.11) to obtain

|f (s−2)(z)− bs−2| ≤ exp(−(1− 3δ)αrβ). (4.12)
for r ≥ r4.

We may now continue inductively. If bj 6= 0 for some j = s− t, t = 2, . . . , s− 1,
we obtain

|f (s−t)(z)− bs−t| ≤ exp(−(1− (t+ 1)δ)αrβ). (4.13)
Otherwise, we have bs−1 = bs−2 = · · · = b1 = 0, and we have the estimate

|f(z)− b0| ≤ exp(−(1− (s+ 1)δ)α|z|β). (4.14)
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If now b0 6= 0, we have proved the first assertion. It remains to show that the case
b0 = 0 is not possible.
Proof of the first assertion for j < s − 1, the second part (impossibility
of bs−1 = · · · = b0 = 0). (a) First step. Writing now (2.3) in the form

−f
(s)

f
=
A0

As
+
A1

As

f ′

f
+ · · ·+ As−1

As

f (s−1)

f

+
As+1

As

f (s+1)

f
+ · · ·+ Ak−1

As

f (k−1)

f
+

1
As

f (k)

f
,

(4.15)

we may use (2.1), (2.2) and (4.1) to conclude that∣∣∣f (s)(z)
f(z)

∣∣∣ ≤ exp(−(1− δ)α|z|β) (4.16)

in S(2ε) \ E. Therefore, by (4.16) and (4.14) with b0 = 0, we infer that

|f (s)(z)| ≤ exp(−(2− (s+ 2)δ)αrβ) (4.17)

in S(2ε) \ E, hence in S(2ε+ ε/2) by the Phragmén–Lindelöf principle.
(b) Inductive step. Suppose now that we have been able to prove that the estimate

|f (s)(z)| ≤ exp(−(T − ((T − 1)s+ T )δ)α|z|β) (4.18)

holds good in the sector S(2ε+
∑T−1

j=1
ε
2j ). Combining now Lemma 3.2 with (4.18),

we may repeat the reasoning in (4.11) to obtain

|f (s−1)(z)| ≤ exp(−(T − ((T − 1)s+ T )δ − δ)αrβ). (4.19)

Since bs−1 = · · · = b0 = 0, we apply a parallel reasoning as in 4.6. of this proof
above to get

|f(z)| ≤ exp(−(T − ((T − 1)s+ T )δ − sδ)αrβ), (4.20)

valid in S(r4, 2ε+
∑T−1

j=1
ε
2j ). Combining now (4.20) with (4.16), we obtain

|f (s)(z)| ≤ exp(−(T + 1− (Ts+ T + 1)δ)α|z|β)

in S(2ε+
∑T−1

j=1
ε
2j )\E, provided r ≥ r4. By the Phragmén–Lindelöf principle, this

inequality remains valid in the whole sector S(2ε+
∑∞

j=1
ε
2j ) = S(3ε), completing

the inductive step.
(c) Final conclusion. We have proved that, in this special case of bs−1 = · · · =
b0 = 0, the inequality (4.18) is valid in S(3ε) for all T ∈ N, provided r ≥ r4. Fix
now a finite line segment in S(r4, 3ε). Since kδ < 1, and s+ 1 ≤ k, it follows that
T − ((T − 1)s + T )δ → ∞ as T → ∞. Hence, f (s) vanishes identically on such a
line segment. Therefore, by the standard uniqueness theorem of entire functions, f
has to be a polynomial, a contradiction. �

Proof of Theorem 2.2. Suppose that f is a transcendental solution of (2.3) of fi-
nite order of growth. Given ε > 0, let (φm) and (θm) be as in the assump-
tions. From (2.8) and the supposition that ρ(Aj) < β whenever j 6= s, we con-
clude by using Theorem 2.1(ii) that |f (s)(z)| is bounded in each of the sectors
φm + 3ε ≤ arg z ≤ θm − 3ε,m = 1, . . . , n. As ε is arbitrarily small, we infer
from (2.7) and the Phragmén–Lindelöf principle that |f (s)(z)| must be bounded in
the whole complex plane. By the Liouville theorem, f has to be a polynomial, a
contradiction. �
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Proof of Theorem 2.3. Suppose f is a transcendental solution of (2.3) such that
ρp(f) < ρp(As). Writing (2.3) in the form

As(z)f (s) = −
k∑

j=0,j 6=s

Aj(z)f (j), (4.21)

and making use of the elementary iterated order (in)equalities and the invariance
of the iterated order under differentiation, we immediately observe that the left
hand side of (4.21) is of iterated order ρp(As), while the right hand side must be of
iterated order ≤ maxj 6=s(ρp(f), ρp(Aj)) < ρp(As), a contradiction. �
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