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VARIABLE LORENTZ ESTIMATE FOR GENERALIZED STOKES
SYSTEMS IN NON-SMOOTH DOMAINS

SHUANG LIANG, SHENZHOU ZHENG, ZHAOSHENG FENG

ABSTRACT. We prove a global Calderén-Zygmund type estimate in the frame-
work of Lorentz spaces for the variable power of the gradient of weak solution
pair (u, P) to the generalized steady Stokes system over a bounded non-smooth
domain. It is assumed that the leading coefficients satisfy the small BMO con-
dition, the boundary of domain belongs to Reifenberg flatness, and the variable
exponent p(z) is log-Holder continuous.

1. INTRODUCTION

Let Q C R™(n > 2) be a given bounded domain with a rough boundary specified
later. The aim of this article is to study a global Lorentz estimate for the variable
power of the gradient of weak solution to the generalized steady Stokes problem

div(A(z)Vu) — VP =divF, in Q,
divu =0, in Q, (1.1)
u=0, on L.

Throughout this article, as usual we assume that the fourth-order tensor A(z) =

( ;_ij ):LJ o1 Q — R™>*"” gatisfies a uniform boundedness and ellipticity for
constants 0 < v < A < 4o0:

Vgl < A(x)€ - € < AEP, (1.2)

where z € Q ae., £ € R", and F(z) = (Ff)}4=1- The unknown velocity of

7

vectorial-value functions is denoted by v = (u!',u?,...,u") : Q@ =+ R" and P: Q —

R is the pressure.

Let us recall some recent progresses of the Calderén-Zygmund theory concern-
ing partial differential equations with discontinuous coefficients. The interior and
global WP estimates for nondivergence linear elliptic equations with the VMO dis-
continuous coefficients were presented by Chiarenza-Frasca-Longo [I4] [15]. Since
then, there has been continuous attention on the Calderén-Zygmund theory for
various elliptic and parabolic problems with discontinuous coefficients. Apart from
an earlier technique by using singular integral operators and its commutators, there
are three kinds of important arguments to deal with the Calderén-Zygmund theory
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concerning elliptic and parabolic problems with the VMO or small BMO discon-
tinuous coefficients. The first one is the so-called geometrical approach originally
traced from Byun-Wang’s work [T1], which is used to attain the global LP estimate
by way of weak compactness based on the boundedness of the Hardy-Littlewood
maximal operators and the modified Vitali covering theory of distributional func-
tions regarding the gradients of solutions. Indeed, this can also be regarded as a
development from Caffarelli-Peral’s work [I3] to obtain local Wlif -estimates for so-
lutions of a class of elliptic problems of p-Laplace type. Secondly, Dong-Kim-Krylov
(for examples, see [20, 25]) presented a unified approach of studying L? solvability
for elliptic and parabolic problems on the basis of the Fefferman-Stein theorem on
sharp functions and the Hardy-Littlewood maximal function theorem for the spa-
tial derivatives of solutions. The third technique is called the large-M-inequality
principle originated from Acerbi-Mingione’s work [I], 2], which is directly applied
to argue on certain Calderén-Zygmund-type coverings instead of the maximal func-
tion operator and other harmonic techniques such as the good-A-inequality. Here,
we would like to mention that recently Byun et al have obtained numerous global
Calderén-Zygmund-type results to various nonlinear elliptic and parabolic prob-
lems over non-smooth domains by combining the large-M-inequality principle with
a geometrical approach [I0] 1T [12]. As we have seen, Byun-Ok-Wang [10] attained
a global Calderén-Zygmund estimate with the variable exponent of gradients of
solution to the zero Dirichlet problem for linear elliptic systems in the divergence
form with partial BMO coefficients and log-Holder continuity p(x), which implies
that
F ¢ LP@(Q,R") = Du € LP™(Q,R").

Later, Tian-Zheng [31] further extended it to a global Calderén-Zygmund-type
estimate for variable power of the gradient of solution in Lorentz spaces for the
same problem with partial BMO coefficients.

We know that solvability and optimal regularity of Stokes system under mini-
mal regular datum have been a classical and important problem in the theory of
partial differential equations and fluid dynamics. In the past decades, we have
seen a great deal of literature concerning the interior regularity of Stokes system
[, 17, 18] and global regularity of the generalized Stokes system in the Lipschitz
domain (cf. [9] 16, 19, 2], 22} 26]), the domain with the Reifenberg flatness bound-
ary [12] [24]. It is quite necessary to mention some recent advances concerning the
generalized steady Stokes problems with discontinuous coefficients. Danécek-
John-Stard [16] investigated the Morrey regularity for the gradient of weak solution
(u, P) to a generalized Stokes system with symmetric elliptic coefficients whose
entries satisfy the boundedness and VMO discontinuity. Gu-Shen [22] considered
a uniform WP-regularity in the homogenization theory of the generalized Stokes
system with setting of rapidly oscillating periodic coefficients, and obtained the
global W1P-estimates with 1 < p < oo to a family of generalized Stokes sys-
tems with the V MO periodic coefficients in a bounded C* domain. Very recently,
Bulicek-Burczak-Schwaarzacher [9] dealt with the following steady Stokes system
in a bounded domain with 99 € C*:

div (%(vu — V")) - VP =divF, inQ,
divu=d, in ),
Y(u) =g, ondQ,
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where v is the trace operator. They established a global weighted WP result,
which means that

Felli(Q)" andd,ge LL(Q) = ue WL Q)" and P — (P) € LL(Q)

for 1 < ¢ < oco. Byun-So [I2] obtained the global weighted L9-estimates for the
gradient of weak solution and an associated pressure to the Dirichlet problem of
the generalized Stokes system under assumptions that the coefficients have
small BMO semi-norms and the domain is flatness in the Reifenberg sense, which
implies that

Feli(Q)” = VueLl(Q)" and P e LL(Q).

For the results on the LY theory for the generalized Stokes problem of p-Laplacian
type and evolutional Stokes equations, one can refer to [I7], 24] etc.

On the other hand, Lorentz spaces are a two-parameter scale of Lebesgue spaces
by refining Lebesgue spaces in the fashion of second index. In recent years, a
number of theoretical issues concerning Lorentz regularity of various PDEs has re-
ceived considerable attention. For examples, Mengesha-Phuc [27] derived weighted
Lorentz estimates for the gradients of solutions to quasilinear p-Laplace type equa-
tions based on the geometrical approach. Meanwhile, Baroni [5] [6] obtained Lorentz
estimates for the gradients of solutions to evolutionary p-Laplacian systems and
parabolic p-Laplacian with the given obstacle function Dy € L(~, q) locally in Qp
respectively, by using the large-M-inequality principle, which means that

F, Dy € L(v,q) locally in Qr = Du € L(v,q) locally in Qrp

with v > p and ¢ € (0, 00]. Later, Zhang-Zhou [35] extended the result of [27] to
the quasilinear elliptic p(z)-Laplacian equations by using a geometrical argument.
Adimurthi-Phuc [3] showed global Lorentz and Lorentz-Morrey estimates below the
natural exponent of quasilinear equations. Zhang-Zheng [33] [34] studied Lorentz
estimates of fully nonlinear parabolic and elliptic equations with small BMO nonlin-
earities, and obtained weighted Lorentz estimates of the Hessian of strong solution
for nondivergence linear elliptic equations with partial BMO coefficients.

Motivated by the progresses mentioned above, in this work we focus on a global
Calderén-Zygmund type estimate for the variable power of the gradient of weak
solution in the framework of Lorentz spaces to the Dirichlet problem of the gener-
alized steady Stokes systems in the non-smooth domain. Here, we allow the
coefficient tensor A (x) to be discontinuous, but it suffices to impose a small BMO
regular condition, the variable exponent p(z) satisfies log-Holder continuity, and
the boundary of domain belongs to Reifenberg flatness. This study is also inspired
by elegant results presented in [II 2 [5, 6] 12]. That is, we apply the mixed argu-
ment of large-M-inequality principle and the geometric approach to prove global
Lorentz estimates for the variable power of the gradient of weak solution to the
Dirichlet problem of over a bounded Reifenberg flatness domain. Indeed, the
key ingredient is based on making use of Calderén-Zygmund type covering, approx-
imate estimate and iteration arguments to obtain an estimate of the measure of the
super-level set for the variable power of the gradient of weak solution.

The rest of this artivcle is organized as follows. In section 2, we recall the
definition of weak solution to problem and state our main result. In Section
3 we present some technical lemmas. In Section 4 we prove of our main result.
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2. PRELIMINARIES AND STATEMENT OF MAIN RESULTS

In this section, we present some related definition and notations and state our
main result on the Dirichlet problem of the generalized steady Stokes systems .

Denote by ¢(n, v, A, . ..) a universal constant depending only on prescribed quan-
tities and possibly varying from line to line in the following context. Let us recall
the Lorentz space L(t,q)(U) with an open subset U C R"™ for any parameters
1 <t<ooand 0 < g < co. This is defined by requiring that for a measurable
function g : U — R, it holds

o q/t du
9120y 0r) =1 / (u'1He € U+ lg(&)] > ) <o

while the Lorentz space L(t,00) for 1 < t < oo and ¢ = oo is defined by the
Marcinkiewicz space M*(U) as usual, which is the space of measurable functions g
with

1/t
90126000 = llgllaee oy = sup (' 1{€ € U+ |g(€)] > }) < ox.
pn>0

The local variance of such spaces is defined in the usual way. We remark that if
t = ¢, then the Lorentz space L(¢,t)(U) is nothing but a classical Lebesgue space.
Indeed, by Fubini’s theorem it gives

ol = / B €U 1) > % = gl oy

which implies L*(U) = L(t,t)(U), see [33} 4,5,26,31,[33]].

Remark 2.1. Because of the lack of sub-additivity, the quantity || - || 5q.q)w) is
just a quasi-norm. Nevertheless, the mapping g — ||g]|1(t,q)(v) is still weak lower
semi-continuous, for details see [29, Remark 3].

Definition 2.2. Let F € L2(Q)"". If u € W) ?(Q)", divu = 0 and satisfies

/(A(x)Vu, Vo) de = /(F7 V) dz (2.1)
Q Q

for all v € W(}’Q(Q)” and dive = 0, then u is called a weak solution of the zero
Dirichlet problem of the generalized Stokes system (|1.1)). If u is such a weak solution
and P € L?(Q) satisfies

/ ((A(z)Vu, Vv) — (P, dive))de = / (F, Vv) dx (2.2)
Q Q

forallv € W(}’2(Q)", then (u, P) is said to be a weak solution pair of the generalized
Stokes system and P is called an associated pressure of u.

The traditional assumption on the variable exponent p(-) is log-Hélder continuity,
which ensures that the Hardy-Littlewood maximal operator is bounded within the
framework of generalized Lebesgue space. Briefly, we recall that p(z) is log-Hélder
continuous, denoted by p(z) € LH(Q), if there exist constants ¢g and § > 0 such
that for all z,y € Q with |z — y| <, it holds
€o

Ip(x) —p(y)| < Tloge —gl)”
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In this context, we assume that p(x) : @ — R is a log-Holder continuous function,
and there exist positive constants v, and 7, such that

p(z) = py)l <w(z—yl), Vo,ye, (2.4)
where w : [0,00) — [0,00) is a modulus of continuity of p(x). Without loss of

generality, we suppose that w is a non-decreasing continuous function with

1
w(0) =0, limsup,_,,w(r)log (=) < oo.
r
With the above assumptions, it is clear that p(x) € LH(Q) and there exists a
positive constant A such that
1
w(r)log(=) < A & = < e for any r € (0,1). (2.5)
r
On the other hand, the generalization of the classical steady Stokes system con-
sists of general second order elliptic equations in the divergence form instead of the
standard Stokes equation. It is rather necessary to impose certain regular assump-
tions on the leading coefficients A(x) and the geometric structure on the boundary
of domain. To this end, we let

Br(y) ={z eR": |z —y[ <1}
for y € © and radius r > 0. Denote that
Q(y) = Br(y) NQ, 0.02:(y) = Br(y) N9,
B = B,(0)n{x, >0}, T, = B.(0)N{x, =0}

For any bounded domain U C R", we denote

fu ZJ[Uf(x)d:c = ﬁ/{jf(m)d:c.

In what follows, a key assumption is that the coefficient tensor A(z) is allowed
to be sufficiently small BMO discontinuous, and the boundary 902 of domain is
Reifenberg flat.

Definition 2.3. We say that the pair (A, Q) is (4, Ry)-vanishing, if for any z € Q
and for each number r € (0, Rg] with

dist(z, Q) = min dist(z, z) > v/2r,
z€00Q

there exists a coordinate system depending on x and r such that in the new coor-
dinate system z is the origin and satisfies

2
Foaw) - Anwld <o, (2.6)
B, (z)
While, for any x € Q and for each number r € (0, Ry] with
dist(z, 0Q) = 1218% dist(z, z) = dist(z, z9) < V2r
z

for some zg € 0f), there exists a coordinate system depending on x and r such that
in the new coordinate system z is the origin and satisfies

Bgr(20> n {1‘1 > 357"} C B3T(ZQ> nNQcC B3T(ZO> n {1‘1 > —3(57‘}, (27)
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][ A(y) — Ap, (o) Pdi < 87, (2.8)
B3, (20)

where A(x) is a zero-extension from Bs,(z9) N2 to Bs,, and the parameters 6 > 0
and Ry will be specified later.

We assume that ¢ is a small positive constant, saying 0 < ¢ < 1/8. Notice that
Q is a (0, Rp)-Reifenberg flat domain. Obviously, it is an A-type domain, which
implies the following measure density condition [I1]:

|Br(y)] 2 16 n
sup su < < , 2.9
S p ) S (7o) = (7)) (2.9

and for any y € 9Q and r € (0, Ro] it holds
‘Br(y)ﬂQC| 1—5 n 7 n
>(—) . 2.10
ol -z ) () (210

This ensures that it holds a reverse Holder’s inequality for the gradients of solutions
at the neighborhood of boundary point. Now, we are ready to summarize our main
result.

Theorem 2.4. Let the variable exponent p(x) satisfy . and (2.5 ., and the
given pair (A, Q) is (3, Ro)-vanishing with Ry > 0. Suppose that (u, P) satisfying

u € W&’Q(Q)", divu = 0 and is a weak solution pair of the generalized Stokes
system (1.1)—(1.2)). If
PP € L(t,q)(R), fort>1 and g € (0,400,

then there exists a small constant 5o = do(n,y1,7v2,v, A) > 0 such that for every
5 € (0,80], we have (|Du| + |P|)P®) € L(t,q)(Q) with the estimate

Y2 /M
[(IDul + 1P| e S C(”‘“”””L(tq)(ﬂ) + 1) ’ (2.11)

where the constant ¢ depends only on n,v1,7v2,v, A, t,q, 00, Ro, Q,w(:) and || (ex-
cept in the case ¢ = 00).

3. TECHNICAL TOOLS

In this section, we present some useful technical lemmas, which will play an
essential role in proving our main result. We start with recalling the existence and
energy estimate of weak solution pair to the generalized Stokes system ((1.1), see
[12, Lemma 2.9].

Lemma 3.1. Let Q C R™ for n > 2 be an open bounded (9, Ry)-Reifenberg flat
domain with sufficiently small 6 > 0, and F € L? (Q)"2 Then there exists a unique
solution pair (u, P) € Wy > (Q)" x L*(Q) to the generalized Stokes system with
divu =0 and fQ Pdx =0 such that the following standard estimate holds
190l oot + IPllz2c@) < llFll oot (3.1)
where ¢ = ¢(n, v, A, Q).
In addition, if u € Wy U(Q)" with divu = 0 and F € LI)™ for q € [2,+00),
then
1Pleey < c(IFl ooy + 190l pagayer): (3.2)
where ¢ = ¢(n, v, A, Q).
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The following lemma is regarding the principle of local reverse Holder’s inequal-
ity, which can be obtained form [23] Prop. 1.2 Chapter 5].

Lemma 3.2. Let 0 < r < dg < dist(x,00Q) for x € Q. Suppose that g(z), h(x) €
LP(Bar, RY) with 1 < p < oo satisfy

£, swraz<of jpassef pwpdsse(f i)

where 1 < s < p and 0 < 6 < co. Then there exists p' = p'(0,p, N,c) > p such that
there is g € LY (Q,RYN) with the estimate

loc

(f, woras)” <e(f topas) s e(f ras)”

Based on Lemmas [3.1] and we now prove a higher integrability for the gra-
dients of weak solutions and the pressure P to the generalized Stokes system (|1.1)
in the admissible set W, *(Q)" x L2(Q) with divu = 0.

Lemma 3.3. Let (u,P) € W01’2(BgT)” x L?(Ba,) be a weak solution pair to the
generalized Stokes system with divu = 0 under the usual assumption .
If |[F|P@®) € LY(By,) with p(z) >y > 2 and t > 1 with By, € Q, then there exist
positive constants ¢ = c(n,y1,v2,v, A) and small oo > 0 with

0'0<7_].7

such that for any 0 < o < gg, it holds

_1 _1
(][ |vu|2(1+o')dx> 1+o + (f |P|2(1+U)dx> 1+o
B, B,

_1
< c][ |Vu|?dz + c][ |P|2dx + c(][ |F|2(1+")dx> e
Bzr B2r B2r

Proof. Let n € C§°(Ba,) be a cut-off function such that 0 <n < 1,7 =1 on B,
and |Vn| < 2/r. Taking v = n?(u — (u)a,) into (2.1) as a test function, we obtain

(3.3)

/B (A(z)Vu, V(n*(u— (1)) dz = / (F,V(n*(u— (u)2r))) da. (3.4)

B27‘

In view of the ellipticity and boundedness (1.2]), for 0 < £; < 1, using Young’s
inequality we have

u/ n*|Vul*dx
B?r

< /Bm (A(z)Vu, V(’?2(U - (U)2r))> dx + 2A /Bw [nVu| - |Vn(u — (u)a,)|dx

< ,/,32,<A(x)vu’v(n2(u_ (U)QT))>d;[;+Cgl/B 772|vu|2d1'

2r

teer) / V0l — (u)ey 2d.
Ba,
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It follows from the Sobolev-Poincéare inequality with 2, = HQ—J’F’Q that
v / n*|Vul*dx
BQ’V‘
< [ A@VLVir@- @) dote [ Vel 35
Bar

2r
n—2n 2 2/2*
+c(e)r" 2 (/ [Vu *dx) .
By

Similarly, we can find the estimate to the right-hand side of formula (3.4]):

/<vaw—wm»wx
Bo,

§62/ n? | Vu|*dx (3.6)
Bay

. 2/2.
+c(€2,63)/ |F\2dz+c(53)r"—%(/ Vu 2*dx)
B, B

27

for 0 < &5 and €3 < 1. Using (3.4)-(3.6)) and choosing cg1 4+ 2 = v/2 yields

2/2.
][ |Vul*dz < c<][ |Vu|2*da:) —I—c][ |F|?dx.
B Bar Bar

From Lemmaby taking g(z) = Vu, h(z) =F,p=2,0=0and s = 2, < 2,
it follows that there exists a o satisfying 2 < 2(1 + o) < tv; such that

(][ |Vu|2(1+")dx) < c][ |Vu|*dz + c][ |F|%dx
B, Bz, Bar

o (3.7)
< c][ |Vu|*dx + c(][ |F|2(1+‘7)dm) .
B27‘ B2r

By (3.7) and (3.2]) with ¢ = 2((1 + o)) > 2, we obtain

(][ |P‘2(1+U)d$)m

B,
1 1
< c<][ |Vu|2(1+")dm> 0y c(][ \F|2(1+”)dx) 20 (3.8)
N Ba, Ba,-
1 1
< c<][ [Vul?dz)” + c(][ P20+ 4 ) "7
B21v B27~

Combining (3.7) and (3.8), we arrive at the desired estimate ([3.3)). |

The following higher integrability on the boundary version is a self-improving
result due to the Reifenberg flatness condition of domain being an A-type domain

as shown in (2.9).

Lemma 3.4. Let (u, P) € Wy (Q2,)" x L?(Qa,) be a weak solution pair to the
generalized Stokes system with divu = 0 under condition . Suppose that
[F|P(®) € LY(Qy,) with p(x) > y1 > 2 and t > 1, and the boundary of Q satisfies local
(0, Ro)-Reifenberg flatness: there exist Ry > 0 and §g > 0 such that for 0 <r < Ry
and 0 < § < dq it holds

B3, C Qa, C By, N {x, > —4dr}.
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Then there exists a small positive constant og > 0 with oy < % — 1 such that for
any 0 < o < 09, we have Vu € L*3+9)(Q,) with the estimate

(f k) (fproeoia) ™
1

< c][ |Vu|2dx+c][ |P|2dx—|—c(][ |F|2(1+")dx)m,
Qo Q2 Qs

r T

(3.9)

where ¢ = ¢(n,y1, Y2, v, A, ) > 0.

Proof. Without loss of generality, for any fixed boundary point y € 0 we set
Qo = Qo,.(y). By a zero extension of u in Ba,.(y)\Qa,, we can take v = n?(u—(u)2,.)
as a test function in the neighbourhood of boundary point. Using the arguments
analogous to the proof of Lemma due to the measure density property of Q (cf.
(2.10))), we can obtain the estima immediately. (Il

Here, let us recall a basic property that the generalized Stokes problem (1.1)) is
invariant under scaling transformation and normalization, see [12] Lemma 2.6].

Lemma 3.5. For fited K > 1 and 0 < p < 1, let

A(x) = A(pz), u(z)= uégj), p(x) _ @7 F(m) _ F(pzx)

and let Q = {% :x € Q}. Then the following three statements are true.

(i) If (u,P) is a weak solution pair to system (L)), then (@, P) is a weak
solution pair to

div(A(z)Va) — VP =divF, inQ
divi=0, inQQ,
=0, on Q.

(i) If A satisfies condition (1.2)), then so dose A with the same constants v
and A.
(i) If (A, Q) is (0, Ro)-vanishing, then (A,Q) is (6, %)—vanishing.

Let us consider the comparison estimates at the interior point and boundary
point. For simplicity, we fix z;,z; € © and let r; < & for each i. Set

250
fo Fo

Rgmin{ 5 },

(3.10)
where ¢* = c¢*(n, 71,72, v, A, w(),]9Q])) > |Q] + 1. Let
B} = B, (z;), B! =Bsj.(z:), j=1,...,6

3

Q? :Qm(zi)v Qz :Qg5j7”i(0)7 j=1,...,6.

For a boundary point y; € Bsor, (;) N O, there exists a new coordinate system in
z = (2},22,...,2")-variables such that

z; = ;Y +1506r;(0,...,0,1) is the origin,

3.11
BEOW (O) C 9150” (0) C 3150” (0) N {ZZ" > —30057"1‘}. ( )
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Choose 0 < 0 < 1/300 such that €,,(z;) C Q40r,(0) in the new z-coordinate
system. Then we have

BI* = B;;,.(0) € Q! C Basjr(0) N {yn > —30067}, (3.12)
Qg C Ql50m (0) C 91907“1' (Zz) (313)
By a scaling transformation to (3.12)), without loss of generality, we set
Bf € Q6 C BgN{x, > —126}.

We now consider a series of localizing problems in the neighbourhood of boundary

point as follows:
div(A(z)Vu) — VP =divF, in Qg,

dive =0, in Qg, (3.14)
u=0, on J,Q;
div(A(z)Vv) = VP, =0, in Qs,
dive =0, in Qj, (3.15)
v=mu, on Js;
div(ABIVw) — VP, =0, in Qy,
divw =0, in Qy, (3.16)
w=wv, on 0y,

and
div(Ap+Vh) = VP, =0, in B,

divh =0, in BJ, (3.17)
h=w, onTy.

Let us recall an approximating estimate in accordance with Byun-So’s work, see
[12, Lemma 3.6].

Lemma 3.6. For any 0 < e < 1, if (w, Py) is a weak solution pair of problem

(3.16) and satisfies
fovup 1pu)ae <.
Q4

Then, there exists a weak solution pair (h, Py) of problem (3.17)) with

][ X (IVR]* + |Pp?) dz < c,
B

4

][ |w — h|?dz < €.
BY

A local Lipschitz regularity in the neighbourhood of any boundary point for the
Dirichlet problem (3.17)) is well-established, see [12], Lemma 3.5].

Lemma 3.7. Let (h, P,) be the weak solution pair of problem (3.17). Then we
have

IVl o gz = IVl oo 2 < elVAIl 2 gy
[Pl = 1Pl < e(IVAlzaopye + I1Palliecor )

where h is the zero extension of h from B;' to Qs, and P, is an associated pressure
of h by extending it from B3 to Q3.
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Lemma 3.8. Let (u, P) be a weak solution pair of problem (3.14). If for any
0 < e < 1 there exists a constant § = §(e,y1,72) such that

][ (IVul>+|P)dz < 1, ][ F[2dz < 67/, ][ A—Ao, Pdz < 62, (3.18)
Qs Qs Q6

then there exists a weak solution pair (h, Py) of problem (3.17) such that

][ (IVR]* + |Py|*)dz < c,
Bf

][ ([Vu—Vh|* + |P — P;*)dz < €,

3

where h and P are the same as given in Lemma .

Proof. Let (v, P,) and (w, P,) be weak solution pairs to problems (3.15]) and (3.16)),
respectively. It follows Lemma and (3.18)) that

fﬂg;

Combining (3.16)) and (3.15) leads to
diV(ABIV(v —w)) —V(P, — P,) = —div(A(z) — ABI)V’U)’ in Qy,

dive —w =0, in Qy,

(Vu - Vo> + [P — P,P)de < c][ Flde < com/2 (3.19)
Qs

v—w=0, on 0y.

In view of higher integrability on the boundary and normalization conditions

(3.18]), similar to the proof of [12] Lemma 3.7], using (3.1)) we obtain
ry—2
1

][ (|V0—Vw\2+|Pv —Pw\2)da: <c(6%+6%) (3.20)
Qy

where 7y > 2 is the same as given in Lemma[3.4] Combining (3.19) and (3.20)) leads

to
][Q (|w — Vw|? +|P - Pw|2)dx < (0 4 87T 4 55T, (3.21)
4
from which and we obtain
][94 (|Vw|2 + |Pw|2)d33 <ec.

It follows Lemma 3.6 that there exists a weak solution pair (h, P,) of problem (3.17)
with

][ (\Vh\2+|Ph|2)dx§c, ][ +|w—h\2da:§€i,
B4

B
where €2 is to be determined later.
Notice that (h, Pj,) is a weak solution pair of

div(A o Vh) — VP = — - (a2 g%

o (@',0)xrr (x)), in Qg,
divh =0, in Qy,

h= 0, on 0,0y,
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of
1] I
tion. Processing in a similar manner to the proof of [I2, Lemma 3.7], we deduce

that

where A 5+ = a;", @’ = (x1,22,...,2,—1) and x is a standard characteristic func-
4

][ \Vw — Vh|?dz < € + 6 + c57, (3.22)
Qo

and

][ |Py — P5|? dx

Q2

< c][ |Vw — Vh|* dz + c][ ’&gfi%(m’, 0)xr» (x)’2 dx (3.23)
Q2 Qo Oy, -

el +6+07).
Taking €., d > 0 small enough and making use of (3.21])-(3.23) such that
c(d% NI R L N 6%) <é,
consequently, by (3.22]) and (3.23)) we arrive at the desired result. O

For the interior case, one can process in an analogous but simple way as for
the boundary case. Similar to Lemmas and we replace ; by B,_; with
Bg € €. The first one is a local Lipschitz regularity of Vw to the Dirichlet problem
for a limiting system of local constant coefficients, and the second one is a com-
parison between limiting system and the local version of system (|1.1)) under the
normalization. For details, see [I2, Lemmas 3.1 and 3.2].

Lemma 3.9. Suppose that (w, P,,) is a weak solution pair to
div(Ap,Vw) — VP, =0, in Bs,
divw =0, in Bs (3.24)
w=wv, on JBs3,

and u is a local weak solution of system (1.1) with
][ ([Vul* +|P]*)dz < 1 and][ |F|2de < §71/72,
B4 B4

Then
va||L°°(BQ)"2 + ||P7~UHL°°(Bz) S C2,

where cg > 1.

Lemma 3.10. Let u be a weak solution of (L.1)). If for any 0 < e < 1, there exists
a constant § = 0(€,y1,7y2) with

][ F2dz < 07/ and ][ A(z) — A, [2de < 02,
B4 B4
then there exists a weak solution pair (w, Py) to (3.24]) such that

][ (|Vu— Vwl*> + |P — P,|?) dz < €.
B3

Proof. Let (v, P,) be a weak solution pair to (3.15)) in By. From (3.15]) and (3.14)

it follows that
div(A(x)V(u —v)) — V(P — P,) =divF, in By,
div(u —v) =0, in By
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u—v=0, ondBy.
By Lemma and inequality (1.2), and Holder’s inequality it follows that

][ (IV(u—)* + |P = P,|*)dx §][ |F|? dx < o7/, (3.25)
B4 B4

Similarly, let (w, P,,) be a weak solution pair to (3.24]). Regarding (3.15) in By,
we have

div(Ap, V(v —w)) — V(P, — P,) = —div ((A(z) — Ap,)Vv), in Bs,
div(v —w) =0, in Bs,
v—w=0, ondBs.

Processing in a way analogous to the proof of [I2] Lemma 3.3], we obtain

][ (IV(v = w)]? +|P, — Py|?) dz < 6% 75 | (3.26)
Bs

Combining (3.25)) and ([3.26)) gives

][ ([Vu — Vw|? +|P — P, |?) dz < (6772 + 52_%).
B3

Taking § > 0 small enough such that c(§7/72 4 527%) = €2, hence we obtain the
desired result. O

Let us recall the embedding relation with respect to the Lorentz spaces, see [27]
Proposition 3.9].

Proposition 3.11. Let U be a bounded measurable subset of R™. Then the following
three statements are true.

(i) If 0 < q1, g2 < 00, and 1 < t1 < tg < 00, then L(ta,q2)(U) C L(t1,q1)(U)
with the estimate
9l ity a0y @) < cltrsta, ;s q1,02, UGN Lits,q0) )
(i) f1 <t<ooand 0 < q1 < g2 < 00, then L(t,q)(U) C L(t,q2)(U) C
L(t,00)(U) and
N9l Lty < ety a1, a2) 9l Lit.q) @)

(iii) For 0 < a < oo, if |g|* € L(t,q)(U), then g € L(at,aq)(U) with the
estimate

191 z¢t.0 ) = N9NT (ot 00y (3.27)

The following two lemmas are actually variant versions of classic Hardy’s in-
equality and reverse Holder’s inequality, respectively, see [5, Lemmas 3.4 and 3.5].

Lemma 3.12. Let f : [0,+00) — [0,4+00) be a measurable function such that

/ FNAA < 0. (3.28)

Then for any o > 1 and r > 0 it holds

/ x/ Fl)du 7<(‘;‘) /OOO)\’"<)\f()\)>ad)\)\.
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Lemma 3.13. Let h : [0, +00) — [0, +00) be a non-increasing measurable function.
Suppose that a1 < ag and r > 0. If as < 0o, then

() trmo )™ sevne s ([ rnon 9™

gar—1 1%

fore € (0,1] and A > 0. If aa = o0, then

r r > r (<31 di Ve
sup ")) < X e [ Grngny™ )

where ¢ depends on a1, as and r.

The following lemma is regarding an iteration argument, see [23] or [30, Lemma
4.1].

Lemma 3.14. Let ¢ : [r1,2r1] — [0,00) be a function such that

1 _
o(p1) < 5@(/)2) +Bo(p2—p1) P+ L
forri < p1 < pa < 2r1, where By, L >0 and 8 > 0. Then we have
o(r) < c(,B)Borl_B +cL.

4. PROOF OF THEOREM [2.4]

With aid of the lemmas presented in the preceding section, now we are in a
position to prove Theorem by means of the large-M-inequality principle [2] and
a geometric argument [10]. To present our discussion in a straightforward and lucid
manner, we separate our proof into six steps.

Proof. We only treat the boundary case. For the interior case, one can process in
a similar but much simpler way. For the boundary case, a proper translation and
rotation of the original coordinates does not change the corresponding features.
Without loss of generality, we may assume that Ry < 1. For any fixed zg € 2, we
set

+

p- = inf p(z), pT= sup p(x),
Q2r(z0) Qar (o)

p; = inf p(z), pi = sup p(z).
Q2 (wo) Q5 (o)

Step 1. In this step, we present a modified Vitali’s covering. Let u be the weak
solution of system (1.1). For Qr = Qg(zg), we define

- 1
Ao 22][ (|Vu| + |P|)2P@/P" dg + 7(][
Q2R )
where § > 0 and 7 > 1 will be specified later. We now introduce the super-level set
E(A\Qg) = {z € Qg : (|Vu| + [P)>@/P" > )}

for some A > MXg > 1 with M = (3%2),
For z; € E(\,Qg) and radii 0 < 7 < R, let

C2(8, () = |

(1™ 4 1)"@;)1/", (4.1)

Q2r

_ 1 2p(x) 1/
(|Vu| + |P|)2@)/P dx—l—f(][ |F| v~ "dx) " (4.2)
5 QT(Tt)
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Note that
CZ(Q(z:))

\QzR| ][ ) |Qr| V171 2p(2) 1/n
v + P p(x)/p~ dx + F| n dx
rlf D (m<>0 5o, )

Q . _ 2(m) 1/
< ‘ 2R| [][ (V| + |P)2P@/P g 4 = ][ ) "}
1-(z)| U 0y Qo

|Bar| |Br(zi)| .
= |Br(@i)] Q- (23)]

2R\n ,16\n
<"
8000,

250 < r < R. Expanding the domain of integration gives

r

< (—)" 0 <A\

This indicates that for ﬁ <r < R, we have CZ(Q,(x;)) < A

On the other hand, by Lebesgue’s differentiation theorem we find that for 0 <
r << 1, it holds CZ(Q.(x;)) > A. Thus, in view of absolute continuity of the
integral, we can pick a maximal radius r; = r,, such that

CZ(Qr, (2:))

_ 1 2p(x) 1/n 4.
:][ (|Vu| + |P|)2p(w)/z) dx + ,(][ |F| »= n dx) =\ (4.3)
Q, (2:) N (@)

for any point x; € E (\,Qg). Moreover, for r € (r;, R] one has
CZ(Qr(z;)) < A (4.4)
From (4.3)), we obtain the following alternatives:

A - A"
— S][ ([Vu| + |P|)2p(’”)/p dxr or () S][ \F| P
2 Q. () 2 Q. (1)

Suppose that the first case of (4.5)) is valid, and split the integral as

Fo v PO o
Q. (z)

|, ()\E(3,

a dzr. (4.5)

Q _
< 2R)|][ (IVu| + |P))2@/P gy
12, ()] Q. (z)\E(2 Qar)
1 _
+— (|Vu| + |P))2P@/P" dy
192, (z3)] Jq,. ; (z)NE(3,Q2R)
A Q. (z;) N B(3,0 1
<X e |, () N E(3, Q2r))|

4 |1, (@) mE(Z,Q2R)|1+“1 19, (24)]

2p(x) T
(/ (IVul +|P|) ‘“"”dx) g
1

A r(wl)ﬁE(%,QgR” 17ﬁ 1+gl) -
<2 i . |
i) T, (e SR )

Take

X

71(1+0)
0< < ——— —1,
o= v + w(2R)
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where o is the same as in Lemma [3.4] Then
x xr)—p
p;)(1+01) = (1+W>(1+01) < (

Let n = 14 07. In view of (4.4)), it follows by Holder’s inequality (given in
Lemma that

w(2R)
= )(1+01) < (14 o0).

1

(f vl 1P 5= 0 )™

< c[][ (Vu|2P@/P gy +][ |P2P@)/P” gy
Qa2 (24) Qar, (24)

2p( c) =
(R ) 1]
Qar, (z)

<ecA.
Hence, using (4.5) in combination with

Qr» 1QEA,Q 17ﬁ
(00 e) 1 PG Qa1

4- €2, ()]

we have \
|Q7"l(x’t)| S C|QT1('TZ) mE(Z7QQR)’7 (46)

where the constant ¢ depends on n, 72,72, v, A and t.
For the second estimate in (4.5)), it follows from Fubini’s theorem that

(3)"< f s

|/ | (€ Q. (x) : [FP/07 > }|

Ui
Q. (z;
_n

1 ()]

] / "Hx €, (x;): |F|2P@/P7 5 NH dp
n i 2p(x)/p~
e |/ {z € (z) : |F >M}|

o[ N\ (@) dp
<N+ wdx € Q. (z;) : |F|*P >
"+t @] oy e € e < [FY i

Let 6 = 4¢. We derive that

" N p|2e(x)/pT dﬂ
A iz € Qp(x;) : |F|P > i
(@IS 19, ()] Jex H |{ (z3) : |F }|
and
) n N - |R|2p(®)/pT CLM
Q. (x)] < / piz € Q. (z;) : |F|P > . 4.7

Combining (4.6)) and ( we have
A
Q. (z)] < c|Q ; mE( ,r)|

n n 9 2p(x)/p~ dys
+(W]/Q {2 € 9 (@) : > uf %
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Note that Q is (d, Rp)-Reifenberg flat. It follows from (3.13]) that
_ 1 2p(2) 1/m
o vul+ P s+ S(f RS a:)
QJ

0 . 2p(z) 1/
< | 250r; (20 )| ][ (|Vu| + |p|)2p(Z)/p dz + (][ |F| > "dz) n}
|QQ5TL (0 Q2501 (2i) Qasor, (2:)

|
Bosor (2 _ 2p(2) 1/
< | 250 L(Z )| [][ (lvul 4 |P|)2p(2)/P dz + ,(][ |F‘ 5* ndz) 77}
|‘825r (0)| Qa250r; (24) 0

i Qas0r; (2i)

_ 1 2p(2) 1/
<2-10" [][ (|Vu| + ‘P‘)Qp(z)/P dz + = (][ |F| »- ndz) 71]
Qa250r; (2i) 0 Qa250r; (21)

Employing (4.4) and using change of variables of ( m, we deduce that
- 1
£ aval+ipna s o (f e
Q} o\ q

2p(2>

1/
”dz) T<2.10ma (4.9)

Step 2. We consider various comparison estimates. Since (A,Q) is (d, Ro)-
vanishing for some Ry > 0, we have

][ |A - AQ1507-v(0)|2d33 < 52. (410)
Qis0r; (0) ’
Taking (4.9) into account, we have

][ (IVul + |P)2@/P dg < e,
5
o (4.11)

(]l T )l/" < oM.
o

i

Let us first show that

u|” + xr < c3 - i+7
Vul* +|P|?) d AP /P
Q3
: (4.12)
][ IF|2da < ey NP~ /P e
Q7

for a constant ¢z > 1. We claim that
2 2 pi—pi
(][ (I9uP + | P?)dz) < (4.13)
Q3

where ¢ > 1 is a universal constant.
Notice that |F|P®) € L(t, ¢q)(Q) implies Jo |F|P®) dz < ¢. From (3.1]), we have

/ IF| dx</ (IFP@ +1) do < e+,
and
/ (IVul® + |P|?)dz < c(1 + Q). (4.14)
Q

Given pj — p; < w(250r;), it yields

<][95 (|Vu|2 + |P|2)dx)17f*pf _ (Qlf)pfrpf (/Q5 (|Vu|2 . \P\Z)dm)pjipi_
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<ol )pjp"(/ﬁ? (IVul? + |P|2)dx)’”+*”;

|BQ507“7;

1 nw(2507;) 9 9 PT—P;
= 0(2507") (/95 (IVul® + 1P| )dx)

< c(/ﬂ? (17ul? + |P|2>dx)pi+_p;.

*

On the other hand, using (3.10]), (4.14) as well as 25(1)7,i > L > 7 = Q[+ 1, we
find

(/Q§ <|Vu|2+ |P|2)d$)p?—pf < (/Q <|vu|2 + ‘P‘Q)dx)p?—p;

< o0 + 1P

1 | w@sor)
(5507, = ¢

A

A

IN

So, we arrive at (4.13) due to the log-Holder continuity of p(z). Recalling v1 < p;
and (4.13]) with A > 1, we obtain

Pq

][Q§ (1Vul? +1P?)dz = (][Q (19ul + |P?)dx) o (][Q (19 + |P[)dz) "
<t/ (]l (1vu? + |P|2)dgg)p7/’”+
o

< c(fm (IVul + |P|)2:7:d33)

Sc(][ (1Yl + [P PO dw 41
s

p~/pf
):D_/Pj—

< cA\P /pf .

Similarly, recalling dAg > 1 and A > M \g we find

- /v
][ [F|*de < c(][ F[2P@)/7 g 4 1>P P
a7 s
<A+ 1P
<c(dM+ (s,\O)P’/pi+
< eXNPT /P g/,
We now define
. -
Ai(e) = A@5ria), ala) = — BN
251 s\ /7t
Bi(z) = _P@brix) Bi(x) = F(25r;z)

\ /03)\17*/10,;+
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By Lemma we obtain that (@, P) is a pair of weak solution of
div(A;(z)Vi,) — VP = divF;, in Qs,
diva; =0, in Qs,
4; =0, on 09Qs.

Moreover, using ) and - leads to

F 1A= (Roa o < 52
Qg

][Q (|va¢\2 + \1—2\2) dz < 1,

5
][ |Fi|2dx < iz,
Qs
In accordance with Lemmas [3.7] and [3.8] we obtain
][ (|vai — Vhi|? + |P; — 15,~“|2) dr < €2,
Qo2

IVhillL=@) < et 1By o < 1.

Scaling back with B

257’2' \/ 03)\177/1771+

where h; is the weak solution of (3.17), replacing B and T, by BT and T}
respectively, and extending B;H to Q}, we obtain

][ (IVu — Vhi> +|P — Py [*) da < c3\? /7 €2, (4.15)
Q2
- -t -t
VAl Loy < s X /P, [Py [l ooty < e AP /0 (4.16)
for ¢; > 1.
Similar to (4.15) and (4.16)), one can deduce the interior estimates
][ (|Vu = Vw;|> + |P = P,,|*) dz < caNP /P2, (4.17)
B}
— ot -
IVwill Lo (1) < AP /P, [[Puyllpee (1) < AP /70 (4.18)

for constants ca, ¢y > 1, where w; is the weak solution of when replacing B3
by B3.

Step 3. We want to make an estimate of the super-level E (A, R) For any fixed
point x € Q, we select a universal constant R satisfying R < min{£o 2 |Q|+1’ 1}, and
there exists a constant § = d(e) > 0 as given in Lemmas 3 E and (3 - Let

Co = max {cl, 02}. (4.19)

For any « € E(A\ QR), we consider the collection B), of all subsets of Q,.(z). By
the Vitali covering argument, we extract a countable sub-collection {Q0} € B
such that five times larger ball Qs,.. (z;) covers almost all E(A\, Qg) and the balls
{09322, are pointwise disjoints with QY = Q,.. (z;) for i € N. This leads to

Q)N =0, whenever i # j,
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E(AXN QR) C UienQs,, (z;) UN,,

with |[N,| = 0.
Let A = (8cp)™/". We separate the above resulting estimation into the two
cases of interior and boundary, and deduce that

|E(AX, QR)| = |E((8¢0) ™/ X\, Qp)|
= [{z € Qr : (|[Vu| + [P])?D/P" > (8¢o) "2/ A} |

<Y Haw € Qs : (IVul +|P))? = 8eg? P}
i>1

<Yz € Qsp, 1 [Vl + [P > dega? /7)Y (4.20)
i>1

= Y o€t (VU2 [P 2 dcoh PO

interiorcase

+ > {w € s [VulP + P[P > deph 7@,

boundarycase
For the interior setting, from (4.17)-(4.19) we see that
{z € Qs+ [Vul> + | P2 > deh? /7)) |
= |{z € B : |Vu|* + |P|* > 462)\P_/P(w)}|
< |{z € B! : |Vu— V> + |P = P,,|> > eaA? /7 ]

+|{z € B} : [V, + |Py,|? > AP /77 }|
o
- 62)\p7/p:-

< c|B}| < | BY),

(4.21)

/ ) (|Vu — Vuw|* +|P - Pwi|2) dz
Bi

where we applied the weak (1, 1)-type estimate

1
Hx eE: f(x)> )\}‘ < f/ f(x)dx.
AJE
Similarly, for the boundary setting one can derive that
{z € Qs : V(@) + [P(2)]* > deoh? /7]
= {2 € Qs : [Vu(2)]? + |P(2)|2 > 4coA7 }|
<|{z €l [Vu(z) + |P(2)]? > de AT } |
<|{zeQl:|Vu—Vhi|> +|P = P |> > e A7 70}
+ {z€Qf : |[Vh;[* + |P;|* > clAp*/pi},
_
- cl)\p_/p;r
< ce? ||
16

< 662(7)n|9?|

(4.22)

/Ql (IVu— Vhi|* + |P — P, |*)dz
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This is so because

ce?|Q9| < c€?|Bisor, | = c€?| By,

2| By 1
c€?|B,.| < ce ‘QOI|Q0|7 (17) \Qo|<ce( ) Q0]
By —, we have
|E(AX, Qg)| < ce® ) |07, (4.23)
i>1

Using the Vitali covering argument and (4.8)), we obtain

|E(AN, Qr)|
<C€QZ|QT1 l‘l ﬂE(/\ QQR)|
i>1
2p(x) d 4.24
C/\ Z/ 1 HxéQn x;) ¢ |F| 7= >,u}|?ﬂ ( )

< 062‘E A ,ar) ’—I—ce / "Hx € Mop: |F|2£(f) ,u}‘%
@

n
(CA)7
Step 4. We prove that [|(|Vu| + [P)P)| 1(,q)(2r) < 0© in the case 0 < ¢ < oo.

Since ¢ > 1, we multiply both sides of inequality (£.24) by (£-)/9(AN)" /2, and
integrate it with respect to the measure j—’/\\ from M M\g to oo, and then have

tp~ [ - - a/t d\
-z ANP /2 Or: (IV ph2e@)/p AN =
o (@072l (o € 0 (9ul + 1) > )5 w5
<t (I + I),
where ¢ depends on n,v1,792, v, A, ¢, t and w(+), and
tn— o _ q/tdA
1= [T (2w e Qa4 PP }\)
/0
B (4.26)
t o0 Q/td)\
I, = N )\q(f—* (/ 1 {z € Qop : |F|2P@)/p }| )
2 Jo A
Thanks to (3.27), we have
1(IVul + |P|)p(l)”%(t’q)(QR)
— (1Y + |P2P@/ e
1(IVul + |P[) IIL(%,%)(QR) (4.27)

tp~ [ - - a/td
= pT (‘utp /2}1, € Qp: (|Vul + |P|)2P(z)/l7 > MD 7’“’
0

Making a change of variables yields

L= @)1Vl + PN T o camy-

For estimating I, we consider two cases.
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Case 1. If ¢ > t, note that ( is satisfied because of |[F|2P@)/P™ ¢ [(Qyp).
By making the change of varlables A=C)and ¢ = , in view of @« = ¢/t > 1 and

r= q(— — 7) > 0, and using

2p(x)
) =p" {z € Qo - |F| 7= > pu},
it follows from Lemma [3.12] that

oo - /
I, = ctp7 )\q(T*%)(/ w"{x € Qap : |F[2P(@)/P7 > M}|du>q t%
0 A
< P L [F]2P@/p7 5 )\}|Q/td)‘
0
= c|||F‘p(z)HL(t,q)(QzR)’

where ¢ = 6(7177231170'
Case 2. If 0 < ¢ < ¢, by Lemma [3.13] with
- t
h(u): ’{$692R2|F|2p(m)/p >,U,}‘q/t, 7“:%7 041:1< g:ag, E:l7

we have
o° - du 1/t
(/ u|{x € Qop : [FPPEP M}‘i)
A K
<A |{x € Qop s [FPPE/PT 5 2}
g - d
+c/ unTH:E € Qo : |F|PE/P > u}|Q/th.
A
Hence, after changing the variable (A — A, it follows by Fubini’s theorem that

I < c—/ NCT=D N {2 € Qop : PO/ > /\}|Q/t%

e - d\
+c )\q( / H”T*Hm € Qg : |F|2p(x)/p > ,u}|q/tdu—
< |F|p(m)||L(t (Qar)
T "

< CH |F|p($) H%(t,q)(ﬂzﬂ.)’

where ¢ = ¢(v1, 72, g, t).
Substituting the estimates of I; and I into (4.25)), for ¢ > 1 we derive that

1(IVul + 1PDP 1 t,0)(02n)

g c[tp—_ /oo ((AA)W’/Q\{:C € Qn: (V| + [P)Z/r A)\}Uq/td A)\)}l/q
2 S

AX

— M\
+c[tp7/ 0 (AN 2|{w € Qp : (IVul + [P)# /P > AAH)W%}W
0
b Mo ) N a/t d(AN) 1/
36[7/0 (AN 2 {w & Qs (Tul+ PP > Any[) " S

e (19l + 1P gy + IEP gy )
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< C)\g*/2|923|1/t + EeQ/t(H(|VU| + |P|)p(w)HL(t,q)(QgR) + H|F|p(w)HL(t,q)(QgR))’

where ¢ = é(n,v1,v2, v, A, ¢, t,w()). Tt suffices to choose € > 0 small enough such
that ce?/t < % Once the selection of € is fixed, we can find the corresponding
constant 6 = d(e,y1,v2) such that

|(IVu| + | P[P HLu(n(QR)

(4.28)

< Al P Qg Yt 4 || |Vu| + | P|)? + c|||F @)

I)HL(t q)(Q2r) HL(t,q)(QzR)'

By a standard iteration argument, we can attain an estimate as (2.11)) in the case
oft>1and 0 < g < oo.
Step 5. We are ready to prove the claim of Step 4: ||(|Vu| + [P)P™ || £(t.q)(@n) <

0. To this end, we first refine the estimate of (|Vu|+|P|)P(*) in the scale of Lorentz
spaces. Consider the truncated function:

|(IVul + |P)"|, = (Vul +|PP@ Ak for 2 € Qand k € NN [MAg, 00).

In view of Ex(\,Q,) = {z € Q, : |(|Vu| + |P[)’®|x > A} in line with ([@24), we
have

Ek(A)\,QR) S C€2’Ek<%,QQR)‘+C€2 / M’Hx S QQR : |F|2p(£)/p7 > M}’%
(@)

n
(A"
for k € NN [M)\g, 00).

Indeed, for &k < AX we have Ep(AX Qgr) = 0, which implies that the above
estimate holds trivially. For k£ > A\, it is also valid because

ER(AXN,Qr) = E(AN, Qg) = {2 € Qg, (|Vu| + |P|)P™ > AN}
and
B(5 Qon) = B(5 o).
Proceeding in the same manner as the above, one can see that holds with
|(|Vu| + |P|)P=) ‘k in place of (|Vu| + |P[)P®). Let
By =0, L=c\ *|Qop|Vt +c||F[P®

p) = [ 1(IVul + PP,

||L(t,q)(QQR)’

HL(twq)(Qp)'
because
| 1(IVu] + | PP

using the iteration argument we have

Iz e.apm) < 2

11(1Vu] + | PP, < e\ P0nlM + o PO,

||L (t,9)(2r) ,q)(22r)"

In what follows, we use a standard finite covering argument to achieve the global
estimate. Note that  is a bounded domain in R™. There exist N € N and z; € 2
for I =1,2,..., N such that

Q C Ul]\ilBR(xl)-
Then we have
N

7+ 1P ey < 2 ATul+ 1Pl

HL(t,q)(QR)
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I /\
2

.S (Ag*/2|QR|1/t + HIFIP(’”)HLa,q)(QzR))

=1
(R I )

Recalling the definition of Ay, we obtain

OVl +1PDP 1l oo

< NIQA(f (vl PO o

2R

- n 1/m\p~/2
+(][QZR(|F2”($)/” +1) da:) ) +eNEP| o 39)

< NIRA(f (] + 1P)PO da

Qar
ap(a) /- n 1/m\p" /2 N
+(][Q (B 1) dw) ") N EP o
2R

Note that

?:2(1+T)§2(1+@)§2(1+0)a

where o is the same as given in Lemma Then, it follows from the reverse
Hoder’s inequality of Lemma [3.4] that

][ (|Vu\+|P|)2p(z)/p_dz S][ (|Vu\+|P|) d:c+1
19253

19253
"

gc(][ (|Vu|2—|—|P|2)dx+1)p T 0
Qur
2pt
Jr][ |F| »= dz.
Qur
Using and Hoder’s inequality we have
+/ -
(][ (IVal? + |P)az)"
Qur
pt/p” 9 9 pt/p”
(‘Qm') (/Q(wm +|PP?)da)
pt/p +
( ) " (/ F2dr)” " (4.31)
o
( )” ” |Q|1**/ ¥ de
pt/p” 2p(=) L
F| »- dx.
() L (55 1)

| /\

| /\

IN
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From (4.30)-(4.29), we deduce that

1wl + 1P

& HL(t,q)(Q)

+

<extanl { (i) [ (R 1)

2) /= 1/myp~ /2 N
+ [][QQR(FIM )/p +1)’7d4 } + cN|||F[#¢ >||L(t)q)(ﬂ) (432)

1 \pt/p” 2p(z) pt
< cN|QR|1/t{(m> /Q(|F| 1) da

1 1 2)/p— 1/nyp~ /2 Y
)[Ry a] Y N ROy

Using a standard Hardy’s inequality in the Marcinkiewicz spaces [28, Lemma 2.3])
and the reverse Holder’s inequality of Lemma [3.13] we obtain

2p(z) —)\2
[F P NP ()

+(

P+ _ —
QT || R P

~t(p)? -2 M /2()
—\2 +
= 71&(]0 |Q|1_t<ip*>2
t(p)? —2p*
tp~ /2 2p(x)/ r=A AN
{sup [h PRz e |FPPEP > h}” } (4.33)
h>0

1— zp:r 2 /o ot /p—
< QT BT
2 0 2
2p+2
<0 o >2 |||F|p(m)||£p(t @)
Similarly, we can derive that

:):)n 1/n

2p(
([
Q
1__2 2
< el 72, @ )1Q7 5 | PP 7 o)

In the case ¢ < oo, it follows from (4.29) that

(1,72, ¢, 1) QT | [FRP@ATY
e L1, 25 (€)

pt

o 20 V5 (e
(vl + |P|) | HL(t Q) = CN{<m) 2 (|||F|p( )”zz(t/s @ +1)
A \F e
! (921|%t|> 2 U||F|p( Nleeaye + 1]}

<r{ (e o) (e 1)

Q| |Bonly -t
! (f|921|z| |ng||) T IEPE 1 gy + 1]
12 2\ nqrt_1
< CN{[|B2R‘ (ﬁ) ] (H|F|p(x)Hp AL n 1)

|Q| 2 nqB 1 )
+ [ (=) (FP e + 1)}
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z */p”
< eN(IIFPD )| gy +1)7 7
< N (I[FPD g + 1)

Taking £ — oo, by the lower semi-continuity of Lorentz quasi-norm we have
v2/m
[Vl + |P|)p(x)|kHL(t,q)(Q) < CN(H|F|p(x)HL(t,q)(Q) + 1) ’
where ¢ depends only on n,y1,v, v, A, t,q,w(:), Ry and |Q].

Step 6. Finally, for the case ¢ = co, we obtain back to the second inequality in
(4.5) and split it into two parts with a small ¢ > 0 to be determined later:
A 1 2p(2) )7 1 2p(x)
(2 < =4 [F|» "da < () . F| "
2 on Qo on 617|Qi | {zeQf:|F|2r(@)/P™ > 7}

Set
GUAN Q) = {z e Q0 [F2P@/P" > A}, G, Q9) = {z e Q0 : [F|ZP@/P > ),
Similar to (4.33)), by using Hélder’s inequality we obtain
)\ n L)\ n
Gy - (2

1 2p(x)
|F| > "dx

- W {z€Q9:|F|2r(@)/P™ >0}
t G o, »
= —nen 0] igpom{x €GN QD) |F| 7 7>l
< W[
(= m)om||
t

=G [(L)\)” +

Choose ¢ > 0 appropriately small to satisfy

G- (Y - TG = G - (s ) = G

Then there exists a positive constant ¢(t) depending only on t such that ¢ < ¢(t)d.
Thus, we obtain

()NG4 sup |G, )]

B>

|G(L/\’Q?)|17% n 0y\|n/t
) Iilgu |G (1, 7)) ]

i O0\[1—2

0| < ct |G, Q)|

1 < t—n (LA)n (
ct(t\) "t 1-7 n/t

< 2 (@6 al) T ((sup w16 98)]) (434)

>

. o\t
sup 11'|G(, 9)])
pn>LA

ct(bd)t
< NN up i3, 0]
=T >

Substituting (4.5)) into (4.23]) (namely, plugging (4.6) and (4.34) into (4.23))) yields

A
|[E(AX, Qp)| < CG‘E(Z7 Q2R)’ +ce(Lh) ™! Sulz\ |G, Q2r)]- (4.35)
n>e
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Multiplying both sides of (&.35)) by (A\)*" /2 and taking the supremum with respect
to A over (M \g, o0), we deduce that

sup (AN)? /2|{z € Qp : (|Vu| + [P|)2P®/P7 > AN}
A>M X\

: - ~
< ce2 AP /2< sup AP /2|{:17€QQR: (|Vu|+\P\)2p(x)/p > ZH
A>MAo

+ sup A5 (sup plGlu, an)]) )
A> Mg >

< 662< sup /\tp7/2|{x € Qog : (|Vu| + |P))ZP@/P" > i}‘
A> Mo 4

+ sup (supp 1G (1, %n)]) )
A>Midg N pu>A

Note that

tp~ /2 G 0] < |IF p(x) ||t
su su 5 ~ t .
/\>MIZ>\0 u>I;M G, 2ar)| H| | HM (22r)

Let € > 0 be so small that ce?/t < % Then

[(IVul + |P|)p(I)HMt(QR)

< CE2/t(H(|VU‘ + |P|)p(w)HMt(Q2R) + C(’h,’YQ,CL t>H|F|p($)HM‘(QzR)>
+ e[ Qap VIMNG /2

1 x x
< 10Vl + 12D e,y + NE P a0,
4ol [f (Va4 [PYEEda

Qar

(f,, ()

The rest of the proof is closely similar to the argument of Step 5. Consequently,
we arrive at the desired result for the case ¢ = oco. ([l
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