

Department of Computer Science San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2007-8

Generating Large Prime Numbers Using the Perrin Sequence

Dan Tamir

2007-11-05

Generating Large Prime numbers Using the Perrin Sequence

Dan Tamir

Texas State University

Introduction:

The Perrin sequence is defined by the recursion [2]:

$$A_n = A_{n-2} + A_{n-3};$$
 $\{A_1, A_2, A_3\} = \{0, 2, 3\}$ (1)

Perrin has shown that "if p is prime, then $p \mid A_p$ " (meaning p divides A_p). The converse, i.e., "if $p \mid A_p$, then p is prime", was "believed" to be true for decades, until Adams and Shanks (1982) have shown that the composite number 521x521 = 271441 divides A_{271441} (hence, $271441 \mid A_{271441}$) [1].

The Perrin test is defined to be the truth value of the proposition: ' P / A_p '. A pseudo Perrin prime (pPp) is defined to be an integer q such that q passes the Perrin test. That is:

$$q / A_q = 'True'$$
 (2)

The characteristic equation of the recursion $A_n = A_{n-2} + A_{n-3}$; is

$$(z^3 - z - 1) = 0 (3)$$

The real root of the equation $r \sim 1.324717957$ can be used to approximate A_n as [1]:

$$A_n \sim r^n \sim (1.324717957)^n$$
 (4)

Finding large primes

The Perrin test is not sufficient. Nevertheless, it is a strong primality test [1]. Hence, it can be used as a "pre-processing procedure" for identifying large prime numbers.

Equations 3 and 4 can be used to implement the pPp test efficiently. For example, one can verify that 271441 is not a prime using multiple precision operations available in Mathematical packages such as Matlab and Mathematica, or using a multiple precision libraries such as GMP (GNU multiple precision library).

Tamir used Matlab to solve equation (3) with a precision of **1 million** digits. Let r_{1m} be the solution obtained by Matlab. Next, he used equation (4) in the form:

$$A_{271441} = ceiling((r_{1m})^{271441})$$
 (5)

He also used an iterative procedure to calculate A_{271441} using equation (1) and verified equation (5). Finally, he has shown that, as expected, **271441** | A_{271441} .

To generalize and further improve the proposed procedure for generating large primes numbers, consider n where n is a large number with relatively high likelihood to be prime (e.g., n is a large **Mersenne** number or a Euclidean pseudo prime). In other words, n is constructed with "prime likelihood" and potentially has passed several initial primality tests. Then, before running n through factorization one can check if n is a pPp.

Critique

There are two main potential problems in this approach:

1) **Precision** – depending on the precision of the estimate of r, the root of the characteristic equation (3), Equation (4) may provide a poor estimate for A_n . In this case taking the ceiling or the floor of r^n may not yield the right value for A_n . Nevertheless, the "intuitive function" 'neighborhood(x)' which returns a set of integers around the real number 'x' can be used to enable identifying the actual value of A_n .

This can be accomplished solving the equation: i = j + k' where: $i \in neighborhood(x)$, $j \in neighborhood(x-2)$, and $k \in neighborhood(x-3)$.

2) Time / space complexity – the pPp uses A_n . For a large n, $A_n >> n$. Hence the pPp significantly increases the space requirements for verifying primality. Moreover, the fact that $A_n >> n$, also increases the time complexity of the algorithm.

Further Research

Further research to evaluate the severity of the critique problems raised above is due. It is currently being done by Tamir.

References

- 1. Adams, W. and Shanks, D. "Strong Primality Tests that Are Not Sufficient." *Math. Comput.* **39**, 255-300, 1982.
- 2. Perrin, R. "Item 1484." *L'Intermédiare des Math.* **6**, 76-77, 1899.