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EXISTENCE OF SOLUTIONS FOR A DEGENERATE SEAWATER
INTRUSION PROBLEM

MOHAMED EL ALAOUI TALIBI, MOULAY HICHAM TBER

ABSTRACT. We study a seawater intrusion problem in a confined aquifer. This
process can be formulated as a coupled system of partial differential equations
which includes an elliptic and a degenerate parabolic equation. Existence
results of weak solutions, under realistic assumptions, are established through
time discretization combined with parabolic regularization.

1. INTRODUCTION

The motivation for the following mathematical problem arises from the area of
modelling groundwater in coastal aquifers. Groundwater is a major source of water
supply in many parts of the world. It supports domestic consumption, irrigation,
and industrial processing. The use of groundwater has been rising steadily in the
last several decades. It has been exploited to sustain a growing population and
economy. The loss of surface water to pollution has further increased the stress
on groundwater extraction. By now, as much as on third of the world’s drinking
water is derived from groundwater. Although better protected than surface water,
groundwater can also be contaminated. Once contaminated—because of its subsur-
face, hidden, and inaccessible nature—detection and remediation are more difficult.

Despite its abundance, unregulated extraction of groundwater can easily cause
localized problems. In coastal zones, the intensive extraction of groundwater has
upset the long established balance between freshwater and seawater potentials,
causing encroachment of seawater into freshwater aquifers. As a large proportion
of the world’s population (about 70%) dwells in coastal zones, the optimal exploita-
tion of fresh groundwater and the control of seawater intrusion are the challenges
for the present-day and future water supply engineers and managers. The mod-
elling of groundwater in coastal aquifers is an important and difficult issue in water
resources. The primary difficulty resides in efficient and accurate simulation of the
movement of the saltwater front. Freshwater and saltwater are miscible fluids and
therefore, the zone separating them takes the form of a transition zone caused by
hydrodynamic dispersion. For certain problems, the simulation can be simplified by
assuming that each liquid is confined to a well defined portion of the flow domain
with an abrupt interface separating the two domains (cf. [5], [6] and [11]). This

2000 Mathematics Subject Classification. 35K60, 35K65, 76505, 76 T05.
Key words and phrases. Seawater intrusion; elliptic-parabolic system; degenerate equations;
existence result.
(©2005 Texas State University - San Marcos.
Submitted November 1, 2004. Published June 30, 2005.
1



2 M. EL ALAOUI T. & M. H. TBER EJDE-2005/72

FIGURE 2.1. Saltwater intrusion phenomena

modelling approach, called sharp interface, does not give information concerning
the nature of the transition zone but does reproduce the regional flow dynamics
of the system and the response of the interface to applied stresses, for more de-
tails about seawater intrusion problem with sharp interface approach we refer to
[6, Section 13.2].

In the present paper, we address the seawater intrusion problem with sharp inter-
face model in a confined aquifer. The model to be presented herein is formulated in
terms of a two-dimensional coupled system consisting of an elliptic and a degenerate
parabolic equations. The main difficulties related to the analysis of this system are
the coupling between equations and the degeneracy due to the possibility to have
no saltwater in some zones of the aquifer. This type of system occurs in a variety of
physical situations such as in petroleum engineering and has been studied by many
authors (see, e.g., [1, 2, 3, 4, 13, 9, 12]). Let us also mention that the steady state
seawater problem has been treated in [10], however the inflow of the saltwater is
mostly a transient process, then the time-dependent problem is of greater practical
interest. In the present paper, we use the technique developed by Alt and Luckauss
[1] to derive an existence result for the transient system modeling seawater interface
problem with sharp interface under realistic assumptions.

The outline of the paper is as follows. In section 2 all necessary mathematical
notations are defined, the equations of the problem are formulated and the gen-
eral assumptions are stated. The third section is devoted to the presentation and
analysis of a regularized problem. We prove the existence of at least one weak
solution for the problem in the non degenerate case. The result is obtained by time
discretization and the technique developed in [1]. In the last section, we get the
existence of weak solutions for the degenerate case.

2. PROBLEM SETTING AND ASSUMPTIONS

The differential system. We consider the flow of fresh and salt groundwater,
separated by a sharp interface, in a confined aquifer. The aquifer is bounded by
two approximately horizontal and impermeable layers (Figure 2.1). The lower and
upper surfaces of the aquifer are described by z = —Hy and z = — Hy, respectively.

The substitution of Darcy’s law into continuity equations of the two fluids (fresh
and salt), the continuity of flux and the pressure through the interfacial boundary
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and the integral of aquations over the vertical lead to the following system of coupled
partial differential equations [6]:

S(x)0ch — div(ak(x)Ts(R)Vh) + div(k(z)Ts(h)Ve) = —I
—div(k(2)T, V) + div(ak(z)Ts(h)Vh) = 1§ + I,

for (z,t) € Qr := Q x J with J =]0,T[ and Q is an open bounded domain of R?
describing the projection of the porous medium on the horizontal plane z = 0, with
a smooth boundary I' = I'pUI'y. Here T, = Hy— H; is the thickness of the aquifer,
Ts = Hy — h is the thickness of saltwater zone, k is the hydraulic conductivity, S
is the storativity of the aquifer, « is a positive constant representing the relative
density difference, ¢ is the freshwater hydraulic head, h is the depth of the interface
and where Iy and I, are supply functions, representing distributed surface supply
of fresh and saline water into the aquifer.

(2.1)

Introducing the new variables f = g and K = ak leads to the following system:
S(x)0ch — div(K (2)Ts(h)Vh) + div(K (2)Ts(R)V f) = =1
—div(K(2)ToV f) + div(K (x)Ts(h)Vh) = I + I
The boundary conditions are
h=hp, f=fp onlp
(K(2)Ts(h)Vh — K(2)T(h)Vf) - W =0 onTy (2.3)
(K(2)T,Vf— K(x)Ts(h)Vh)- 7 =0 onTy

(2.2)

where fp and hp are given functions, and 7 is the outward unit normal to I'. The
initial condition is
h(z,0) = ho(z), = €. (2.4)
Notation and assumptions. We introduce the Hilbert space
V={pcH'(Q):9=00nTp},

under assumption (A1) below, the norm and semi-norm defined on H'(Q)) are
equivalent in V. We denote by V”’ the dual space of V and by (., .) the duality pairing
between V and V. (.,.)q is the L?(Q) inner product (Q is omitted if Q = Q). 4 is
a small positive real number and we denote by Ty(h) = h — H; = T, — T5(h) the
thickness of freshwater zone. We make now the following assumptions:

(A1) Q C R? is an open bounded domain with Lipschitz boundary T,
'=TpUly, I'pNTy =0, and meas(T'p) #D0.
(A2) S =S(x) e L>*(Q), S(z) > S« > 0, and K(z) is bounded, symmetric, and

uniformly positive definite matrix, i.e.,

2
0<K.<[¢? ) Kij(@)68 <K <oo z€Q, {£0eR
i,j=1
(A3) Hi, Hs are positive constants such that Hy > Hy + .
(A4) I, >0, (T, — 6)I; — 61, > 0, I, € L*>(J; L*(Q)), and Iy € L>(J; V'(Q)).
(A5) The boundary data satisfy fp, hp € L%(J; H'(Q2)),
Oithp € L*(Qr), S(2)dihp € L*(J, V'), Hy +6 <hp < Hy

a.e. on Q.
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(A6) hg satisfies H; + < hg < Ho, a.e. on €.

To study the system (2.2)-(2.4), we use the regularization technique described
above.

3. THE REGULARIZED PROBLEM

To solve problem (2.2)-(2.4), we first consider its parabolic regularization:
S(x)0¢he — div(K(x)Ts(he)Vhe) — eAhe + div(K (2)Ts(he)V fe) = — I
—div(K (2)T,V f.) + div(K (2)Ts(he)Vhe) = I + I,
he =hp, fe=fp onIp
(K (@)Ta(he)Vhe +eVhe — K@ T, (h)VE) -7 =0 only  (32)
(K (2)ToV fo — K(2)Ts(he)Vhe) -0 =0 on Ty

(3.1)

and
he(z,0) = ho(x), x €. (3.3)

where € is a small positive parameter.

Definition 3.1. A pair of functions (he, f:), is called a weak solution to the regu-
larized problem (3.1) — (3.3) if it satisfies the system:

H+6<h.<H;, ae onQr; (3.4)
he € (V) +hp, S(a)dhh. € P(LV'), fo € P(LV)+ fo,  (35)

~ [ (0ues e = [ (e ZE) + (St (@), (w.0)) o € D@ x 0.1,
! ! (3.6)

/ (SOyhe, v)dt + / (K (2)Ts (he)Vhe, Vo)t
J J
te /J (Vhe, Vo) — /J (K (2)Ts (he)V fo, Vo)dt = — /] (L,v)dt, Woel (o,T,g)?,)

/ (K(2)TuV f., Vw)dt — / (K (2)Ts (he)Vhe, Vio)dt
7 J (3.8)
= /(IS + Iy, w)dt, Yw € L*(0,T,V).
J

We now state the main result of this section.

Theorem 3.2. Under assumptions (A1)-(A6), the system (3.4)-(3.8) has a weak
solution in the sense of definition 3.1.

To show this proposition we make use of a backward time difference scheme:

For each positive integer M, divide J into m = 2™ subintervals of equal length
At =T/m =2"MT. Set t; = iAt and J; = (t;_1,t;] for an integer 4, 1 < i < m.
Denote the time difference operator by

N () 0
ou() 9,

for any function v(¢) and constant n € R. Also we define

Iat(V)={v € L*>®(J;V) : v is constant in time on each subinterval J; C J}.
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For va; € Iai(V), set v® = vay]y, for notational convenience. Finally, let
h LI ! / oz, 7)dr, te
=— x, T)dT, =— x, 7)dT, ;-
DAL= Ry . D DAL= 7 9 D i

Now the discrete time solution is a pair of functions hat € Iat(V) + hp,at, far €
Iat(V) + fp,a¢ satisfying

Hi+6 < hat < Hy, a.e. onQr. (3.9)
/(S@‘Athm,v)dt—i—/(K(m)Ts(hAt)th,Vv)dt
J J
+5/(VhAt,Vv)dt—/(K(m)Ts(hAt)me,Vv)dt (3.10)
J J

_ _/(Is,v)dt Vo € las(V),
J

/ (K(2)TaV far, Vio)dt — / (K (2)Ts(hat) Vs, Vo) dt
J 7 (3.11)
= /(IS + I, w)dt, Yw € la(V).
J

This approximation scheme is extended such that ha; = hg for ¢ < 0.
In the following, C' indicates a generic constant independent of At which will
probably take different values in different occurrences.

Lemma 3.3. The discrete scheme has at least one solution (hat, fat)-
The proof of this lemma will be given in the end of this section.

Lemma 3.4. The solution of the discrete schemes also satisfies

[ Wailb + [ Wil < (3.12)
with a constant C independent of At.
PTOOf. Taklng v = hat — hD,At S lAt(V) in (310) and w = fAt — fD,At S lAt(V)
in (3.11), we have

/(S@‘Athm, hat —hp.at) + /(K(x)Ts(hAt)VhAt, Vhat —Vhp at)
7 7

te / (Vhat, Vhae — Vhp ar) — / (K (2)Ta(hat)V far, Vhae — Vhp ar) (3.13)
J J

= —/(IleAt —hp.at),
J
and

/ (K (2)TuV fae, Vfar — Vipaddt - / (K (2)Ts (hae)Vhat, V far — V fo.a0)dt
J J

_ / (I + I, far — fooan)dt,
! (3.14)
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Summing these two equalities and noting that T, = Ts(hat) + Tr(hat)), we have

/ (SOt hay, hay)dt + ¢ / (Vhat, Vha)
J J

+/(K(x)Tf(hAt)VfAt,VfAt)dt+/(K(x)Ts(hAt)VhAt,VhAt)dt
J J
72/(K(I)T9(hAt)vat7VhAf)dt+\/(K(:I:)Tg(hAt)vaf7vat)dt

J J
:/(SafAthAt,hD,At)dt+6/(VhAt,VhD7At)

J J

+ / (K (@)T; (hae)V fae Vfo.ar)dt
J

+ /(K(x)Ts(hAt)VhAt, VhD,At)dt + /(K(l’)Ts(hAt)VfAt,VfD7At)dt
J J

—/J(K({I?)TS(}LAt)VfAt,VhD,At)dt—/J(K(.’E)Ts(hAt)VhAt,pryAt)dt

- / (L hat — hiat) + / (L + I7. fae — foad)dt
J J

Hence

/(S[“)—Athm, hAt)dt + e / (VhAt7 VhAt) + /(K(l')Tf(hAt)VfAt, vat)dt
J J J
+ /J (K (2)Ta(hse) ¥ (he — Fae), Vihae — far))dt
= /(Sa_AthAt» hD,At>dt +e€ / (VhAt, VhD,At)
J J
+ [ @0V f, T i
+ [](K(x)Ts(hAt)V(hAt — far),V(hpat — fp.ar))dt

- /(Is, hat — hp,at)dt + /(Is + 1y, far — fp,ae)dt
J J
Next it is easy to see that

/(Sa—AthAt,hm)dt =Y (S(h'=n""1),n%) >
J P—

Also, since S = S(z) € L>®(Q), H1 + 6 < har < Hy and Hy + 6§ < hp < Hy, we
have

T—At
/(SafAthAt,hDyAt)dt: (Sh™, b)) — (Sh°, hY,) 7/ (Shas, 03hp ae)dt,
J 0

{(Sh™, ™) —(Sh° h°)}. (3.15)

DN =

~

T—At
<C+ C/ 102 hp Al )
0
(3.16)

and from
m—1

T—At
/O 10 R adllziey = 3 kS — il ),
=1
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it follows that

T—At A m—1 1 t; t
O°thp At = -— / / Othp (., 7)dTdt|| 11 (q),
[ 1ol = Sl [ oot

SO

T—At
/ 102 hp, atll L1 ) < / [0¢hpl| L1 (o dt. (3.17)
0 J

Now, we use Young inequality and combine (A2), (A5), (3.15)-(3.17) to taht for
every (> 0,

€/(VhAt7VhAt)+/((K(£E)Tf(hAt)—2MC)VfAt,VfAt)dt
J J

+ /J (K (2)Ts (hao)V (hae — far), V(hae — fad))dt < C

Then for p small enough and by the fact that Ty (ha;) > d > 0 (for all ha, satisfying
(3.9)) and K satisfying (A1) we obtain the desired result. O

Lemma 3.5. There is a subsequence such that, ha; strongly converges in L?(Qr).

Proof. According to [9, Lemma 2.6], it suffices to show that there exists a constant
C such that, for any £ > 0,

1 /T
: /g 1% () = hisa (et — €) Bt < C.

Let k be fixed (1 < k < m); for 7 € J;, we define the interval Q = Q(7) =
((i — k)At, iAt], and the characteristic function x¢.

Taking v(z,t) = xo ()0 " (ha(z,7) — hp at(z,7)) € lar(V) in (3.10), we
obtain

/, (SO~ hat, xo(1)0 3 hay)dt

= /J (SO 2 hat, xo ()0 " hp ag)dt
- /J(K(x)Ts(hAt)VhAt,VXQ(t)a_kAt(hAt — hp.at))dt
+ /J(K(x)Ts(hAt)VfAt,VXQ(t)a_kAt(hAt —hp.at))dt

e /J (Vhae, Vxa(O0 2 (hay - hp ar)) - /J (L x@ ()0 (har — hip ar))dt
applying the relation
/J O A harxodt = KAtO " hay (., 7),
and integrating again from kAt to T', we claim that we obtain

T
k:At/ ||S%8_kAthAt(-7T)||%2(Q)d7-
kAt
T
< C+kAt/ (SO hay(,7), 07" hp ar(., T))dr.
kAt
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In fact, if we take for example the term

/ / K hAt VhAt(l‘ t) VXQ( )37kAthAt(x,T))dth =1+ I,
kAt

where

I = / / (K (2)T (ha) X () Vhas (@, £), Vias (@, 7))dtdr

and

I, = / / K hAt VhAt(x t) VXQ( )hAt(:K,T — /CAt))dth.

For I, we have I} < 11,1 + 11,2, with

K(2)Ts(h hae(z,t)?dtd
mt/km/ 20XQ(O)|Vhad(e )P,

K(z)Ts(h h 2dtdr.
ho= oy [ [ K@OT00xOVhada, ) Patar

Hence
( )2 = = . )2 i=m j=k
hps€ kAt Z Hth(x)H%?( = As Z |V RITik+L( )H%Q(Q)
i=k j=i—k+1 Pl
At =hicm
j+i—k 2 9
Ill >~ Cm;;At”vh] (x)HL2(Q) S CHVhAt”Lz(QT)

then by (3.12), I; 1 < C. For I 5, we have

K(x 2
he =5 /kAf/ Ts(hat)xQ()[Vhai(z, )| dt dr

o= h h dtd
L2 = 1Ay /kAt/ At Ty(hae)|Vhae(z, 7)|2dt dr
I < Ck—At/ |Vhai(z, 7)|?dtdr < C.
kAL Jint

Therefore, Iy < C. Similarly we prove that Iy and all the other diffusive terms are
bounded. Moreover, as for (3.17), we obtain

T T
kAt/ (SO™*Ahpt (., 7), 07 hp arl., 7))dT < c/ 1072 hp Al 11 (0ydr
kAt kAt
< C||0thpllLr(0r)-

Consequently, the estimation is valid and the strong convergence can be deduced.
O

We are now ready to prove the main theorem.
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Proof of Theorem 3.2. By the lemmas above, there exists a subsequence, also de-
noted by (hag, fai), and (h, f) € L?(J, H}(2))? such that

hat —hpat — h—hp, weakly in L?(J,V) (3.18)
far— fo.ar = f—hp, weakly in LQ(J, V) ( )
hat — b strongly in L?(Qr) (3.20)
Ti(hat) — Ts(h) strongly in L*(Qr) (3.21)
har — h a. e in Qp. ( )

Next, for any v € L2(J; V), vas € lag(V) for At sufficiently small, where vas(z,t) =
At~ [, w(z,7)dr. Observe that

/ (SO™Athay,v)dt = / (SO™Athay, var)dt
J J
and
IVoallzz < [IVollL2@)-
By taking va: as test function in (3.10) and using (3.12) we get
/(SaiAthAt,v)dt = /(Safmhm,vm)dt < CHV'UAtHLZ(Qt) < O||VUHL2(Qt).
J J

Consequently, for a subsequence SO~2tha, converges weakly in L2(J, V"), if v €
D(Qr), we have

(SO~ hae, v)pr(ap) D) = /(Sa_mhm,v)dt
J
T—At
= - / (Shag, 02tv)dt
0

e / (Sh, 0y0)dt = (SOh, v} b (o) D)
J

Therefore,
SO~ A hay — SO:h  weakly in L2(J, V). (3.23)

Combining (3.18)-(3.23), and since US5_;la¢(V) is dense in L?(J, V), we obtain
(3.7) and (3.8).
On other hand, if v € C*°(Q2r) with v(x,T) = 0, we find that

T-At T
1
[ s st [ (Slhae— hl 080yt = 55 [ (Slhae— hol.o)i,
J 0 tJr—at
which yields (3.6). Finally by (3.9) and (3.22) we find (3.4) and thus the proof of
the theorem is complete. ]

Proof of Lemma 3.3. In this subsection, we allow h being outside [H; + §, Ha].
Here Ts(h) is extended continuously and constantly outside [H; +0, H3]. Lemma 3.3
is purely an elliptic result, and will follow from the next proposition. For notational
convenience the subscript At is omitted below.
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Proposition 3.6. In addition to assumptions (A1)-(A6), suppose that 0 < n, <
m(z) € L*(Q) and na(z) € L>®(Q) such that ni(x)(Hy + ) < na(z) < n1(x)Hs.
Then, the following problem has a weak solution (h, f) € (V +hp) x (V + fp):
Hy + 6 < h(x,t) < Hy, a.e.on Qp. (3.24)
(mh,v) + (K(x)Ts(h)Vh,Vv) 4+ &(Vh, Vo)
—(K(@)Ts(h)V f,Vv) = =(Is,v) + (n2,v), Yv eV
(3.25)

(K(x)T,Vf,Vw) — (K(z)Ts(h)Vh,Vw) = (I, + I,w) Yw € V. (3.26)
Proof. Let {v;}2, be a base for V, we set V,,, = span{vy,...,vn,}. With V,,

replacing V' in (3.25) and (3.26), we obtain a Galerkin method.
For v/ =" B/v;, j = 1,2, we introduce the mapping ®,, : R*™ — R?™ by

o (3)-(2)

Bl = (m@' + hp),vi) + (K (@) Ts(v' + hp)V (0! + hp), Vi) +(V (0! + hp), Voy)
— (K(@)T,((v' +hp))V (0 + fp), Vi) = (L, vi) = (n2, v3),
B} = (K(@)TuV (v* + fp), Vi) — (K (@)Ts(v" + hp)V(v' + hp), Vuy)
— (IS +If,’l)i).

where

By assumptions (A1)-(A6), ®,, is continuous. Also, it can be shown that, for any
p >0,

! 61 1 112 1 / 112
o () (52) 2 50 ~ 010 By + e = I

K.6
P2 B2 — O, fo. Iy 1)
1
+ 5 (K@) Tu(v' + hp)V(v! = 0%), V(! —0%).

1 1
Therefore, for fixed p small enough, ®,, <gz> : <g2> is strictly positive for |3'|+|3?|
sufficiently large. As result, ®,, has a zero; i.e., there is a solution to the Galerkin
approximation.

As in proof of Lemma 3.4 it can be seen that this Galerkin solutions ™ and f™
are uniformly bounded in H!(Q) (independently of m), so there exists a subsequence
h™ — hand f™ — f weakly in H*(Q) with h € V+hp and f € V + fp. Moreover,
hy — h strongly in L2(€2) and a.e. on Q. Therefore (h, f) satisfy (3.25) and (3.26).
Finally, a standard maximum principle argument on (3.25) (with v = (h — Ha)™)
can be applied to show that h < Hs. To show that h > H; + ¢ it suffices to

T,—6
set v=(h—H; —¢)" in (3.25) and w = %
equations, using (A4) and the fact that the extention of T is equal to (T, — J) on
{x € R:x < Hy + §} we obtain the desired result. O

v in (3.26). Summing the two
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4. STUDY OF THE DEGENERATE PROBLEM

In this section, we obtain the convergence of the solutions of the regularized
problem to a weak solution of the degenerate problem, obtaining hence the main
result of this paper. We first define the weak formulation of the degenerate problem.

Definition 4.1. A pair of functions (h, f), is called a weak solution to the degen-
erate problem (2.2)-(2.4) if the following proprieties are fulfilled

H +6<h<H,;, ae onQr. (4.1)
he L*(J, V) + hp, S% c L*(J V"), feL*JV)+ fp, (4.2)
—/(S@th,@dt - /(Sh, %f) F(S(2)ho(x), 0(2,0)) Ve € D(Q x [0,T]), (4.3)
J J
/ (SOuh, v)dt + / (K (2)/To(h)V(h), Vo)dt — / (K (2)Ts(W)V £, Vo)dt
J J J (44)
= —/(Is,v)dt Vv e L*(0,T,V),
J
/ (K(2)ToV f, Vo)dt — / (K (2)\/To )V o(h), V)t
7 7 (4.5)

:/(Js+1f,w)dt, Yw € L*(0,T,V),
J

where ¢(s) = [ :11 V/Ts(€)dE is introduced to absorb the degeneracy of the equations.

Theorem 4.2. Under the assumptions (A1)-(A6), the system (2.2)-(2.4) has a
weak solution in the sense of definition 4.1.

The proof of this theorem is based on the following lemmas

Lemma 4.3. Let (he, fo) a solution sequence to regularized problem. Then we have
the following estimates:

IVo(he)32imy < Cs el Vhell320,) < C,
IV fell3oiy S C 1S0he)F 2y < C

Proof. In this section C' is a generic constant independent of €. Take v = h. —hp €
Vin (3.7) and w = f. — fp € V in (3.8) and summing the two equalities to have,
for every p > 0,

5 VRl g [ @I ) - pO L

Qr
+3 [ K@LOI G -
1 1
S —/]<Sath€,h5 —hD>+2[2T €|VhD|2+2‘/QT K(x)Tf(h€)|VfD|2
1 K@ﬂumwvmp—ﬁﬁﬁ+/‘uxm—hD»
2 Qr Qp

1
L m+nﬁ+/|u+hwm
2u Jon Qr
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Since Hy + 6 < he < Hy and Hy + 0 < hp < H,, we have
Ty(he) = h. — Hy > 6,

/Q L(h — hp)| < CllL 1 (cun) -

Moreover, the following identity can be deduced as in [1, Lemma 1.5],

/ (Sihe,he — hp)
J

= [ (S0uho.he =) + 5150 = ) (D)) = 51She = ho)O) e
also we have
/(S@thD, he —hp) < CllOthp|lLr(r) -

Therefore, for u small gnough,

e|Vhclliz o, < C

IV fellZ2(am < C

| K@nmvn. - sF <.
Since
Yok ) <€ [ K@T VAL,
we have ’
IV (he)ll 20

<20 [ K(@)Ty(ho)|V(he — £ +2C | K(2)Ts(h)|V . < C.
Qr Qr

To show the last estimate, let v € L?(J,V), we have
/J(S@th&v}dt < /J(K(x)Ts(hg)V(fs—hg),Vv)dt—l—s/J(Vhs,Vv)dt—l—/J(Is,v)dt,
Then
[ (Souhe,)it < Cloll oo
which completes the proof. ’ ([

Lemma 4.4. The sequence (he, f), also satisfies the following inequality

T
/f (S(he(-,t) =he(,t=8)), d(he (., 1)) = D(he (-, T =&)))dt < CE VE €[0,T], (4.6)
and we can extract a subsequence, also denoted (he, f.), such that, (he, d(he)) con-
verges strongly to (h,¢(h)) in L?(Qr).

Proof. Let € € [0,T], and v € L?(J, V). We have
T

T
/ (S(he( 1) — he(est — €)), v)dt < / 1S () = he(st = )l lollvdt,
£ 3
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moreover we know that (see [7, p. 155]), for all £ € [0,T],
1 T

T
o /5 1S(he (e 1) — helet — €)|Fpdt < / 10,52 dt

Then
T
/g (S(he(- 1) = he (., t = &), v)dt < ElJvllp2(r,v) 1SOthellL2(svry 5

therefore, taking v = ¢(he(.,t)) — d(he(.,t — &) and by the previous lemma we have
the estimate (4.6).

On the other hand we have T5(§) = Hs — £. Then ¢ is continuous strictly
decreasing function on [Hy, Hs], and C* on |Hy, Ha[. Consequently ¢~ is lipschitz
function on [Hy, Hz]. Hence, since Hy + ¢ < h. < H,, we obtain

/E S(¢_1 © ¢(h€(7t)) - ¢_1 © ¢(h€('7t - f)), ¢(h5(,t)) - ¢(h5('7t - 6)))dt < Cg
and

/5 (S@)(B(he(rt)) — Blhe(nt — ), blhe(nt)) — Blhe(nt — €))dt < CE

Moreover,

IVo(ho)ll72 0y < C -
Therefore, as in [9, Lemma 2.6], we deduce that ¢(h.) converges strongly in L?(27)
to ¢(h). O

Proof of Theorem 4.2. By Lebesque’s theorem, lemma 4.3 and lemma 4.4 we de-
duce that there exist (h, f) € (L?(J,V)+hp) x (L?(J,V) + fp) and a subsequence
(he, fc) such that
he — h strongly in LP(Qr) Vp € [1,00].
@(he) — ¢(h) strongly in LP(Qr) ¥p € [1, 00],
SOth. — S0;h  weakly in L*(J, V'),
fe—fp— f—fp weakly in L*(J,V),
¢(he) = ¢(hp) — ¢(h) — ¢(hp) weakly in L*(J, V),
Ve(he —hp) — 0 weakly in L*(J, V),
h. — h a.e. in Qp.

Since ¢(hp) € L2(J, H'(Q)), as £ approaches 0 in (3.7) and in (3.8), we obtain (4.4)
and (4.5). To show (4.1) and (4.3) it suffices to proceed as in theorem 3.2. O
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