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Non-collision solutions for a class of planar

singular Lagrangian systems ∗

Morched Boughariou

Abstract

In this paper, we show the existence of non-collision periodic solutions
of minimal period for a class of singular second order Hamiltonian systems
in R2 with weak forcing terms. We consider the fixed period problem and
the fixed energy problem in the autonomous case.

1 Introduction and statement of results

This paper deals with the existence of non-collision periodic solutions of minimal
period for the problem

q̈ + Vq(t, q) = 0

where q ∈ RN \ {0} with N = 2, the potential V is of the form V (t, q) =
− 1
|q|α +W (q) in a neighborhood of q = 0 with 1 < α < 2 and W is such that

|q|αW (q), |q|α+1W ′(q)→ 0 as |q| → 0.

We will consider to cases: the fixed period problem

q̈ + Vq(t, q) = 0

q(t+ T ) = q(t),
(PT )

and the fixed energy problem (autonomous case)

q̈ + V ′(q) = 0
1
2 |q̇|

2 + V (q) = h

q periodic.

(Ph)

The case α ≥ 2 “Strong force” andN ≥ 2 has been studied by many authors.
The existence of classical (non-collision) solutions of (PT ) and (Ph) has been
proved via variational methods( See [1, 5, 11, 13, 14]). The case 0 < α < 2
“weak force” is more complicated because the lose of control of the functional,
whose critical points correspond to periodic solutions on the functions passing
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2 Non-collision solutions for Lagrangian systems EJDE–2000/75

through the origin. Recently, there has been several works which deal with these
two problems for N ≥ 3( See also [1, 2, 4, 8, 17, 18]).
In our situation (N = 2), we refer for the study of (PT ) to Degiovanni-

Giannoni [10], Ambrosetti-Coti Zelati [3], Serra-Terracini [16] where they treated
also case of N ≥ 3, and to Coti Zelati [7]. In [10], they obtained the existence
of classical solutions under a global conditions like

a

|q|α
≤ −V (q) ≤

b

|q|α
, ∀ q 6= 0. (1.1)

In [3], they found solutions of large period T . In [16]-[7], they used a radially
symmetric assumption on V in a neighborhood of the singularity in order to
get a non-collision solution of (PT ). For the study of (Ph), we know the result
of Benci-Giannoni [6] where the existence of classical solution strongly depend
on the pertubation W . The other result has been obtained by Coti Zelati-Serra
[9]. There arguments are based on the fact that the topology of {V ≤ h} is non
trivial; We remark that the case V (q) = − 1

|q|α is excluded in this work.

In the present paper, we are able to find estimates in minima of suitable
minimisation perturbed problems using a re-scaling argument. Such estimates
give actually non-collision solutions with minimal period to our problems with-
out assuming a radially symmetric condition on V . More precisely, in section
2, we study the fixed period problem; We deal with non-autonomous potentials
V satisfying the hypotheses:

(V0) V ∈ C1(R× RN \ {0};R) and T -periodic in t;

(V1) V (t, q) < 0, ∀ (t, q) ∈ [0, T ]× RN \ {0};

(V2) |∂V
∂t
(t, q)| ≤ −V (t, q), ∀ (t, q) ∈ [0, T ]× RN \ {0};

(V3) There exist r > 0, 1 < α < 2 and W ∈ C1(RN \ {0},R) satisfying
|q|αW (q), |q|α+1W ′(q)→ 0 as |q| → 0 such that:

V (t, q) = −
1

|q|α
+W (q), ∀ 0 < |q| < r.

Theorem 1.1 Assume (V0)-(V3) with N = 2. Then for any T > 0, (PT )
possesses at least one non-collision solution having T as minimal period.

Remark 1.1 For N ≥ 3, Theorem 1.1 was proved in [17] under condition (V3)
by Morse theoretical arguments.

In section 3, we study the fixed energy problem. Here, we assume:

(V’0) V ∈ C2(RN \ {0},R);

(V’1) 3V ′(q)q + V ′′(q)qq > 0, ∀ q 6= 0;

(V’2) There exists an constant α1 ∈]0, 2[ such that:

V ′(q)q ≥ −α1V (q) > 0, ∀ q 6= 0;
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(V’3) lim inf[V (q) + 12V
′(q)q] ≥ 0 as |q| → ∞;

(V’4) The same as (V3) with V (t, q) = V (q).

Theorem 1.2 Assume (V’0)-(V’4) with N = 2. Then for any h < 0, (Ph)
possesses at least one classical solution with a minimal period.

Remark 1.2 i) For N ≥ 3, (V’1) is used in [2] to prove existence of a gen-
eralized solution (that may enter the singularity) and in [18] to avoid collision
solutions in the case N = 3 and 1 < α < 4

3 .
ii) Assumptions (V’1)-(V’2) can be made only in {V ≤ h} (See [2]).

Notation. For any u ∈ H1([0, T ];R2), we note u(t) = (|u(t)|, θ(u)(t)) in polar
coordinates. We consider the following function space:

ET0 = {u ∈ H
1([0, T ];R2); u(0) = u(T );

∫ T
0

θ̇(u)(t)dt = 2π}.

i.e., ET0 is the set of T -periodic functions u ∈ H
1([0, T ];R2) such that θ :

[0, T ]/{0, T } ∼ S1 → S1 has degre 1.
We shall work in the function set:

ΛT0 = {u ∈ E
T
0 ; u(t) 6= 0 ∀ t}.

2 The fixed period problem

In this section we proof Theorem 1.1. Let us define

f(q) =
1

2

∫ T
0

|q̇|2dt−

∫ T
0

V (t, q)dt.

It is well known that f ∈ C1(ΛT0 ;R) and any critical point u ∈ Λ
T
0 is a solution

of (PT ).
Since we deal with “weak force” potentials, we know the existence of situa-

tion where the minimum of f is assumed on functions going through the origin(
See [12]). For any ε ∈]0, 1], we introduce the perturbed potential:

Vε(t, q) = V (t, q)−
ε

|q|2
.

The corresponding Lagrangian systems are

q̈ + (Vε)q(t, q) = 0
q(t+ T ) = q(t)

(PT )ε

and the associated functionals are

fε(q) =
1

2

∫ T
0

|q̇|2dt−

∫ T
0

Vε(t, q)dt.
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One has that fε(qn) → +∞ as qn → ∂λT0 weakly in H
1([0, T ];R2). We recall

that in ΛT0 ,

||u̇||2 = (

∫ T
0

|u̇|2dt)
1
2

is a norm. Set

mε = inf
q∈ΛT0

fε(q).

The following result is closely related to this of [11] (See [1]).

Lemma 2.1 For any ε ∈]0, 1], mε is a critical value for fε; i.e. there exists
qε ∈ ΛT0 such that fε(qε) = mε and f

′
ε(qε) = 0.

The fact that fε(qε) = mε ≤ m1 implies

1

2

∫ T
0

|q̇ε|
2dt ≤ m1 (2.1)

and ∫ T
0

V (t, qε)dt ≤ m1. (2.2)

It follows from 2.1 the existence of εn → 0 such that

qn = qεn → q weakly in H
1([0, T ];R2) and uniformly in [0, T ].

We say that q is a weak solution of (PT ) in the sense of [1].
Setting C(q) = {t ∈ [0, T ], q(t) = 0}, one can see from 2.2 and (V3), that

mesC(q) = 0 (Lebesgue measure). Moreover, we have

qn → q in C
2(K;R2), ∀ K compact ⊂ [0, T ] \ C(q). (2.3)

Hence, we have that

q̈ + Vq(t, q) = 0, ∀ t ∈ [0, T ] \C(q).

Therefore q is a generalized solution of (PT ) in the sense of [5].
Now, we state these properties of approximated solutions qn:

Lemma 2.2 (i) There exists an constant C1 > 0 independent of n, such that

|
1

2
|q̇n|

2 + V (t, qn)−
εn

|qn|2
| ≤ C1;

(ii)There exist constants 0 < µ < r and C2 > 0 independent of n, such that:

1

2

d2

dt2
|qn(t)|

2 ≥ C2, ∀ t : |qn(t)| < µ.
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Proof. (i) follows from (V2) and 2.2, while for (ii), it is a consequence of (i)
and (V3). For more details, we refer to [8, 1].

Remark 2.1 (ii) of Lemma 2.2 does not hold in general when q is merely a
generalized solution of (PT ) as in [17].

Proof of theorem 1.1. We will prove how the function q is actually a non-
collision solution of (PT ). We suppose that q has a collision in t̄. The contra-
diction will be showed in two steps.

Step 1. The solution qn have a self-intersection. We study the angle that the
approximated solution qn describes close to the singularity. By (ii) of Lemma
2.2 and 2.3, we get

1

2

d2

dt2
|q(t)|2 ≥ C2 > 0, ∀ t : 0 < |q(t)| < µ.

Take µ0 < min(µ, r) and t1 < t̄ < t2 such that

|q(t1)| = |q(t2)| =
µ0

2
.

This implies that, for sufficiently large n,

µ0

4
< |qn(t1)|, |qn(t2)| < µ0,

|qn(t)| < µ0, ∀ t ∈ [t1, t2].

Let tn ∈ [t1, t2] be such that

|qn(tn)| = min
t∈[t1,t2]

|qn(t)|.

Then, we have
d

dt
|qn(t)| < 0, ∀ t ∈ [t1, tn[

d

dt
|qn(t)| > 0, ∀t ∈]tn, t2].

Now, we will use a re-scaling argument as in ([17]-[18]). We set for any L > 0,

xn(s) = δ
−1
n qn(δ

α+2
2
n s+ tn), s ∈ [−L,L]

when δn = |qn(tn)| → 0. Let us remark that for sufficiently large n, δ
α+2
2
n s+tn ∈

[t1, t2] for s ∈ [−L,L] and then δn|xn(s)| < µ. Hence, xn(s) satisfies

(i) |xn(0)| = 1; xn(0).ẋn(0) = 0;
d
ds |xn(s)| < 0, ∀ s ∈ [−L, 0[;

d
ds
|xn(s)| > 0, ∀ s ∈]0, L];
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(ii) ẍn +
αxn
|xn|α+2

+ δα+1n W ′(δnxn) +
2εn
δ2−αn

xn
|xn|4

= 0;

(iii) | 12 |ẋn|
2 − 1

|xn|α
+ δαnW (δnxn)−

εn
δ2−αn |xn|2

| ≤ C1δαn .

We may assume the existence -up a subsequence- of

d = lim
n→∞

εn

δ2−αn

∈ [0,∞].

We consider the following two cases:

Case1: d <∞ From (i) and (iii), we may assume

xn(0) → e1

ẋn(0) →
√
2(1 + d)e2

where (e1, e2) is an orthogonal basis of R
2. By the continuous dependence

of solutions in initial data and equations, one can see from (V3) that, xn(s)
converge to a function yα,d in C

2(−L,L;R2) where yα,d is the solution of

ÿ +
αy

|y|α+2
+
dy

|y|4
= 0

y(0) = e1, ẏ(0) =
√
2(1 + d)e2 .

Here we state some properties of yα,d (c.f. [17]-[18]).

|yα,d(s)| = |yα,0(s)| ≥ 1, ∀s ∈ R; (2.4)

|yα,d(s)|2θ̇(yα,d)(s) =
√
2(1 + d), ∀s ∈ R; (2.5)

lims→−∞ θ(yα,0)(s) = −
π
2−α ; (2.6)

lims→+∞ θ(yα,0)(s) = +
π
2−α . (2.7)

Since 1 < α < 2, we get from 2.4-2.7, the existence of L̄ > 0 such that

lim
n→∞

[θ(xn)(L̄)− θ(xn)(−L̄)] = θ(yα,d)(L̄)− θ(yα,d)(−L̄)

≥ θ(yα,0)(L̄)− θ(yα,0)(−L̄)

> 2π.

Thus, for sufficiently large n, there exist −L̄ < s0 < 0 < s1 < L̄ such that

xn(s0) = xn(s1); θ̇(xn)(s) > 0 for s = s0, s1.

Case 2: d = +∞ In this case, we set for L > 0

zn(s) = δ
−1
n qn(ε

− 12
n δ

2
ns+ tn), s ∈ [−L,L].
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Since ε
− 12
n δ2n → 0, we see that δn|zn(s)| < µ for sufficiently large n for any L > 0.

As in case 1, we find:

|zn(0)| = 1, zn(0).żn(0) = 0;
d
ds
|zn(s)| < 0, ∀ s ∈ [−L, 0[;

d
ds
|zn(s)| > 0, ∀ s ∈]0, L];

zn(s)→ y∞(s) in C2([−L,L];R2)

where y∞ is the solution of the system

ÿ +
2y

|y|4
= 0

y(0) = e1 ẏ(0) =
√
2e2

for a suitable orthogonal basis (e1, e2) of R
2. Then,

y∞(s) = e1 cos
√
2s+ e2 sin

√
2s.

We remark that θ̇(zn) →
√
2 uniformly in [−L,L]. So zn has at least a self

intersection for L >
√
2π
2 .

From the two cases, it follows the existence of t1,n, t2,n ∈]t1, t2[ such that

qn(t1,n) = qn(t2,n);
d
dt |qn(t)| 6= 0 and θ̇(qn)(t) > 0 for t = t1,n, t2,n.

Step 2. The solution qn cannot have a self intersection. Let

qn
∗(t) =

{
qn(t) if t 6∈ [t1,n, t2,n]
qn(t1,n + t2,n − t) if t ∈ [t1,n, t2,n].

We have ∫ T
0

θ̇(qn
∗)(t)dt =

∫ T
0

θ̇(qn)(t)dt = 2π.

Hence qn
∗ ∈ ΛT0 . Since fεn(qn

∗) = fεn(qn) = mεn , qn
∗ must be a solution of

(PT )εn and then of class C
1. This is a contradiction with the fact

lim
t→t1,n−

q̇n
∗(t) = q̇n(t1,n) 6= −q̇n(t2,n) = lim

t→t1,n+
q̇n
∗(t).

Therefore, we proved that q is a non-collision solution of (PT ). The minimality
of the period T follows from the fact that qn → q ∈ ΛT0 .

3 The fixed energy problem

We give an outline of the proof of Theorem 1.2. According to the variational
principle given by [2], we define

I(u) =
1

2

∫ 1
0

|u̇|2dt

∫ 1
0

[h− V (u)]dt
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on the set Mh = {u ∈ Λ10; g(u) = h} where

g(u) =

∫ 1
0

[V (u) +
1

2
V ′(u)u]dt.

We know, if u ∈ Λ10 is any possible solution of (Ph), then g(u) = h. Moreover,
under assumptions (V’0)-(V’4), Mh 6= ∅ is a C1 manifold of codimension 1 and
if u ∈Mh is a critical point of I constrained on Mh such that I(u) > 0, set

w2 =

∫ 1
0 V

′(u)udt∫ 1
0
|u̇|2dt

,

then q(t) = u(wt) is a non-constant classical solution of (Ph).

We modify V , as in section 2, setting

Vε(u) = V (u)−
ε

|u|2
, ε ∈]0, 1].

Let

Iε(u) =
1

2

∫ 1
0

|u̇|2dt

∫ 1
0

[h− Vε(u)]dt.

We remark that

g(u) =

∫ 1
0

[Vε(u) +
1

2
V ′ε (u)u]dt.

It follows from (V’2) that

Iε(u) ≥
h

1
2 −

1
α1

∫ 1
0

|u̇|2dt, ∀u ∈Mh.

Therefore, Iε is bounded below and coercive on Mh. Since Vε is a “strong
force” potential, one can see that Iε is lower semi continuous on Mh and has a
minimum uε on Mh. Set

wε
2 =

∫ 1
0 V

′
ε (uε)uεdt∫ 1
0
|u̇ε|2dt

,

the function qε(t) = uε(wεt) is a solution of the modified system (Ph)ε. Uniform
estimates with respect to ε allow to show that uε converges uniformly on [0, 1]
to u, wε

2 → w2 > 0 and that q(t) = u(wt) satisfies the equations of the system
(Ph) for any t ∈ {t ∈ [0,

1
w ], u(t) 6= 0}.

Repeating the argument of section 2, one prove that q is in fact a non-collision
solution of (Ph) with minimal period. If not, a new minimizer un

∗ ∈Mh for large
n can be constructed; But un

∗ being a minimum of Iεn on Mh correspond to a
solution of (Ph)εn , on the other hand it does not have the required regularity.
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Remark 3.1 (i)The existence of solutions qε of (Ph)ε can be found without
assuming condition (V’1). The proof relies on an application of the mountain-
pass theorem to Iε. However, q(t) = lim qε(t) is a generalized solution of (Ph)
and collisions are possible.
(ii) Theorem 1.2 can be related to the work of Rabinowitz [15] (see also [9]). He
prove under a less restrictive setting than (V’0)-(V’4) that there exists a collision
orbit of (Ph). Combining this result with Theorem 1.2 shows the existence of
a collision and a non-collision periodic solution of (Ph) for a suitable class of
planar singular potentials.

Acknowledgments. I would like to express my gratitude to professor P. H.
Rabinowitz for his interest in this work.

References

[1] A. Ambrosetti and V. Coti Zelati, “Periodic solutions of singular La-
grangian systems”, Birkhauser, Boston, Basel, Berlin, 1993.

[2] A. Ambrosetti and V. Coti Zelati, Closed orbits of fixed energy for singular
Hamiltonian systems, Arch. Rat. Mech. Anal. 112(1990), 339-362.

[3] A. Ambrosetti and V. Coti Zelati, Non-collision orbits for a class of
Keplerian- like potentials, Ann. Inst. H. Poincarre. Anal. Non lineaire, 5
(1988), 287-295.

[4] A.Ambrosetti and M. Struwe, Periodic motions for concervative systems
with singular potentials, No.D.E.A. 1(1994), 179-202.

[5] A.Bahri and P. H. Rabinowitz, A minmax method for a class of Hamilto-
nian systems with singular potentials, J. Funct. Anal. 82, 412-428 (1989).

[6] V.Benci and F. Giannoni, Periodic solutions of prescribed energy for a
class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82, 60-70
(1989).

[7] V. Coti Zelati, Periodic solutions for a class of planar singular dynamical
systems, J. Math. pures et appl. 68, 1989, p. 109 -119.

[8] V. Coti Zelati and E. Serra, Collisions and non-collisions solutions for a
class of Keplerian like dynamicals systems, Tech. report, SISSA, Trieste,
Italy , 1991.

[9] V. Coti Zelati and E. Serra, Multiple brake orbits for some classes of singu-
lar Hamiltonian systems, Nonlinear Analysis, T.M.A., Vol. 20, No. 8, pp.
1001-1012, (1993).

[10] M.Degiovanni and F. Giannoni, Dynamical systems with Newtonian type
potentials, Schol N. Sup. Pisa P.467-493 (1987).



10 Non-collision solutions for Lagrangian systems EJDE–2000/75

[11] W. Gordon, Concervative dynamical systems involving strong forces, Trans.
Amer. Math. Soc. 204 (1975), 113-135.

[12] W. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math.
99(1975), 961- 971.

[13] C. Greco, Periodic solutions of a class of singular Hamiltonian systems,
Nonlinear Analysis, T.M.A. 12 (1988), 259-269.

[14] L. Pisani, Periodic solutions with prescribed energy for singular conserva-
tive systems involving stong forces, Nonlinear Analysis, T.M.A., Vol 21,
No. 3, pp. 167-179, 1993.

[15] P. H. Rabinowitz, A note on periodic solutions of prescribed energy for
singular Hamiltonian systems, J. Comp. Applied Math. 52 (1994), 147-154.

[16] E. Serra and S. Terracini, Noncollision solutions to some singular minimi-
sation problems with Keplerian-like potentials, Nonlinear Analysis, T.M.A.,
Vol. 22, No. 1, pp. 45-62 , (1994).

[17] K. Tanaka, Non-collision solutions for a second order singular Hamilto-
nian system with weak force, Ann. Inst. H. Poincarre. Anal. Non lineaire,
10(1993), 215-238.

[18] K. Tanaka, A prescribed energy problem for a singular Hamiltonian system
with weak force,J. Funct. Anal. 113, (1993), pp. 351-390.

Morched Boughariou
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