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EXISTENCE OF INFINITELY MANY SOLUTIONS OF

p-LAPLACIAN EQUATIONS IN RN+

JUNFANG ZHAO, XIANGQING LIU, JIAQUAN LIU

Abstract. In this article, we study the p-Laplacian equation

−∆pu = 0, in RN
+ ,

|∇u|p−2 ∂u

∂n
+ a(y)|u|p−2u = |u|q−2u, on ∂RN

+ = RN−1,

where 1 < p < N , p < q < p̄ =
(N−1)p
N−p

, ∆p =div(|∇u|p−2∇u) the p-Laplacian

operator, and the positive, finite function a(y) satisfies suitable decay assump-

tions at infinity. By using the truncation method, we prove the existence of

infinitely many solutions.

1. Introduction

In this article, we study the existence of infinitely many solutions of the p-
Laplacian equation in RN+ ,

−∆pu = 0, in RN+ ,

|∇u|p−2 ∂u

∂n
+ a(y)|u|p−2u = |u|q−2u, on ∂RN+ = RN−1,

(1.1)

where 1 < p < N , p < q < p = (N−1)p
N−p , ∆pu =div(|∇u|p−2∇u) the p-Laplacian

operator, and the positive, finite function a(y) satisfies suitable decay assumptions
at infinity.

For ϕ ∈ C∞0 (RN+ ), define a norm

‖ϕ‖ =
(∫

RN+
|∇ϕ|p dx+

∫
∂RN+
|ϕ|p dy

)1/p

. (1.2)

Let W be the completion of C∞0 (RN+ ) with respect to the above norm. Problem
(1.1) has a variational structure, given by the functional

I(u) =
1

p

∫
RN+
|∇u|p dx+

1

p

∫
∂RN+

a(y)|u|p dy − 1

q

∫
∂RN+
|u|q dy, u ∈W. (1.3)

The embedding W ↪→ Ls(∂RN+ ), p ≤ s < p̄ is continuous, but not compact.
Consequently, the functional I does not satisfy the Palais-Smale condition. Note
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that the Sobolev space W 1,p(RN+ ) is continuously embedded into W , but the two

spaces W 1,p(RN+ ) and W are different.
The weak form of problem (1.1) is as follows. Look for u ∈W satisfying∫
RN+
|∇u|p−2∇u∇ϕdx+

∫
∂RN+

a(y)|u|p−2uϕdy =

∫
∂RN+
|u|q−2uϕdy, ∀ϕ ∈W.

(1.4)
A function u ∈W is a weak solution if and only if u is a critical point of I.

Since the celebrated paper by Brezis and Nirenberg [3], there have been many
results for nonlinear problems, involving the lack of compactness. In particular,
Devillanova and Solimini [6] considered the problem

−∆u = u2∗−2 + µu, in Ω,

u = 0, on ∂Ω,
(1.5)

where 2∗ = 2N
N−2 , µ > 0 and Ω is an open regular domain of RN , N ≥ 3. On

the other hand, Cerami, Devillanova and Solimini [4] considered the subcritical
equation in RN ,

−∆u+ a(x)u = |u|p−2u, in RN ,
u(x)→ 0, as |x| → ∞.

(1.6)

Both problems (1.5) and (1.6) have a variational structure, but the Palais-Smale
condition is not satisfied by the corresponding functionals. In the case of (1.5),
the lack of compactness is due to the scalings, and in the case (1.6) due to the
translation. The authors of [6, 4] found the solutions as limits of solutions of suitable
approximated problems in bounded domains with subcritical growth. The fact that
one solves the approximated problems under suitable assumptions and with the use
of a local Pohožaev identity provides some extra information, which lead to a proof
of desired convergence. Finally, to obtain infinitely many solutions, one has to
distinguish the limits of the multiple approximated solutions. The estimate on the
Morse index plays a role in this last step.

As to problems involving p-Laplacian operator, we have no information on the
Morse index, therefore the approach of [6, 4] to distinguish the limit of solutions
cannot be extended in a straightforward way to problems involving p-Laplacian
operator with p 6= 2.

In this article, we use the truncation method. Following the idea in [10, 9], we
first consider the truncated problems depending on a parameter λ, to which the
functionals corresponding satisfy the Palais-Smale condition. Then by a concen-
tration compactness analysis, similar to that in [6, 4], in particular with the use of
a local Pohožaev identity, convergence theorem is proved. Our method is different
from [6, 4] in the last step, the original problem and the approximated problems
share some common solutions, and more and more solutions of the original problem
are obtained as the parameter λ tends to zero. In this way, we obtain infinitely
many solutions of the original problem. Up to our knowledge, there are few re-
sults concerning the existence of infinitely many solutions of the boundary value
problems in RN+ involving the p-Laplacian operator.

To describe the approximated problem, we need to introduce some auxilary
functions. Let ψ ∈ C∞0 (R, [0, 1]) be such that ψ(t) = 1 for |t| ≤ 1 and ψ(t) = 0 for
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|t| ≥ 2, is even and decreasing in [1, 2]. For λ > 0, y ∈ ∂RN+ ∼ RN−1, s ∈ R, define

bλ(y, s) = ψ(λ(1 + |y|2)α/2s),

mλ(y, s) =

∫ s

0

bλ(y, τ) dτ,

Fλ(y, s) =
1

q
|s|r|mλ(y, s)|q−r,

fλ(y, s) =
∂

∂s
Fλ(y, s),

(1.7)

where α = N−p
p−1 , r ∈ (p, q) is a fixed number. For λ = 0, we understand m0(y, s) ≡

s, F0(y, s) ≡ 1
q |s|

q and f0(y, s) ≡ |s|q−2s. The approximated equation is

−∆pu = 0, in RN+ ,

|∇u|p−2∇u∂u
∂n

+ a(y)|u|p−2u = fλ(y, u), on ∂RN+ = RN−1.
(1.8)

Problem (1.8) has a variational structure, given by the functional

Iλ(u) =
1

p

∫
RN+
|∇u|p dx+

1

p

∫
∂RN+

a(y)|u|p dy − 1

q

∫
∂RN+

Fλ(y, u) dy. (1.9)

The critical points of Iλ are weak solutions of (1.8) satisfying∫
RN+
|∇u|p−2∇u∇ϕdx+

∫
∂RN+

a(y)|u|p−2uϕdy =

∫
∂RN+

fλ(y, u)ϕdy. (1.10)

Notice that the function fλ(y, u) decays polynomially as |y| → +∞ (see Lemma
2.1), therefore the functional Iλ satisfies the Palais-Smale condition. On the other
hand, if we have a good estimate, namely

|u(y)| ≤ λ−1(1 + |y|2)−α/2, y ∈ ∂RN+ ,

then, fλ(y, u(y)) = |u|q−2u(y), y ∈ ∂RN+ , and u will be a solution of the original
problem.

Now we state the assumptions on the potential function a.

(A1) a ∈ C(RN−1,R).
(A2) There exist a0, a1 > 0 such that a0 ≤ a(y) ≤ a1, y ∈ RN−1.
(A3) There exists c̄ > 1 such that ∂a

∂r a(y) = ( y
|y| ,∇a) ≥ 0 and |∇a(y)| ≤ c̄∂a∂r a(y),

for y ∈ RN−1, |y| ≥ c̄.
(A4) lim|y|→+∞ | ∂∂ra(y)|(1 + |y|2)α/2 = +∞, α = N−p

p−1 .

Remark 1.1. By (A4), we have a(y) ≥ c(1 + |y|)−α+1. For asumptions (A2) and

(A4) to be consistent, we need to assume α = N−p
p−1 > 1; whence α > 1, we choose

β ∈ (1, α). Then the function a(y) = 2− (1 + |y|2)−α/2 satisfies (A1)–(A4).

Here are our main results.

Theorem 1.2. Assume 1 < p < q < N , α = N−p
p−1 > 1. Assume (A1)–(A4). Given

M > 0, there exists µ = µ(M) such that if u ∈W is a solution of (1.8), λ > 0 and
‖u‖ ≤M , then

u(y) ≤ 1

µ
(1 + |y|2)−α/2, ∀y ∈ RN−1.
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Theorem 1.3. Assume 1 < p < q < N , α = N−p
p−1 > 1. Assume (A1)–(A4). Then

(1.1) has infinitely many solutions.

Throughout this article, we use the following notation: | · |p for the norm in
Lp(RN−1), ‖ · ‖ for the norm in W , → for the strong convergence, ⇀ for the weak
convergence, B+

R = {x|x ∈ RN+ , |x| < R}, DR = {y|y ∈ ∂RN+ = RN−1, |y| < R}.

2. Uniform bounds

As mentioned in the introduction, we use solutions of the truncated problems
as approximate solutions of the original problem. In this section, we prove uni-
form bounds for the approximate solutions by making a concentration compactness
analysis and with the help of local Pohožaev identity.

Let un ∈ W be a solution of (1.8) with λ = λn ≥ 0, n = 1, 2, . . . . Assume
‖u‖ ≤M . By [13, Theorem 2.1], {un} has a profile decomposition

un = u+
∑
k∈Λ

Uk(· − yn,k) + rn, (2.1)

where u, Uk, rn ∈ W, {yn,k} ⊂ ∂RN+ = RN−1, k ∈ Λ and Λ is an index set. It holds
that

(1) un ⇀ u, un(·+ yn,k) ⇀ Uk in W as n→∞, k ∈ Λ.
(2) |yn,k| → +∞, |yn,k − yn,l| → ∞ as n→∞, k, l ∈ Λ, k 6= l.
(3) |u|qq +

∑
k∈Λ |Uk|qq ≤ limn→∞ |un|qq, p < q < p̄.

(4) |rn|q → 0 in Lq(RN−1) as n→∞, p < q < p̄.

In the following lemma, we list some elementary properties of the auxiliary func-
tions.

Lemma 2.1. For (y, s) ∈ RN−1 × R and λ > 0 the following holds:

(1) smλ(y, s) ≥ 0, |s|bλ(y, s) ≤ |mλ(y, s)|.
(2) min{|s|, 1

λ (1 + |y|2)−α/2} ≤ |mλ(y, s)| ≤ min{|s|, 2
λ (1 + |y|2)−α/2} and

mλ(y, s) = s, if |y| ≤ 1
λ (1 + |y|2)−α/2.

(3) |fλ(y, s)| ≤ |s|r−1|mλ(y, s)|q−r ≤ |s|q−1.
(4) 1

r sfλ(y, s)− Fλ(y, s) = q−r
qr |s|

r−1|mλ(y, s)|q−r−1bλ(y, s) ≥ 0.

(5) ∇ymλ(y, s) = −α y
1+|y|2 (mλ(y, s)− sbλ(y, s))

∇yFλ(y, s) = −
(
1− r

q

)
α

y

1 + |y|2
|s|r|mλ(y, s)|q−r−1|mλ(y, s)− sbλ(y, s)|.

Proof. The proof is elementary and straightforward. We prove only (3)–(5). For
(3) and (4), we have

fλ(y, s) =
∂Fλ(y, s)

∂s

=
r

q
|s|r−2s|mλ(y, s)|q−r +

q − r
q
|s|r|mλ(y, s)|q−r−2mλ(y, s)bλ(y, s),

since 0 ≤ sbλ(y,s)
mλ(y,s) ≤ 1, we have

|fλ(y, s)| ≤ r

q
|s|r−1|mλ(y, s)|q−r +

q − r
q
|s|r−1|mλ(y, s)|q−r

= |s|r−1|mλ(y, s)|q−r ≤ |s|q−1 ,
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and
1

r
sfλ(y, s)− Fλ(y, s) =

(1

r
− 1

q

)
|s|rs|mλ(y, s)|q−r−2mλ(y, s)bλ(y, s)

=
(1

r
− 1

q

)
|s|r+1|mλ(y, s)|q−r−1bλ(y, s) ≥ 0.

For (5), by the definition of mλ, we have

∇ymλ(y, s) =

∫ s

0

∇ybλ(y, τ)dτ

=

∫ s

0

ψ′(λ(1 + |y|2)α/2τ) · λ(1 + |y|2)
α
2−1τ · αydτ

=

∫ s

0

α
y

1 + |y|2
· τ dψ(λ(1 + |y|2)α/2τ)

= α
y

1 + |y|2
sψ(λ(1 + |y|2)α/2s)−

∫ s

0

ψ(λ(1 + |y|2)α/2τ) dτ

= −α y

1 + |y|2
(
mλ(y, s)− sbλ(y, s)

)
.

Thus

∇yFλ(y, s) =
q − r
q
|s|r|mλ(y, s)|q−r−2mλ(y, s)∇ymλ(y, s)

= −
(
1− r

q

)
α

y

1 + |y|2
|s|r|mλ(y, s)|q−r−1|mλ(y, s)− sbλ(y, s)|.

The proof is complete. �

In the following few lemmas we study the profile decomposition 2.1. In partic-
ular in Lemmas 2.4 and 2.5, we prove that the weak limit functions u, Uk satisfy
differential inequality and decay polynomially at the infinity.

Lemma 2.2. Let u ∈ W be a solution of (1.8), λ ≥ 0. Then v = |u| satisfies the
differential inequality∫

RN+
|∇v|p−2∇v∇ϕdx+

∫
∂RN+

a(y)vp−1ϕdy ≤
∫
∂RN+

vq−1ϕdy, (2.2)

for ϕ ∈W and ϕ ≥ 0.

Proof. This lemma is somewhat similar to Kato’s inequality setting that if u ∈
H1(RN ) (for instance), then ∆|u| ≥ sign u ·∆u.

To prove Lemma 2.2, we set vε = (u2 + ε2)1/2 − ε, ε > 0. Then vε → v in W as

ε→ 0. For ϕ ∈ C∞0 (RN+ ), ϕ ≥ 0 we have∫
RN+
|∇v|p−2∇vε∇ϕdx

=

∫
RN+
|∇u|p−2 u∇u

(u2 + ε2)1/2
∇ϕdx

=

∫
RN+
|∇u|p−2∇u∇

( u

(u2 + ε2)1/2
ϕ
)

dx−
∫
RN+
|∇u|p ε2

(u2 + ε2)1/2
ϕdx

≤
∫
RN+
|∇u|p−2∇u∇

( u

(u2 + ε2)1/2
ϕ
)

dx
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= −
∫
∂RN+

a(y)|u|p−2u
u

(u2 + ε2)1/2
ϕdy +

∫
∂RN+

fλ(y, u)
u

(u2 + ε2)1/2
ϕdy

≤ −
∫
∂RN+

a(y)vp−1 v

(v2 + ε2)1/2
ϕdy +

∫
∂RN+

vq−1 v

(v2 + ε2)1/2
ϕdy .

Here we used that |fλ(y, s)| ≤ |s|q−1. Let ε → 0 in in the above inequality, by

Lebesgue’s dominated convergence theorem, we obtain (2.2) for ϕ ∈ C∞0 (RN+ ),
ϕ ≥ 0. By a density argument, (2.2) holds for ϕ ∈W,ϕ ≥ 0. �

Lemma 2.3. Let un ∈ W be a solution of (1.8) with λ = λn ≥ 0, n = 1, 2, . . . ,
{yn} ⊂ ∂RN+ ∼ RN−1. Suppose ũn = un(· + yn) ⇀ U in W . Then ũn → U in W

locally (equivalently ũn → U in W 1,p
loc (RN+ )).

Proof. ũn satisfies the equation∫
RN+
|∇ũn|p−2∇ũn∇ϕdx+

∫
∂RN+

a(y + yn)|ũn|p−2ũnϕdy

=

∫
∂RN+

fλn(y + yn, ũn)ϕdy

(2.3)

for ϕ ∈ W . Let R > 0, ϕ ∈ C∞0 (RN+ , [0, 1]) such that ϕ(x) = 1 for |x| ≤ R,

ϕ(x) = 0 for |x| ≥ 2R. Since ũn converges in Lqloc(∂RN+ ), 1 ≤ q < p̄ and in

Lqloc(RN+ ), 1 ≤ q < p̄, we have∫
RN+

(
|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ũn −∇ũm

)
ϕdx

= −
∫
RN+

(
|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ϕ

)
(ũn − ũm) dx

+

∫
∂RN+

(
a(y + yn)|ũn|p−2ũn − a(y + ym)|ũm|p−2ũm

)
(ũn − ũm)ϕdy

+

∫
∂RN+

(fλn(y + yn, ũn)− fλm(y + ym, ũm))(ũn − ũm)ϕdy

≤ c
(∫

B+
2R

|ũn − ũm|pdx
)1/p

+ c
(∫

D2R

|ũn − ũm|pdy
)1/p

+ c
(∫

D2R

|ũn − ũm|qdy
)1/q

→ 0, as n,m→∞.

(2.4)

The following elementary inequalities are very useful (see [5]). There exists a con-
stant cp,N such that for ξ, η ∈ RN ,(

|ξ|p−2ξ − |η|p−2η, ξ − η
)
≥ cp,N |ξ − η|p, if p ≥ 2,(

|ξ|p−2ξ − |η|p−2η, ξ − η
)
≥ cp,N |ξ − η|2(|ξ|p + |η|p)−

2−p
p , if 1 < p < 2 .

(2.5)

For p ≥ 2, by (2.4) and (2.5), we have∫
B+
R

|∇ũn −∇ũm|p dx ≤ c
∫
RN+

(|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ũn −∇ũm)ϕdx

→ 0
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as n,m→∞. For 1 < p ≤ 2, by (2.4) and (2.5), we have∫
B+
R

|∇ũn −∇ũm|p dx

≤ c
∫
B+
R

|(|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ũn −∇ũm)|p/2

× (|∇ũn|p + |∇ũm|p)
2−p

2 dx

≤ c
(∫

B+
R

(|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ũn −∇ũm) dx
)p/2

×
(∫

B+
R

(|∇ũn|p + |∇ũm|p) dx
) 2−p

2

≤ c
(∫

B+
2R

(|∇ũn|p−2∇ũn − |∇ũm|p−2∇ũm,∇ũn −∇ũm)ϕdx
)p/2

→ 0, as n,m→∞.

Hence {ũn} converges locally in W (and in W 1,p(RN+ )). �

Lemma 2.4. Let the profile decomposition (2.1) hold for {un}. Then

(1) v = |u|, Vk = |Uk| satisfy the differential inequalities∫
RN+
|∇v|p−2∇v∇ϕdx+ a0

∫
∂RN+

vp−1ϕdy ≤
∫
∂RN+

vq−1ϕdy, (2.6)

for ϕ ∈W and ϕ ≥ 0.∫
RN+
|∇Vk|p−2∇Vk∇ϕdx+ a0

∫
∂RN+

V p−1
k ϕdy ≤

∫
∂RN+

V q−1
k ϕdy, (2.7)

for ϕ ∈W and ϕ ≥ 0.
(2) The index set Λ is finite.

Proof. (1) Denote vn = |un|. By Lemma 2.2, vn satisfies the differential inequality∫
RN+
|∇vn|p−2∇vn∇ϕdx+ a0

∫
∂RN+

vp−1
n ϕdy ≤

∫
∂RN+

vq−1
n ϕdy (2.8)

for ϕ ∈W and ϕ ≥ 0. By Lemma 2.3, un → u in W locally, consequently vn → v in
W locally. Take the limit n→∞ in (2.8), we obtain (2.6) for ϕ ∈ C∞0 (RN+ ), ϕ ≥ 0.
By a density argument, this inequality holds for ϕ ∈ W,ϕ ≥ 0. Similarly, we can
prove that Vk satisfies the inequality (2.7).

(2) By (2.7) and the Sobolev embedding theorem,(∫
∂RN+

V qk dy
)p/q

≤ S−1
p,q

(∫
RN+
|∇Vk|p dx+

∫
∂RN+

V pk dy
)
≤ c

∫
∂RN+

V qk dy ,

where Sp,q is the Sobolev constant for the embedding from W to Lq(∂RN+ ):

Sp,q = inf
u∈W\{0}

∫
RN+
|∇u|p dx+

∫
∂RN+
|u|p dy

(
∫
∂RN+
|u|q dy)p/q

.

Hence
∫
∂RN+
|Uk|q dy =

∫
∂RN+

V qk dy ≥ m for some m > 0. By the property (3) of the

decomposition (2.1), Λ is finite. �
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Lemma 2.5. Let v ∈W , v ≥ 0 satisfy the differential inequality (2.6),∫
RN+
|∇v|p−2∇v∇ϕdx+ a0

∫
∂RN+

vp−1ϕdy ≤
∫
∂RN+

vq−1ϕdy

for ϕ ∈W and ϕ ≥ 0. Then there exists a positive constant c such that

v(x) ≤ c(1 + |x|)−
N−p
p−1 ,∫

RN+ \B
+
R

|∇v|p dx ≤ cR−
N−p
p−1 ,∫

∂RN+ \DR
vpdy ≤ cR−

N−p
p−1 .

Proof. The proof is divided into three steps, by using Moser’s iteration and the
Wolff potential for the p-Laplacian equation.

Step 1. Use Moser’s iteration to prove that, given ε > 0, there exists R0 > 0 such
that

v(y) ≤ ε, if y ∈ ∂RN+ , |y| ≥ R0. (2.9)

In particular, vq−p(y) ≤ 1
2a0, if y ∈ ∂RN+ , |y| ≥ R0. We prove that

|v|L∞(D 1
2

(y)) ≤ c
(
|v|Lp(B+

1 (y)) + |v|
L
p̄
d (D1(y))

)
, y ∈ ∂RN+ , (2.10)

where d = p̄−q+p
p > 1. Since v ∈ Lp∗(RN+ ) ∩ L

p̄
d (∂RN+ ), we have

|v|Lp(B+
1
2

(y)) + |v|
L
p̄
d (D 1

2
(y))
→ 0, as |y| → +∞, y ∈ ∂RN+ .

Hence, the estimate (2.9) follows from (2.10).

Now, we prove (2.10) by using Moser’s iteration. Let ϕ ∈ C∞0 (RN+ ), r ≥ 1. Take

vp(r−1)+1ϕp as the test function in (2.6),∫
RN+
|∇v|p−2∇v∇(vp(r−1)+1ϕp) dx+

∫
∂RN+

vprϕp dy ≤ c
∫
∂RN+

vq−pvprϕp dy.

By Hölder inequality we have

1

rp

∫
RN+

|∇(vrϕ)|p dx+

∫
∂RN+

(vrϕ)p dy

≤
∫
RN+

vpr|∇ϕ|p dx+ c

∫
∂RN+

vq−pvprϕp dy

≤ c
∫
RN+

vpr|∇ϕ|p dx+ c
(∫

∂RN+
vp̄ dy

) q−p
p̄
(∫

∂RN+

(
vrϕ

) pp̄
p̄−q+p dy

) p̄−q+p
p̄

≤ c
∫
RN+

vpr|∇ϕ|p dx+ c
(∫

∂RN+

(
vrϕ

) p̄
d dy

)pd/p̄
.

(2.11)
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By the Sobolev embedding theorem,(∫
RN+

(
vrϕ

)p∗
dx
)p/p∗

+
(∫

∂RN+

(
vrϕ

)p̄
dy
)p/p̄

≤ c
∫
RN+

∣∣∇(vrϕ)∣∣p dx

≤ crp
(∫

RN+
vpr|∇ϕ|p dx+

∫
∂RN+

(vrϕ)
p̄
d dy

)d/p̄
.

(2.12)

Now choose y0 ∈ ∂RN+ , assume that the support of the function ϕ ∈ C∞0 (RN+ ) is

contained in B2(y0) = {x | x ∈ RN , |x− y0| < 2}. Then(∫
RN+

(
vrϕ

)pd
dx
) 1
pdr ≤

(
c

∫
RN+

(
vrϕ

)p∗
dx
) 1
p∗r

. (2.13)

Since pd = p̄− q + p < p∗. By (2.12) and (2.13), we obtain

max
{(∫

RN+
(vrϕ)pd dx

) 1
pdr

,
(∫

∂RN+

(
vrϕ

)p̄
dy
) 1
p̄r
}

≤ (cr)1/r max
{(∫

RN+
vpr|∇ϕ|p dx

) 1
pr

,
(∫

∂RN+

(
vrϕ

) p̄
d dy

)d/p̄}
.

(2.14)

Denote

sn =
1

2
+

1

2n+1
, n = 0, 1, 2, . . . ,

B+
sn = {x ∈ RN+ : |x− y0| < sn},

Dsn = {y ∈ ∂RN+ : |y − y0| < sn}.

Let ϕ = ϕn be such that ϕn = 1 for x ∈ B+
sn+1

;ϕn = 0 for x 6∈ B+
sn and |∇ϕn| ≤ 1

2n ,

r = rn = dn. Then by (2.14),

max
{(∫

B+
sn+1

vrn+1p dx
) 1
rn+1p

,
(∫

Dsn+1

vrn+1
p̄
d dy

) d
rn+1p̄

}
≤
(
c2ndn

) 1
dn max

{(∫
B+
sn

vrnp dx
) 1
rnp

,
(∫

Dsn

vrn
p̄
d dy

) d
rnp̄
}

≤
∞∏
n=0

(c2ndn)
1
dn max

{(∫
B+

1

vp dx
)1/p

,
(∫

D1

v
p̄
d dy

)d/p̄}
= cmax

{(∫
B+

1

vp dx
)1/p

,
(∫

D1

v
p̄
d dy

)d/p̄}
.

(2.15)

Taking the limit n→∞ in (2.15), we obtain the desired estimate.

Step 2. Using the Wolff potential for the p-Laplacian operator in RN+ we prove
that there exists c > 0 such that

V (x) ≤ c(1 + |x|)−
N−p
p−1 , x ∈ RN+ .

Let R0 be as defined in Step 1,

vq−p(y) ≤ 1

2
a0, for y ∈ ∂RN+ , |y| ≥ R0. (2.16)
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Choose K > 0 large enough such that

K ≥
∣∣a(y)vp−1 − vq−1

∣∣+ vp−1 for y ∈ ∂RN+ , |y| ≤ R0. (2.17)

Let w ∈W be the solution of the p-Laplacian equation

−∆pw = 0, in RN+ ,

|∇w|p−2 ∂w

∂n
= g, on ∂RN+ ,

(2.18)

where g ≥ 0, g(y) = 0 if |y| ≥ R0, g(y) = K if |y| < R0. For y ∈ ∂RN+ , |y| ≥ R0, by
the choice of K,((

a(y)vp−1 − vq−1
)

+ g
)

(v − w)+ =
((
a(y)vp−1 − vq−1

)
+K

)
(v − w)+

≥ vp−1(v − w)+ ≥ (v − w)p+.

For y ∈ ∂RN+ , |y| ≥ R0, by the choice of R0,(
(a(y)vp−1 − vq−1

)
+ g)(v − w)+ = (a(y)vp−1 − vq−1)(v − w)+

≥ 1

2
a0v

p−1(v − w)+ ≥
1

2
a0(v − w)p+.

We have

0 ≥
∫
RN+

(
|∇v|p−2∇v − |∇w|p−2∇w,∇(v − w)+

)
dx

+

∫
∂RN+

((
a(y)vp−1 − vq−1

)
+ g
)

(v − w)+ dy

≥
∫
RN+

(
|∇v|p−2∇v − |∇w|p−2∇w,∇(v − w)+

)
dx+ c

∫
∂RN+

(v − w)p+ dy,

hence
v(x) ≤ w(x), for x ∈ RN+ . (2.19)

We claim that
w(x) ≤ c(1 + |x|)−

N−p
p−1 , for x ∈ RN+ . (2.20)

Since W is bounded, we need only to prove (2.20) for |x| ≥ 2R0. By the Wolff
potential for the p-Laplacian operator in RN+ [12, 8, Corollary 4.13],

w(x) ≤ c
∫ ∞

0

( 1

tN−p

∫
Bt(x)∩∂RN+

g dy
)1/p 1

t
dt

= c

∫ ∞
0

( 1

tN−p

∫
Bt(x)∩supp g

g dy
) 1
p−1 1

t
dt,

where supp g = DR0 = {y|y ∈ ∂RN+ , |y| ≤ R0}. If |x| ≥ 2R0 and t < 1
2 |x|, then

Bt(x) ∩DR0 = ∅, hence

w(x) ≤ c
∫ ∞

1
2 |x|

( 1

tN−p

∫
Bt(x)∩DR0

g dy
) 1
p−1 1

t
dt

≤ c
∫ ∞

1
2 |x|

( 1

tN−p

∫
DR0

g dy
) 1
p−1 1

t
dt

= c|x|−
N−p
p−1 , for |x| ≥ 2R.

Consequently, we obtain (2.20) for some c > 0.
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Step 3. We prove that there exists c > 0 such that∫
RN+ \B

+
R

|∇v|p dx ≤ cR−
N−p
p−1 ,

∫
RN+ \DR

vp dy ≤ cR−
N−p
p−1 .

Choose ϕ ∈ C∞(RN+ , [0, 1]) such that ϕ(x) = 0, |x| ≤ 1
2R, ϕ(x) = 1, |x| ≥ R,

|∇ϕ| ≤ 4/R. Take vϕp as test function in (2.6).∫
RN+
|∇v|p−2∇v∇(vϕp) dx+ a0

∫
∂RN+

vpϕp dy ≤
∫
∂RN+

vqϕp dy.

Assume R ≥ 2R0, then∫
RN+ \B

+
R

|∇v|p dx+ a0

∫
∂RN+ \DR

vp dy

≤
∫
RN+
|∇v|pϕp dx+ a0

∫
∂RN+

vpϕp dy

− p
∫
RN+
|∇v|p−2∇vv · ϕp−1∇ϕdx+

∫
∂RN+

vqϕp dy

≤ ε
∫
RN+
|∇v|pϕp dx+ c

∫
RN+

vp|∇ϕ|p dx+
1

2
a0

∫
∂RN+

vpϕp dy,

hence ∫
RN+ \B

+
R

|∇v|p dx+

∫
∂RN+ \DR

vp dy ≤ c
∫
RN+

vp|∇ϕ|p dx

≤ cR−p
∫
RN+ \B

+
1
2
R

vp dx

≤ cR−p
(
R−

N−p
p−1
)p
RN = cR−

N−p
p−1 .

The proof is complete. �

Remark 2.6. Let vn ∈W, vn ≥ 0 and satisfy the differential inequality (2.6), n =
1, 2, . . . . Suppose vn → v in Lq(∂RN+ ) and Lr(RN−1 × (0, 2)) for some r ∈ (p, p∗),
then by checking the proof of Lemma 2.5, vn is uniformly bounded.

Lemma 2.7. Let un ∈W be a solution of the Problem (1.8) with λ = λn > 0, n =
1, 2, . . . . Assume {un} is bounded in W and the profile decomposition (2.1) holds.
Then there exists a positive constant c, independent of n, such that

|un(x)| ≤ c
(
1 + dn(x)

)−N−pp−1∫
Ω

(n)
R

|∇un|p dx ≤ cR̄,∫
∑(n)
R

|un|p dx ≤ cR−
N−p
p−1 ,

where

dn(x) = min
{
|x|, |x− yn,k|, k ∈ Λ

}
,

Ω
(n)
R =

{
x ∈ RN+ : dn(x) > R

}
= RN+ \

(
B+
R ∪ ∪k∈ΛB

+
R(yn,k)

)
,

Σ
(n)
R =

{
y ∈ ∂RN+ : dn(y) > R

}
= ∂RN+ \

(
DR ∪ ∪k∈ΛDR(yn,k)

)
.

(2.21)
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Proof. The proof is similar to that of Lemma 2.5, and is divided into three steps.

Step 1. Given ε > 0, there exists R0 > 0, independent of n, such that

|un(y)| ≤ ε, if y ∈ ∂RN+ , dn(x) ≥ R0. (2.22)

In particular, |un(y)|q−p ≤ 1
2a0 for y ∈ ∂RN+ , dn(x) ≥ R0.

As in Step 1 of the proof of Lemma 2.5, we have

|un|L∞(D 1
2

(y)) ≤ c
(
|un|Lp(B+

1 (y)) + |un|
L
p̄
d (D1(y))

)
, y ∈ ∂RN+ .

By Lemma 2.5 and the property (4) of the profile decomposition (2.1), it holds for
p < r < p̄,∫

Σ
(n)
R

|un|r dy

≤ c
∫

Σ
(n)
R

|u|r dy + c
∑
k∈Λ

∫
Σ

(n)
R

|Uk(· − yn,k)|r dy + c

∫
Σ

(n)
R

|rn|r dy

≤ c
∫
RN+ \B

+
R

|u|r dy + c
∑
k∈Λ

∫
∂RN+ \DR

|Uk|r dy + c

∫
∂RN+
|rn|r dy

≤ cR−
N−p
p−1 + on(1) = ok(1) + on(1).

(2.23)

Note that the space W is continuously embedded into W 1,p
(
RN−1× (0, 2)

)
. Let D

be the translation group

D =
{
g : | gu(·) = u(· − y), y ∈ ∂RN+ = RN−1 × {0}

}
. (2.24)

The embedding from W 1,p
(
RN−1 × (0, 2)

)
into Lr(RN−1 × (0, 2)), p < r < p∗, is

cocompact with respect to the group D. So we may assume rn → 0 in Lr(RN−1 ×
(0, 2)), p < r < p∗. In parallel to (2.23), we have∫

Σ
(n)
R ×(0,2)

|un|r dx

≤ c
∫

Σ
(n)
R ×(0,2)

|u|r dx+ c
∑
k∈Λ

∫
Σ

(n)
R ×(0,2)

|un(· − yn,k)|p dx

+ c

∫
Σ

(n)
R ×(0,2)

|rn|r dy

= oR(1) + on(1) .

(2.25)

For y ∈ Σ
(n)
R , B+

1 (y) ⊂ Σ
(n)
R−1 × (0, 2), D1(y) ⊂ Σ

(n)
R−1. The estimate (2.22) follows

from (2.23),(2.21) and (2.25).

Step 2. There exists C > 0, independent of n, such that

|un(x)| ≤ C(1 + dn(x))−
N−p
p−1 , x ∈ RN+ . (2.26)

Let R0 be as defined in Step 1,

|un(y)|q−p ≤ 1

2
a0, for y ∈ ∂RN+ , dn(y) ≥ R0.

Choose K > 0 large enough such that

k ≥
(
a(y)|un|p−2un

)
− |fλn(y, un)|+ |un|p−1, for y ∈ ∂RN+ , dn(y) ≤ R0.
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Let wn ∈W be the solution of the p-Laplacian equation

−∆pwn = 0, in RN+ ,

|∇wn|p−2 ∂wn
∂n

= gn, on ∂RN+ ,
(2.27)

where gn ≥ 0, gn(y) = 0 if dn(y) ≥ R0, gn(y) = R if dn(y) < R0. For y ∈ ∂RN+ ,
dn(y) ≥ R0, by the choice of K,(

a(y)|un|p−2un − fλn(y, un) + gn

)
(un − wn)+

≥
(
a(y)|un|p−2un − fλn(y, un) +K

)
(un − wn)+

≥ |un|p−1(un − wn)+ ≥ (un − wn)p+.

For y ∈ ∂RN+ , dn(y) ≥ R0, by the choice of R0,(
a(y)|un|p−2un − fλn(y, un) + g

)
(un − wn)+

=
(
a(y)|un|p−2un − fλn(y, un)

)
(un − wn)+

≥
(
a(y)|un|p−1 − |un|q−1

)
(un − wn)+

≥ 1

2
a0|un|p−1(un − wn)+ ≥

1

2
a0(un − wn)+.

We have

0 = −
∫
RN+

(∆pun −∆pum)(un − wn)+ dx

=

∫
RN+

(
|∇un|p−2∇un − |∇wn|p−2∇wn,∇(un − wn)+

)
dx

+

∫
∂RN+

(
a(y)|un|p−2un − fλn(y, un)

)
(un − wn)+ dy

≥
∫
RN+

(
|∇un|p−2∇un − |∇wn|p−2∇wn,∇(un − wn)+

)
dx

+ c

∫
∂RN+

(un − wn)p dy;

hence

un(x) ≤ wn(x), for x ∈ RN+ . (2.28)

Similarly we have −un(x) ≤ wn(x) for x ∈ RN+ .
We claim that

wn(x) ≤ c(1 + dn(x))−
N−p
p−1 , for x ∈ RN+ . (2.29)

Since wn is uniformly bounded, we need only to prove (2.29) for x ∈ RN+ , dn(x) ≥
2R0. Again by the Wolff potential for the p-Laplacian in RN+ , we have

wn(x) ≤ c
∫ ∞

0

( 1

tN−p

∫
Bt(x)∩supp gn

gn dy
) 1
p−1 1

t
dt,

where supp g = DR0
∪k∈Λ DR0

(yn,k) =
{
y|y ∈ ∂RN+ , dn(y) ≤ R0

}
.
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If x ∈ RN+ , dn(x) ≥ 2R0 and t ≤ 1
2dn(x), then Bt(x) ∩ supp g = ∅, hence

wn(x) ≤ c
∫ ∞

1
2dn(x)

( 1

tN−p

∫
Bt(x)∩supp gn

gn dy
) 1
p−1 1

t
dt,

≤ c
∫ ∞

1
2dn(x)

( 1

tN−p

∫
supp gn

gn dy
) 1
p−1 1

t
dt = cd

−N−pp−1
n (x),

for dn(x) ≥ 2R0. Consequently, we obtain (2.29) for some c > 0.

Step 3. There exists c > 0, independent of n, such that∫
Ω

(n)
R

|∇un|p dx ≤ cR−
N−p
p−1 ,

∫
B+
R\B

+
1
2
R

|un|p dy ≤ cR−
N−p
p−1 .

The proof is similar to that of Lemma 2.5. Choose ϕn ∈ C∞0
(
RN+ , [0, 1]

)
such that

ϕn(x) = 0, if dn(x) ≤ 1
2R, ϕn(x) = 1, if dn(x) ≥ R, |∇ϕn| ≤ 4

R . Testing equation
(1.8) by unϕ

p
n with λ = λn, and assuming R ≥ 2R0, we have∫

Ω
(n)
R

|∇un|p dx+

∫
Σ

(n)
R

|un|p dx ≤ c
∫
RN+
|∇un|p|∇ϕn|p dx

≤ cR−p
∫

Ω
(n)
1
2
R
\Ω(n)

R

|un|p dx

≤ cR−p(R−
N−p
p−1 )pRN = cR−

N−p
p−1 .

We follow the idea in [6] to derive a local Pohožaev type identity with a form as in
[4], which is much closer to our case. �

Lemma 2.8. Let u ∈W be a solution of Problem (1.8), t ∈ ∂RN+ and ϕ ∈ C∞0 (RN+ ).
Then the following Pohožaev type identity holds

1

p

∫
∂RN+

(t,∇a)|u|pϕdy −
∫
∂RN+

a(y)
(
t,∇yFλ(y, u)ϕ

)
dy

=
1

p

∫
RN+
|∇u|p(t,∇ϕ) dx−

∫
RN+
|∇u|p−2(t,∇u)(∇u,∇ϕ) dx

− 1

p

∫
∂RN+

a(y)|u|p(t,∇ϕ) dy +

∫
∂RN+

Fλ(y, u)(t,∇ϕ)dy.

(2.30)

Proof. Taking (t,∇u)ϕ as the test function in equation (1.10) and integrating by
parts, we obtain the identity. �

Assume that un ∈ W is a solution of the problem (1.8) with λ = λn ≥ 0,
‖un‖ ≤ M , n = 1, 2, . . . . Assume that the profile decomposition (2.1) for the
sequence {un} holds.

un = u+
∑
k∈Λ

Uk(· − yn,k) + rn.

Without loss of generality, we assume |yn,1| = min {|yn,k|, k ∈ Λ}. Denote yn =
yn,1. According to [4], we can construct a sequence of cones Cn, having vertex 1

2yn
and generated by the semiball B+

Rn
(yn) as follows:

C+
n =

{
w ∈ RN+ : w =

1

2
yn + λ(x− 1

2
yn), x ∈ B+

Rn
(yn), λ ≥ 0

}
,
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where Rn satisfies

r̂

k0
· |yn|

2
= rn ≤ Rn ≤ R0rn = r̂

|yn|
2
, r̂ =

1

5(c+ 1)
,

and c is the constant in the definition (A4), Λ = {1, 2, . . . , k0}.
The cone C+

n has the following property, let ∂C+
n be the boundary of C+

n in RN+ ,
then

∂C+
n ∩

{
B+

1
2 rn
∪ ∪k∈ΛB

+
1
2 rn

(yn,k)
}

= ∅ . (2.31)

Now we apply the Pohožaev type identity (2.31). Take u = un, t = tn = yn
|yn| and

ϕ = χϕR, where χ, ϕR ∈ C∞0 (RN ) such that χ(x) = 0 for x 6∈ C+
n , χ(x) = 1 for

x ∈ C+
n and dist(x, ∂C+

n ) ≥ 1, ϕR(x) = 1 for |x| ≤ R,ϕR(x) = 0 for |x| ≥ 2R. Let
R→∞, we obtain

1

p

∫
∂RN+

(tn,∇u)|un|pχdy −
∫
∂RN+

(tn,∇yFλn(y, un)χ) dy

= −1

p

∫
RN+
|∇un|p(tn,∇χ) dx+

∫
RN+
|∇un|p−2(tn,∇un)(∇un,∇χ) dx

− 1

p

∫
∂RN+

a(y)|un|p(tn,∇χ) dy +

∫
∂RN+

Fλn(y, un)(tn,∇χ) dy.

(2.32)

By (2.31) and the definition of χ, the support of∇χ is contained in the set Ω
(n)
R ∪Σ

(n)
R

with R = 1
2rn−1. By Lemma 2.7, the right-hand side of (2.32) decays polynomially.

More precisely,

− 1

p

∫
RN+
|∇un|p(tn,∇χ) dx+

∫
RN+
|∇un|p−2(tn,∇un)(∇un,∇χ) dx

− 1

p

∫
∂RN+

a(y)|un|p(tn,∇χ) dy +

∫
∂RN+

Fλn(y, un)(t,∇χ)dy

≤ c
(∫

Ω
(n)
R

|∇un|p dx+

∫
∑(n)
R

(|un|p + |un|q) dy
)

≤ cR−
N−p
p−1 ≤ cr−

N−p
p−1

n ≤ c|yn|−
N−p
p−1 .

(2.33)

To estimate the left-hand side of (2.32), we use some estimates from [4]. By [4,
Lemma 4.2],

(tn, y) ≥ 0, 〈tn,∇a(y)〉 ≥ 1

2

∂

∂r
a(y) for y ∈ C+

n ∩ ∂RN+ .

Moreover, by Lemma 2.1(5),

(
tn,∇yFλ(y, un)

)
= −

∣∣∇yFλ(y, un)(tn,
y

|y|
)
∣∣ ≤ 0, for y ∈ C+

n ∩ ∂RN+ .



16 J. ZHAO, X. LIU, J. LIU EJDE-2019/87

Hence, the left-hand side of (2.33) can be as estimated as

1

p

∫
∂RN+

(tn,∇a)|un|p dy −
∫
∂RN+

(tn,∇yFλn(y, un))χdy

≥ 1

2p

∫
∂RN+

∂

∂r
a(y)|un|pχdy

≥ 1

2p
inf

DL(yn)

∂a

∂r

∫
DL(yn)

|un|p dy,

(2.34)

where DL(yn) ⊂ Σ
(n)
R ⊂ C+

n , L is a large number such that∫
DL

|U1|p dy = m > 0.

Since ũn = un(· − yn) ⇀ U1 in W , we have∫
DL(yn)

|un|p dy =

∫
DL

|ũn|p dy →
∫
DL

|U1|p dy = m. (2.35)

By (2.34), (2.35), the left-hand side of (2.33),

1

p

∫
∂RN+

(
tn,∇a

)
|un|pχdy −

∫
∂RN+

(tn,∇yFλn(y, un))χdy

≥ m

4p
inf

DL(yn)

∂a

∂r
.

(2.36)

Finally by (2.33), (2.36),

1

4p
inf

DL(yn)

∂a

∂r
≤ c|yn|

N−p
p−1 ,

which contradicts (A4). Thus Λ = ∅, and by the profile decomposition (2.1)
un = u + rn → u in Lq(∂RN+ ). As mentioned before, the space W is continuously

embedded into W 1,p
(
RN−1 × (0, 2)

)
, and in turn W 1,p

(
RN−1 × [0, 2]

)
is embedded

into Ls
(
RN−1× [0, 2]

)
, p < s < p∗, compactly with respect to the translation group

D. We also have un → u in Ls
(
RN−1 × [0, 2]

)
, p < s < p∗. Namely we have the

following proposition.

Proposition 2.9. Let un ∈ W be a solution of (1.8) with λ = λn, n = 1, 2, . . . .
Assume ‖un‖ ≤ M,un ⇀ u in W . Then un → u in Ls

(
∂RN+

)
, p < s ≤ p̄ and in

Ls(RN−1 × (0, 2)), p < s < p∗.

Proof of Theorem 1.2. We use an indirect argument. Let un ∈ W be a solution of
Problem (1.8) with λ = λn ≥ 0, ‖un‖ ≤M , n = 1, 2, . . . , but it holds that

sup
y∈∂RN+

1

n
(1 + |y|)

N−p
p−1 |un(y)| > 1. (2.37)

By Proposition 2.9, un → u in Ls
(
RN+
)
, p < s < p̄ and in Ls(RN−1 × (0, 2)),

p < s < p∗, the index set Λ in the profile decomposition for the sequence {un} is
empty. Hence dn(x) = min{|x|, |x − yn,k|, k ∈ Λ} = |x|, and by Lemma 2.7, there
exists c > 0, independent of n, such that

|un(y)| ≤ c(1 + |y|)−
N−p
p−1 , y ∈ ∂RN+ ,

we arrive at a contradiction. �
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Corollary 2.10. Let un ∈W be a solution of (1.8) with λ = λn ≥ 0, n = 1, 2, . . . .
Assume Iλn(un) ≤ M , then there exists a constant c > 0 independent of n, such
that

|un(y)| ≤ c(1 + |y|)−
N−p
p−1 for y ∈ ∂RN+ . (2.38)

Moreover, up to a subsequence, {un} converges in W .

Proof. By Lemma 2.1(4), we have

M ≥ Iλn(un) = Iλn(un)− 1

r
〈DIλn(un), un〉

=
(1

p
− 1

r

)( ∫
RN+
|∇un|p dx+

∫
∂RN+

a(y)|un|p dy
)

+
(1

r
− 1

q

) ∫
∂RN+
|un|r+1|mλn(y, un)|q−r−1bλn(y, un) dy

≥
(1

p
− 1

r

)( ∫
RN+
|∇un|p dx+

∫
∂RN+
|un|p dy

)
.

The sequence {un} is bounded in W . By Theorem 1.2, (2.38) holds. Moreover, by
Proposition 2.9, up to a subsequence {un} converges in Lq(∂RN+ ), and

∫
RN+

(|∇un|p−2∇un − |∇um|p−2∇um,∇un −∇um) dx

+

∫
∂RN+

a(y)(|un|p−2un − |um|p−2um)(un − um) dy

=

∫
∂RN+

(fλn(y, un)− fλm(y, um))(un − um) dy

≤ c
∫
∂RN+

(|un|q−1 + |um|q−1)|un − um|dy

≤ c|un − um|Lq(∂RN+ ) → 0 as n,m→∞ .

The sequence {un} converges in W . �

3. Existence of infinitely many solutions

In this section, we prove the existence of infinitely many solutions of the original
problem (1.1). First we construct a sequence of critical values of the truncated
functionals Iλ, λ > 0, by the symmetric mountain pass lemma due to Ambosetti
and Rabinowitz [1].

Lemma 3.1. The functional Iλ, λ > 0 satisfies the Palais-Smale condition.
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Proof. Let {un} ⊂ W be a Palais-Smale sequence of Iλ. By Lemma 2.1 (4), hence
we have

Iλ(un)− 1

r

〈
DIλ(un), un

〉
=
(1

p
− 1

r

)( ∫
RN+
|∇un|p dx+

∫
∂RN+
|un|p dy

)
+
(1

r
− 1

q

) ∫
∂RN+
|un|r+1|mλ(y, un)|q−r−1bλ(y, un) dy

≥
(1

p
− 1

r

)( ∫
RN+
|∇un|p dx+

∫
∂RN+

a(y)|un|p dy
)
.

(3.1)

Hence {un} is bounded in W . Assume un ⇀ u in W , un → u in Lsloc(∂RN+ ),
p ≤ s < p̄. By Lemma 2.1, we have∫

RN+
(|∇un|p−2∇un − |∇um|p−2∇um,∇un −∇um) dx

+

∫
∂RN+

a(y)(|un|p−2un − |um|p−2um)(un − um) dy

=

∫
∂RN+

(
fλ(y, un)− fλ(y, um)

)
(un − um) dy

≤
∫
∂RN+

( 2

λ
(1 + |y|−

N−p
p−1 )

)q−r
(|un|r−1 + |um|r−1)|un − um|dy

≤ cR−
N−p
p−1 (p−r)

∫
∂RN+ \DR

(
|un|r + |um|r

)
dy

+ CR
( ∫

DR

(|un|r + |um|r) dy
) r−1

r

(∫
DR

|un − um|r dx
)1/r

≤ cR−
N−p
p−1 (p−r) + CR|un − um|Lr(Dr)

→ 0 as n,m→∞ .

(3.2)

By (3.2) and the elementary inequalities (2.5), {un} is a Cauchy sequence, hence a
convergent sequence in W . �

Now we define a sequence of critical values of Iλ as follows.

ck(λ) = inf
A∈Γk

sup
u∈A

Iλ(u), λ > 0, k = 1, 2, . . . , (3.3)

where

Γk = {A ⊂W : A is compact , −A = A, γ(A ∩ σ−1(Sρ)) ≥ k, ∀σ ∈ G},
G = {σ ∈ C(W,W ) : σ(−u) = −σ(u), ∀u ∈W ;σ(u) = u, if I1(u) < 0},

Sρ = {u ∈W : ‖u‖ = ρ},

where ρ > 0 is a fixed number to be chosen as follows. For u ∈ Sρ we have

I1(u) =
1

p

(∫
RN+
|∇u|p dx+

1

p

∫
∂RN+

a(y)|u|p dy
)
− 1

q

∫
∂RN+
|u|q dy

≥ c0ρp − c1ρq ≥
1

2
c0ρ

p,
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provided c1ρ
q−p ≤ 1

2c0 and I(u) = 1
2c0ρ

p for u ∈ Sρ. The following proposition is
known, see [1, 2, 11].

Proposition 3.2. Assume 0 < λ ≤ 1. Then

(1) ck(λ) > 0, k = 1, 2, . . . are critical values of Iλ.
(2) If ck(λ) = ck+1(λ) = · · · = ck+m−1(λ) = c, then γ

(
Kc(Iλ)

)
≥ m, where

Kc(Iλ) = {u|u ∈W,DIλ(u) = 0, Iλ(u) = c}.
(3) Assume p = 2. Then there exists u ∈W such that Iλ(u) = ck(λ), DIλ(u) =

0 and m∗(u) ≥ k, where m∗(·) is the augmented Morse index.

Given k ∈ N , by Corollary 2.10, there exists µk > 0 such that if 0 < λ ≤ 1,
u ∈W , DIλ(u) = 0, Iλ(u) = ck(λ) ≤ αk := ck(1), then

|u(y)| ≤ 1

µk
(1 + |y|2)−

N−p
2(p−1) , y ∈ ∂RN+ . (3.4)

Choose 0 < λk < min{1, µk}. Let u1(λ), . . . , uk(λ) be the solutions of (1.8) with
λ = λk, corresponding to the critical values c1(λk) ≤ · · · ≤ ck(λk). Since Iλ is
increasing in λ, we have c1(λk) ≤ · · · ≤ ck(λk) ≤ αk, u1(λk), . . . , uk(λk) satisfy the
estimate (3.4), hence they are solutions of the original problem (1.1). Now k is
arbitrary, we obtain infinitely many solutions of Problem (1.1).

Remark 3.3. We have proved that Problem (1.1) has infinite many solutions. We
can prove a little more, namely claim the functional I has an infinitely sequence of
critical values.

We use an indirect argument. Assume I has only a finite number of critical
values c1, . . . , ck. Denote K = {u|u ∈ W,DI(u) = 0}. Then by Corollary 2.10,
K is compact. Assume γ(K) = m < +∞. For 0 < λ < 1, the functional Iλ has
critical values c1(λ) ≤ c2(λ) ≤ · · · ≤ ckm+1(λ). If λ is sufficiently small, they will
be critical values of I. We claim c1(λ) < cm+1(λ) < · · · < ckm+1(λ). Otherwise
suppose, say c = c1(λ) = cm+1(λ). By Proposition 3.2, γ(Kc) ≥ m + 1, where
Kc = {u|u ∈ W,DIλ(u) = 0, Iλ(u) = c} ⊂ K, which is a contradiction. We obtain
k + 1 different critical values of I. Since k is arbitrary, I has a infinite sequence of
critical values.

For p = 2, by the information on the Morse index, one can prove that I has an
unbounded sequence of critical values(see [6, 4]).
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