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SUB-ELLIPTIC BOUNDARY VALUE PROBLEMS FOR

QUASILINEAR ELLIPTIC OPERATORS

DIAN K. PALAGACHEV & PETER R. POPIVANOV

Abstract. Classical solvability and uniqueness in the Hölder space C2+α(Ω)
is proved for the oblique derivative problem{

aij (x)Diju+ b(x, u, Du) = 0 in Ω,

∂u/∂` = ϕ(x) on ∂Ω

in the case when the vector field `(x) = (`1(x), . . . , `n(x)) is tangential to the
boundary ∂Ω at the points of some non-empty set S ⊂ ∂Ω, and the nonlinear
term b(x, u, Du) grows quadratically with respect to the gradient Du.

0. Introduction

The paper is devoted to the study of so-called oblique derivative problem firstly
posed by H. Poincaré ([Poi]): given a domain Ω, find a solution in Ω of an elliptic
differential equation that satisfies boundary condition in terms of directional deriv-
ative with respect to a vector field ` defined on the boundary ∂Ω. More precisely,
we shall be concerned with the problem{

aij(x)Diju+ b(x, u, Du) = 0 in Ω,

∂u/∂` ≡ ` i(x)Diu = ϕ(x) on ∂Ω
(0.1)

in the degenerate (tangential) case, i.e. a situation when the vector field `(x) =
(` 1(x), . . . , `n(x)) prescribing the boundary operator becomes tangential to ∂Ω at
the points of some non-empty set S. This way, the well-known Shapiro–Lopatinskii
complementary condition is violated on the set S and the classical theory (cf. [G-T])
cannot be applied to the problem (0.1).

The linear tangential problem (b(x, z, p) = bi(x)pi + c(x)z) has been very well
studied in the last three decades. The pioneering works of Bicadze [B] and Hör-
mander [H] indicated how the solvability and uniqueness properties depend on
the way in which the normal component of `(x) changes its sign across S. More
precisely, suppose S to be a submanifold of ∂Ω of co-dimension one, and let `(x) =
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τ(x)+γ(x)ν(x). Here ν(x) is the unit outward normal to ∂Ω and τ(x) is a tangential
field to ∂Ω such that |`(x)| = 1. There are three possible behaviors of `(x) near the
set S = {x ∈ ∂Ω: γ(x) = 0} :

a) `(x) is of neutral type: γ(x) ≥ 0 or γ(x) ≤ 0 on ∂Ω;
b) `(x) is of emergent type: the sign of γ(x) changes from − to + in the positive

direction on τ -integral curves through the points of S;
c) `(x) is of submergent type: the sign of γ(x) changes from + to − along the

τ -integral curves through S.

Hörmander’s results were refined by Egorov and Kondrat’ev [E-K] who proved
that the linear problem (0.1) is of Fredholm type in the neutral case a). Moreover,
they showed that either the values of u should be prescribed on S in order to get
uniqueness in the case b), or to accept jump discontinuity on S in order to have
existence in the case c). What is the universal property of the linear problem (0.1),
however, no matter the type of `(x), is that a loss of regularity of the solution
occurs in contrast to the regular (S = ∅) oblique derivative problem.

Later, precise studies were carried out in order to indicate the exact regularity
that a solution of the linear problem (0.1) gains on the data both in Sobolev and
Hölder spaces. We refer the reader to [E], [M], [M-Ph], [Gu], [Sm], [W1]–[W4], and
most recently to [Gu-S1] and [Gu-S2].

The investigations on the quasilinear problem (0.1) (especially, in the weak non-
linear case b(x, z, p) = bi(x, z)pi+ c(x, z)) were initiated by the papers [P-K1] and
[P-K2]. In our previous study [P-Pa], classical solvability results were obtained for
(0.1) both in the cases of neutral and emergent C∞-vector field `(x) supposing C∞

structure of the elliptic operator. Moreover, we assumed in [P-Pa] that `(x) has a
contact of order k <∞ with ∂Ω, and |b|, |bx| = O(|p|2), |bz| = o(|p|2), |bp| = o(|p|)
as |p| → ∞, uniformly on x and z.

The general aim of the present article is to improve the results of [P-Pa] weak-
ening the growth assumptions on b(x, z, p) with respect to p. Let us note that
although our results here hold true both for neutral and emergent fields `(x), for
the sake of simplicity we have restricted ourselves to consider the case of emergent
field only. (Detailed exposition of the study on degenerate problem with a neutral
vector field ` can be found in [Pa-P].) That is why, according to the above men-
tioned result of Egorov and Kondrat’ev, we consider the problem (0.1) supplied
with the extra condition

u = ψ(x) on the set of tangency S. (0.2)

Concerning the problem (0.1), (0.2), we prove its solvability and uniqueness in
the Hölder space C2+α(Ω) assuming aij ∈ Cα(Ω), b(x, z, p) ∈ Cα(Ω × R × Rn),
` i ∈ C2+α(∂Ω) and |b(x, z, p)| ≤ µ(|u|)(1 + |p|2) with a non-decreasing function µ
(no growth assumptions on the derivatives of b are required!). Further on, suitable
conditions due to P. Guan and E. Sawyer [Gu-S2] and concerning behavior of `(x) on
∂Ω are imposed. It is worth noting that our growth condition on b(x, z, p) includes
these in [P-Pa], as well as the natural structural conditions in the treatment of
regular oblique derivative problems for nonlinear elliptic equations (see [L-T]).

The main tool in proving our results is the Leray–Schauder fixed point theorem,
that reduces solvability of (0.1), (0.2) to the establishment of an a priori C1+β(Ω)-
estimate for the solutions of related problems. The bound for ‖u‖C0(Ω) is a simple

consequence of the maximum principle. In order to estimate the Cβ(Ω)-norm of
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the gradient Du, we use an approach due to F. Tomi [To] (see [A-C] also) that
imbeds the problem (0.1), (0.2) into a family of similar problems depending on a
parameter ρ ∈ [0, 1] and having solutions u(ρ; x). Then the norm ‖Du‖Cβ(Ω) =

‖Dxu(1; x)‖Cβ(Ω) can be estimated in terms of ‖Dxu(0; x)‖Cβ(Ω) after iterations

on ρ, assuming the difference u(ρ1; x) − u(ρ2; x) to be under control for small
ρ1−ρ2. To realize this strategy, we use the refined sub-elliptic estimates in Sobolev
and Hölder spaces proved very recently by Guan and Sawyer [Gu-S2]. At the end,
uniqueness for the solutions of (0.1), (0.2) follows by the maximum principle.

Acknowledgements. The authors are indebted to Professor Pengfei Guan for sup-
plying them with the text of manuscript [Gu-S2] before its publication.

1. Statement of the problem and main results

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain. On the boundary ∂Ω a unit vector
field `(x) = (` 1(x), . . . , `n(x)) is defined, which can be decomposed into

`(x) = τ(x) + γ(x)ν(x) x ∈ ∂Ω,

where ν(x) is the unit outward normal to ∂Ω and τ(x) is the tangential projection
of `(x) on ∂Ω. Let

S = {x ∈ ∂Ω: γ(x) = 0}

be the set of tangency between `(x) and ∂Ω. Throughout the paper we consider
the case S 6≡ ∅. In order to describe our technique, we shall consider the case of
emergent field `(x) only. In other words, we suppose that γ(x) changes its sign
from − to + in the positive direction on the τ -integral curves passing through the
points of S. Moreover, to avoid unessential complications, we assume that S is a
closed submanifold of ∂Ω, codim∂ΩS = 1, ∂Ω = ∂Ω+∪∂Ω− ∪S where ∂Ω± = {x ∈
∂Ω: γ(x)><0}, and let the field `(x) be strictly transversal to S at each point x ∈ S
(indeed, ` ≡ τ there).

We aimed to study the classical solvability of the degenerate oblique derivative
problem: {

aij(x)Diju+ b(x, u, Du) = 0 in Ω,

∂u/∂` ≡ ` i(x)Diu = ϕ(x) on ∂Ω, u = ψ(x) on S.
(1.1)

Hereafter, the standard summation convention is adopted and Du denotes the
gradient (D1u, . . . ,Dnu) of u(x) withDi ≡ ∂/∂xi. Further on, the symbolCk+α(Ω),
k ≥ 0 integer, stands for the Hölder functional space equipped with the norm
‖ ·‖Ck+α(Ω) (see [G-T]). The letter C will denote a constant, independent of u, that

may vary from a line into another.
In order to state our result, we give a list of assumptions.
Uniform ellipticity: there exists a positive constant λ such that

aij(x)ξiξj ≥ λ|ξ|2 ∀x ∈ Ω, ∀ξ ∈ Rn, aij = aji; (1.2)

Regularity conditions: for some α ∈ (0, 1)
aij ∈ Cα(Ω), b(x, z, p) ∈ Cα(Ω× R× Rn),
b(x, z, p) is continuously differentiable with respect to z and p,

` i(x) ∈ C2+α(∂Ω), ∂Ω ∈ C3+α, S ∈ C2+α; (1.3)
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Monotonicity condition: there exists a positive constant b0 such that

bz(x, z, p) ≤ −b0 < 0 ∀(x, z, p) ∈ Ω× R× Rn (bz = ∂b/∂z); (1.4)

Quadratic growth with respect to the gradient: there exists a positive and non-
decreasing function µ(t) such that

|b(x, z, p)| ≤ µ(|z|)
(
1 + |p|2

)
∀(x, z, p) ∈ Ω× R× Rn. (1.5)

Denote by ω(t, x) the parameterization of the τ -integral curve passing through
the point x ∈ ∂Ω, i.e. d

dt
ω(t, x) = τ(ω(t, x)), ω(0, x) = x.

The next notions were introduced by Guan and Sawyer in [Gu-S2].

Definition 1. The vector field `(x) satisfies condition A∓p on S if for each y ∈
S there exist constants r > 0, R− < 0 < R+ such that γ(ω(R−, x)) 6= 0,
γ(ω(R+, x)) 6= 0 for all x ∈ S, |x − y| < r and both of the following conditions
hold:[

1∫ t2
t1
γ(ω(t, x)) dt

∫ t2

t1

γ(ω(t, x))
p
p−1 dt

]p−1

≤ C
1

t3 − t2

∫ t3

t2

γ(ω(t, x)) dt

for all x ∈ S, |x − y| < r and all 0 < t1 < t2 < t3 < R+ with
∫ t2
t1
γ(ω(t, x)) dt =∫ t3

t2
γ(ω(t, x)) dt, and also[

1∫ t3
t2
|γ(ω(t, x))| dt

∫ t3

t2

|γ(ω(t, x))|
p
p−1 dt

]p−1

≤ C
1

t2 − t1

∫ t2

t1

|γ(ω(t, x))| dt

for all x ∈ S, |x− y| < r and all R− < t1 < t2 < t3 < 0 with
∫ t2
t1
|γ(ω(t, x))| dt =∫ t3

t2
|γ(ω(t, x))| dt.

Definition 2. The vector field `(x) satisfies the condition Tθ if

t2 − t1 ≤ C

(∫ t2

t1

|γ(ω(t, x))| dt

)θ
for all t1 < t2 and x ∈ ∂Ω.

Our final assumption concerns the behavior of `(x) on ∂Ω :{
The vector field `(x) satisfies conditions A∓q and Tθ
for some q > n and θ ∈ [0, 1), θ 6= α.

(1.6)

We are in a position now to state the main result of the paper.

Theorem 1.1. Suppose assumptions (1.2)− (1.6) to be fulfilled.
Then the degenerate oblique derivative problem (1.1) admits a unique classical

C2+α(Ω) solution for each ϕ ∈ C2+α−θ(∂Ω) and ψ ∈ C2+α(S).

Remark 1.2. 1. The requirements in (1.3) on b(x, z, p) to be differentiable with
respect to z and p may be replaced by its Lipschitz continuity in z and p.

2. The quadratic growth assumption (1.5) includes for example the natural
conditions in studying regular oblique derivative problems for fully nonlinear elliptic
operators (cf. [L-T]), as well as the structure conditions on b(x, z, p) imposed in
[P-Pa].



EJDE–1997/01 SUB-ELLIPTIC BOUNDARY VALUE PROBLEMS 5

3. Conditions A∓p and Tθ correspond to the requirement of “finite type” vector
field ` in the C∞ case (cf. [Gu], [P-Pa], [Gu-S1]). In fact, supposing ∂Ω ∈ C∞,
` ∈ C∞, we say that the field `(x) is of finite type if there exists an integer k, such
that

k∑
i=1

∣∣∣∣ ∂i∂ti γ(ω(t, x))
∣∣∣
t=0

∣∣∣∣ > 0 for all x ∈ ∂Ω.

(Indeed, the number k is exactly the order of contact between `(x) and ∂Ω.) Now,
if ` is of type k, then [Tr, Lemma C.1] implies condition Tθ with θ = 1/(k + 1).
Moreover, it follows from [Gu-S1] that the A∓p condition is satisfied for all p in the
range (1, ∞).

4. Careful analysis on the condition Tθ shows that, if it is satisfied by a field `(x)
which becomes tangential to ∂Ω then the exponent θ is necessary strictly less than
one.

2. Some preliminaries

For the sake of completeness we will sketch in this section some of the results
proved by Guan and Sawyer in [Gu-S2].

Define the linear uniformly elliptic operator

L ≡ aij(x)Dij + bi(x)Di + c(x)

with Cα(Ω) coefficients (0 < α < 1) and assume `(x) to be an emergent type vector
field as in the preceding section, with (1.2) and (1.3) being fulfilled.

Let us consider the linear tangential oblique derivative problem{
Lu ≡ aij(x)Diju+ bi(x)Diu+ c(x)u = f(x) in Ω,

∂u/∂` = g(x) on ∂Ω, u = h(x) on S.
(2.1)

The following result is a special case of [Gu-S2, Theorem 10] that concerns the
properties of the problem (2.1) in Hölder spaces.

Lemma 2.1. Let the field ` satisfy condition Tθ for some θ ≥ 0, and c(x) ≤ 0.
Then for each (f, g, h) ∈ Cα(Ω)×C2+α−θ(∂Ω)×C2+α(S) there exists a unique

solution u ∈ C2+α(Ω) of the problem (2.1). Moreover, if u ∈ C2+α′(Ω) (0 < α′ < α)
satisfies (2.1) with f, g and h as above, then u ∈ C2+α(Ω) and there is a constant
C (independent of u) such that

‖u‖C2+α(Ω) ≤ C
(
‖f‖Cα(Ω)+‖g‖C2+α−θ(∂Ω)+‖h‖C2+α(S)+‖u‖C0(Ω)

)
.

(2.2)

To summarize the corresponding results in the Sobolev functional scale, denote
by Hs

p(Ω) and Bs, p(Ω) the Sobolev and Besov Lp-spaces, respectively ([Ad]).
Theorem 12 and Remark 3 of [Gu-S2] yield the following

Lemma 2.2. Let the field `(x) satisfy condition Tθ on ∂Ω (θ ≥ 0), condition A∓p
on S (p > 1), and c(x) ≤ 0.

For each (f, g, h) ∈ Lp(Ω) × B2−θ−1/p, p(∂Ω) × B2−θ/p−1/p, p(S) there exists a
unique solution u ∈ H2

p(Ω) of the problem (2.1), and there is a constant C such that

‖u‖H2
p(Ω) ≤ C

(
‖f‖Lp(Ω) + ‖g‖B2−θ−1/p, p(∂Ω) (2.3)

+ ‖h‖B2−θ/p−1/p,p(S) + ‖u‖Lp(Ω)

)
.
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The remaining part of this section is devoted to comparison principles for linear
and quasilinear elliptic operators.

Lemma 2.3. Suppose conditions (1.2) and c(x) ≤ 0 to be fulfilled and let u ∈
C2(Ω) ∩ C1(Ω) satisfy{

Lu ≡ aij(x)Diju+ bi(x)Diu+ c(x)u ≥ 0 in Ω,

∂u/∂` = 0 on ∂Ω, u ≤ 0 on S.

Then u ≤ 0 on Ω.

Proof. We argue by contradiction. If u(x) assumes positive values on Ω then there
exists x0 ∈ Ω such that u(x0) = maxΩ u > 0 and the strong interior maximum
principle asserts x0 ∈ ∂Ω. Further, u ≤ 0 on S and it remains x0 ∈ ∂Ω \ S which
is impossible since ∂u/∂` = 0 on ∂Ω \ S while the boundary maximum principle
yields |∂u/∂`| > 0 at the point x0 (` is strictly transversal to ∂Ω on ∂Ω \ S).

Corollary 2.4. Let (1.2) hold true and suppose the function b(x, z, p) to be non-
increasing in z for each (x, p) ∈ Ω × Rn and differentiable with respect to p in
Ω× R× Rn. Let u, v ∈ C2(Ω) ∩ C1(Ω) satisfy{

aij(x)Diju+ b(x, u, Du) ≥ aij(x)Dijv + b(x, v, Dv) in Ω,

∂u/∂` = ∂v/∂` = 0 on ∂Ω, u ≤ v on S.

Then u ≤ v on Ω.

Proof. Defining w = u− v, we have

Lw ≡ aij(x)Dijw + bi(x)Diw ≥ 0 on {x ∈ Ω: w(x) > 0},

where

bi(x) =

∫ 1

0

bpi(x, v(x), sDw(x) +Dv(x)) ds.

Furthermore,

∂w/∂` = 0 on ∂Ω and w ≤ 0 on S.

Thus, the assertion of Corollary 2.4 follows by Lemma 2.3.

3. A priori estimates

Theorem 1.1 will be proved with the aid of the Leray–Schauder fixed point
theorem that reduces the classical solvability of (1.1) to the establishment of an
a priori estimate in the Banach space C1+β(Ω) (β ∈ (0, 1) is a suitable number)
for all solutions to a family of problems related to (1.1). This section deals with
deriving of these estimates.

To making our exposition more clear, we shall start with the homogeneous case,
i.e. we take ϕ ≡ 0, ψ ≡ 0 and consider the problem{

aij(x)Diju+ b(x, u, Du) = 0 in Ω,

∂u/∂` = 0 on ∂Ω, u = 0 on S
(3.1)

instead of (1.1).



EJDE–1997/01 SUB-ELLIPTIC BOUNDARY VALUE PROBLEMS 7

3.1. A priori estimate for ‖u‖C0(Ω).

Lemma 3.1. Suppose the conditions (1.2), (1.3) and (1.4) to be fulfilled.
Then

‖u‖C0(Ω) ≡ max
Ω
|u(x)| ≤

1

b0
max

Ω
|b(x, 0, 0)|

for each solution u ∈ C2(Ω) ∩ C1(Ω) of the problem (3.1).

Proof. Choosing the positive constant M such that

M ≥
1

b0
max

Ω
|b(x, 0, 0)|,

one has

aij(x)Diju+ b(x, u, Du) ≥ −Mb0 + max
Ω
|b(x, 0, 0)|

≥M

∫ 1

0

bz(x, sM, 0) ds+ b(x, 0, 0) = b(x, M, 0)

= aij(x)Dij(M) + b(x, M, DM) in Ω

as consequence of (1.4). Moreover,

∂u/∂` = 0 = ∂M/∂` on Ω, u = 0 < M on S.

Therefore, the comparison principle (Corollary 2.4) implies u(x) ≤M for all x ∈ Ω.
In the same fashion it can be proved u(x) ≥ −M ∀x ∈ Ω that completes the

proof.

3.2. A priori estimate for ‖Du‖L2q(Ω), q > n. In view of the Morrey lemma

(H2
q (Ω) ⊂ C2−n/q(Ω), q > n), the a priori bound for the Cβ-Hölder norm of the

gradient Du with β = 1 − n/q (and therefore, the solvability of (3.1)) is equiva-
lent to an estimate of the H2

q (Ω)-norm of u. On the other hand, Lemma 2.2 (and
especially (2.3)) reduces that bound to a uniform with respect to u estimate of
‖b(x, u, Du)‖Lq(Ω), which becomes equivalent to an a priori estimate of ‖Du‖L2q(Ω)

through the quadratic growth assumption (1.5) and Lemma 3.1. We shall employ a
technique inspired by Amann–Crandall’s approach (cf. [A-C]) in proving an L∞(Ω)
gradient estimate for semilinear elliptic equations.

Lemma 3.2. Let conditions (1.2), (1.3), (1.5) and (1.6) be satisfied.
Then there exists a constant C depending on known quantities only and on

‖u‖C0(Ω), such that

‖Du‖L2q(Ω) ≤ C (3.2)

for each solution u ∈ C2+α(Ω) of the problem (3.1).

Proof. The function u ∈ C2+α(Ω) solves the equation

aij(x)Diju+B(x)|Du|2 − u(x) = F (x) in Ω,

where 
B(x) =

b(x, u(x), Du(x))

1 + |Du|2
∈ Cα(Ω),

F (x) = −u(x)−
b(x, u(x), Du(x))

1 + |Du|2
∈ Cα(Ω).

(3.3)



8 D.K. PALAGACHEV & P.R. POPIVANOV EJDE–1997/01

For the fixed solution u(x) we imbed (3.1) into the one-parameter family of
tangential oblique derivative problems{

aij(x)Diju(ρ; x) +B(x)|Du(ρ; x)|2 − u(ρ; x) = ρF (x) in Ω,

∂u(ρ; x)/∂` = 0 on ∂Ω, u(ρ; x) = 0 on S (3.4)

with solutions u(ρ; x) ∈ H2
q (Ω) (ρ ∈ [0, 1]) if they do exist. Let us point out that

q > n and Sobolev’s imbedding theorem ensure that the values of u(ρ; x) and its
derivatives on ∂Ω are well defined.

Indeed, u(0; x) = 0 and u(1; x) ≡ u(x) is the fixed solution of (3.1). Our aim
is to estimate ‖Dxu(ρ2; x)‖L2q(Ω) in terms of ‖Dxu(ρ1; x)‖L2q(Ω) when ρ2− ρ1 > 0
is small enough. After that, having in addition the unique solvability of (3.4) in
H2
q (Ω) for each value ρ ∈ [0, 1], it will be easy to derive the desired estimate (3.2)

by iteration of the L2q(Ω)-norms of Du(ρ; x) for ρ < 1.
Step 1. To realize our program, we shall estimate at first the difference between

two solutions of (3.4) in terms of the difference between the corresponding values
of the parameter ρ. Let u(ρ1; x), u(ρ2; x) ∈ H2

q (Ω) solve (3.4) with ρ1 ≤ ρ2. Then

‖u(ρ1; x) − u(ρ2; x)‖C0(Ω) ≤ (ρ2 − ρ1)
[
µ
(
‖u‖C0(Ω)

)
+ ‖u‖C0(Ω)

]
.

(3.5)

To prove this, put w(x) = u(ρ1; x) − u(ρ2; x) and observe that w ∈ H2
q (Ω) solves

the linearized problem{
aij(x)Dijw +Bi(x)Diw − w = (ρ1 − ρ2)F (x) in Ω,

∂w/∂` = 0 on ∂Ω, w = 0 on S
(3.6)

with

Bi(x) = 2B(x)

∫ 1

0

(
sDiw +Diu(ρ2; x)

)
ds ∈ Cmin(α, 1−n/q)(Ω).

Now, the result of Lemma 3.1 can be applied to (3.6) whence

‖w‖C0(Ω) ≤ (ρ2 − ρ1)max
Ω
|F (x)| ≤ (ρ2 − ρ1)

[
µ
(
‖u‖C0(Ω)

)
+ ‖u‖C0(Ω)

]
by means of (1.5). The only difference we have to point out is that the Aleksandrov–
Pucci maximum principle ([G-T, Theorem 9.6]) is to be used (w ∈ H2

q (Ω) ⊂

C2−n/q(Ω), q > n) instead of the strong interior maximum principle. The esti-
mate (3.5) is proved.

Remark 3.3. Putting ρ1 = ρ2 in (3.5) we obtain uniqueness of solutions to (3.4) for
each value of ρ ∈ [0, 1].

Step 2. Let ρ1 < ρ2 be two arbitrary numbers and suppose there exist solutions
u(ρ1; x) and u(ρ2; x) ∈ H2

q (Ω) of (3.4). The difference w(x) = u(ρ1; x)−u(ρ2; x) ∈
H2
q (Ω) solvesaij(x)Dijw = (ρ1−ρ2)F (x)−B(x)

(
|Du(ρ1; x)|2−|Du(ρ2; x)|2

)
+ w a.e. Ω,

∂w/∂` = 0 on ∂Ω, w = 0 on S,
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and therefore Lemma 2.2 yields

‖w‖H2
q (Ω) ≤ C

(
‖w‖Lq(Ω)

+
∥∥∥(ρ1 − ρ2)F (x) −B(x)

(
|Du(ρ1; x)|

2 − |Du(ρ2; x)|
2
)∥∥∥

Lq(Ω)

)
.

The conditions (1.5), (3.3) and (3.5) lead to

‖w‖H2
q (Ω) ≤ C

(
1 + ‖Dw‖2L2q(Ω) + ‖Du(ρ1; ·)‖

2
L2q(Ω)

)
(3.7)

with a new constant C that depends on ‖u‖C0(Ω) in addition, but it is independent

of ρ1 − ρ2.
We utilize Gagliardo–Nirenberg’s interpolation inequality (see [Ga], [N]) and the

bound (3.5) in order to obtain

‖Dw‖2L2q(Ω) ≤ C‖D
2w‖Lq(Ω)‖w‖L∞(Ω)

≤ C(ρ2 − ρ1)
[
µ
(
‖u‖C0(Ω)

)
+ ‖u‖C0(Ω)

]
‖D2w‖Lq(Ω).

Making use of (3.7) one has

‖Dw‖2L2q(Ω) ≤ C
(
1 + (ρ2 − ρ1)‖Dw‖

2
L2q(Ω) + ‖Du(ρ1; ·)‖

2
L2q(Ω)

)
with a constant C independent of ρ1 − ρ2.

Now, if ρ2 − ρ1 ≤ ε where Cε < 1/2, we have

‖Du(ρ2; ·)‖
2
L2q(Ω) ≤ C1 + C2‖Du(ρ1; ·)‖

2
L2q(Ω) (3.8)

whenever ρ2−ρ1 ≤ ε. In particular, taking ρ1 = 0 and ρ2 = ε above, the uniqueness
result (Remark 3.3) implies

‖Du(ε; ·)‖2L2q(Ω) ≤ C1 (3.9)

whenever there exists a solution u(ε; x) ∈ H2
q (Ω) of (3.4) with ρ = ε.

Step 3. The Leray–Schauder fixed point theorem ([G-T, Theorem 11.3]) will be
used to prove solvability of the problem (3.4) for ρ = ε. For this goal, define the
compact nonlinear operator

F : H1
2q(Ω) −→ H2

q (Ω) ↪→
compactly

H1
2q(Ω)

as follows: for each v ∈ H1
2q(Ω) the image Fv ∈ H2

q (Ω) is the unique solution of
the linear oblique derivative problem:{

aij(x)Dij(Fv) = εF (x)−B(x)|Dv|2 + v a.e. Ω,

∂(Fv)/∂` = 0 on ∂Ω, Fv = 0 on S.

Indeed, this problem is uniquely solvable in H2
q (Ω) in view of (3.3) and Lemma 2.2.

Clearly, each fixed point of F will be a solution to (3.4) with ρ = ε. The estimate
(2.3) shows that F is a continuous mapping from H1

2q(Ω) into itself. Moreover, it
follows by (3.9) an a priori estimate (uniformly with respect to σ and v) for each
solution of the equation v = σFv, σ ∈ [0, 1], that is equivalent to the problem{

aij(x)Dijv = σ
(
εF (x)−B(x)|Dv|2 + v

)
a.e. Ω,

∂v/∂` = 0 on ∂Ω, v = 0 on S.
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Hence, Leray–Schauder’s theorem asserts existence of a fixed point of F that proves
solvability in H2

q (Ω) of the problem (3.4) with ρ = ε.

To complete the proof of Lemma 3.2, put ρ1 = kε and ρ2 = (k+1)ε (k = 1, 2, . . . )
in (3.8). Applying finitely many times the above procedure we get the desired
estimate (3.2) for u(x) ≡ u(1; x).

Corollary 3.4. Let conditions (1.2)− (1.6) be fulfilled.
Then there is the bound

‖u‖H2
q (Ω) ≤ C

for each solution u ∈ H2
q (Ω) of the problem (3.1).

Proof. It follows by the estimate (2.3) and Lemmas 3.1 and 3.2.

Corollary 3.5. Assume conditions (1.2)− (1.6) to be satisfied.
Then there exists a constant C such that

‖u‖C2−n/q(Ω) ≤ C (3.10)

for each solution u ∈ C2+α(Ω) of the problem (1.1) with ϕ ∈ C2+α−θ(∂Ω) and
ψ ∈ C2+α(S).

Proof. Taking into account the imbedding H2
q (Ω) ⊂ C2−n/q(Ω) for q > n, the

estimate (3.10) is an immediate consequence of Corollary 3.4 if u ∈ C2+α(Ω) solves
the problem (3.1).

To handle with the non-homogeneous problem (1.1) we solve at first the linear
problem {

aij(x)Dijδ = 0 in Ω,

∂δ/∂` = ϕ on ∂Ω, δ = ψ on S.

Indeed, there exists a unique solution δ ∈ C2+α(Ω) of that problem by virtue of
Lemma 2.1.

Thus, if u(x) solves (1.1) then the function v = u− δ is a solution of the homo-
geneous problem {

aij(x)Dijv + b′(x, v, Dv) = 0 in Ω,

∂v/∂` = 0 on ∂Ω, v = 0 on S,

where b′(x, z, p) = b(x, z + δ(x), p+Dδ(x)) and conditions of the type (1.4) and
(1.5) are fulfilled by b′(x, z, p).

Since the bound (3.10) is satisfied by the function v(x), it will be true for u(x)
also, with a new constant C depending on ‖δ‖C2+α(Ω) in addition.

4. Proof of Theorem 1.1

The uniqueness assertion of Theorem 1.1 follows immediately by (1.4) and Corol-
lary 2.4.

To prove existence, Leray–Schauder’s fixed point theorem will be used again.
Let us set β = 1− n/q, and for v ∈ C1+β(Ω) consider the linear tangential oblique
derivative problem: {

aij(x)Diju+ b(x, v, Dv) = 0 in Ω,

∂u/∂` = ϕ on ∂Ω, u = ψ on S.
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Since b(x, v, Dv) ∈ Cαβ(Ω) (cf. (1.3)), it follows by Lemma 2.1 that there exists a
unique solution u ∈ C2+αβ(Ω) of the above problem. This way, a nonlinear operator

F : C1+β(Ω) −→ C2+αβ(Ω)

is defined by the formula Fv = u. The mapping F is a continuous (in view of (2.2))
and compact (C2+αβ(Ω) ↪→ C1+β(Ω) compactly) mapping acting from C1+β(Ω)
into itself. Moreover, the bound (3.10) provides an a priori estimate with a constant
C, independent of u and σ ∈ [0, 1], for each solution to the equation u = σFu that
is equivalent to the problem{

aij(x)Diju+ σb(x, u, Du) = 0 in Ω,

∂u/∂` = σϕ on ∂Ω, u = σψ on S.

Therefore, the Leray–Schauder theorem ensures existence of a fixed point u = Fu ∈
C2+αβ(Ω) that is a solution of (1.1). Finally, the assertion u ∈ C2+α(Ω) follows
easily by Lemma 2.1 and by using standard bootstrapping arguments.
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[Gu] P. Guan, Hölder regularity of subelliptic pseudodifferential operators, Duke Math. J. 60
(1990), 563–598.

[Gu-S1] P. Guan and E. Sawyer, Regularity estimates for the oblique derivative problem, Ann. of
Math. 137 (1993), 1–70.

[Gu-S2] P. Guan and E. Sawyer, Regularity estimates for the oblique derivative problem on non-
smooth domains I, Chinese Ann. of Math. Ser. B 16 (1995), No. 3, 299–324; II, ibid. 17
(1996), No. 1, 1–34.
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