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SOLUTIONS FOR SOME NONLOCAL SINGULAR ELLIPTIC
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Abstract. In this article, using the sub-supersolution method and Rabinowitz-

type global bifurcation theory, we prove some results on existence, uniqueness

and multiplicity of positive solutions for some singular nonlocal elliptic prob-
lems.

1. Introduction

In this article, we consider the nonlocal elliptic problems

−a
(∫

Ω

|u(x)|γdx
)

∆u = K(x)u−µ, x in Ω,

u(x) > 0, x in Ω,

u(x) = 0, x on ∂Ω

. (1.1)

and
−a
(∫

Ω

|u(x)|γdx
)

∆u = λ(uq +K(x)u−µ), x in Ω,

u(x) > 0, x in Ω,

u(x) = 0, x on ∂Ω,

(1.2)

where Ω ⊆ RN (N ≥ 1) is a sufficiently regularity domain, q > 0, λ ≥ 0, µ > 0 and
γ ∈ (0,+∞).

Obviously, if a(t) ≡ 1 for t ∈ [0,+∞), (1.1) and (1.2) are singular elliptic bound-
ary value problems and there are many results on existence, uniqueness and multi-
plicity of positive solutions, see [12, 13, 14, 15, 18, 20, 21, 22, 23] and their references.
Chipot and Lovat [6] considered the model problem

ut − a
(∫

Ω

u(z, t)dz
)

∆u = f, in Ω× (0, T ),

u(x, t) = 0, on Γ× (0, T ),

u(x, 0) = u0(x), on Ω.

(1.3)
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Here Ω is a bounded open subset in RN , N ≥ 1 with smooth boundary Γ, T is
some arbitrary time. Notice that if u(x, t) is independent from t, (1.3) is a nonlocal
elliptic problems such as

−a
(∫

Ω

|u(x)|γdx
)

∆u = f(x, u), x in Ω,

u(x) = 0, x on ∂Ω.
(1.4)

And a more generalized problem of (1.4) is

−A(x, u)∆u = f(x, u), x in Ω,

u(x) > 0, x in Ω,

u(x) = 0, x on ∂Ω,
(1.5)

where A : Ω× Lp(Ω)→ R+ is a measurable function.
By establishing comparison principles, using the results on fixed point index

theory, sub-supersolution method, some authors obtained the existence of at least
one positive solutions for (1.4) or (1.5), see [5, 7, 8, 9, 10, 19] and their references. We
notice that the nonlocal term A(x, u) or a(

∫
Ω
|u(x)|γdx) causes that the monotonic

nondecreasing of f being necessary for using the sub-supersolution method. Up to
now, there are fewer results on the existence and multiplicity of positive solutions
for (1.4) or (1.5) when f(x, u) is singular at u = 0. Very recently, an interesting
result on the following problems is obtained

−a
(∫

Ω

|u(x)|γdx
)

∆u = h1(x, u)f
(∫

Ω

|u(x)|pdx
)

+ h2(x, u)g
(∫

Ω

|u(x)|rdx
)
, x in Ω,

u = 0, x on ∂Ω,

(1.6)

where γ, r, p ≥ 1 and in which Alves and Covei showed that the existence of solution
for some classes of nonlocal problems without of the monotonic nondecreasing of h1

(see [4]) as h1(x, u) = 1
uα , α ∈ (0, 1). In [16], applying the change of variable and

the theory of fixed point index on a cone, do Ó obtained the multiplicity of radial
positive solutions for some nonlocal and nonvariational elliptic systems when the
nonlinearities fi is nondecreasing in u without singularity at u = 0, i = 1, 2, . . . , n
and Ω = {x ∈ RN |0 < r1 < |x| < r2}.

In this article, we consider the existence, uniqueness and multiplicity of positive
solutions to (1.1) and (1.2) when µ > 0 is arbitrary.

This paper is organized as follows. In Section 2, according to the idea in [4,
11], we prove a new result on the existence of classical solutions by using sub-
supersolution method with maximum principle. In section 3, using Theorem 2.4,
the existence and uniqueness of positive solution to (1.1) are presented. In section
4, by Rabinowitz-type global bifurcation theory, we discuss the global results and
obtain the multiplicity of positive solutions for (1.2).
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2. Sub-supersolution method

Now we consider a general problem

−a
(∫

Ω

|u(x)|γdx
)

∆u = F (x, u), x in Ω,

u = 0, x on ∂Ω,
(2.1)

where Ω ⊆ RN is a smooth bounded domain, γ ∈ (0,+∞) and a : [0,+∞) →
(0,+∞) is continuous function with

inf
t∈[0,+∞)

a(t) ≥ a(0) =: a0 > 0. (2.2)

Let C(Ω) = {u : Ω → R|u be a continuous function on Ω} with norm ‖u‖ =
maxx∈Ω |u(x)|.

Definition 2.1. The pair functions α and β with α, β ∈ C(Ω)∩C2(Ω) are subso-
lution and supersolution of (2.1) if α(x) ≤ u ≤ β(x) for x ∈ Ω and

−∆α(x) ≤ 1
b0
F (x, α(x)), x in Ω,

α
∣∣
∂Ω
≤ 0

and

−∆β(x) ≥ 1
a0
F (x, β(x)), x in Ω,

β
∣∣
∂Ω
≥ 0,

where a0 = a(0) and

b0 = sup
t∈[0,

R
Ω max{|α(x)|,|β(x)|}γdx]

a(t).

For a fixed λ > 0, we state the problem

−∆u+ λu(x) = h(x), x in Ω,
u = 0, on ∂Ω,

(2.3)

where Ω ⊆ RN is a smooth bounded domain and give the deformation of Agmon-
Douglas-Nirenberg theorem for (2.3).

Theorem 2.2 (Agmon-Douglas-Nirenberg [1]). If h ∈ Cα(Ω), then (2.3) has a
unique solution u ∈ C2+α(Ω) such that

‖u‖2+α ≤ C1‖h|∞;

if h ∈ Lp(Ω)(p > 1), then (2.3) has a unique solution u ∈W 2
p (Ω) such that

‖u‖2,p ≤ C2‖h‖p,

where C1, C2 ere independent from u, h.

We define the unique solution u = (−∆ +λ)−1h of (2.3). Obviously (−∆ +λ)−1

is a linear operator. To prove our theorem, we need the following Embedding
theorem.
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Lemma 2.3 ([3]). Suppose Ω ⊆ RN is a bounded domain with smooth boundary
and p > N . Then there exists a C(N, p,Ω) > 0 such that

|u|k+α ≤ C(N, p,Ω)‖u‖k+1,p, ∀u ∈W k+1
p (Ω),

where α = 1− N
p .

Next we give our main theorem.

Theorem 2.4. Let Ω ⊆ RN (N ≥ 1) be a smooth bounded domain and γ ∈ (0,+∞).
Suppose that F : Ω×R→ R is a continuous nonnegative function. Assume α and
β are the subsolution and supersolution of (2.1) respectively. Then problem (2.1)
has at least one solution u such that, for all x ∈ Ω,

α(x) ≤ u(x) ≤ β(x).

Proof. Let

F̄ (x, u) =


F (x, α(x)), if u < α(x);
F (x, u), if α(x) ≤ u ≤ β(x);
F (x, β(x)), if u > β(x).

We will study the modified problem (for λ > 0)

−∆u+ λu =
F̄ (x, u)

a(
∫

Ω
|χ(x, u(x))|γdx)

+ λχ(x, u), x ∈ Ω,

u|∂Ω = 0,
(2.4)

here χ(x, u) = α(x) + (u− α(x))+ − (u− β(x))+.
Step 1. Every solution u of (2.4) is such that: α(x) ≤ u(x) ≤ β(x), x ∈ Ω. We
prove that α(x) ≤ u(x) on Ω. Obviously, |χ(x, u(x))| ≤ max{|α(x)|, |β(x)|}, which
implies that

a0 ≤ a(
∫

Ω

|χ(x, u(x))|γdx) ≤ b0.

By contradiction, assume that maxx∈Ω̄(α(x) − u(x)) = M > 0. Note that α(x) −
u(x) 6≡M on Ω̄ (α(x)−u(x) ≤ 0, x ∈ ∂Ω). If x0 ∈ Ω is such that α(x0)−u(x0) = M ,
then

0 ≤ −∆(α(x0)− u(x0))

≤ 1
b0
F (x0, α(x0))− 1

a(
∫

Ω
|χ(x, u(x))|γdx)

F̄ (x0, u(x0))− λχ(x0, u(x0)) + λu(x0)

≤ −λ(α(x0)− u(x0)) < 0.

This is a contradiction.
Now we prove that β(x) ≥ u(x) on Ω. By contradiction, assume minx∈Ω̄(β(x)−

u(x)) = −m < 0. Note that β(x)− u(x) 6≡ −m on Ω̄ (β(x)− u(x) ≥ 0, x ∈ ∂Ω). If
x0 ∈ Ω is such that β(x0)− u(x0) = −m, then

0 ≥ −∆(β(x0)− u(x0))

≥ 1
a0
F (x0, β(x0))− 1

a(
∫

Ω
|χ(x, u(x))|γdx)

F̄ (x0, u(x0))− λχ(x0, u(x0)) + λu(x0)

≥ λ(u(x0)− β(x0)) > 0.

This is a contradiction. Consequently,

α(x) ≤ u(x) ≤ β(x), x ∈ Ω.
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Step 2. Every solution of (2.4) is a solution of (2.1). Every solution of (2.4) is
such that :α(x) ≤ u(x) ≤ β(x). By the definition of F̄ and χ, we have

F̄ (x, u(x)) = F (x, u(x)), χ(x, u(x)) = u(x), x ∈ Ω

and u is a solution of (2.1).
Step 3. Problem (2.4) has at least one solution. Choose p > N , α = 1 − N

p and
define an operator

N : C(Ω)→ C(Ω) ⊆ Lp(Ω);u→ F (·, u(·)).

Since F is continuous, the definition of F implies that F is continuous also, which
guarantees N : C(Ω) → C(Ω) is well defined, continuous and maps bounded sets
to bounded sets. Since (2.2) is true, a is continuous and

1
a(
∫

Ω
|χ(x, u(x))|γdx)

≤ 1
a0
,

the operator N1u = 1
a(

R
Ω |χ(x,u(x))|γdx)

Nu is continuous, and maps bounded sets to
bounded sets.

For given λ > 0, we define an operator A : C(Ω)→ C(Ω) by

A(u) = (−∆ + λ)−1(N1u+ λχ(·, u)).

Now we show that A : C(Ω)→ C(Ω) is completely continuous.
(1) By the construction of F and χ, we have, for every u ∈ C(Ω),∣∣ F (x, u(x))

a(
∫

Ω
|χ(x, u(x))|γdx)

+ λχ(x, u(x))
∣∣

≤ 1
a0

max
x∈Ω,α(x)≤u≤β(x)

F (x, u) + λmax{‖α‖, ‖β‖},

for all x ∈ Ω, which guarantees that there exists a K > 0 big enough such that
N1u+ λχ(·, u) ∈ BLp(0,K) for all u ∈ C(Ω), where

BLp(0, R) = {u ∈ Lp(Ω)|‖u‖p ≤ K}.

By Theorem 2.2, we have

‖A(u)‖2,p = ‖(−∆ + λ)−1(N1u+ λχ(·, u))‖2,p ≤ C2K, ∀u ∈ C(Ω). (2.5)

Lemma 2.3 implies that A(C(Ω)) is bounded in Cα(Ω). Therefore, A(C(Ω)) is
relatively compact in C(Ω).

(2) For u1, u2 ∈ C(Ω), by Theorem 2.2, one has

‖A(u1)−A(u2)‖2,p ≤ C2‖N1u1 + λχ(·, u1)− (N1u2 + λχ(·, u2))‖p.

Lemma 2.3 and the continuity of the operator N1 +λχ guarantee that A : C(Ω)→
C(Ω) is continuous. Consequently, A : C(Ω)→ C(Ω) is completely continuous.

By (2.5) and Lemma 2.3, there exists a K1 > 0 big enough such that

A(C(Ω)) ⊆ BC(0,K1),

where BC(0,K1) = {u ∈ C(Ω)|‖u‖ ≤ K1}, which implies

A(BC(0,K1)) ⊆ BC(0,K1).
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The Schauder fixed point theorem guarantees that there exists a u ∈ BC(0,K1)
such that

u = Au,

i.e., u is a solution of (2.4).
Consequently, steps 1 and 2 guarantee that u in the step 3 is a solution of (2.1).

The proof is complete. �

We remark that the difference between Theorem 2.4 and [4, Theorem 1] is that
the solution u is a classical solution and we use γ > 0 instead of γ ≥ 1. In the
following sections, we assume that a(t) : [0,+∞) is continuous and increasing on
[0,+∞) for convenience.

3. The existence and uniqueness of positive solution for (1.1)

In this section, we consider the singular elliptic problems (1.1), where K ∈ Cα(Ω)
with K(x) > 0 for x ∈ Ω, and µ > 0. Let Φ1 is the eigenfunction corresponding to
the principle eigenvalue λ1 of

−∆u = λu, x ∈ Ω

u|∂Ω = 0.
(3.1)

It is found that λ1 > 0, and

Φ1(x) > 0, |∇Φ1(x)| > 0, ∀x ∈ ∂Ω. (3.2)

Theorem 3.1. Let Ω ⊆ RN , N ≥ 1, be a bounded domain with smooth boundary
∂Ω (of class C2+α, 0 < α < 1). If K ∈ Cα(Ω), K(x) > 0 for all x ∈ Ω and µ > 0,
then there exists a unique function u ∈ C2+α(Ω) ∩ C(Ω) such that u(x) > 0 for all
x ∈ Ω and u is a solution of (1.1). If µ > 1, then there exist positive constants b1
and b2 such that b1Φ1(x)

2
1+µ ≤ u(x) ≤ b2Φ1(x)

2
1+µ , x ∈ Ω.

Proof. The proof is based on Theorem 2.4 and the construction of pairs of sub-
supersolutions. The construction of supersolutions to (1.1) when µ > 1 is different
from that when 0 < µ ≤ 1.

(1) Assume first that µ > 1. In this case, let t = 2/(1+µ) and let Ψ(x) = bΦ1(x)t

where b > 0 is a constant. By (3.1), we deduce that

∆Ψ(x) + q(x, b)Ψ−µ(x) = 0, x ∈ Ω, (3.3)

where q(x, b) = b1+µ[t(1 − t)|∇Φ1(x)|2 + tλ1Φ1(x)2]. Inequality (3.2) guarantees
that minx∈Ω[t(1− t)|∇Φ1(x)|2 + tλ1Φ1(x)2] > 0, which implies that there exists a
positive constant b such that

1
a0
K(x) < q(x, b), ∀x ∈ Ω.

Let u(x) = bΦ1(x)t. Hence,

∆u(x) +
1
a0
K(x)u(x)−µ =

[ 1
a0
K(x)− q(x, b)

]
u−µ(x) < 0, x ∈ Ω. (3.4)

(2) Assume that 0 < µ ≤ 1. Let s be chosen to satisfy the two inequalities

0 < s < 1, s(1 + µ) < 2 (3.5)
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and u(x) = cΦ1(x)s, where c is a large positive constant to be chosen. For x ∈ Ω,
we have

∆u(x) +
1
a0
K(x)u(x)−µ

= −Φ1(x)s−2|∇Φ1(x)|2cs(1− s) +
1
a0
K(x)c−µΦ1(x)−µs − cλ1sΦ1(x)s

= −Φ1(x)s−2
[
|∇Φ1(x)|2cs(1− s)− 1

a0
K(x)c−µΦ1(x)2−(1+µ)s

]
− cλ1sΦ1(x)s.

From (3.2), there exists a open subset Ω′ ⊂⊂ Ω and a δ > 0 such that

|∇Φ1(x)| > δ, ∀x ∈ Ω− Ω′,

which together with 2− (1 + µ)s > 0 implies that there exists a c1 > 0 big enough
such that for all c > c1,

|∇Φ1(x)|2cs(1− s)− 1
a0
K(x)c−µΦ1(x)2−(1+µ)s > 0, ∀x ∈ Ω− Ω′,

i.e. for all c > c1, x ∈ Ω− Ω′

− Φ1(x)s−2
[
|∇Φ1(x)|2cs(1− s)− 1

a0
K(x)c−µΦ1(x)2−(1+µ)s

]
− cλ1sΦ1(x)s

< 0.
(3.6)

Moreover, from minx∈Ω′ Φ1(x) > 0, there exists a c2 > 0 big enough such that for
all c > c2, one has

1
a0
K(x)c−µΦ1(x)−µs − cλ1sΦ1(x)s < 0, ∀x ∈ Ω

′
,

i.e. for all c > c2, x ∈ Ω
′
,

− Φ1(x)s−2|∇Φ1(x)|2cs(1− s) +
1
a0
K(x)c−µΦ1(x)−µs − cλ1sΦ1(x)s < 0. (3.7)

Now choose a c > max{c1, c2}. Combining (3.6) and (3.7), we have

∆u(x) +
1
a0
K(x)u(x)−µ

= −Φ1(x)s−2
[
|∇Φ1(x)|2cs(1− s)− 1

a0
K(x)c−µΦ1(x)2−(1+µ)s

]
− cλ1sΦ1(x)s

< 0, x ∈ Ω.
(3.8)

Choose d = max{b, c} and define

u∗(x) =

{
dΦt1(x), x ∈ Ω if µ > 1;
dΦs1(x), x ∈ Ω if 0 < µ ≤ 1.

From (3.4) and (3.8), we have

∆u∗(x) +
1
a0
K(x)u∗(x)−µ < 0, ∀x ∈ Ω.

It follows that for each n ∈ N,

∆u∗(x) +
1
a0
K(x)

(
u∗(x) +

1
n

)−µ
< ∆u∗(x) +

1
a0
K(x)u∗(x)−µ < 0, (3.9)

for x ∈ Ω.
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Let b0 = a(
∫

Ω
|u∗(x)|γdx). Choose ε > 0 small enough such that

1
b0
K(x)2−µ − ελ1Φ1(x) > 0, ∀x ∈ Ω, (3.10)

and
εΦ1(x) < min{1, u∗(x)}, ∀x ∈ Ω. (3.11)

From (3.1), (3.10) and (3.11), one has that for each n ∈ N,

∆εΦ1(x) +
1
b0
K(x)

(
εΦ1(x) +

1
n

)−µ
>

1
b0
K(x)2−µ − ελ1Φ1(x) > 0, (3.12)

for x ∈ Ω.
Let u∗(x) = εΦ1(x), x ∈ Ω. By the definitions of u∗ and u∗, we have

max{|u∗(x)|, |u∗(x)|}γ = u∗(x)γ

and so

sup
t∈[0,

R
Ω max{|u∗(x)|,|u∗(x)|}γdx]

a(t) = a
(∫

Ω

u∗(x)γdx
)

= b0.

Then for n ∈ N, from (3.9) and (3.12), we have for each n ∈ N,

∆u∗(x) +
1
a0
K(x)(u∗(x) +

1
n

)−µ < 0, x ∈ Ω,

u∗|∂Ω = 0

and

∆u∗(x) +
1
b0
K(x)(u∗(x) +

1
n

)−µ > 0, x ∈ Ω,

u∗|∂Ω = 0.

Now Theorem 2.4 guarantees that for n ∈ N, there exist {un} with u∗(x) ≤ un(x) ≤
u∗(x) for all x ∈ Ω such that

a
(∫

Ω

|un(x)|γdx
)

∆un(x) +K(x)(un(x) +
1
n

)−µ = 0, x ∈ Ω,

un|∂Ω = 0.
(3.13)

Let Ωk = {x ∈ Ω|u∗(x) > 1
k}, k ∈ N. From (3.13), we have

|∆un(x)| ≤ 1
a0
K(x)u∗(x)−µ leq

1
a0

max
x∈Ω

K(x)( min
x∈Ωk

u∗(x))−µ, x ∈ Ωk,

which implies that {un(x)} is equicontinous and uniformly bounded on Ωk, k ∈
N. Therefore, {un(x)} has a uniformly convergent subsequence on every Ωk. By
Diagonal method, we can choose a subsequence of {un(x)} which converges a u0

on every Ωk uniformly. Without loss of generality, assume that

lim
n→+∞

un(x) = u0(x), uniformly on Ωk, k ∈ N.

Obviously,
u∗(x) ≤ u0(x) ≤ u∗(x), x ∈ Ω,

which implies that
lim

x→y∈∂Ω
u0(x) = 0, ∀y ∈ ∂Ω.
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Hence, we define u0(x) = 0, for x ∈ ∂Ω. And the Dominated Convergence Theorem
implies that

lim
n→+∞

∫
Ω

|un(x)|γdx =
∫

Ω

|u0(x)|γdx,

which together with the continuity of a(t) yields

lim
n→+∞

a
(∫

Ω

|un(x)|γdx
)

= a
(∫

Ω

|u0(x)|γdx
)
.

Now we claim that u0 ∈ C2+α(Ω) and that

a
(∫

Ω

|u0(x)|γdx
)

∆u0(x) +K(x)u0(x)−µ = 0, ∀x ∈ Ω. (3.14)

Although the proof is similar as the standard arguments for the the theory of the
Elliptic problems (see [15]), we still give it in details.

Let x0 ∈ Ω and let r > 0 be chosen so that B(x0, r) ⊆ Ω, where B(x0, r) denotes
the open ball of radius r centered at x0. Let Ψ be a C∞ function which is equal to
1 on B(x0, r/2) and equal to 0 off B(x0, r). We have

∆(Ψ(x)un(x)) =


2∇Ψ(x) · ∇un(x) + un(x)∆Ψ(x)
+Ψ(x) 1

a(
R
Ω |un(x)|γdx)

K(x)u−µn (x), ∀x ∈ B(x0, r),

0, ∀x ∈ Ω−B(x0, r).

Let

pn(x) =

{
Ψ(x) 1

a(
R
Ω |un(x)|γdx)

K(x)u−µn (x), ∀x ∈ B(x0, r),

0, ∀x ∈ Ω−B(x0, r).
It is easy to see that pn is a term whose L∞ norm is bounded independently of n
(note inft∈[0,+∞) a(t) ≥ a(0) = a0 > 0). Therefore, for n > 1, we have

Ψ(x)un(x)∆(Ψ(x)un(x)) =
N∑
j=1

bn,j
∂(Ψ(x)un(x))

∂xj
+ qn,

where bn,j , j = 1, 2, . . . , N , qn are terms whose L∞ norm is bounded independently
of n. Integrating the above equation, we have that there exist constants c3 > 0,
c4 > 0, independent of n, such that∫

B(x0,r)

|∇(Ψun)|2dx ≤ c3(
∫
B(x0,r)

|∇(Ψun)|2dx)
1
2 + c4.

From this, it follows that the L2(B(x0, r))-norm of |∇(Ψun)| is bounded inde-
pendently of n. Hence, L2(B(x0,

r
2 ))-norm of |∇un| is bounded independently of

n. Let Ψ1 be a C∞ function which is equal to 1 on B(x0, r/4) and equal to 0
off B(x0,

r
2 ). We have ∆(Ψ1(x)un(x)) = 2∇Ψ1(x) · ∇un(x) + pn,1, pn,1 is a term

whose L∞(B(x0,
r
2 )) norm is bounded independently of n. From standard ellip-

tic theory, the W 2,2(B(x0,
r
2 ))-norm of Ψ1un is bounded independently of n and

hence, the W 2,2(B(x0,
r
4 ))-norm of un is bounded independently of n. Since the

W 1,2(B(x0,
r
4 ))-norms of the components of ∇un are bounded independently of n,

it follows from the Sobolev imbedding theorem that, if q = 2N/(N−2) > 2 if N > 2
and q > 2 is arbitrary if N ≤ 2, then the Lq(B(x0,

r
4 ))-norm of |∇un| is bounded

independently of n. If Ψ2 is a C∞ function which is equal to 1 on B(x0,
r
8 ) and

equal to 0 off B(x0,
r
4 ), then ∆(Ψ2(x)un(x)) = 2∇Ψ2(x) · ∇un(x) + pn,2, pn,2 is a
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term whose L∞(B(x0,
r
4 )) norm is bounded independently of n. Since the right-

hand side of the above equation is bounded in Lq(B(x0,
r
4 )), independently of n,

the W 2,q(B(x0,
r
4 ))-norm of Ψ2un is also bounded independently of n. Hence, the

W 2,q(B(x0,
r
8 ))-norm of un is bounded independently of n. Continuing the line of

reasoning, after a finite number of steps, we find a number r1 > 0 and q1 > N/(1−α)
such that the W 2,q1(B(x0, r1))-norm of un is bounded independently of n. Hence,
there is a subsequence of {un}, which we may assume is the sequence itself, which
converges in C1+α(B(x0, r1)). If θ is a C∞ function which is equal to 1 on B(x0,

r1
2 )

and equal to 0 off B(x0, r1), then

∆(θun) = ∇Ψ∇un + p̃n,

where p̃n = θ∆un + un∆θ. The right-hand side of the above equation converges
in Cα(B(x0, r1)). So, by Schauder theory, {θun}converges in C2+α(B(x0, r1)) and
hence {un} converges in C2+α(B(x0,

r1
2 )). Since x0 ∈ Ω is arbitrary, this shows

that u0 ∈ C2+α(Ω). Clearly, (3.14) holds.
Consequently, we have

a
(∫

Ω

|u0(x)|γdx
)

∆u0(x) +K(x)u0(x)−µ = 0, x ∈ Ω,

u0|∂Ω = 0.

By [15, Theorem 1], we have if µ > 1, there exist a b1 > 0 and b2 > 0 such that

b1Φ1(x)
2

1+µ ≤ u0(x) ≤ b2Φ1(x)
2

1+µ , ∀x ∈ Ω.

Next we consider the uniqueness of positive solutions of (3.1). Assume that u1

and u2 are two positive solutions. Let ci = (a(
∫

Ω
ui(x)γdx))1/(µ+1) and vi = ciui,

i = 1, 2. Then vi satisfies

−∆vi = K(x)v−µi ,

vi|∂Ω = 0.

Now [15] guarantees that

−∆v = K(x)v−µ,

v|∂Ω = 0

has a unique positive solution, which implies v1 = v2, i.e.,(
a
(∫

Ω

u1(x)γdx
))1/(µ+1)

u1(x) =
(
a
(∫

Ω

u2(x)γdx
))1/(µ+1)

u2(x), (3.15)

for x ∈ Ω, and so(
a
(∫

Ω

u1(x)γdx
))γ/(µ+1)

uγ1(x) =
(
a
(∫

Ω

u2(x)γdx
))γ/(µ+1)

uγ2(x), ∀x ∈ Ω.

Integration on Ω yields(
a
(∫

Ω

u1(x)γdx
))γ/(µ+1)

∫
Ω

uγ1(x)dx =
(
a
(∫

Ω

u2(x)γdx
))γ/(µ+1)

∫
Ω

uγ2(x)dx.

The monotonicity of a implies that (a(t))γ/(µ+1)t is increasing on [0,+∞), which
guarantees that ∫

Ω

u1(x)γdx =
∫

Ω

u2(x)γdx,
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and so (
a
(∫

Ω

u1(x)γdx
))1/(µ+1)

=
(
a
(∫

Ω

u2(x)γdx
))1/(µ+1)

,

which together with (3.15) yields u1(x) = u2(x). The proof is complete. �

Theorem 3.2. The solution u of Theorem 3.1 is in W 1,2 if and only if µ < 3. If
µ > 1, then u is not in C1(Ω).

Proof. Suppose u is a positive solution in Theorem 3.1. Let

p(x) =
K(x)

a
( ∫

Ω
|u(x)|γdx

) .
Then p ∈ C(Ω), p(x) > 0 for all x ∈ Ω and u(x) satisfies that

−∆u = p(x)u−µ,

u|∂Ω = 0.
(3.16)

By [15, Theorem 2], u is in W 1,2 if and only if µ < 3. If µ > 1, then u is not in
C1(Ω).The proof is complete. �

The monotonicity of a(t) on [0,+∞) is very important for the uniqueness of
positive solution to (1.1). For example, assume that c =

∫
Ω
|u1(x)|dx, where u1 is

the unique positive solution of the following problem (see [15, Theorem 1]

−∆u = u−µ,

u|∂Ω = 0.
(3.17)

Let

a(t) =

{
3, t = 0;
2 + (( tc )

−(1+µ) − 2)| sin t
c |

1+µ, t > 0.

It is easy to see that a(t) is not monotone on [0,+∞). Let λk = 2kπ + π
2 . Then

a(λkc) = 2 + ((λk)−(1+µ) − 2)| sinλk|1+µ = (λk)−(1+µ), k ∈ N. (3.18)

Let uk(x) = λku1(x), x ∈ Ω. Then, from (3.17) and (3.18), we have

∆uk(x) = λk∆u1(x) = −λku−µ1 (x), x ∈ Ω,

and
1

a(
∫

Ω
|uk(x)|dx)

uk(x)−µ =
1

a(
∫

Ω
λk|u1(x)|dx)

uk(x)−µ

=
1

a(λkc)
(λku1(x))−µ

= λ1+µ
k λ−µk u1(x)−µ = λku1(x)−µ

Hence,

∆uk(x) +
1

a(
∫

Ω
|uk(x)|dx)

uk(x)−µ = 0, x ∈ Ω,

uk|∂Ω = 0,

i.e.,

a
(∫

Ω

|u(x)|dx
)

∆u(x) + u(x)−µ = 0, x ∈ Ω,
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u|∂Ω = 0

has at infinitely many positive solutions.

4. Global structure of positive solutions for (1.2)

In this section, we consider the singular nonlocal elliptic problems (1.2), where
q ∈ (0,+∞), µ > 0, K ∈ Cα(Ω) with K(x) > 0 for all x ∈ Ω.

To sutudy equation (1.2), for each n ∈ N, we study the equations

a
(∫

Ω

|u(x)|γdx
)

∆u(x) + λ
[
uq +K(x)

(
u(x) +

1
n

)−µ] = 0, x ∈ Ω,

u|∂Ω = 0.
(4.1)

Let u denote the inward normal derivative of u on ∂Ω and define

P = {u ∈ C1,α(Ω) : u(x) > 0 ∀x ∈ Ω, u(x) = 0 on ∂Ω and
∂u

∂v
> 0 on ∂Ω},

where α ∈ (0, 1). It follows from [17, Theorem 3.7] that for n ∈ N there is a set Cn of
solutions of (4.1) which is a connected and unbounded subset of R+× (P ∪{(0, 0)})
(in the topology of R× C1,α(Ω)) and contains (0, 0). Obviously,

‖u‖ ≤ ‖u‖1+α, ∀u ∈ Cn,

which guarantees that

‖u‖ → +∞ implies that ‖u‖1+α → +∞,∀u ∈ Cn,
‖u− u0‖1+α → 0 implies that ‖u− u0‖ → 0.

(4.2)

On the other hand, by Lemma 2.3 and Theorem 2.2, for u ∈ Cn, one has

‖u‖1+α ≤ C(n, p,Ω)‖u‖2,p

≤ C(n, p,Ω)λ
1

a(
∫

Ω
|u(x)|γdx)

(∫
Ω

[
uq +K(x)

(
u(x) +

1
n

)−µ]p
dx
)1/p

≤ C(n, p,Ω)λ
1
a0

(∫
Ω

[
uq +K(x)

(
u(x) +

1
n

)−µ]p
dx
)1/p

≤ C(n, p,Ω)λ
1
a0
|Ω|1/p[‖u‖q + n‖K‖], ∀u ∈ Cn

and

‖u− u0‖1+α ≤ C(n, p,Ω)‖u− u0‖2,p

≤ C(n, p,Ω)λ
(∫

Ω

|Ψn(u)(x)−Ψn(u0)(x)|pdx
)1/p

, ∀u, u0 ∈ Cn,

where

Ψn(u)(x) =
1

a(
∫

Ω
|u(x)|γdx)

[uq(x) +
1

(u(x) + 1
n )µ

],

which guarantees that

‖u‖1+α → +∞ implies that ‖u‖ → +∞,∀u ∈ Cn,
‖u− u0‖ → 0 implies that ‖u− u0‖1+α → 0.

(4.3)

Combining (4.2) and (4.3), we know that Cn is connected and unbounded in R ×
C(Ω).
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Let φ ∈ C2,α(Ω) defined by

−∆φ = 1, x ∈ Ω;φ(x) = 0, x ∈ ∂Ω. (4.4)

Lemma 4.1. Let M > 0 and (λn, un) ∈ (0,+∞) × P be a solution of (4.1)
satisfying λn ≤ M and ‖un‖ ≤ M . There is a number ε > 0 and a pair of
functions Γ(M) > 0, K(β,M) > 0 such that if φ is given by (4.3) and 0 < 1

n < ε,
then

λnΓ(M)φ(x) ≤ un(x) ≤ β + λnK(β,M)φ(x), x ∈ Ω (4.5)
for β ∈ (0,M ].

Proof. Set

K(β,M) = max{ 1
a0

(rq +K(x)r−µ) : (x, r) ∈ Ω× [β, 1 +M ]}. (4.6)

Let (λn, un) be as in the Lemma 4.1, 0 < 1
n < 1 and β ∈ (0,M ]. Set Aβ = {x ∈

Ω|un(x) > β}. By (4.4) and (4.6), one has

−∆(β + λnK(β,M)φ− un)

= λnK(β,M)− λn
1

a
( ∫

Ω
un(x)γdx

) [uqn +K(x)(un +
1
n

)−µ]

≥ λnK(β,M)− λn
1
a0

[uqn +K(x)(un)−µ] ≥ 0, x ∈ Aβ ,

and
un(x) = β, x ∈ ∂Aβ .

Thus β+λnK(β,M)φ(x) ≥ un(x) on Aβ by the maximum principle and the right-
hand inequality of (4.5) is established.

To obtain the left-hand inequality, choose R > 0 so that
1

a(
∫

Ω
(β +MK(β,M)φ(x))γdx)

K(x)r−µ > 1

if 0 < r < R. Define Γ(M) = min{1, R/(2M‖φ‖)}. Then, for 1
n ∈ (0, R/2],

η ∈ (0,Γ(M)] and λn ∈ (0,M ], from the right-hand inequality of (4.5) and the
monotonicity of a(t), one has

−∆(λnηφ(x)) = λnη

< λn
1

a(
∫

Ω
(β +MK(β,M)φ(x))γdx)

K(x)(λnηφ+
1
n

)−µ

≤ λn
1

a(
∫

Ω
un(x)γdx)

[(λnηφ)q +K(x)(λnηφ+
1
n

)−µ].

(4.7)

From this we will deduce that λnΓ(M)φ(x) < un(x), x ∈ Ω. Since ∂un
∂v |∂Ω > 0,

un(x) > 0 for x ∈ Ω, there exists a Ω′ ⊂⊂ Ω and m > 0 such that ∂un
∂v |∂Ω ≥ m > 0

for all x ∈ Ω−Ω′ and un(x) ≥ m > 0 for all x ∈ Ω
′
, which implies that there exists

a s > 0 such that
un − τλnφ ∈ P, ∀τ ∈ [0, s].

Since lims→+∞ ‖sλnφ‖ = +∞, there exists a s′ > 0 such that un − s′λnφ 6∈ P .
Define

η∗ = sup{s > 0|un − τλnφ ∈ P, ∀τ ∈ [0, s]}.
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It is easy to see that 0 < η∗ ≤ s′ and un−ηλnφ ∈ P for 0 < η < η∗ and un−η∗λnφ 6∈
P . It suffices to show η∗ > Γ(M). If η∗ ≤ Γ(M), let w = un−λnη∗φ ≥ 0 in Ω and,
by (4.7) for C > 0, we have

−∆w + Cw = Cw + λn
1

a(
∫

Ω
un(x)γdx)

[un(x)q +K(x)(un(x) +
1
n

)−µ]− λnη∗

> Cw + λn
1

a(
∫

Ω
un(x)γdx)

(
[un(x)q +K(x)(un(x) +

1
n

)−µ]

− [(λnη∗φ)q +K(x)(λnη∗φ+
1
n

)−µ]
)
.

By the Mean Value Theorem we have

[un(x)q +K(x)(un(x) +
1
n

)−µ]− [(λnη∗φ(x))q +K(x)(λnη∗φ(x) +
1
n

)−µ] ≥ C0w,

where
C0 = min

x∈Ω
inf

r∈[ 1
n ,

1
n+‖un‖+λnη∗‖φ‖]

K(x)(−µ)r−(1+µ).

Choose
C + λn

1
a(
∫

Ω
un(x)γdx)

C0 > 0.

Then
−∆w + Cw > 0,

which means that w ∈ P . This is a contradiction. Consequently, η∗ > Γ(M) and
so λnΓ(M)φ(x) < un(x), x ∈ Ω. The proof is complete. �

Theorem 4.2. There is a set C of solutions of (1.2) satisfying the following:
(i) C is connected in R× C(Ω);
(ii) C is unbounded in R× C(Ω);

(iii) (0, 0) lies in the closure of C in R× C(Ω).

Proof. For M > 0, define

B((0, 0),M) = {(λ, u) ∈ R× C(Ω)|λ2 + ‖u‖2 < M2}.
Let (λn, un) ∈ ∂B((0, 0),M)∩ (0,+∞)×P be solutions of (4.1) as above, n→ +∞
and λn → λ. If λ = 0, we deduce from (4.5) that

0 < lim sup
n→+∞

sup
x∈Ω

un(x) ≤ β, ∀β ∈ (0,M ]

and hence that un → 0 in C(Ω). Then (λn, un)→ (0, 0) as n→ +∞ in R× C(Ω).
Since (λn, un) ∈ ∂B((0, 0),M), this is impossible. Then λ > 0.

From (4.5) and λ > 0, we see that un is bounded from below by a function which
is positive in Ω and from above by a constant. Arguing as in the proof of Theorem
3.1, without loss of generality, passing to the limit in (4.5), there is a u0 ∈ C(Ω)
such that

lim
n→+∞

un(x) = u0(x), uniformly x ∈ Ω0 ⊂ Ω, (4.8)

where Ω0 is arbitrary sub-domain in Ω and

λΓ(M)φ(x) ≤ u(x) ≤ β + λK(β,M)φ(x), x ∈ Ω (4.9)

for β ∈ (0,M ]. From (4.5) and (4.9) we have

lim
x→∂Ω

u0(x) = 0
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and
lim
x→∂Ω

un(x) = 0, uniformly for n ∈ N. (4.10)

Now (4.8) and (4.10) imply that un → u0 as n → +∞. It follows that (λn, un) →
(λ, u0) in R× C(Ω) and hence (λ, u0) ∈ ∂B((0, 0),M).

A standard argument as the proof of Theorem 3.1 shows that u0 satisfies

a
(∫

Ω

|u0(x)|γdx
)

∆u0(x) + λ(u0(x)q +K(x)u0(x)−µ) = 0, x ∈ Ω,

u0|∂Ω = 0.

Wee omit the proof.
At this point we have shown that if B((0, 0),M) is a bounded neighborhood of

(0, 0) in R× C(Ω), then there is a solution (λ, u0) ∈ ∂B((0, 0),M)) of (1.2). Since
M is arbitrary, C = {(λ, uλ) ∈ B((0, 0),M)|uλ is a positive solution for (1.2). The
proof is complete. �

Corollary 4.3. If q < 1, then λ ∈ (0,+∞). In particular, (1.2) with λ = 1 has a
solution.

Proof. Suppose C is the connected and unbounded set of positive solutions for (1.2)
in Theorem 4.2. Now we show that λ ∈ (0,+∞).

In fact, suppose set {λ|(λ, u) ∈ C} is finite and let Λ0 = {λ > 0|(λ, u) ∈ C}.
The unboundedness of C means that there exist {(λn, un)} such that

lim
n→+∞

‖un‖ = +∞.

Set A1 = {x ∈ Ω|un(x) > 1} and

Kn =
1
a0

(‖un‖q + max
x∈Ω

K(x)). (4.11)

It follows from (4.4) and (4.11) that

−∆(1 + λnKnφ− un) = λnKn − λn
1

a(
∫

Ω
un(x)γdx)

[uqn +K(x)(un)−µ]

≥ λnKn − λn
1
a0

[‖un‖q + max
x∈Ω

K(x)] ≥ 0, x ∈ A1,

and
un(x) = 1, x ∈ ∂A1.

Thus 1 + λnKnφ(x) ≥ un(x) on A1 by the maximum principle and so

un(x) ≤ 1 + λnKnφ(x), ∀x ∈ Ω,

which implies
‖un‖ ≤ 1 + Λ0(‖un‖q + max

x∈Ω
K(x)) max

x∈Ω
φ(x).

By q < 1, one has

1 ≤ lim
n→+∞

[ 1
‖un‖

+ Λ0(‖un‖q−1 + max
x∈Ω

K(x)/‖un‖) max
x∈Ω

φ(x)
]

= 0.

This is a contradiction. Therefore, Λ0 = +∞. The proof is complete. �
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Now we consider the case q > 1. Let K(x) = K(|x|) and we consider the problem
(1.2) when Ω = {x ∈ RN |0 < r1 < |x| < r2} and N ≥ 3 and discuss the radial
positive solutions for (1.2), i.e., (1.2) is equivalent to the problem

− a
(
NωN

∫ r2

r1

rN−1|u(r)|γdr
)

(u′′rr +
N − 1
r

ur)

= λ[u(r)q +K(|r|)u−µ(r))], rin (r1, r2),

u(r) > 0, t ∈ (r1, r2),

u(r1) = 0, u(r2) = 0,

(4.12)

where ωN denotes the area of unit sphere in RN .
By [16], applying the change of variable t = l(r) and u(r) = z(t) with

t = l(r) = − A

rN−2
+B ⇐⇒ r = (

A

B − t
)

1
N−2 ,

where

A =
(r1r2)N−2

rN−2
2 − rN−2

1

, B =
rN−2
2

rN−2
2 − rN−2

1

,

we obtain

NωN

∫ r2

r1

rN−1|u(r)|γdr

= NωN

∫ 1

0

(
A

B − s
)
N−1
N−2A

1
N−2

1
N − 2

(B − s)−
N−1
N−2 |z(s)|γds

= AN

∫ 1

0

BN (s)|z(s)|γds

where
AN = N

ωN
N − 2

A
N
N−2 , BN (s) = (B − s)

2(N−1)
2−N ,

and

u′r = z′tt
′
r = z′t(−A)(2−N)r1−N ,

u′′rr = z′′tt((−A)(2−N)r1−N )2 + z′t(−A)(2−N)(1−N)r−N ,

which implies

u′′rr +
N − 1
r

ur = ((−A)(2−N)r1−N )2z′′tt.

And then (4.12) is equivalent to the problem

− a
(
AN

∫ 1

0

BN (s)|z(s)|γds
)
z′′(t)

= λd(t)[z(t)q +K((
A

B − t
)1/(N−2))z−µ(t))], t in (0, 1),

z(t) > 0, t ∈ (0, 1),

z(0) = 0, z(1) = 0,

(4.13)

where

d(t) =
A2/(2−N)

(N − 2)2(B − t)2(N−1)/(N−2)
, t ∈ [0, 1]
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and the related integral equation is

z(t) = λ
1

a
(
AN

∫ 1

0
BN (s)|z(s)|γds

) ∫ 1

0

G(t, s)d(s)

×
[
z(s)q +K((

A

B − s
)1/(N−2))z−µ(s)

]
ds,

(4.14)

for t ∈ (0, 1), where

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1;
t(1− s), 0 ≤ t ≤ s ≤ 1.

Lemma 4.4 (see [2, page 18]). Suppose z ∈ C[0, 1] is concave on [0, 1] with z(t) ≥ 0
for all t ∈ [0, 1]. Then z(t) ≥ ‖z‖t(1− t) for t ∈ [0, 1]

Corollary 4.5. If limt→+∞
tq−1

a(tγ) = +∞, then C in Theorem 4.2 satisfies:

(i) there exists Λ0 > satisfying C ∩ ((Λ0,+∞)× C0[0, 1]) = ∅;
(ii) for every λ ∈ (0,Λ0], C ∩ ([0, λ]× C0[0, 1]) is unbounded;

(iii) there exists λ0 ≤ Λ0 such that for every λ ∈ (0, λ0), (4.10) has at least two
positive solutions z1,λ and z2,λ with

lim
λ→0,(λ,z1,λ)∈C

‖z1,λ‖ = 0, lim
λ→0,(λ,z2,λ)∈C

‖z2,λ‖ = +∞.

Proof. (i) Suppose that (λ, zλ) ∈ C. Since z′′λ(t) ≤ 0 and zλ(0) = zλ(1) = 0, we
have z is concave on [0, 1] with z(t) ≥ 0 for all t ∈ [0, 1]. Now Lemma 4.4 implies

zλ(t) ≥ t(1− t)‖zλ‖, ∀t ∈ [0, 1].

If ‖zλ‖ ≤ 1, it follows from (4.14)

1 ≥ ‖zλ‖

= λ
1

a(AN
∫ 1

0
BN (s)|zλ(s)|γds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)

×
[
zλ(s)q +K((

A

B − s
)1/(N−2))z−µλ (s)

]
ds

> λ
1

a(AN
∫ 1

0
BN (s)ds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)K((
A

B − s
)1/(N−2))ds,

and so

λ ≤
a(AN

∫ 1

0
BN (s)ds)

maxt∈[0,1]

∫ 1

0
G(t, s)d(s)K(( A

B−s )1/(N−2))ds
. (4.15)

Since

lim
t→+∞

tq−1

a(tγ)
= +∞,

one has

lim
t→+∞

tq−1

a(tγAN
∫ 1

0
BN (s)ds)

= lim
s→+∞

sq−1(AN
∫ 1

0
BN (s)ds)−(q−1)/γ

a(sγ)
= +∞,

(4.16)
which implies that there is an M0 > 0 such that

a(tγAN
∫ 1

0
BN (s)ds)

tq−1
≤M0, ∀t ∈ [1,+∞). (4.17)
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If ‖zλ‖ ≥ 1, from (4.14) and (4.17), one has

‖zλ‖ ≥ λ
1

a
(
‖z‖γAN

∫ 1

0
BN (s)ds

) max
t∈[0,1]

∫ 1

0

G(t, s)d(s)[zλ(s)q]ds

≥ λ ‖zλ‖q

a
(
‖zλ‖γAN

∫ 1

0
BN (s)ds

) max
t∈[0,1]

∫ 1

0

G(t, s)d(s)[s(1− s)]qds,

and so

λ ≤
a
(
‖zλ‖γAN

∫ 1

0
BN (s)ds

)
‖z‖q−1

1

maxt∈[0,1]

∫ 1

0
G(t, s)d(s)[s(1− s)]qds

≤M0
1

maxt∈[0,1]

∫ 1

0
G(t, s)d(s)[s(1− s)]qds

.

(4.18)

It follows from (4.15) and (4.18) that

Λ0 = sup{λ|(λ, zλ) ∈ C} < +∞,
C ∩ ((Λ0,+∞)× C0[0, 1]) = ∅.

(ii) For every λ ∈ (0,Λ0], we show that C∩([λ,Λ0]×C0[0, 1]) is bounded. In fact,
if C ∩ ([λ,Λ0]×C0[0, 1]) is unbounded, there is {(λn, zn)} ⊆ C ∩ ([λ,Λ0]×C0[0, 1])
such that

λ2
n + ‖zn‖2 → +∞, as n→ +∞.

Since {λn} ⊆ [λ,Λ0] is bounded, without loss of generality, we assume that λn →
λ′ > 0 as n→ +∞. It implies that

‖zn‖2 → +∞, as n→ +∞.

From (4.14), one has

‖zn‖ ≥ λn
1

a(‖zn‖γAN
∫ 1

0
BN (s)ds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)[zn(s)q]ds

≥ λn
‖zn‖q

a(‖zn‖γAN
∫ 1

0
BN (s)ds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)[s(1− s)]qds,

and so

1 ≥ λ ‖zn‖q−1

a(‖zn‖γAN
∫ 1

0
BN (s)ds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)[s(1− s)]qds.

From (4.16), letting n → +∞, one has 1 ≥ +∞. This is a contradiction. Hence,
C ∩ ([λ,Λ0]× C0[0, 1]) is bounded for any λ ∈ (0,Λ0].

(iii) Choose R > 1 > r > 0. Suppose (λ, zλ) ∈ C with r ≤ ‖zλ‖ ≤ R. By

zq +K(x)z−µ ≥ zq + min
x∈Ω

K(|x|)z−µ,

there is a c0 > 0 such that

zq +K(x)z−µ ≥ c0, ∀z ∈ (0,+∞), x ∈ Ω. (4.19)
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From (4.14) and (4.19) it follows that

zλ(t) = λ
1

a(AN
∫ 1

0
BN (s)|zλ(s)|γds)

∫ 1

0

G(t, s)d(s)

×
[
zλ(s)q +K((

A

B − s
)1/(N−2))z−µλ (s)

]
ds

≥ λ 1

a(RγAN
∫ 1

0
BN (s)ds)

∫ 1

0

G(t, s)d(s)c0ds,

and so

‖zλ‖ ≥ λ
1

a(RγAN
∫ 1

0
BN (s)ds)

max
t∈[0,1]

∫ 1

0

G(t, s)d(s)c0ds,

which guarantees that

λ ≤
Ra(RγAN

∫ 1

0
BN (s)ds)

maxt∈[0,1]

∫ 1

0
G(t, s)d(s)dsc0

=: λR. (4.20)

One the other hand, since

z′′λ + λ
1

a(AN
∫ 1

0
BN (s)|zλ(s)|γds)

d(t)[zqλ(t) +K((
A

B − t
)1/(N−2))z−µλ (t)] = 0,

0 < t < 1,

zλ(0) = zλ(1) = 0,

there exists tλ ∈ (0, 1) with z′λ(t) ≥ 0 on (0, tλ) and z′λ(t) ≤ 0 on (tλ, 1). For
t ∈ (0, tλ) we have

−z′′λ(t) ≤ λ 1
a0
z−µλ (t)d(t)

{
max
t∈[0,1]

K((
A

B − t
)1/(N−2)) + zµ+q

λ (t)
}

≤ λ 1
a0
z−µλ (t) max

t∈[0,1]
d(t)

{
max
t∈[0,1]

K((
A

B − t
)1/(N−2)) +Rµ+q

}
= λ

1
a0
z−µλ (t)d1,

d1 := max
t∈[0,1]

d(t)
{

max
t∈[0,1]

K((
A

B − t
)1/(N−2)) +Rµ+q

}
.

Integrate from t (t ≤ tλ) to tλ (note zλ(s) is increasing on [t, tλ]) to obtain

z′λ(t) ≤ λ 1
a0

∫ tλ

t

z−µλ (s)dsd1 ≤ λ
1
a0

∫ tλ

t

z−µλ (t)dsd1 ≤ λ
1
a0
d1z
−µ
λ (t),

i.e.

zµλ(t)z′λ(t) ≤ λ 1
a0
d1, (4.21)

and then integrate (4.21) from 0 to tλ to obtain

1
µ+ 1

rµ+1 ≤
∫ tλ

0

zµλ(t)dzλ(t) ≤ λ 1
a0
d1.

Consequently

λ ≥ rµ+1a0

(µ+ 1)d1
=: λr. (4.22)
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It follows from (4.20) and (4.22) that (λ, uλ) ∈ [λr, λR] × ({z|r ≤ ‖z‖ ≤ R} ∩ P )
for all (λ, zλ) ∈ C with r ≤ ‖zλ‖ ≤ R. Since C comes from (0, 0), C is connected
and C ∩ ((0, λr)×C0[0, 1]) is unbounded, if λ ∈ (0, λr), there exist at least two x1,λ

and x2,λ with ‖x1,λ‖ < r and ‖x2,λ‖ > R.
Let

λ0 = sup{λr : (1.2) has at least two positive solutions for all λ ∈ (0, λr)}.

Obviously, λ0 ≤ Λ0 and (1.2) has at least two positive solutions for all λ ∈ (0, λr)
and has at least one positive solution for all λ ∈ [λ0,Λ0]. Since R and r are
arbitrary, it follows that (iii) is true. The proof is complete. �

If N = 1, we can consider the problem

−a
(∫ 1

0

|z(s)|γds
)
z′′(t) = λ[z(t)p +K(t)z−µ(t))], t in (0, 1),

z(t) > 0, t ∈ (0, 1),

z(0) = 0, z(1) = 0,

and obtain the similar results as Corollary 4.5 for the above problem.
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