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POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS WITH
SINGULAR NONLINEARITY

JUNPING SHI, MIAOXIN YAO

Abstract. We study an elliptic boundary-value problem with singular non-
linearity via the method of monotone iteration scheme:

−∆u(x) = f(x, u(x)), x ∈ Ω,

u(x) = φ(x), x ∈ ∂Ω,

where ∆ is the Laplacian operator, Ω is a bounded domain in RN , N ≥ 2,
φ ≥ 0 may take the value 0 on ∂Ω, and f(x, s) is possibly singular near

s = 0. We prove the existence and the uniqueness of positive solutions under a
set of hypotheses that do not make neither monotonicity nor strict positivity
assumption on f(x, s), which improvements of some previous results.

1. Introduction

Let Ω be a bounded smooth domain in RN , N ≥ 2. We assume that the boundary
∂Ω of Ω is of C2,θ for some θ ∈ (0, 1). Let φ(x) be a nonnegative function belonging
to C2,θ(∂Ω) and f(x, s) be a function defined on Ω × (0,+∞) which is locally
Hölder continuous with exponent θ. We consider the existence and the uniqueness
of positive solutions for the nonlinear boundary-value problem

−∆u(x) = f(x, u(x)), x ∈ Ω, (1.1)

u(x) = φ(x), x ∈ ∂Ω, (1.2)

where ∆ is the Laplacian operator.
A positive solution of problem (1.1)-(1.2) is a function u(x) ∈ C0(Ω) ∩ C2(Ω)

satisfying (1.1)-(1.2) and u(x) > 0 for x ∈ Ω.
Many articles treat the problem of the existence and/or the uniqueness of positive

solutions for (1.1)-(1.2) under a variety of hypotheses on function f(x, s). When
f(x, s) is locally Lipschiz in Ω× [0,+∞), the existence and uniqueness of positive
solutions (for some cases) are well understood. However, if there is a sequence
{(xi, si)} in Ω × (0,+∞), for which xi converges to some point in the set {x ∈
∂Ω|φ(x) = 0} and si tends to 0 as i→ +∞, such that f(xi, si) →∞, then problem
(1.1)-(1.2) is singular, it does not have a solution in C2(Ω), and the existence or
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uniqueness results do not follow from the results obtained for nonsingular equations
in the literature.

It is well-known that such singular elliptic problems arise in the contexts of
chemical heterogeneous catalysts, non-Newtonian fluids and also the theory of heat
conduction in electrically conducting materials, see [3, 4, 6, 7] for a detailed discus-
sion.

In [7], the existence of a positive solution of such a singular problem is established
under a set of assumptions in which f(x, s) is assumed to be non-increasing in s.
Thus if f(x, s) is defined, say, by

f(x, s) = g(x) ln2 s, (1.3)

or by
f(x, s) = g(x)s−α + h(x)sβ − k(x)sρ, (1.4)

where α > 0, β ∈ (0, 1), ρ ≥ 1 , g and k are nonnegative Hölder continuous functions,
then the existence of positive solutions does not follow from the results in [7].

the authors in [12] and [5] treat the singular problem with no monotonicity
assumption on f(x, s), and the results there may imply the existence of positive
solutions even when f(x, s) is given by (1.3), (1.4), in which k(x) = 0, g(x), h(x) > 0
for x ∈ Ω, or, by (see [12])

f(x, s) = 1 + {1 + cos
1
s
}s1/2e1/s. (1.5)

Some uniqueness results are also given in [12] and [5]. However, the method of
proof in [12] and [5] requires that f(x, s) be strictly positive near s = 0, i.e., f(x, s)
is bounded away from 0 as s → 0+, for x ∈ Ω (See (H2), (H ′

2) in [12] and (g1) in
[5]). Therefore, if f(x, s) is given, say, by (1.3), (1.4), with g(x) and h(x) vanishing
on some non-empty subset of Ω, or given by

f(x, s) = s1/2e
1
s (1+cos 1

s ), (1.6)

then no conclusion regarding the existence of positive solutions can be derived from
the results in [12] and [5].

For the special case where f(x, s) = g(x)s−α in which g is a sufficiently regular
function and is positive in Ω, and α > 0, [9] gives some results when g(x) is vanishing
or tending to ∞ near ∂Ω with a suitable rate, and the positivity of f(x, s) for x ∈ Ω
is still assumed.

Recently the case where f(x, s) = g(x)s−α+h(x)sp is studied with p ∈ (0, 1) and
the restriction that α ∈ (0, 1

N ), also assumed the positivity hypotheses on functions
g(x) and h(x) on whole Ω.

In the present article, neither monotonicity nor positivity on whole Ω is assumed
for f(x, s), and the results are more general, implying the existence of positive
solutions for (1.1)-(1.2) even with f(x, s) given by any of (1.3)–(1.6), where g(x)
and h(x) may be 0, and even h(x) may be negative, in some subset of Ω . Also a
uniqueness result is obtained. If we assume that for each x ∈ Ω either s−1f(x, s) is
strictly decreasing in s for s > 0, or f(x, s) and s−1f(x, s) are both nonincreasing in
s, and that function f satisfies some certain conditions in addition to the conditions
for existence results, then we can further prove that the solution is unique. When
f(x, s) is locally Lipschiz in Ω× [0,+∞) and hence not singular, and s−1f(x, s) is
strictly decreasing in s for s > 0 at every x in Ω, this kind of uniqueness result is
well-known (see for example, [10]), however, our result extends it to include singular
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nonlinearity cases, which covers the special case where f is given by (1.4), and also
applies to the case where s−1f(x, s) need’nt be strictly decreasing in s for all x in
Ω.

The precise hypotheses and main results are stated in Section 2, and the proof
for the results is given in Section 3. The proof for the existence results is based
on a monotone convergence argument with solutions of (1.1) corresponding to the
boundary data φ(x)+ 1

k , which are obtained by using a monotone iteration scheme
started with certain supersolutions and subsolutions particularly chosen; the proof
for the uniqueness result makes use of a comparison lemma, which stems from some
idea of a lemma in [2].

2. Hypotheses and Main Results

We assume that the function f that defines the nonlinear term in (1.1) satisfies
the following conditions:

(F1) f : Ω× (0,+∞) → R is Hölder continuous with exponent θ ∈ (0, 1) on each
compact subset of Ω× (0,+∞).

(F2)

lim sup
s→+∞

(
s−1 max

x∈Ω
f(x, s)

)
< λ1,

where λ1 is the first eigenvalue of −∆ on Ω with Dirichlet boundary value.
(F3) For each t > 0, there exists a constant D(t) > 0 such that

f(x, r)− f(x, s) ≥ −D(t)(r − s)

for x ∈ Ω and r ≥ s ≥ t. (Without loss of generality we assume that
D(s) ≤ D(t) for s ≥ t > 0.)

For the case in which φ(x) 6≡ 0 on ∂Ω, we have the following result.

Theorem 2.1. Suppose that f satisfies (F1)–(F3) and φ ∈ C2,θ(∂Ω). If φ(x) ≥ 0
and φ(x) 6≡ 0 on ∂Ω, and if there exist γ, δ > 0 such that

f(x, s) ≥ −γs, for x ∈ Ω s ∈ (0, δ), (2.1)

then there exists at least one positive solution u(x) of problem (1.1) (1.2) such that
for any compact subset G of Ω ∪ {x ∈ ∂Ω|φ(x) > 0}, u(x) ∈ C2,θ(G).

For the general case where φ(x) may be 0 for all x ∈ ∂Ω, we have the following
theorems.

Theorem 2.2. Suppose that f satisfies (F1)–(F3) and φ ∈ C2,θ(∂Ω). If φ(x) ≥ 0
on ∂Ω and if there exist positive numbers δ, γ and a nonempty open subset Ω0 of Ω
such that

f(x, s) ≥ −γs, for x ∈ Ω s ∈ (0, δ), (2.2)

s−1f(x, s) → +∞ as s→ 0+ uniformly for x ∈ Ω0, (2.3)

then the conclusion of Theorem 2.1 holds.

Theorem 2.3. Suppose that f satisfies (F1)–(F3) and φ ∈ C2,θ(∂Ω). If φ(x) ≥ 0
on ∂Ω and if there exists δ > 0 such that

f(x, s) ≥ λ1s for x ∈ Ω s ∈ (0, δ), (2.4)

then the conclusion of Theorem 2.1 holds.
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The following theorem concerns to the uniqueness of positive solutions for prob-
lem (1.1)-(1.2). We use the hypotheses

(F4) Either f(x, s) is nonincreasing in s for each x in Ω, or, s−1f(x, s) is strictly
decreasing in s for each x in an open subset Ω0 of Ω and both f(x, s) and
s−1f(x, s) are nonincreasing in s for all x in the remainder part Ω− Ω0,

(F5) The function

F (s, t) = max
d(x)=s

|f(x, t)|, with d(x) = dist(x, ∂Ω),

either is bounded on (0, δ)× (0, δ), or is a sum of such a bounded function
and some function that is decreasing in t on (0, δ) for any s ∈ (0, δ), and∫ δ

0

F (s, c0s)ds < +∞, for all c0 ∈ (0, 1).

Theorem 2.4. Under the assumption of any of Theorems 2.1–2.3, if in addition
the function f(x, s) satisfies (F4) and (F5), then problem (1.1)-(1.2) has one and
only one positive solution in C0(Ω) ∩ C2,θ(Ω).

Remarks.
(1) Examples of f(x, s) , at a point x, satisfying the condition in (F4) that

both f(x, s) and s−1f(x, s) are non-increasing in s, are f(x, s) = f1(x)sρ1

for s > 0 with ρ1 ≤ 0 and f1(x) ≥ 0 , f(x, s) = f2(x)sρ2 for s > 0 with
ρ2 ≥ 1 and f2(x) ≤ 0, and so on.

(2) If f(x, s) is a sum of a function f1(x, s) that is bounded on Ω× (0, δ) and
some function f2(x, s) that is decreasing in s on (0, δ) for any x ∈ Ω, and
if for any c0 ∈ (0, 1), there exists α0 < 1 such that

|f2 (x, c0d(x)) | = O
(
(d(x))−α0

)
, as d(x) → 0,

then (F5) is obviously satisfied.
By the above remarks, we can easily derive from Theorems 2.2 and 2.4 the

following corollary, in which h+ and h− stand respectively for the positive part and
the negative part of h, i.e., h+(x) = max{h(x), 0}, h−(x) = max{−h(x), 0}.

Corollary 2.5. The singular nonlinear elliptic problem

∆u+ g(x)u−α + h(x)uβ − k(x)uρ = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

with β ∈ (0, 1), ρ ≥ 1, and α > 0, possesses a positive solution u in C0(Ω) ∩
C2,θ(Ω), provided that functions g, h and k are θ−Hölder continuous on Ω , g, k
are nonnegative, g + h+ is not identically zero, and h−(x) ≤ σ0g(x),∀x ∈ Ω, for
some constant σ0 > 0.

If in addition the function h is non-negative or non-positive on whole Ω, and for
some α0 < 1,

g(x) = O
(
(d(x))α−α0

)
, as d(x) → 0, x ∈ Ω,

then the solution u is unique.

This is an example in which the behavior of a coefficient function near the bound-
ary affects the existence and uniqueness of solutions. Moreover, the result here
makes improvement to some results in the literature [5] [7] [12] and [13].
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3. Proof of Results

Let (Pk) denote the boundary-value problem:

−∆u(x) = f(x, u(x)), x ∈ Ω,

u(x) = φ(x) +
1
k
, x ∈ ∂Ω,

(3.1)

where k is a positive integer. We say that a function u is a supersolution, or a
subsolution, of (3.1) if u belongs to C2(Ω) ∩ C0(Ω) and satisfies (3.1) with sign =
replaced by signs ≥, or ≤, respectively.

In this Section we first prove Theorem 2.1 in detail, then we outline the proofs for
Theorems 2.2 and 2.3. After we state and prove a lemma we finally prove Theorem
2.4.

Proof of Theorem 2.1. Step 1. Let m, k be positive integers and denote by ψm,k(x)
(resp. ψm,∞(x)) the unique solution in C2(Ω) of problem

−∆ψ(x) + γψ(x) = 0, x ∈ Ω,

ψ(x) =
1
m
φ(x) +

1
k
, x ∈ ∂Ω,

(resp. ψ(x) =
1
m
φ(x), x ∈ ∂Ω.)

Then it follows from the estimates of Schauder type [8] and the maximum principle
for −∆ + γ that there exists a positive integer m0 such that

0 < ψm0,∞(x) < ψm0,k(x), x ∈ Ω, k ≥ m0,

0 < ψm0,k+1(x) < ψm0,k(x) < δ, x ∈ Ω, k ≥ m0.

Hence, by (2.1), ψm0,k(x) is a subsolution of (3.1) for every k ≥ m0. Let

δk = min
x∈Ω

ψm0,k(x),

we have
0 < δk+1 < δk, k ≥ m0.

By (F2) we may take λ0 > 0 such that

lim sup
s→+∞

(
s−1 max

x∈Ω
f(x, s)

)
< λ0 < λ1,

and then consider the problem

−∆ξ(x) ≥ λ0ξ(x), x ∈ Ω,

ξ(x) > 0, x ∈ Ω.

The existence of solutions to this problem is established in [11]. Let ξ(x) be such
a function and k0 be a positive integer sufficiently large. Then it’s easy to verify
that k0ξ(x) is a supersolution of (3.1) for every k ≥ m0, and we may have

k0ξ(x) ≥ ψm0,k(x) + max
x∈Ω

φ(x), x ∈ Ω, k ≥ m0.

Step 2. We define the iteration scheme below, as in the standard supersolution and
subsolution argument,

−∆wn(x) +D(δm0)wn(x) = f(x,wn−1(x)) +D(δm0)wn−1(x), x ∈ Ω,
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wn(x) = φ(x) +
1
m0

, x ∈ ∂Ω,

noting that (F3) implies that for each x ∈ Ω, s 7→ f(x, s)+D(δm0)s is an increasing
function on [δm0 ,+∞). Thus, as in the proof of Theorem 1 in [1], by setting
w0(x) = ψm0,m0(x) (or k0ξ(x)) for x ∈ Ω, we obtain a monotonic sequence that
converges to a solution um0(x) ∈ C2(Ω) of (Pm0) such that

ψm0,m0(x) ≤ um0(x) ≤ k0ξ(x), x ∈ Ω.

Using the same iteration scheme with m0 replaced by m0 + 1, and setting w0(x) =
ψm0,m0+1(x) (or um0(x)), we can obtain, as in above, a positive solution um0+1(x) ∈
C2(Ω) of (Pm0+1). Furthermore, by the maximum principle for −∆ + D(δm0+1),
we have

ψm0,m0+1(x) ≤ um0+1(x) ≤ um0(x), x ∈ Ω.
Hence, by repeating the above process, we obtain the sequence {uk(x)}k≥m0 satis-
fying

ψm0,∞(x) ≤ uk+1(x) ≤ uk(x) ≤ k0ξ(x), x ∈ Ω, k ≥ m0. (3.2)
and uk(x) solves (3.1) for any k ≥ m0.
Step 3. We can define function u by

u(x) = lim
k→+∞

uk(x), x ∈ Ω,

because {uk(x)}k≥m0 is a decreasing sequence uniformly bounded from below by
ψm0,∞(x) on Ω. Now, we have from (3.2) that

ψm0,∞(x) ≤ u(x) ≤ k0ξ(x), x ∈ Ω.

Thus, if G is a compact subset of Ω ∪ {x ∈ ∂Ω|φ(x) > 0}, then there exist two
positive constants E1(G) and E2(G) such that

E1(G) ≤ u(x) ≤ E2(G), x ∈ G, k ≥ m1.

Therefore, using the same reasoning as that in [12] and [9] and the Schauder theory
as stated in [8], we conclude that u(x) satisfies (1.1) and belong to C2,θ(G).

On the other hand, by the hypotheses about function f , the number

H := inf
k≥m0

{min
x∈Ω

f(x, uk(x))}

exists, hence by the maximum principle we have

Q(x) ≤ uk(x), x ∈ Ω, k ≥ m0,

and hence
Q(x) ≤ u(x), x ∈ Ω,

where Q(x) is the solution of problem

−∆Q(x) = H, x ∈ Ω,

Q(x) = φ(x), x ∈ ∂Ω.

Furthermore, it is easy to see that if x0 ∈ ∂Ω, then for any ε > 0 there exist r0 > 0
and an integer m1 ≥ m0 such that

Q(x) ≤ uk(x) ≤ φ(x0) + ε,

for all k ≥ m1 and x ∈ Ω for which |x− x0| < r0. Therefore, u(x) is continuous on
Ω satisfying (1.2). This completes the proof. �
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Functions ψm0,∞(x) and ψm0,k(x) play an important role in the proof above.
For the proof of Theorem 2.2 or 2.3, we only show the way for obtaining these two
functions, the remainder of the proof is almost the same as that of Theorem 2.1
and is omitted.

Proof of Theorem 2.2. Choose an η(x) ∈ C∞0 (Ω) such that 0 ≤ η(x) ≤ 1 for x ∈ Ω,
η(x) 6≡ 0, and supp η ⊂ Ω0. By (F1) and (2.3), there exist c1, c2 > 0 such that
c1 < δ, hence fγ(x, c1) ≥ 0, x ∈ Ω, here fγ(x, s) ≡ f(x, s) + γs, and

c1 ≤ fγ(x, c1) ≤ c2, x ∈ Ω0, (3.3)

then we denote by ψm,k(x) ( resp. ψm,∞(x)) the unique solution in C2(Ω) of the
problem

−∆ψ(x) + γψ(x) =
1
m
η(x)fγ(x, c1), x ∈ Ω,

ψ(x) =
1
k
, x ∈ ∂Ω.

(resp. ψ(x) = 0, x ∈ ∂Ω.)

We have for all m, k ≥ 1 that

ψm,∞(x) =
1
m
ψ1,∞(x), x ∈ Ω

ψm,k(x) ≥ ψm,∞(x) > 0, x ∈ Ω

ψm,k(x) ≥ ψm∗,k∗(x) > 0, x ∈ Ω, if m∗ ≥ m and k∗ ≥ k.

Clearly there exist d1, d2 > 0 such that

d1 ≤ ψ1,∞(x) ≤ d2 for x ∈ supp η. (3.4)

By the Schauder estimates [8], we can make ψm,k(x), uniformly for x ∈ Ω, as small
as we want by taking m and k both large enough. Hence there exists integer m0

such that
fγ(x, ψm,k(x))

ψm,k(x)
≥ c2
d1
, m, k ≥ m0, x ∈ supp η,

by (2.3), now by (2.2),

fγ(x, ψm,k(x)) ≥ 0, x ∈ Ω.

Therefore, if x ∈ supp η and m, k ≥ m0,

−∆ψm,k(x)− f(x, ψm,k(x)) =
1
m
fγ(x, c1)

[
η(x)− fγ(x, ψm,k(x))

ψm,k(x)
ψm,k(x)

1
mfγ(x, c1)

]
≤ 1
m
fγ(x, c1)

[
η(x)− c2

d1

ψ1,∞(x)
fγ(x, c1)

]
≤ 0;

(by (3.3) and (3.4)). If x ∈ Ω\ supp η,

−∆ψm,k(x)− f
(
(x, ψm,k(x)

)
= −fγ

(
x, ψm,k(x)

)
≤ 0.

Thus, if m, k ≥ m0, then ψm,k(x) is a subsolution of (3.1). Therefore, the functions
ψm0,k(x) and ψm0,∞(x) meet the needs. �
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Proof. Proof of Theorem 2.3 We point our that it suffices to let ψm,∞(x) be the
function m−1Φ1(x) and ψm,k(x) be the unique solution of the problem

−∆ψ(x) =
λ1

m
Φ1(x), x ∈ Ω,

ψ(x) =
1
k
, x ∈ ∂Ω

where Φ1 is the first eigenfunction of −∆ with zero boundary value which satisfies
maxx∈Ω Φ1(x) = 1. �

To prove Theorem 2.4, we need the following lemma, which is an extension of a
lemma in [2].

Lemma 3.1. Let Ω be a domain with a C2 boundary ∂Ω or no boundary in RN ,
N ≥ 2. Suppose that f : Ω × (0,+∞) → R is a continuous function such that the
assumption (F4) is satisfied, and let w, v ∈ C2(Ω) satisfy:

(a) ∆w + f(x,w) ≤ 0 ≤ ∆v + f(x, v) in Ω
(b) w, v > 0 in Ω, lim inf |x|→+∞

(
w(x)−v(x)

)
, and lim infx→∂Ω

(
w(x)−v(x)

)
≥

0
(c) ∆v ∈ L1(Ω).

Then w(x) ≥ v(x) for all x ∈ Ω.

Proof. The proof for the case where f(x, s) is non-increasing in s at each x in Ω is
trivial, so we only prove for the second case in assumption (F4).

Without loss of generality, we assume that Ω = Ω1 ∪ Ω2 in which

Ω1 = {x ∈ Ω : f(x, s) and s−1f(x, s) are nonincreasing in s},
Ω1 6= Ω and

Ω2 = Ω0 − Ω1

which is an anon-empty and open subset of Ω, since Ω1 is a relative closed subset
of Ω.

To prove the lemma by contradiction, we let Sδ be the set {x ∈ Ω | w(x) <
v(x) − δ} for δ ≥ 0 and suppose that S0 6= ∅. Then by the condition (b), there
exists some σ > 0 such that Sσ 6= ∅ and Sσ ⊂ Ω .

If Sσ ∩ Ω2 = ∅, then Sσ ⊂ Ω1. Noting that, at the boundary of Sσ, w(x) =
v(x)− σ, and that, for x ∈ sσ,

∆(w(x)− (v(x)− σ)) ≤ f(x, v(x))− f(x,w(x) ≤ 0

by the assumption on f(x, s) for x ∈ Ω1 and the condition (a), one could have
w(x) ≥ v(x)− σ for all x ∈ sσ by the aid of the maximum principle applied on Sσ.
But this is a contradiction to the definition of Sσ.

If Sσ ∩ Ω2 6= ∅, then it is easily seen from the assumption on f(x, s) for x ∈ Ω0

that there exist ε0 > 0 and a closed ball B ⊂ (Sσ ∩ Ω2) such that

v(x)− w(x) ≥ ε0, x ∈ B, (3.5)

and

δ0 :=
∫

B

vw
(f(x,w)

w
− f(x, v)

v

)
dx > 0. (3.6)

Let

M = max{1, ‖∆v‖L1(Ω)}, ε = min{1, ε0,
δ0

4M
}.
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Let θ be a smooth function on R such that θ(t) = 0 if t ≤ 1/2, θ(t) = 0 if
t ≥ 1, θ(t) ∈ (0, 1) if t ∈ ( 1

2 , 1), and θ′(t) ≥ 0 for t ∈ R. Then, for ε > 0, define the
function θε(t) by

θε(t) = θ
( t
ε

)
, t ∈ R.

It then follows from condition (a) and the fact that θε(t) ≥ 0 for t ∈ R that

(w∆v − v∆w)θε(v − w) ≥ vw
(f(x,w)

w
− f(x, v)

v

)
θε(v − w), x ∈ Ω.

On the other hand, by the continuity of w, v and θε, and condition (b), we can take
an open set D with a smooth boundary such that B ⊂ D ⊂ Sδ, here δ = min{σ, ε

4},
and v(x)− w(x) ≤ ε

2 , for all x ∈ S0 −D. Then we have∫
D

(w∆v − v∆w)θε(v − w)dx ≥
∫

D

vw
(f(x,w)

w
− f(x, v)

v

)
θε(v − w)dx.

Denote

Θε(t) =
∫ t

0

sθ′(s)ds, t ∈ R,

then it is easy to verify that

0 ≤ Θε(t) ≤ 2ε, t ∈ R, and Θε(t) = 0, if t <
ε

2
. (3.7)

Therefore,∫
D

(w∆v − v∆w)θε(v − w)dx

=
∫

∂D

wθε(v − w)
∂v

∂n
ds−

∫
D

(∇v · ∇w)θε(v − w)dx

−
∫

D

wθ′ε(v − w)∇v · (∇v −∇w)dx−
∫

∂D

vθε(v − w)
∂w

∂n
ds

+
∫

D

(∇w · ∇v)θε(v − w)dx+
∫

D

vθ′ε(v − w)∇w · (∇v −∇w)dx

=
∫

D

vθ′ε(v − w)(∇w −∇v) · (∇v −∇w)dx

+
∫

D

(v − w)θ′ε(v − w)∇v · (∇v −∇w)dx

≤
∫

D

∇v · ∇ (Θε(v − w)) dx

=
∫

∂D

Θε(v − w)
∂v

∂n
ds−

∫
D

Θε(v − w)∆vdx

≤ 2ε
∫

D

|∆v|dx ( by (3.7))

≤ 2εM <
δ0
2
.

However,∫
D

vw
(f(x,w)

w
− f(x, v)

v

)
θε(v − w)dx ≥

∫
B

vw
(f(x,w)

w
− f(x, v)

v

)
θε(v − w)dx
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=
∫

B

vw
(f(x,w)

w
− f(x, v)

v

)
dx (by (3.5))

≥ δ0 by (3.6)),

which is a contradiction. Thus S0 must be empty, and the lemma is proved. �

Proof of Theorem 2.4. Let u1, u2 ∈ C0(Ω) ∩ C2(Ω) be two positive solutions of
problem (1.1)-(1.2). We prove that u1(x) = u2(x), x ∈ Ω. From the proofs of
Theorems 1-3, we can easily see that if v = ψm0,∞ then

∆v(x) + f(x, v(x)) ≥ 0, x ∈ Ω,

v(x) > 0, x ∈ Ω,

φ(x) ≥ v(x) ≥ 0, x ∈ ∂Ω,

and ∆v ∈ L1(Ω). Therefore it follows from Lemma 3.1 that

ui(x) ≥ v(x), x ∈ Ω, i = 1, 2.

Moreover, by the Hopf’s strong maximum principle, we have ∂v
∂n < 0 on ∂Ω, hence

there exists c0 > 0 such that ui(x) ≥ c0d(x), x ∈ Ω, i = 1, 2, where d(x) =
dist(x, ∂Ω). Let Ωε = {x ∈ Ω : d(x) ≤ ε} for ε > 0 and Ui(δ) = {x ∈ Ω : ui(x) ≤ δ},
i = 1, 2. Since ∂Ω ∈ C2,θ, there exist ε ∈ (0, δ) such that if x ∈ Ωε, then there is
a unique yx ∈ ∂Ω such that dist(x, yx) = d(x), c0d(x) < δ. Thus, for some M > 0
only depending on ∂Ω,∫

Ωε

|f (x, c0d(x)) |dx ≤M

∫
∂Ω

∫ ε

0

|f(y − sny, c0s)|ds dy

≤M

∫
∂Ω

∫ ε

0

F (s, c0s)ds dy

≤M∗ < +∞,

where

M∗ = M

∫
∂Ω

∫ δ

0

F (s, c0s)ds dy .

By the hypothesis (F5), there exists M0 > 0 such that

0 ≤ F (r, s) ≤ F (r, t) +M0 for δ ≥ s ≥ t > 0 r ∈ (0, δ).

Therefore,∫
Ωε∩Ui(δ)

|f(x, ui(x))|dx ≤
∫

Ωε

|f
(
x, c0d(x)

)
|dx+M0 meas(Ω)

≤M∗ +M0 meas(Ω) < +∞, i = 1, 2.

Consequently,∫
Ω

|f
(
x, ui(x)

)
|dx ≤

∫
Ωε∩Ui(δ)

|f
(
x, ui(x)

)
|dx+

∫
Ω\(Ωε∩Ui(δ))

|f
(
x, ui(x)

)
|dx

≤M∗ +M0 meas(Ω) +M∗∗
i meas(Ω) < +∞,

where
M∗∗

i = max
x∈Ω, δ≤s≤δ∗i

|f(x, s)|, δ∗i = max
x∈Ω

ui(x), i = 1, 2.

Therefore, ∫
Ω

|∆ui|dx =
∫

Ω

|f(x, ui)|dx < +∞, i = 1, 2.



EJDE-2005/04 POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS 11

i.e., ∆ui ∈ L1(Ω), i = 1, 2. Hence, it follows from Lemma 3.1 that

u1(x) = u2(x), x ∈ Ω,

and the theorem is proved. �
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[2] A. Ambrosetti, H. Brézis and G. Cerami; Combined effects of concave and convex nonlinear-
ities in some elliptic problems, J. Funct. Anal., 122(1994), No.2, 519-543.

[3] D. S. Cohen and H. B. Keller; Some positive problems suggested by nonlinear heat generators,

J. Math. Mech., 16(1967), 1361-76.
[4] A. Callegari and A. Nashman; A nonlinear singular boundary-value problem in the theory of

psedoplastic fluids, SIAM J. Appl. Math., 38(1980), 275-281.
[5] M. G. Crandall, P. H. Rabinowitz and L. Tartar; On a Dirichlet problem with a singular

nonlinearity, Comm. Part. Diff. Eq. 2(2)(1977), 193-222.
[6] Diaz, J. M. Morel and L. Oswald; An elliptic equation with singular nonlinearaity, Comm.

Part. Diff. Eq., 12(1987), 1333-44.
[7] W. Fulks and J. S. Maybee; A singular nonlinear equation, Osaka Math. J., 12(1960), 1-19.
[8] D. Gilberg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd

ed., Springer-Verlag, Berlin(1983).
[9] A. C. Lazer and P. J. Mckenna; On a singular nonlinear elliptic boundary value problem,

Proc. Amer. Math. Soc., 3(1991), 720-730.
[10] Tiancheng Ouyang and Junping Shi; Exact multiplicity of positive solutions for a class of

semilinear problem: II., J. Diff. Eqns. 158, (1999), 94-151.
[11] J. Serrin: A remark on the proceeding paper of Amann, Arch. Rat. Mech. Analysis, 44(1972),

182-186.
[12] C. A. Staurt; Existence and approximation of solutions of nonlinear elliptic equations, Math.

Z. 147(1976), 53-62.

[13] Sun Yijing and Wu Shaoping; Iterative solution for a singular nonlinear elliptic problem,

Applied Mathematics and Computation, 118(2001), 53-62.

Junping Shi
Department of Mathematics, College of William and Mary, Williamsburg, VA 23187,

USA

Department of Mathematics, Harbin Normal University, Harbin, Heilongjiang, China
E-mail address: shij@math.wm.edu

Miaoxin Yao
Department of Mathematics, Tianjin University

and Liu Hui Center for Applied Mathematics, Nankai University & Tianjin University,

Tianjin, 300072, China
E-mail address: miaoxin@hotmail.com


	1. Introduction
	2. Hypotheses and Main Results
	3. Proof of Results
	References

