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Non-collision solutions for a class of planar
singular Lagrangian systems *

Morched Boughariou

Abstract

In this paper, we show the existence of non-collision periodic solutions
of minimal period for a class of singular second order Hamiltonian systems
in R? with weak forcing terms. We consider the fixed period problem and
the fixed energy problem in the autonomous case.

1 Introduction and statement of results

This paper deals with the existence of non-collision periodic solutions of minimal
period for the problem
G+ Vq(t,q) =0

where ¢ € RN \ {0} with N = 2, the potential V is of the form V(t,q) =
L 1+ W(q) in a neighborhood of ¢ = 0 with 1 < o < 2 and W is such that

" el

lg|*W (q), lg|*T*W'(¢q) — 0 as || — 0.

We will consider to cases: the fized period problem

G+ Vq(t,q) =0
q(t+T) = q(t),

and the fized energy problem (autonomous case)

G+V'(g)=0
sl +V(g) =h (Pr)
q periodic.

The case a > 2 “Strong force” and N > 2 has been studied by many authors.
The existence of classical (non-collision) solutions of (Pr) and (P}) has been
proved via variational methods( See [1, 5, 11, 13, 14]). The case 0 < a < 2
“weak force” is more complicated because the lose of control of the functional,
whose critical points correspond to periodic solutions on the functions passing
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through the origin. Recently, there has been several works which deal with these
two problems for N > 3( See also [1, 2, 4, 8, 17, 18]).

In our situation (N = 2), we refer for the study of (Pr) to Degiovanni-
Giannoni [10], Ambrosetti-Coti Zelati [3], Serra-Terracini [16] where they treated
also case of N > 3, and to Coti Zelati [7]. In [10], they obtained the existence
of classical solutions under a global conditions like

a

g = Vg < gl

In [3], they found solutions of large period T'. In [16]-[7], they used a radially

symmetric assumption on V in a neighborhood of the singularity in order to

get a non-collision solution of (Pr). For the study of (P},), we know the result

of Benci-Giannoni [6] where the existence of classical solution strongly depend

on the pertubation W. The other result has been obtained by Coti Zelati-Serra

[9]. There arguments are based on the fact that the topology of {V < h} is non
trivial; We remark that the case V(q) = —ﬁ is excluded in this work.

In the present paper, we are able to find estimates in minima of suitable
minimisation perturbed problems using a re-scaling argument. Such estimates
give actually non-collision solutions with minimal period to our problems with-
out assuming a radially symmetric condition on V. More precisely, in section
2, we study the fixed period problem; We deal with non-autonomous potentials
V satisfying the hypotheses:

(V0) V € CY(R x RV \ {0};R) and T-periodic in t;
(V1) V(t,q) <0,V (t,q) € [0,T] x RN\ {0};

(VZ) %_‘t/(t’q” < _V(tv(J)’ v (tvq) € [OvT] X RN \ {0};
(V3)

V3) There exist 7 > 0,1 < o < 2 and W € CYRY \ {0},R) satisfying
lq|*W (q), |q|*T*W’(q) — 0 as |q| — 0 such that:

Vg #0. (1.1)

1
V(t,q) = e +Wi(q), VO <lq| <r.

Theorem 1.1 Assume (V0)-(V3) with N = 2. Then for any T > 0, (Pr)
possesses at least one non-collision solution having T as minimal period.

Remark 1.1 For N > 3, Theorem 1.1 was proved in [17] under condition (V3)
by Morse theoretical arguments.

In section 3, we study the fixed energy problem. Here, we assume:
(V0) V € C2(RM\ {0}, R);
(V1) 3V'(g)q +V"(q)gq > 0, V ¢ # 0;
(V’2) There exists an constant oy €]0,2[ such that:
V'(9)g = —aaV(g) >0, ¥V q # 0;
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(V’3) Liminf[V(q) + 3V'(q)q] > 0 as |g| — oo;
(V’4) The same as (V3) with V (¢,q) = V(q).

Theorem 1.2 Assume (V’0)-(V’}) with N = 2. Then for any h < 0, (Pp)
possesses at least one classical solution with a minimal period.

Remark 1.2 i) For N > 3, (V’1) is used in [2] to prove ezistence of a gen-
eralized solution (that may enter the singularity) and in [18] to avoid collision
solutions in the case N =3 and 1 < a < %.

ii) Assumptions (V’1)-(V’2) can be made only in {V < h} (See [2]).

Notation. For any u € H*([0,T]; R?), we note u(t) = (Ju(t)|,#(u)(t)) in polar
coordinates. We consider the following function space:

ET = {u e H'([0,T;:R?); u(0) = u(T); /0 0(u) (t)dt = 27},

i.e., EL is the set of T-periodic functions u € H'([0,7];R?) such that 6 :
[0,7]/{0,T} ~ S* — S* has degre 1.
We shall work in the function set:

AL ={ue EL; ut) #0Vt}.

2 The fixed period problem

In this section we proof Theorem 1.1. Let us define

ot T
f(q)—2/O |g)dt /OV(t,q)dt.

It is well known that f € C*(AZ;R) and any critical point u € AJ is a solution
of (PT)

Since we deal with “weak force” potentials, we know the existence of situa-
tion where the minimum of f is assumed on functions going through the origin(
See [12]). For any e €]0, 1], we introduce the perturbed potential:

g
Ve(t,q) = V(t,q) — I

The corresponding Lagrangian systems are

i+ (Ve)gltsq) =0
Yot D)~ a0 (Pr)e

and the associated functionals are

1 T'2 T
<(q) == dt — V. (t, q)dt.
f@ =5 [ lia— [ Vg
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One has that f-(g,) — +00 as g, — AL weakly in H1([0,T];R?). We recall

that in AZ,
T
er41|Wﬁﬁ

is a norm. Set
me = inf fe(q).
€ . g 6( )

The following result is closely related to this of [11] (See [1]).

Lemma 2.1 For any € €]0,1], m¢ is a critical value for f.; i.e. there exists
ge € A(j; such that fE(qE) =me and fé(‘k) =0.

The fact that f.(gc) = me < my implies

1 (T
—/ |Ge|dt < mq (2.1)
2.Jo
and
T
/ V(t,qe)dt < mj. (2.2)
0

It follows from 2.1 the existence of ,, — 0 such that
qn = q=, — q weakly in H'([0,T]; R?) and uniformly in [0, 7].
We say that ¢ is a weak solution of (Pr) in the sense of [1].
Setting C(q) = {t € [0,T], ¢q(t) = 0}, one can see from 2.2 and (V3), that
mesC(q) = 0 (Lebesgue measure). Moreover, we have
¢n — q in C*(K;R?), V K compact C [0,T]\ C(q). (2.3)
Hence, we have that

d+‘/q(taQ) =0,Vte [07T]\C(q)

Therefore g is a generalized solution of (Pr) in the sense of [5].
Now, we state these properties of approximated solutions g,,:

Lemma 2.2 (i) There exists an constant C1 > 0 independent of n, such that
5dal? + Vitan) = 5] < €
514 ydn) — T2 1 = L1
2™ " lanl?

(ii) There exist constants 0 < p < r and C2 > 0 independent of n, such that:

1 d?

S lan (O 2 Co, ¥t Jan(t)] < .
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Proof. (i) follows from (V2) and 2.2, while for (ii), it is a consequence of (i)
and (V3). For more details, we refer to [8, 1].

Remark 2.1 (ii) of Lemma 2.2 does not hold in general when q is merely a
generalized solution of (Pr) as in [17].

Proof of theorem 1.1. We will prove how the function ¢ is actually a non-
collision solution of (Pr). We suppose that ¢ has a collision in ¢. The contra-
diction will be showed in two steps.

Step 1. The solution g, have a self-intersection. We study the angle that the
approximated solution ¢, describes close to the singularity. By (ii) of Lemma
2.2 and 2.3, we get

1 d°
5@'61(2&)'2 >Cy>0,Vt: 0<|q(®)| < p.

Take po < min(u,r) and ¢t; < t < t3 such that

I
lq(t2)] = la(t2)| = 70

This implies that, for sufficiently large n,

Ho
7 < lgn(t1)]; lgn(t2)] < o,

|gn ()] < o, VT € [t1,t2].
Let ¢, € [t1,t2] be such that

|gn(tn)| = min |gn(t)].
t€[ty,t2]

Then, we have

d
E|Qn(t)| < 07 Vie [tlatn[

d
Zlan(®)] > 0, ¥t ltn, 2],

Now, we will use a re-scaling argument as in ([17]-[18]). We set for any L > 0,
a+2

Tn(s) = 6;1%(5,78 +tn), s€[-L, L]

ot2
when 0, = |¢»(tn)| — 0. Let us remark that for sufficiently large n, 0,> s+t, €
[t1,t2] for s € [-L, L] and then 6, |z, (s)| < p. Hence, z,(s) satisfies

(i) |2n(0)] = 1; 2n(0).22(0) = 05 L|an(s)] <0, Vs € [-L,0[;
d%|acn(s)| >0, Vs €]0,L];
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(i) &n + 22 + 65 W (6a2n) + 522 1225 = 05

6n lanl?

(iil) |5lEnl® = o + O W (6nzn) — | < Cy6e.

W

We may assume the existence -up a subsequence- of

d= lim ;—fa € [0, 0]

n—0o0 n

We consider the following two cases:

Casel: d < oo From (i) and (iii), we may assume

zn(0) — e
Zn(0) — 2(1+d)es
where (e, es) is an orthogonal basis of R%2. By the continuous dependence

of solutions in initial data and equations, one can see from (V3) that, x,(s)
converge to a function y, 4 in C?(—L, L;R?) where Ya,d is the solution of

ay dy
lylot2  [y|

y(0) =e1, 9(0) = v/2(1 +d)ez.

y+

Here we state some properties of y, ¢ (c.f. [17]-[18]).

Ya,a(s )|=|yao( ) =1, VseR; (2.4)
Yer.d ()20 (a.a) (s) = \/2(1 + d), Vs € R; (2.5)
lims— — oo 9(ya,o)( ) = —ﬁ, (2.6)
limg 4 00 0(Ya,0)(8) = +575. (2.7)

Since 1 < a < 2, we get from 2.4-2.7, the existence of L > 0 such that

Jim [0(zn)(L) = 0(zn)(—L)] = 0(ya,a)(L) = 0(ya,a)(—L)
> 0(Ya0)(L) = 0(Ya0)(—L)
> 2.

Thus, for sufficiently large n, there exist —L < sg < 0 < 51 < L such that

Zn(S0) = Zn(s1); G(xn)(s) > 0 for s = sg, $1.

Case 2: d = 400 In this case, we set for L > 0

n(8) = 0 Lan(en 2625 + 1), s € [ L, L.
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_1
Since €, 262 — 0, we see that 6,|2,(s)| < p for sufficiently large n for any L > 0.
As in case 1, we find:

|2, (0)] =1, 2,(0).2,(0) = 0;
L12,(s) <0, Vs€[-L,0[; Liz,(s)|>0,Vselo,L];
2n(8) = Yoo (s) in C?([-L, L];R?)

where Y is the solution of the system

j+—5=0
ly[*
y(0)=e1  (0) = V2e,
for a suitable orthogonal basis (e1, e2) of R2. Then,

Yoo(S) = €1 cosV/2s + ey siny/2s.

We remark that 6(z,) — +/2 uniformly in [-L, L]. So z, has at least a self

intersection for L > @
From the two cases, it follows the existence of 1y, t2 n €]t1, t2] such that

Qn(tl,n) = Qn(tln);
%|qn(t)| # 0 and 0(gy)(t) > 0 for t = t1 5,2 p.

Step 2. The solution ¢, cannot have a self intersection. Let

" Qn(tl,n + t2,n - t) if ¢ S [tl,na t2,n]'

We have
T . T .
/ 0(gn™)(t)dt = / 0(gn)(t)dt = 2m.
0 0

Hence g,* € AJ. Since fc, (gn*) = fe,(qn) = mMe,, ¢,* must be a solution of
(Pr)e, and then of class C'. This is a contradiction with the fact

lim q.n*(t) = Qn(tl,n) # _Qn(t2,n) = lim q.n*(t)'

t—t1,n " t—ty,n T

Therefore, we proved that ¢ is a non-collision solution of (Pr). The minimality
of the period T follows from the fact that ¢, — ¢ € A7

3 The fixed energy problem

We give an outline of the proof of Theorem 1.2. According to the variational
principle given by [2], we define

I(u) = %/01 |a|2dt/01[h _V(w)dt
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on the set My, = {u € A}; g(u) = h} where

g(u) = /o [V (u) + %V’(u)u]dt.

We know, if u € A} is any possible solution of (P), then g(u) = h. Moreover,
under assumptions (V’0)-(V’4), M, # 0 is a C! manifold of codimension 1 and
if u € My, is a critical point of I constrained on M}, such that I(u) > 0, set

2 fol V' (u)udt
Jo it
then ¢(t) = u(wt) is a non-constant classical solution of (Pp,).
We modify V', as in section 2, setting

Ve(u) = V(u) - W e €0, 1].

Let
1 1
L) = [ fapat [ h- Vi)
2 /o 0
We remark that
1
1
gw) = [ Valw) + 3V (u)ule.
0
It follows from (V’2) that

I.(u) > h

1
/ |u|?dt, Yu € My,.
0

11
2 aq

Therefore, I. is bounded below and coercive on M. Since V. is a “strong
force” potential, one can see that I. is lower semi continuous on M} and has a
minimum u. on Mp. Set

2 fol V. (ue)uedt
T o laepar
the function ge (t) = ue(wet) is a solution of the modified system (Pp,)e. Uniform
estimates with respect to ¢ allow to show that w. converges uniformly on [0, 1]
to u, w2 — w? > 0 and that ¢(t) = u(wt) satisfies the equations of the system
(Py) for any t € {t € [0, 1], u(t) # 0}.

Repeating the argument of section 2, one prove that ¢ is in fact a non-collision
solution of (P;,) with minimal period. If not, a new minimizer u,,* € Mj, for large
n can be constructed; But u,* being a minimum of I, on M}, correspond to a
solution of (Py)e, , on the other hand it does not have the required regularity.
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Remark 3.1 (i)The existence of solutions ¢. of (Pr). can be found without
assuming condition (V’1). The proof relies on an application of the mountain-
pass theorem to I.. However, ¢(t) = lim g.(t) is a generalized solution of (Py)
and collisions are possible.

(ii) Theorem 1.2 can be related to the work of Rabinowitz [15] (see also [9]). He
prove under a less restrictive setting than (V’0)-(V’4) that there exists a collision
orbit of (P). Combining this result with Theorem 1.2 shows the existence of
a collision and a non-collision periodic solution of (Pp,) for a suitable class of
planar singular potentials.

Acknowledgments. I would like to express my gratitude to professor P. H.
Rabinowitz for his interest in this work.
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