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INTERNAL EXACT CONTROLLABILITY OF THE LINEAR
POPULATION DYNAMICS WITH DIFFUSION

BEDR’EDDINE AINSEBA, SEBASTIAN ANIŢA

Abstract. We consider the internal exact controllability of a linear age and

space structured population model with nonlocal birth process. The control
acts only in a spatial subdomain and only for small age classes. The methods

we use combine the Carleman estimates for the backward adjoint system, some

estimates in the theory of parabolic boundary value problems in Lk and the
Banach fixed point theorem.

1. Introduction

Let Ω be a bounded domain in Rn (n ≤ 3) with a smooth boundary ∂Ω. Assume
that a biological population is free to move in the environment Ω. We denote by
y(a, t, x) the density of individuals of age a ≥ 0 at time t ≥ 0 and location x ∈ Ω and
assume that the flux of population takes the form k∇y(a, t, x) with k > 0, where
∇ is the gradient vector with respect to the spatial variable. Let A be the life
expectancy of an individual and T be a positive constant. Let β(a) be the natural
fertility rate and µ(a) the natural mortality rate corresponding to individuals of
age a. The dynamics of the population is described by the following model

Dy + µ(a)y − k∆y = f(a, x) +m(a, x)u(a, t, x), (a, t, x) ∈ QT
∂y

∂ν
(a, t, x) = 0, (a, t, x) ∈ ΣT

y(0, t, x) =
∫ A

0

β(a)y(a, t, x)da, (t, x) ∈ (0, T )× Ω

y(a, 0, x) = y0(a, x), (a, x) ∈ (0, A)× Ω,

(1.1)

where u is the control and m is the characteristic function of (0, a∗) × ω, f is the
density of an infusion of population and y0 is the initial population density. Here
a∗ ∈ (0, A] and ω ⊂⊂ Ω is a nonempty open subset, QT = (0, A) × (0, T ) × Ω,
ΣT = (0, A)× (0, T )× ∂Ω.

We denote by

Dy(a, t, x) = lim
ε→0

y (a+ ε, t+ ε, x)− y (a, t, x)
ε
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the directional derivative of y with respect to the direction (1, 1, 0). If y is smooth
enough then

Dy =
∂y

∂t
+
∂y

∂a
.

The control acts only in the spatial set ω and for ages between 0 and a∗.
Let ys be a nonnegative steady-state of (1.1), corresponding to u ≡ 0 and such

that
ys(a, x) ≥ ρ0 > 0 a.e. (a, x) ∈ (0, a∗1)× Ω, (1.2)

where ρ0 > 0 is constant and a∗1 ∈ (0, A) is a constant which will be defined later.
The main goal of this paper is to prove the existence of a control u such that

the solution y of (1.1) satisfies

y(a, T, x) = ys(a, x) a.e. (a, x) ∈ (0, A)× Ω,

y(a, t, x) ≥ 0 a.e. (a, t, x) ∈ QT .
(1.3)

Condition (1.3) is natural because y represents the density of a population. We
notice that if y is the solution to (1.1), then y − ys is the solution to

Dz + µ(a)z − k∆z = m(a, x)u(a, t, x), (a, t, x) ∈ QT
∂z

∂ν
(a, t, x) = 0, (a, t, x) ∈ ΣT

z(0, t, x) =
∫ A

0

β(a)z(a, t, x)da, (t, x) ∈ (0, T )× Ω

z(a, 0, x) = z0(a, x), (a, x) ∈ (0, A)× Ω,

(1.4)

where z0 = y0 − ys.
The above formulated problem is equivalent to the exact null controllability

problem with state constraints for (1.4). Indeed, if we denote now by z the solution
to (1.4), then condition (1.3) becomes

z(a, t, x) ≥ −ys(a, x) a.e. (a, t, x) ∈ QT .
We recall that the internal null controllability of the linear heat equation, when
the control acts on a subset of the domain, was established by G. Lebeau and
L. Robbiano [13] and was later extended to some semilinear equation by A.V.
Fursikov and O.Yu. Imanuvilov [6], in the sublinear case and by V. Barbu [4] and
E. Fernandez–Cara [5], in the superlinear case. The internal null controllability of
the age-dependent population dynamics in the particular case when the control acts
in a spatial subdomain ω but for all ages a (this is the particular case corresponding
to a∗ = A) was investigated by B. Ainseba and S. Aniţa [2].

This paper is organized as follows. We first give the hypotheses and state the
main result. The existence of a steady–state of (1.1) with u ≡ 0 is established in
Section 3. The proof of the local exact null controllability is given in Section 4. The
proof is based on Carleman’s inequality for the backward adjoint system associated
with (1.4).

2. Assumptions and the main result

Assume that the following hypotheses hold:
(H1) β ∈ L∞(0, A), β(a) ≥ 0 a.e. a ∈ (0, A)

There exists a0, a1 ∈ (0, A), a0 < a1, such that β(a) = 0 a.e.
a ∈ (0, a0) ∪ (a1, A) and β(a) > 0 a.e. in (a0, a1)
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(H2) µ ∈ C([0, A)), µ(a) ≥ 0 a.e. a ∈ (0, A),
∫ A
0
µ(a)da = +∞

(H3) y0 ∈ L∞((0, A)× Ω), y0(a, x) ≥ 0 a.e. in (0, A)× Ω
f ∈ L∞((0, A)× Ω), f(a, x) ≥ 0 a.e. in (0, A)× Ω.

For the biological significance of the hypotheses and the basic existence results
for the solution to (1.1) we refer to [3, 7, 8, 9, 11, 15].

Let ys be a nonnegative steady-state of (1.1), corresponding to u ≡ 0 and such
that

ys(a, x) ≥ ρ0 > 0 a.e. (a, x) ∈ (0, a1)× Ω,

where ρ0 > 0 is a constant.
Denote by z0 = y0−ys. Then we have the following internal controllability result

Theorem 2.1. Let T > A − a∗ be arbitrary but fixed. If ‖y0 − ys‖L∞((0,A)×Ω)

is small enough, then there exists u ∈ L2(QT ) such that the solution y of (1.1)
satisfies

y(a, T, x) = ys(a, x) a.e. (a, x) ∈ (0, A)× Ω

y(a, t, x) ≥ 0 a.e. (a, t, x) ∈ QT .
(2.1)

If T < A − a∗ and if ‖y0 − ys‖L∞((a∗,A−T )×Ω) > 0, then there is no u ∈ L2(QT )
such that the solution y of (1.1) to satisfy (2.1).

This result can be equivalently formulated as follows

Theorem 2.2. Let T > A− a∗ be arbitrary but fixed. If ‖z0‖L∞((0,A)×Ω) is small
enough, then there exists u ∈ L2(QT ) such that the solution z of (1.4) satisfies

z(a, T, x) = 0 a.e. (a, x) ∈ (0, A)× Ω

z(a, t, x) ≥ −ys(a, x) a.e. (a, t, x) ∈ QT .
(2.2)

If T < A − a∗ and if ‖z0‖L∞((a∗,A−T )×Ω) > 0, then there is no u ∈ L2(QT ) such
that the solution z of (1.4) to satisfy (2.2).

3. Existence of steady states for (1.1)

In this section we shall remind some results (see [2]) concerning the existence
of ys, a nonnegative steady-state of (1.1), corresponding to u ≡ 0, which satisfies
(1.2). ys should be a solution to

∂ys
∂a

+ µ(a)ys − k∆ys = f(a, x), (a, x) ∈ (0, A)× Ω

∂ys
∂ν

(a, x) = 0, (a, x) ∈ (0, A)× ∂Ω

ys(0, x) =
∫ A

0

β(a)ys(a, x)da, x ∈ Ω .

(3.1)

Denote by

R =
∫ A

0

β(a) exp
(
−

∫ a

0

µ(s)dsda
)

the reproductive number and consider f0 a nonnegative constant.

Theorem 3.1. • If R < 1 and f(a, x) ≥ f0 > 0 a.e. (a, x) ∈ (0, A) × Ω,
then there exists a unique nonnegative solution to (3.1), which in addition
satisfies (1.2).
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• If R = 1 and f ≡ 0, then there exist infinitely many nonnegative solutions
to (3.1), which satisfy (1.2).

• If R > 1, then there is no nonnegative solution to (3.1), satisfying (1.2).

Proof. If R < 1, then there exists a unique and nonnegative solution to (3.1) (this
follows by Banach’s fixed point theorem). Since f(a, x) ≥ f0 > 0 a.e. (a, x) ∈
(0, A)× Ω, then by the comparison result in [7](see also [3]) we get that

ys(a, x) ≥ yi(a, t, x) a.e. (a, t, x) ∈ Q = (0, A)× (0,+∞)× Ω,

where yi is the solution to

Dyi + µyi − k∆yi = f0, (a, t, x) ∈ Q
∂yi
∂ν

= 0, (a, t, x) ∈ Σ

yi(0, t, x) =
∫ A

0

β(a)yi(a, t, x)da, (t, x) ∈ (0,+∞)× Ω

yi(a, 0, x) = 0, (a, x) ∈ (0, A)× Ω

Note that Σ = (0, A)× (0,+∞)× ∂Ω); yi does not explicitly depend on x. So, we
shall write yi(a, t) instead of yi(a, t, x). It means that

ys(a, x) ≥ yi(a, t) ∀t ∈ [0,+∞), a.e.(a, x) ∈ (0, A)× Ω,

and that yi is the solution of

Dyi + µyi = f0, (a, t) ∈ (0, A)× (0,+∞)

yi(0, t) =
∫ A

0

β(a)yi(a, t)da, t ∈ (0,+∞)

yi(a, 0) = 0, a ∈ (0, A).

For t > A we have yi(0, t) > 0 and yi(0, t) is continuous with respect to t (see [3]).
As a consequence we obtain that there exists ρ0 > 0 such that, for t large enough,
and for any a ∈ (0, a∗1),

yi(a, t) > ρ0,

and in conclusion we get that ys satisfies (1.2).
If R = 1 and f ≡ 0, then all the solutions of (3.1) which are satisfying (1.2) are

given by
y(a, x) = ce−

∫ a
0 µ(s)ds, (a, x) ∈ (0, A)× Ω,

where c ∈ R∗+ is an arbitrary constant. The conclusion is now obvious.
If R > 1 and if it would exist a nonnegative solution ys to (3.1) satisfying (1.2),

then y(a, t, x) = ys(a, x), (a, t, x) ∈ Q is the solution to

Dy + µy − k∆y = f(a, x), (a, t, x) ∈ Q
∂y

∂ν
= 0, (a, t, x) ∈ Σ

y(0, t, x) =
∫ A

0

β(a)y(a, t, x), (t, x) ∈ (0,+∞)× Ω

y(a, 0, x) = ys(a, x), (a, x) ∈ (0, A)× Ω

and for t→ +∞ we have (see [3, 12])

lim
t→+∞

‖y(t)‖L2((0,A)×Ω) = +∞.
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On the other hand
‖y(t)‖L2((0,A)×Ω) = ‖ys‖L2((0,A)×Ω),

and so ‖ys‖L2((0,A)×Ω) = +∞, which is absurd. �

4. Proof of the main result

We shall prove Theorem 2.2 (which is equivalent to Theorem 2.1). We intend
to use the general Carleman inequality for linear parabolic equations given in [6].
Namely, let ω̃ ⊂⊂ ω be a nonempty bounded set, T0 ∈ (0,+∞) and ψ ∈ C2(Ω) be
such that

ψ(x) > 0, ∀x ∈ Ω, ψ(x) = 0, ∀x ∈ ∂Ω, |∇ψ(x)| > 0, ∀x ∈ Ω \ ω̃

and set

α(t, x) =
eλψ(x) − e2λ‖ψ‖C(Ω)

t(T0 − t)
,

where λ is an appropriate positive constant. Denote by DT0 = (0, T0)× Ω.

Lemma 4.1. There exist positive constants C1, s1 such that

1
s

∫
DT0

t (T0 − t) e2sα
(
|wt|2 + |∆w|2

)
dx dt

+ s

∫
DT0

e2sα

t (T0 − t)
|∇w|2 dx dt+ s3

∫
DT0

e2sα

t3 (T0 − t)3
|w|2 dx dt

≤ C1

[ ∫
DT0

e2sα |wt + ∆w|2 dx dt+ s3
∫

(0,T0)×ω

e2sα

t3 (T0 − t)3
|w|2 dx dt

]
,

(4.1)

for all w ∈ C2(DT0),
∂w
∂ν (t, x) = 0, ∀(t, x) ∈ (0, T0)× ∂Ω and s ≥ s1.

The proof of this result can be found in [6].
If a∗ = A, the result has already been proved in [2]. We shall treat now the case

a∗ ∈ (0, A). Consider a∗1 := a∗. Let us choose T0 ∈ (0,min{a0, a
∗, A− a∗, T − A+

a∗, A− a1}). Define
K = L∞ ((0, A− a∗ + T0)× Ω) .

In what follows we shall denote by the same symbol C, several constants indepen-
dent of z0 and all other variables. For b ∈ K arbitrary but fixed and for any ε > 0,
consider the following optimal control problem:
Minimize{∫

G

∫
Ω

ϕ(a, t, x)|u(a, t, x)|2dx dt da+
1
ε

∫
Γ0

∫
Ω

|z(a, t, x)|2 dx dl
}
, (4.2)

subject to (4.3) (u ∈ L2(G× Ω) and z is the solution of (4.3) corresponding to u).
Here

G = (0, a∗)× (0, T0) ∪ (0, T0)× (0, A− a∗ + T0),

Γ0 = {T0} × (T0, A− a∗ + T0) ∪ (T0, a
∗)× {T0},

ϕ(a, t, x) =

{
e−2sα(t,x)t3(T0 − t)3, if t < a, (a, t) ∈ G
e−2sα(a,x)a3(T0 − a)3, if a < t, (a, t) ∈ G
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(See figure 1).

Dz + µz − k∆z = m(a, x)u(a, t, x), (a, t, x) ∈ G× Ω
∂z

∂ν
= 0, (a, t, x) ∈ G× ∂Ω

z(0, t, x) = b(t, x), (t, x) ∈ (0, A− a∗ + T0)× Ω

z(a, 0, x) = z0(a, x), (a, x) ∈ (0, a∗)× Ω.

(4.3)
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Figure 1.

Denote by Ψε(u) the value of the cost function in u. Since the cost function
Ψε : L2(G× Ω) → R+ is convex, continuous and

lim
‖u‖L2(G×Ω)→+∞

Ψε(u) = +∞,

then it follows that there exists at least one minimum point for Ψε and consequently
an optimal pair (uε, zε) for (Pε). By standard arguments we have

uε(a, t, x) = m̃(x)qε(a, t, x)ϕ−1(a, t, x) a.e. (a, t, x) ∈ G× Ω, (4.4)

where m̃ is the characteristic function of ω and qε is the solution of

Dq − µq + k∆q = 0, (a, t, x) ∈ G× Ω
∂q

∂ν
= 0, (a, t, x) ∈ G× ∂Ω

q(a, t, x) = 0, (a, t, x) ∈ (Γ \ Γ0)× Ω

q(a, t, x) = −1
ε
zε(a, t, x), (a, t, x) ∈ Γ0 × Ω.

(4.5)

Here Γ = (0, T0)× {A− a∗ + T0} ∪ {a∗} × (0, T0) ∪ Γ0.
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Multiplying the first equation in (4.5) by zε and integrating on G×Ω we obtain
after some calculation (and using (4.3) and (4.4)) that∫

G

∫
ω

ϕ(a, t, x)|uε(a, t, x)|2dx da dt+
1
ε

∫
Γ0

∫
Ω

|zε(a, t, x)|2dx dl

= −
∫ A−a∗+T0

0

∫
Ω

b(t, x)qε(0, t, x)dx dt−
∫ a∗

0

∫
Ω

z0(a, x)qε(a, 0, x)dx da.

Let S be an arbitrary characteristic line of equation

S = {(γ + t, θ + t); t ∈ (0, T0), (γ, θ) ∈ (0, a∗ − T0)× {0} ∪ {0} × (0, A− a∗)} .

Define

ũ(t, x) = u(γ + t, θ + t, x), (t, x) ∈ (0, T0)× Ω

z̃ε(t, x) = zε(γ + t, θ + t, x), (t, x) ∈ (0, T0)× Ω

q̃ε(t, x) = qε(γ + t, θ + t, x), (t, x) ∈ (0, T0)× Ω

µ̃(t) = µ(γ + t), t ∈ (0, T0).

Note that (ũε, z̃ε) satisfies

(z̃ε)t + µ̃z̃ε − k∆z̃ε = m̃(x)ũε(t, x), (t, x) ∈ (0, T0)× Ω

∂z̃ε
∂ν

= 0, (t, x) ∈ (0, T0)× ∂Ω

z̃ε(0, x) =

{
b(θ, x) γ = 0, x ∈ Ω
z0(γ, x) θ = 0, x ∈ Ω

(4.6)

By (4.4) we get that

ũε(t, x) = m̃(x)q̃ε(t, x) ·
e2sα(t,x)

t3(T0 − t)3
(4.7)

a.e. (t, x) ∈ (0, T0)× Ω,

(q̃ε)t + k∆q̃ε = µ̃q̃ε, (t, x) ∈ (0, T0)× Ω

∂q̃ε
∂ν

= 0, (t, x) ∈ (0, T0)× ∂Ω

q̃ε(T0, x) = −1
ε
z̃ε(T0, x) x ∈ Ω.

(4.8)

Multiplying the first equation in (4.8) by z̃ε and integrating on DT0 , we obtain that

∫ T0

0

∫
ω

e−2sα(t,x)t3(T0 − t)3|ũε(t, x)|2dx dt+
1
ε

∫
Ω

|z̃ε(T0, x)|2dx

= −
∫

Ω

z̃ε(0, x)q̃ε(0, x)dx.
(4.9)
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By Carleman’s inequality (4.1) we infer that∫ T0

0

∫
Ω

e2sα[
t(T0 − t)

s

(
|(q̃ε)t|

2 + |∆q̃ε|2
)

+
s

t(T0 − t)
|∇q̃ε|2

+
s3

t3(T0 − t)3
|q̃ε|2]dx dt

≤ C1

[ ∫ T0

0

∫
Ω

e2sα‖µ̃‖2
C([0,T0])

· |q̃ε|2 dx dt+ s3
∫

(0,T0)×ω

e2sα

t3(T0 − t)3
|q̃ε|2 dx dt

]
and consequently∫ T0

0

∫
Ω

e2sα[
t(T0 − t)

s

(
| (q̃ε)t |

2 + |∆q̃ε|2
)

+
s

t(T0 − t)
|∇q̃ε|2

+
s3

t3(T0 − t)3
|q̃ε|2]dx dt

≤ C

∫ T0

0

∫
ω

e2sα
s3

t3(T0 − t)3
|q̃ε|2 dx dt,

(4.10)

for s ≥ max(s1, C‖µ‖
2
3
C([0,a∗])). Multiplying the first equation in (4.8) by q̃ε we

obtain that
1
2
d

dt

∫
Ω

|q̃ε(t, x)|2 dx− k

∫
Ω

|∇q̃ε(t, x)|2 dx−
∫

Ω

µ̃(t) |q̃ε(t, x)|2 dx = 0

and
d

dt

∫
Ω

|q̃ε(t, x)|2 dx ≥ 0 a.e. t ∈ (0, T0).

Integrating the last inequality we get that∫
Ω

|q̃ε(0, x)|2 dx ≤ C

∫ T0

0

∫
Ω

|q̃ε(t, x)|2
e2sα(x,t)

t3 (T0 − t)3
dx.

and by Carleman’s inequality we have that∫
Ω

|q̃ε(0, x)|2 dx ≤ C

∫ T0

0

∫
ω

|q̃ε(t, x)|2 ·
e2sα(x,t)

t3(T0 − t)3
dx dt. (4.11)

By Young’s inequality, (4.9), (4.11) and (4.7) we obtain that∫
(0,T0)×ω

e−2sαt3(T0 − t)3 |ũε(t, x)|2 dx dt+
1
ε

∫
Ω

|z̃ε(T0, x)|2 dx

≤ C‖z̃ε(0)‖2
L2(Ω),

for s ≥ max(s1, C‖µ‖
2
3
C([0,a∗])). Using now (4.10) we get∫ T0

0

∫
Ω

e2sα[
t(T0 − t)

s

(
| (q̃ε)t |

2 + |∆q̃ε|2
)

+
s

t(T0 − t)
|∇q̃ε|2 +

s3

t3(T0 − t)3
|q̃ε|2]dx dt ≤ C‖z̃ε(0)‖2

L2(Ω),

for any ε > 0 and consequently

‖ṽε‖2
W 1,2

2 ((0,T0)×Ω)
≤ C‖z̃ε(0)‖2

L2(Ω),
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where ṽε(t, x) = e2sα(t,x)

t3(T0−t)3 q̃ε, (t, x) ∈ (0, T0)× Ω. As

W 1,2
2 ((0, T0)× Ω) ⊂ Ll((0, T0)× Ω)

(where l = +∞ for N = 1, 2 and l = 10 for N = 3), we may infer that

‖ũε‖2
L10((0,T0)×Ω) = ‖mṽε‖2

L10((0,T0)×Ω) ≤ C‖z̃ε(0)‖2
L2(Ω), (4.12)

for any ε > 0 and s ≥ max(s1, C‖µ‖
2
3
C([0,a∗])).

The last estimate and the existence theory of parabolic boundary value problems
in Lr (see [10]) imply that on a subsequence (also denoted by (ũε)) we have that

ũε → ũ weakly in L10 ((0, T0)× Ω)

z̃ε → z̃ũ weakly in W 1,2
10 ((0, T0)× Ω) ,

where
(
ũ, z̃ũ

)
satisfies (4.6) and

z̃ũ(T0, x) = 0 a.e. x ∈ Ω.

By (4.6) we get that

‖z̃ũ‖2

L∞
(
(0,T0)×Ω

) ≤ C
(
‖z̃ũ(0)‖2

L∞(Ω) + ‖mũ‖2
L3((0,T0)×Ω)

)
(we recall that W 1,2

3 ((0, T0)× Ω) ⊂ L∞ ((0, T0)× Ω) for N ∈ {1, 2, 3}; see [1, 10]).
So by (4.12) we have

‖z̃ũ‖2
L∞((0,T0)×Ω) ≤ C‖z̃ũ(0)‖2

L∞(Ω).

We extend u given by ũ (on each characteristic line) by 0. In this manner we
get that u ∈ L2(QT ).

Let zu be the solution to

Dz + µz − k∆z = m(a, x)u(a, t, x), (a, t, x) ∈ (0, A)× (0, A− a∗ + T0)× Ω
∂z

∂ν
= 0, (a, t, x) ∈ (0, A)× (0, A− a∗ + T0)× ∂Ω

z(0, t, x) = b(t, x), (t, x) ∈ (0, A− a∗ + T0)× Ω

z(a, 0, x) = z0(a, x), (a, x) ∈ (0, A)× Ω.

Since zu = 0 on Γ0×Ω and u = 0 outside G×Ω we conclude that zu(a, t, x) = 0 a.e.
in {(a, t, x); t ∈ (T0, A−a∗+T0), T0 < a < t+a∗−T0, x ∈ Ω}, zu(a,A−a∗+T0, x) =
0 a.e. (a, x) ∈ (T0, A)× Ω and that

‖zu‖L∞(QA−a∗+T0 ) ≤ C(‖z0‖L∞((0,A)×Ω) + ‖b‖L∞((0,A−a∗+T0)×Ω)). (4.13)

We are now ready to prove the exact null controllability result. For any b ∈ K,
we denote by Φ(b) ⊂ L2((0, A − a∗ + T0) × Ω) the set of all

∫ A
0
β(a)zu(a, t, x)da,

such that u ∈ L2(QA−a∗+T0), u = 0 outside G× Ω, where zu satisfies (4.13) and

zu(a, t, x) = 0

a.e. in {(a, t, x); t ∈ (T0, A− a∗ + T0), T0 < a < t+ a∗ − T0, x ∈ Ω},
zu(a,A− a∗ + T0, x) = 0, a.e. (a, x) ∈ (T0, A)× Ω.

There exists an element in Φ(b) which does not depend on b:
If t > T0, then

∫ A
0
β(a)zu(a, t, x)da =

∫ A
t
β(a)zu(a, t, x)da and does not depend on

b.
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If t ∈ (0, T0), then
∫ A
0
β(a)zu(a, t, x)da =

∫ A−T0

T0
β(a)zu(a, t, x)da, and this depends

only on z0 and not on b.
We also have that zu(a,A− a∗ + T0, x) = 0 a.e. (a, x) ∈ (T0, A)× Ω and∣∣ ∫ A−T0

T0

β(a)zu(a, t, x)da
∣∣ ≤ C‖β‖L∞(0,A) · ‖z0‖L∞((0,A)×Ω) (4.14)

a.e. in (0, A− a∗ + T0)× Ω. It also follows that∫ A

0

β(a)zu(a, t, x)da =
∫ T0

0

β(a)zu(a, t, x)da+
∫ A

A−T0

β(a)zu(a, t, x)da = 0

a.e. (t, x) ∈ (A− a∗, A− a∗ + T0) (because β(a) = 0 on (0, T0) ∪ (A− T0, A)). So,
for any u as above we can take

b(t, x) =

{
0 a.e. (t, x) ∈ (A− a∗, A− a∗ + T0)× Ω∫ A
0
β(a)zu(a, t, x)da a.e. (t, x) ∈ (0, A− a∗)× Ω

a fixed point of the multivalued function Φ. In addition, by (4.13) and (4.14) we
have

‖zu‖L∞(QA−a∗+T0 ) ≤ C‖z0‖L∞((0,A)×Ω).

So, if ‖z0‖L∞((0,A)×Ω) is small enough, there exists u ∈ L2(QA−a∗+T0), u = 0
on (a∗, A) × (A − a∗, A − a∗ + T0) × Ω, such that z, the solution of (1.4) (with
T := A− a∗ + T0) satisfies

z(a,A− a∗ + T0, x) = 0 a.e. (a, x) ∈ (0, A)× Ω,

‖z‖L∞(QA−a∗+T0 ) ≤ C‖z0‖L∞((0,A)×Ω) ≤ ρ0 .

In conclusion z(a, t, x) ≥ −ρ0 a.e. (a, t, x) ∈ QA−a∗+T0 . This implies (via Theorem
3.1) that

z(a, t, x) ≥ −ys(a, x) a.e. (a, t, x) ∈ (0, a∗)× (0, T )× Ω.

On the other hand mu = 0 on (a∗, A) × (0, T ) × Ω. The comparison principle for
parabolic equations allows us to conclude that

z(a, t, x) ≥ −ys(a, x) a.e. (a, t, x) ∈ (a∗, A)× (0, T )× Ω.

For the second assertion of Theorem 2.2 we assume by contradiction that T <
A − a∗ (this also implies that a∗ < A), ‖z0‖L∞((a∗,A−T )×Ω) > 0 and there exists
u ∈ L2(QT ) such that zu the solution of (1.4) satisfies (2.2) (see figure 2).

Since mu = 0 on (a∗, A)×(0, T )×Ω we may conclude that zu does not explicitly
depend on u on S × Ω, where S = {(a, t); a ∈ (a∗, A), t ∈ (0, T ), t < a − a∗}.
However we have that zu satisfies

Dzu + µ(a)zu − k∆zu = 0, (a, t, x) ∈ S × Ω
∂zu

∂ν
(a, t, x) = 0, (a, t, x) ∈ S × ∂Ω

zu(a, 0, x) = z0(a, x), (a, x) ∈ (a∗, A)× Ω,

and since ‖z0‖L∞((a∗,A−T )×Ω) > 0, we conclude that ‖zu(·, T, ·)‖L∞((0,A)×Ω) > 0
(this follows via the backward uniqueness theorem); which is in contradiction to
(2.2). So, we get the conclusion.
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[14] J. L. Lions, Contrôle des systèmes distribués singuliers, MMI 13, Gauthier–Villars, Paris,

1983.

[15] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New
York, 1985.

Bedr’Eddine Ainseba
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