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PERIODICITY OF MILD SOLUTIONS TO HIGHER ORDER
DIFFERENTIAL EQUATIONS IN BANACH SPACES

THANH LAN NGUYEN

Abstract. We give necessary and sufficient conditions for the periodicity of
mild solutions to the the higher order differential equation u(n)(t) = Au(t) +

f(t), 0 ≤ t ≤ T , in a Banach space E. Applications are made to the cases,

when A generates a C0-semigroup or a cosine family, and when E is a Hilbert
space.

1. Introduction

This paper concerns the periodicity of solutions to the higher order Cauchy
problem

u(n)(t) = Au(t) + f(t), 0 ≤ t ≤ T

u(i)(0) = xi, i = 0, 1, . . . , n− 1,
(1.1)

where A is a linear and closed operator on a Banach space E, and f is a function
from [0, T ] to E. The asymptotic behavior and, in particular, the periodicity of
solutions of (1.1) has been subject to intensive study in recent decades. It is well-
known [6] that, if A is an n×n matrix on Cn, then the first order Cauchy problem

u′(t) = Au(t) + f(t), 0 ≤ t ≤ T,

u(0) = x
(1.2)

in E = Cn admits a unique T -periodic solution for each continuous T -periodic
forcing term f if and only if λk = 2kπt/T , k ∈ Z, are not eigenvalues of A. This
result was extended by Krein and Dalecki [2, 9] to the Cauchy problem in an
abstract Banach space. In [2, Theorem II 4.3] it was claimed that, if A is a linear
bounded operator on E, then (1.2) admits a unique T -periodic solution for each
f ∈ C[0, T ] if and only if 2kπi/T ∈ %(A), k ∈ Z. Here %(A) denotes the resolvent
set of A. Unfortunately, the above result does not hold any more when A is an
unbounded operator (see [5]). For the case, when A generates a strongly continuous
semigroup, periodicity of solutions of (1.2) was studied in [8, 15]. Corresponding
results on the periodic solutions of the second order Cauchy problem were obtained
in [12, 16], when A is generator of a cosine family. Related results can also be found
in [3, 7, 10, 11, 13, 17] and the references therein.
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In this paper we investigate the periodicity of mild solutions of the higher order
Cauchy problem (1.1) when A is a linear, unbounded operator. The main tool we
use here is the Fourier series method. For an integrable function f(t) from [0, T ] to
E, the Fourier coefficient of f(t) is defined as

fk =
1
T

∫ T

0

f(s)e−2kπis/T ds, k ∈ Z.

Then f(t) can be represented by Fourier series

f(t) ≈
∞∑

k=−∞

e2kπit/T fk.

First, we establish the relationship between the Fourier coefficients of the periodic
solutions of (1.1) and those of the inhomogeneity f . We then give different equiva-
lent conditions so that (1.1) admits a unique periodic solution for each inhomogene-
ity f in a certain function space. As applications, in Section 3 we show a short proof
of the Gearhart’s Theorem: If A is generator of a strongly continuous semigroup
T (t), then 1 ∈ %(T (1)) if and only if 2kπi ∈ %(A) and supk∈Z ‖R(2kπi, A)‖ < ∞.
Corresponding result for the spectrum of a cosine family is also presented.

Let us fix some notation. A continuous function on [0, T ] is said to be T -periodic
if u(0) = u(T ). For the sake of simplicity (and without loss of generality) we
assume T = 1 and put J := [0, 1]. For p ≥ 1, Lp(J) denotes the space of E-valued
functions on J with

∫ 1

0
‖f(t)‖pdt < ∞ and C(J) the space of functions on J with

and ‖f‖ = supJ ‖f(t)‖ < ∞. Moreover, for m > 0 we define the following function
spaces
(1) Wm

p (J) := {f ∈ Lp(J) : f ′, f ′′, . . . , f (m) ∈ Lp(J)}. Wm
p (J) is then a Banach

space with the norm

‖f‖W m
p

:=
m∑

k=0

‖f (k)‖Lp(J).

(2) Pm(J) := {f ∈ C(J) : f, f ′, . . . , f (m) are in P (J)}. That means Pm(J) is
the space of all functions on J , which can be extended to 1-periodic, m-times
continuously differentiable functions on R. Pm(J) is a Banach space with the norm

‖f‖P m(J) :=
m∑

k=0

‖f (k)‖C(J).

(3) WPm
p (J) := Pm−1(J) ∩Wm

p (J). It is easy to see that WPm
p (J) is a Banach

space with Wm
p (J)-norm.

We will use the following simple lemma.

Lemma 1.1. If F is a continuous function on J such that f = F ′ ∈ Lp(J), then
for k 6= 0 we have

Fk =
1

2kπi
fk +

F (0)− F (1)
2kπi

,

where fk and Fk are the Fourier series of f and F , respectively.

2. Periodic Mild Solutions of Higher Order Differential Equations

Let J be the interval [0, 1] and p ≥ 1. For each function f ∈ Lp(J) we define the
function If by If(t) :=

∫ t

0
f(s)ds and, for n ≥ 2, the function Inf by Inf(t) :=

I(In−1f)(t).
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Definition 2.1. (1) A continuous function u is called a mild solution of (1.1)
on J , if Inu(t) ∈ D(A) and, for all t ∈ J ,

u(t) =
n−1∑
i=0

ti

i!
xi + AInu(t) + Inf(t) . (2.1)

(2) A function u is a classical solution of (1.1) on J , if u(t) ∈ D(A), u is n-times
continuously differentiable, and (1.1) holds for t ∈ J .

Remarks.
(i) If n = 1 and A is the generator of a C0 semigroup T (t), then a continuous

function u : J → E is a mild solution of (1.1) if and only if it has the form

u(t) = T (t)x0 +
∫ t

0

T (t− r)f(r)dr, t ∈ J.

(See [1]).
(ii) Similarly, if n = 2 and A generates a cosine family (C(t)) on E, then any

continuously differentiable function u on E of the form

u(t) = C(t)x0 + S(t)x1 +
∫ t

0

S(t− τ)f(τ)dτ, t ∈ J,

where (S(t)) is the associated sine family, is a mild solution of (1.1) (see
Section 3 for more details).

The mild solution to (1.1) defined by (2.1) is really an extension of a classical
solution in the sense that every classical solution is a mild solution and conversely,
if a mild solution is n-times continuously differentiable, then it is a classical solution.
That statement is actually contained in the following lemma.

Lemma 2.2. Suppose 0 ≤ m ≤ n and u is a mild solution of (1.1), which is
m-times continuously differentiable. Then we have (In−mu)(t) ∈ D(A) and

u(m)(t) =
n−1∑
j=m

tj−m

(j −m)!
xj + AIn−mu(t) + In−mf(t). (2.2)

Proof. If m = 0, then (2.2) coincides with (2.1). We prove for m = 1: Let v(t) :=
AInu(t). Then, by (2.1), v is continuously differentiable and

v′(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t).

Let h > 0 and put

vh :=
1
h

∫ t+h

t

In−1u(s)ds.

Then vh → (In−1u)(t) for h → 0 and

lim
h→0

Avh = lim
h→0

1
h

(
A

∫ t+h

0

In−1u(s)ds−A

∫ t

0

In−1u(s)ds
)

=
1
h

(v(t + h)− v(t))

=v′(t).
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Since A is a closed operator, we obtain that In−1u(t) ∈ D(A) and

AIn−1u(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t),

from which (2.2) with m = 1 follows. If m > 1, we obtain (2.2) by repeating the
above process (m− 1) times. �

In particular, if the mild solution u is n-times continuously differentiable, then
(2.2) becomes u(n)(t) = Au(t) + f(t), i.e. u is a classical solution of (1.1).

We now consider the mild solutions of (1.1), which are (n − 1) times continu-
ously differentiable. The following proposition describes the connection between
the Fourier coefficients of such solutions and those of f(t).

Proposition 2.3. Suppose f ∈ Lp(J) and u is a mild solution of (1.1), which is
(n− 1) times continuously differentiable. Then

((2kπi)n −A)uk − fk

(2kπi)n
=

n−1∑
j=0

u(j)(0)− u(j)(1)
(2kπi)j+1

(2.3)

for k 6= 0.

Proof. Let u
(j)
k be the kth Fourier coefficient of u(j). Using the identity

u
(j)
k =

u(j)(0)− u(j)(1)
2kπi

+
1

2kπi
u

(j+1)
k (2.4)

for j = 0, 1, 2, . . . , n− 2 (by Lemma 1.1), we obtain

uk =
n−2∑
j=0

u(j)(0)− u(j)(1)
(2kπi)j+1

+
1

(2kπi)n−1
u

(n−1)
k . (2.5)

Since u is (n− 1) times continuously differentiable, by Lemma 2.2,

u(n−1)(t) = u(n−1)(0) + AIu(t) + If(t). (2.6)

Taking the kth Fourier coefficient on both sides of (2.6) and using (2.4), we have

u
(n−1)
k = A(Iu)k + (If)k

= A

(
Iu(0)− Iu(1)

2kπi
+

1
2kπi

(Iu)′k
)
+
(If(0)− If(1)

2kπi
+

1
2kπi

(If)′k
)

=
−(AIu(1) + If(1))

2kπi
+

Auk + fk

2kπi

=
u(n−1)(0)− u(n−1)(1)

2kπi
+

Auk + fk

2kπi
.

(2.7)

Here we have also used Iu(0) = If(0) = 0, (Iu)′k = uk and (If)′k = fk. Combining
(2.5) and (2.7), we obtain

uk =
n−1∑
j=0

u(j)(0)− u(j)(1)
(2kπi)j+1

+
Auk + fk

(2kπi)n
,

from which (2.3) follows. �
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The interesting point of Proposition 2.3 is that the Fourier coefficients of the
mild solution u depend not only on u but also on its derivatives. If u is a mild
solution in P (n−1)(J), then we have a nice relationship between Fourier coefficients
of u and those of f , as the following proposition shows.

Proposition 2.4. Suppose f ∈ Lp(J) and u is a mild solution of (1.1), which is
(n− 1) times continuously differentiable. Then u ∈ P (n−1)(J) if and only if

((2kπi)n −A)uk = fk (2.8)

for every k ∈ Z.

Proof. Suppose u is a mild 1-periodic solution of (1.1) in Pn−1(J). If k 6= 0, then
(2.8) follows directly from (2.3). If k = 0, using (2.2) with m = n− 1 and t = 1 we
obtain

u(n−1)(1) = u(n−1)(0) + A

∫ 1

0

u(s)ds +
∫ 1

0

f(s)ds

= u(n−1)(0) + Au0 + f0.

Due to the 1-periodicity of u(n−1) we obtain Au0 + f0 = 0, from which (2.8) holds
for k = 0. Conversely, suppose (2.8) holds for all k ∈ Z. Then, by (2.3),

n−1∑
j=0

u(j)(0)− u(j)(1)
(2kπi)j

= 0 (2.9)

all k 6= 0. That means that for any positive integer K, the vector

X =
(
u(0)− u(1), u′(0)− u′(1), . . . , u(n−1)(0)− u(n−1)(1)

)T

is a solution of the system of linear equations
1 1

2πi · · · 1
(2πi)n−1

1 1
2·2πi · · · 1

(2·2πi)n−1

...
. . .

...
1 1

2Kπi · · · 1
(2Kπi)n−1


n×K


x1

x2

...
xn

 = 0.

This can only happen if X = 0, i.e. u(j)(0)− u(j)(1) = 0 for j = 0, 1, 2, . . . , (n− 1).
Hence, u ∈ P (n−1)(J), and the proposition is proved. �

From Proposition 2.4 we obtain

Corollary 2.5. Suppose f ∈ Lp(J). Then
(i) If ((2kπi)n−A) is injective for k ∈ Z, then Equation (1.1) has at most one

1-periodic mild solution, which belongs tp Pn−1(J).
(ii) If there exists a number k ∈ Z such that fk 6∈ Range((2kπi)n − A), then

Equation (1.1) has no periodic mild solution which belongs to Pn−1(J).
(iii) Let u be a mild solution of u(n) = Au, which is (n− 1) times continuously

differentiable. Then u belongs to Pn−1 if and only if

(2kπi)nuk = Auk,

i.e., uk is an eigen-vector of A corresponding to (2kπi)n, k ∈ Z.

We are now in a position to state the main results.
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Theorem 2.6. Let A be a closed operator on E and 0 ≤ m ≤ n. The following
statements are equivalent.

(i) For each function f ∈ WPm
p (J), Equation (1.1) admits a unique mild

solution in WPn
p (J)

(ii) For each k ∈ Z, 2kπi ∈ %(A) and there exists a constant C > 0 such that

‖
∑

k

((2kπi)n −A)−1e2kπi·xk)‖W n
p (J) ≤ C · ‖

∑
k

e2kπi·xk‖W m
p (J) (2.10)

for any finite sequence {xk} ⊂ E

If E is a Hilbert space, and p = 2, then (i) and (ii) are equivalent to
(iii) For every k ∈ Z, (2kπi)n ∈ %(A) and

sup
k∈Z

‖kn−m((2kπi)n −A)−1‖ < ∞ (2.11)

We will need the following lemma.

Lemma 2.7. Let F1 := WPm
p (J) and F2 := WPn

p (J). Then the following are
equivalent:
(1) For each function f ∈ F1, (1.1) admits a unique mild solution u in F2.
(2) There exists a dense subset D in F1 such that:

(i) For each function f ∈ D, (1.1) admits a unique mild solution u in F2;
(ii) There exists a constant C > 0 such that for all f ∈ D,

‖u‖F2 ≤ C‖f‖F1 . (2.12)

Proof. (1)⇒ (2): We will prove (2) with D = F1. It is easy to see that (i) is
automatically satisfied. To show (ii), we define the operator G : F1 7→ F2 by
Gf := u, where u is the unique mild solution of (1.1) in F2. Then G is a linear,
everywhere defined operator. We will prove the boundedness of G by showing that
G is a closed operator. To this end, let {fj} ⊂ F1 a sequence such that fj → f in
F1 and Gfj → u in F2 for j →∞. For each t ∈ J , let vj := In(Gfj)(t), then

lim
j→∞

vj = Inu(t).

Moreover, from the identity

(Gfj)(t) =
n−1∑
i=0

tj

j!
(Gfj)(0) + AIn(Gfj)(t) + Infj(t)

we have

Avj = AIn(Gfj)(t)

= (Gfj)(t)−
n−1∑
i=0

ti

i!
(Gfj)(0)− Infj(t) → u(t)−

n−1∑
i=0

ti

i!
u(0)− Inf(t)

as j →∞. Since A is a closed operator, Inu(t) ∈ D(A) and

AInu(t) = u(t)−
n−1∑
i=0

ti

i!
u(0)− Inf(t),

i.e., u is a mild solution of (1.1) and consequently, Gf = u. So, G is a bounded
operator from F1 to F2, from which (2.12) follows with C = ‖G‖.
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(2)⇒ (1). For any f ∈ F1 there exists a sequence {fj} ⊂ D such that fj → f for
j → ∞. Let uj be the mild solution in F2 corresponding to fj , then, by (2.12),
uj → u for some u ∈ F2. With the same manner as in the previous part, we can
prove that u is a mild solution of (1.1) corresponding to f . The uniqueness of this
solution comes directly from (2.12). �

Proof of Theorem 2.6. (i) → (ii): We first show that (2kπi)n ∈ %(A) for k ∈ Z.
To this end, let f(t) = e2kπitx, x ∈ E and u(t) be the unique mild solution to
(1.2) corresponding to f . By Lemma 2.4 we have ((2kπi)n − A)uk = x. Hence
((2kπi)n − A) is surjective. On the other side, if ((2kπi)n − A) is not injective,
i.e. there is a non-zero vector x0 ∈ E such that ((2kπi)n − A)x0 = 0, then it is
not hard to check that u1 :≡ 0 and u2(t) := e2kπitx0 are two distinct 1-periodic
mild (classical) solution f u(n)(t) = Au(t). It is contradicting to the uniqueness of
u. So ((2kπi)n − A) is injective and hence bijective, i.e. (2kπi)n ∈ %(A). Let now
f(t) :=

∑
k e2kπitxk, where {xk} is any finite sequence in E. Then, by Lemma 2.4,

u(t) =
∑

k((2kπi)n − A)−1e2kπitxk is the unique 1-periodic mild solution to (1.1)
corresponding to f . Thus, (2.10) is obtained by inequality (2.12).
(ii) → (i): Put

M := {f(t) =
∑

k

e2kπitxk : {xk} is a finite sequence in E}.

Observe that M is dense in WPm
p (J). Moreover, if f is a function in M, i.e., if

f(t) =
∑

k e2kπtxk, then it is easy to check that u(t) =
∑

k((2kπi)n−A)−1e2kπitxk

is a unique 1-periodic mild solution of (1.1) corresponding to f and, by Corollary
2.5(i), it is the unique one. From (2.12) it follows that ‖u‖W n

p (J) ≤ C‖f‖W m
p (J) for

all f ∈M. By Lemma 2.7, that implies (i).
Finally, if E is a Hilbert space, then WPm

2 (J) is a Hilbert space for any 0 ≤
m ≤ n. Moreover, for f(t) =

∑
k e2kπitxk and u(t) =

∑
k((2kπi)n − A)−1e2kπitxk

we have

‖f‖W m
2 (J) =

m∑
j=0

(∑
k

(2kπ)2j‖xk‖2
)1/2

(2.13)

and

‖u‖W n
2 (J,E) =

n∑
j=0

(∑
k

(2kπ)2j‖((2kπi)n −A)−1xk‖2
)1/2

. (2.14)

Suppose (ii) holds, i.e., ‖u‖W n
2 (J) ≤ C‖f‖W m

2 (J) for f ∈ M. For any k ∈ Z, take
f(t) := e2kπitx. From (2.13) and (2.14), we have

‖f‖W m
2 (J) =

m∑
j=0

‖(2kπ)jx‖ ≤ (2π)m(m + 1)‖kmx‖ (2.15)

and

‖u‖W n
2 (J) =

n∑
j=0

‖(2kπ)j((2kπi)n −A)−1x‖ ≥ (2π)n‖kn((2kπi)n −A)−1x‖. (2.16)

Combining (2.10), (2.15) and (2.16) we obtain

(2π)n‖kn((2kπi)n −A)−1x‖ ≤ C · (2π)m(m + 1)‖kmx‖,

from which (2.11) follows.
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Conversely, suppose (iii) holds, i.e., there is a positive constant C such that
‖(2kπi)n − A)−1‖ ≤ C|k|m−n for k ∈ Z. Using that inequality for the right hand
side of (2.14) we obtain

‖
∑

k

((2kπi)n −A)−1e2kπi·xk‖W n
2 (J) ≤ C

n∑
j=0

(∑
k

(2kπ)2jk2m−2n‖xk‖2
)1/2

≤ C1

n∑
j=0

(∑
k

(2kπ)2j+2m−2n‖xk‖2
)1/2

≤ C1(n + 1)
(∑

k

(2kπ)2m‖xk‖2
)1/2

≤ C1(n + 1)
m∑

j=0

(∑
k

(2kπ)2j‖xk‖2
)1/2

= C1(n + 1)‖
∑

k

e2kπi·xk‖W m
2 (J),

where C1 = C(2π)n−m. Thus, (2.10) holds and the theorem is proved. �

The next theorem shows the relationship between the regularity of the inhomo-
geneity and that of the corresponding mild solution.

Theorem 2.8. If A is a closed operator on E, then the following statements are
equivalent.

(i) For each f ∈ Lp(J) Eq. (1.1) admits a unique mild solution in Pn−1(J) .
(ii) 0 ∈ %(A) and for each f ∈ Lp(J) with

∫ 1

0
f(s)ds = 0, Equation (1.1) admits

a unique mild solution in Pn−1(J) .
(iii) For each f ∈ WP 1

p (J), Equation (1.1) admits a unique 1-periodic classical
solution.

Proof. If (i) or (iii) holds, then, by the same reasoning as in the proof of Theorem
2.6, we can prove that 2kπi ∈ %(A) for k ∈ Z.
(i) → (iii): Let F be any function in WP 1

p (J). Then F can be written as by
F (t) =

∫ t

0
f(s)ds + x0, where f ∈ Lp(J) and x0 is a vector in E. Since F is 1-

periodic we have
∫ 1

0
f(s)ds = 0. Let u be the mild solution to (1.1) corresponding

to f , which is in Pn−1(J), and put

U(t) =
∫ t

0

u(s)ds + A−1un−1(0)−A−1x0.

From identity (2.2) with m = n− 1 we have

u(n−1)(1) = un−1(0) + A

∫ 1

0

u(s)ds +
∫ 1

0

f(s)ds. (2.17)

Note that u(n−1)(1) = u(n−1)(0) and
∫ 1

0
f(s)ds = 0. Thus, from (2.17) we obtain

A
∫ 1

0
u(s)ds = 0, which implies, due to 0 ∈ %(A),

∫ 1

0
u(s)ds = 0. Hence, U is a
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1-periodic function. Moreover,

U (n)(t) = u(n−1)(t)

= un−1(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds

= un−1(0) + A[U(t)−A−1un−1 + A−1x0] + (F (t)− x0)

= AU(t) + F (t).

So, U is an 1-periodic classical solution. The uniqueness of this solution follows
from the fact that u ≡ 0 is the unique 1-periodic mild solution to the homogeneous
equation u(n)(t) = Au(t), which, in turn, follows from (i).
(iii) → (ii): Let f be a function in Lp(J) with

∫ 1

0
f(s)ds = 0. Define F (t) :=∫ t

0
f(s)ds, then it is easy to see that F ∈ WP 1

p (J). Let U be the unique 1-periodic
classical solution of (1.2) corresponding to F and put u := U ′. Then u ∈ Pn−1(J)
and U(t) =

∫ t

0
u(s)ds+U(0). By the definition of U and F , the equation U (n)(t) =

AU(t) + F (t) means

u(n−1)(t) = AU(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds.

Hence, by Lemma 2.2, u is a mild solution to (1.1) corresponding to f . The unique-
ness of u follows from Corollary 2.5.
(ii) → (i): Let f be a function in Lp(J). Define f̃(t) := f(t) − f0, where f0 =∫ 1

0
f(s)ds, then

∫ 1

0
f̃(s)ds = 0. Let ũ be the 1-periodic mild solution to (1.1)

corresponding to f̃ and put u(t) := ũ(t) − A−1f0. Then u, as ũ, is in Pn−1(J).
Moreover,

u(t) = ũ(t)−A−1f0

=
( n−1∑

k=0

tk

k!
ũ(k)(0) + AInũ(t) + Inf̃(t)

)
−A−1f0

=
(
u(0) + A−1f0 +

n−1∑
k=1

tk

k!
u(k)(0)

)
+ AIn

(
u(t) + A−1f0

)
+ In

(
f(t)− f0

)
−A−1f0

=
n−1∑
k=0

tk

k!
u(k)(0)) + AInu(t) + Inf(t).

Hence, u is a mild solution to (1.1) corresponding to f . The uniqueness of u follows
from Corollary 2.5. �

3. Applications

A semigroup case. Here, we consider the first order Cauchy problem

u′(t) = Au(t) + f(t) 0 ≤ t ≤ T

u(0) = x,
(3.1)
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where A generates a C0-semigroup (T (t))t≥0. Recall that in this case the mild
solution is of the form

u(t) = T (t)x +
∫ t

0

T (t− s)f(s)ds. (3.2)

We have the following result, in which the equivalence between (i) and (v) is the
Gearhart’s Theorem [4].

Theorem 3.1. Let A generate a C0-semigroup (T (t))t≥0. Then the following state-
ments are equivalent:

(i) 1 ∈ %(T (1));
(ii) For every function f ∈ Lp(J), Equation (3.1) admits a unique 1-periodic

mild solution;
(iii) For every function f ∈ WP 1

p (J), Equation (3.1) admits a unique mild
solution in WP 1

p (J);
(iv) For every function f ∈ WP 1

p (J), Equation (3.1) admits a unique 1-periodic
classical solution

If E is a Hilbert space, all the above statements are equivalent to
(v) {2kπi : k ∈ Z} ⊂ %(A) and

sup
k∈Z

‖(2kπi−A)−1‖ < ∞.

Proof. The equivalence (i) ⇔ (ii) was proved in [15]. The equivalence (ii) ⇔ (iv)
follows from Theorem 2.8 and, if E is a Hilbert space, (iii) ⇔ (v) follows from
Theorem 2.6. The inclusion (iv) ⇒ (iii) is obvious. So, it remains to show (iii) →
(iv).

To this end, let u be the unique mild solution of (3.1), which belong to WP 1
p (J).

Since
∫ t

0
T (t − s)f(s)ds ∈ D(A) and t →

∫ t

0
T (t − s)f(s)ds is continuously differ-

entiable for any f ∈ W 1
p (J) (see e.g. [14]), we obtain that T (·)u(0) ∈ W 1

p (J). It
follows that T (t)u(0) ∈ D(A) for t > 0 (since t 7→ T (t)x is differentiable at t0 if
and only if T (t0)x ∈ D(A)). Hence, u(1), and thus, x = u(1) belongs to D(A).
So u is a classical solution. The uniqueness of the 1-periodic classical solution is
obvious. �

A cosine family case. We now consider the second order Cauchy problem
u′′(t) = Au(t) + f(t) 0 ≤ t ≤ T

u(0) = x, u′(0) = y,
(3.3)

where A is generator of a cosine family (C(t))t∈R on E. Recall (see u.g. [1]) that in
this case there exists a Banach space F such that D(A) ↪→ F ↪→ E and such that
the operator

A :=
(

0 I
A 0

)
with D(A) = D(A)× F generates the C0-semigroup

T (t) :=
(

C(t) S(t)
C ′(t) C(t)

)
on F × E, where S(t) is the associated sine family. Moreover, it is not difficult to
check that u is a mild solution of (3.3), which is continuously differentiable (a mild
solution, which is in WP 2

p (J), or a classical solution of (3.3), respectively), if and
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only if U = (u, u′)T is a mild solution (a mild solution, which is in WP 1
p (J), or a

classical solution, respectively) of the first order differential equation

U ′(t) = AU(t) + (0, f(t))T , 0 ≤ t ≤ T,

U(0) = (x, y)T
(3.4)

in the space F × E. Using (3.2), we have the explicit form of u by

u(t) = C(t)x + S(t)y +
∫ t

0

S(s− τ)f(τ)dτ.

Theorem 3.2. Let A generate a cosine family (C(t))t∈R in E. Then the following
statements are equivalent:

(i) 1 ∈ %(C(1));
(ii) For each function f ∈ Lp(J), Equation (3.3) has a unique 1-periodic mild

solution, which is continuously differentiable;
(iii) For each function f ∈ WP 1

p (J), Equation (3.3) admits a unique mild solu-
tion in WP 2

p (J);
(iv) For each function f ∈ WP 1

p (J), Equation (3.3) admits a unique 1-periodic
classical solution;

If E is a Hilbert space, all the above statements are equivalent to
(v) {−4k2π2 : k ∈ Z} ⊂ %(A) and supk∈Z ‖k(4k2π2 + A)−1‖ < ∞.

Proof. The equivalence (i) ⇔ (ii) is virtually proved in [16]. The equivalence (ii) ⇔
(iv) from Theorem 2.8 and, if E is a Hilbert space, (iii)⇔ (v) follows from Theorem
2.6. The inclusion (iv) ⇒ (iii) is obvious. So, it remains to show (iii) → (iv). To
this end, let u be the 1-periodic mild solution of (3.3), which is in WP 2

p (J), then
U = (u, u′)T is the 1-periodic mild solution of (3.4), which is in WP 1

p (J, F × E).
Since A is the generator of a C0-semigroup, we can show (with the same manner
as in the proof of Theorem 3.1) that U is a 1-periodic classical solution of (3.4). It
follows that u is a 1-periodic classical solution of (3.3). �
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