
2/4

Workshop Notebook 7: AutoCropper with OpenCV

Mandatory Disclosures
1. This is a whirlwind introduction, not exhaustive instruction
2. All images are by courtesy of the University Archives at Texas State University: http://www.univarchives.txstate.edu

(http://www.univarchives.txstate.edu)
3. img_qc_workshop is licensed under the GNU General Public License v3.0,

https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE
(https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE)

4. Any and all code provided is done so without any warranty or expectation of support by Jeremy Moore, Todd Peters, or Texas State
University

In []: # importing
import cv2
import os
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
from PIL import Image
import img_qc.img_qc as img_qc

In []: # == matplotlib options

magic that lets us plot directly in the notebook
%matplotlib inline

parameters for matplotlib to increase our default figure size -- NOTE: figure sizes are in INCHES
plt.rcParams["figure.figsize"] = (12,20) # set as needed for your screen and eyes

on a high-dpi monitor this will increase the quality of plots on-screen
%config InlineBackend.figure_format = 'retina'

In []: image_path = 'data/workshop-7/graduate_catalog_1949/graduate_catalog_1949_0007.tif'

In []: # open image
image_original = Image.open(image_path)

display image
plt.imshow(image_original)

In []: # === AutoCrop

load the image
image = cv2.imread(image_path)

compute the ratio of the old height to the new height
ratio = image.shape[0] / 500.0

clone image
original = image.copy()

resize image
image = img_qc.get_resized_cv_image(image, height=500)

convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

blur the image
blurred = cv2.GaussianBlur(gray, (5, 5), 0)

apply Otsu's automatic thresholding
(T, thresh) = cv2.threshold(blurred, 0, 255,

cv2.THRESH_BINARY | cv2.THRESH_OTSU)

find the contours in the thresholded image keeping the external one
image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)
cnts = contours

http://www.univarchives.txstate.edu/
https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE

3/4

 # sort the contours from left to right
(cnts, bounding_boxes) = img_qc.sort_contours(cnts)
clone = image.copy()

loop over the contours individually
for (i, c) in enumerate(cnts):
 # if the contour is not sufficiently large, ignore it
 if cv2.contourArea(c) < 700:

continue

 # comnpute the rotated bounding box of the contour
 box = cv2.minAreaRect(c)
 box = cv2.boxPoints(box)
 box = np.int0(box)
 cv2.drawContours(clone, [box], 0, (0, 0, 255), 2)

 # re-order the points in tl, tr, br, bl order
 rect = img_qc.order_points(box)

 # clone the image and find the points and angle for minAreaRectangle
 clone = image.copy()
 (x, y), (w, h), theta = cv2.minAreaRect(c)

 # rotate image around center of minAreaRect by theta amount
 if theta < -45:

theta = 90 + theta
 rotated = img_qc.rotate(clone, theta, (x, y))
multiply the rectangle by the original ratio
rect *= ratio

find the points we need to crop the full size original
tl, tr, br, bl = rect
startX = max(min(tl[0], bl[0]), 0)
startY = max(min(tl[1], tr[1]), 0)
endX = max(tr[0], br[0])
endY = max(bl[1], br[1])

rotate original by theta from minAreaRect
x *= ratio
y *= ratio
rotated = img_qc.rotate(original, theta, center=(x, y))

add padding to the image if set as argument
NOTE: default is 0
padding = -50
pixel_padding = int(padding)
startX -= pixel_padding
startY -= pixel_padding
debug: set startX and startY to max of their current value and 0
startX = max(startX, 0)
startY = max(startY, 0)
endX += pixel_padding
endY += pixel_padding

crop the image in memory
crop = rotated[int(startY):int(endY), int(startX):int(endX)]

check for and create a save directory (currently hardcoded, could
set as argument)
head, tail = os.path.split(image_path)
added_path = "/00_cropped/"
save_path = head + added_path
try:
 os.makedirs(save_path)
except OSError:
 if not os.path.isdir(save_path):

raise

split filename and create new output path with (currently hardcoded,
but could set different programs to create different derivatives in
folders, e.g. crop, inverted, normalized as hard-check on process -
could absolutely throw out a percentage of images to check manually, too!)
base, ext = os.path.splitext(tail)

save_name = base + "_crop" + ext -- took this out so I don't have to rename
everything anymore
save_name = base + ext
output_path = save_path + save_name

4/4

save our cropped image to disk in the new location
cv2.imwrite(output_path, crop)

In []: # open image

image_autocropped = Image.open(output_path)

display image
plt.imshow(image_autocropped)

