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1. INTRODUCTION 

1.1 BACKGROUND 

The Southern High Plains and Permian Basin are semi-arid regions composed of 

sandy loam soils (Holliday, 1990) and known for the large amount of oil reserves. Over 

the past decade, heavy development due to oil and gas exploration has resulted in habitat 

loss and landscape fragmentation, both of which impact biodiversity. Additionally, the 

more recent implementation of hydraulic fracturing has created a market to use local sand 

and has accelerated construction of large sand plants and sand mines throughout the 

region.  

 The dunes sagebrush lizard (DSL) (Sceloporus arenicolus) is an endemic species 

to this region of southeastern New Mexico and West Texas. The DSL is a habitat 

specialist because of its preference to dune blowouts in shinnery dune habitat (Fitzgerald, 

1997). A dune blowout is formed when erosion from wind creates a bowl-shaped 

depression (Dzialak, 2013) and blowout features are characterized by large depressions 

that develop as sand is eroded from the windward slope and crest of a sand dune and 

deposited on the leeward slope as a depositional lobe (Pethick, 1984; Hesp, 2002). 

Accurate identification of dune landscape is critical for understanding the spatial 

distribution of potential DSL habitat.  

 Remote sensing analysis is a common method to identify land cover and 

associated landscape features and has potential to aid in identification of land covers 

relevant to the DSL. However, classification accuracies are oftentimes dependent on the 

spatial resolution of the data as well as the classification method used for analysis. For 
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example, high resolution imagery exhibits higher levels of detailed features which may 

cause the classification to identify features incorrectly (Myint, 2010).  Pixel-based 

classifications can be accurate, but with high resolution imagery, pixel-based 

classification methods confuse spectrally similar features which become difficult to 

differentiate relative to the size of a pixel and spatial extent of the landscape feature 

(Dzialak, 2013). In general, as spatial resolution increases, the spectral response from 

certain features may be difficult to identify because pixel-based methods only use 

spectral information and may misidentify a group of pixels that should be grouped 

together as one object (Myint, 2010).  

Object-based image analysis (OBIA) classification is used in remote sensing to 

partition the imagery into meaningful image-objects and assess their characteristics 

through spatial and spectral scales (Chen et. al 2012). Implementing an object-based 

approach for classification uses segmentation to produce homogenous objects that are 

then classified as a group of pixels. Depending on the environment being classified, 

parameters are adjusted to account for spectral, shape, spatial, and context characteristics 

of the segments to classify based on land cover classes. The selection and combination of 

suitable objects for identification for an object-based classification depends on the 

specific land cover classes. The analyst must identify land cover training sites to which 

the object-based iterative process will configure the pixels into objects that share similar 

values. Once these objects have been grouped the analyst can identify which objects 

belong to each land cover class. With increased spatial resolution the potential for OBIA 

to outperform pixel-based will become an occurring theme across remote sensing. 
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According to Blaschke (2010), numerous studies show where OBIA has produced 

better classification accuracies compared to a pixel-based approach. These studies 

indicated that being able to incorporate spatial photo interpretive elements (i.e., texture, 

context, shape) into their segments allowed for better feature identification (Hay and 

Castilla, 2006). As stated earlier, pixel-based image classifications organize pixels based 

solely on spectral signatures which can lead to spectral mixing. Given the heterogeneity 

of ideal DSL habitat and the broader Southern High Plains and Permian Basin 

ecoregions, accurate landscape classification may benefit from texture, shape, or 

elevation inputs during the classification process.  

1.2 PROBLEM STATEMENT 

This research focuses on habitat classification for the dunes sagebrush lizard. Due 

to the dynamic nature of sand dunes, it is important to know the land cover and land-use 

(LULC) for this region. Dune fields exhibit a shifting dynamic by which dunes emerge 

and recede over time due to various factors such as prevailing wind, shin oak (Quercus 

havardii) encroachment, and anthropogenic development such as sand plants and well 

pads. Additionally, activity for the clearing of shin oak for caliche road placement and 

well pad construction has caused the dunes to be more dynamic, potentially isolating the 

DSL through habitat fragmentation (Fitzgerald, 2012).  Leavitt (2013) demonstrated that 

increased fragmentation in the region has contributed to DSL community disassembly. 

Using image classification, we will classify the LULC and develop a model that will use 

the classification to determine potential DSL habitat. Being able to locate potential sites 

of where DSL may inhibit is crucial in trying to halt development that could devastate 

this ecosystem.  
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1.3 RESEARCH OBJECTIVES 

The purpose of this research is to compare two different classification methods, 

pixel- and object-based, to determine which method accurately classifies LULC across 

this region. To carry out this comparison, the following objectives will be addressed: 

1. Produce a pixel-based classification of National Agricultural Imagery 

Program (NAIP) imagery using supervised classification. 

2. Produce an object-based classification of NAIP imagery. 

3. Calculate accuracy assessments for both map products. 

4. Compare classification accuracies to determine which method performs 

best. 

1.4 SIGNIFICANCE 

This is a comparative study to examine how various classification methods can be 

used to identify suitable DSL habitat. Producing high accuracy land cover classifications 

is necessary to accurately map the extent of suitable habitat for the DSL. The use of both 

object-based and pixel-based image classifications to analyze this region will provide a 

spatial assessment of the distribution, extent and composition of important landscape 

features (Dzialak, 2013). 
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2. LITERATURE REVIEW 

2.1 REMOTE SENSING METHODS FOR LAND COVER CLASSIFICATION 

Over the past two decades the need to extract tangible information from remotely 

sensed data has increased steadily. This is due in part to the increased availability of 

satellite data collected from satellite families such as Landsat satellite system, SPOT 

satellite system, and Sentinel satellites to name a few.  With new satellites being launched 

(i.e. Landsat-8 (2013), Sentinel-1 (2014), Worldview-3 (2014)) and increased spatial and 

radiometric resolutions, new applications to characterize and monitor land cover have been 

identified (Blaschke et al., 2009). The demands for environmental monitoring, assessing 

and meeting conservation goals, spatial planning, and ecosystem-oriented natural resource 

management have led to the increased incorporation of remote sensing data to help with 

these efforts.  

With anthropogenic land-use/land-cover change proceeding much faster than 

natural change, this has become an environmental concern worldwide. Understanding the 

distribution and dynamics of land cover is crucial to gain a better understanding of the 

earth’s fundamental characteristics and processes, including productivity of the land, 

diversity of plant and animal species, and biogeochemical and hydrological cycles (Giri, 

2012). The need for better land-cover information is being addressed by several national 

and international programs interested in land-change science. The United States Global 

Change Research Program (USGCRP) have identified five strategic questions that are 

important for future research on land cover and land-cover change (Giri, 2012). These 

questions include: 1)What tools and methods can be applied to better characterize land-use 
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and land-cover?, 2) What are the primary drivers of land-use-land-cover change?, 3) What 

will the land-use and land-cover patterns and characteristics be in 5-50 years?, 4) How do 

climate variability and change affect land use and land cover, and what are the potential 

feedbacks of changes in land use and land cover to climate?, and 5) What are the 

environmental, social, economic, and human health consequences of current and potential 

land-use and land-cover change over the next 5-50 years? (Giri, 2012). Addressing 

questions like these in an environment that is experiencing rapidly increasing 

anthropogenic development can help guide researcher’s intent on answering these 

questions. 

Land-cover classifications using remotely sensed data is an abstract representation 

of features of the real-world using classes to group them based on their relationships (Giri, 

2012).  Aside from Arctic and Antarctic landscapes and deserts, most surfaces are covered 

by vegetation. Therefore, many studies investigating land-cover using remote sensing 

classification are analysing some form of vegetation in their study area (Di Gregorio and 

O’Brien, 2012). Land-cover classification schemes are generalized to reflect specific needs 

of the data producer or areas of interest. Large-area land-cover mapping applications can 

use the Anderson land use and land cover classification system that meets the needs of U.S. 

agencies, but there is no internationally accepted approach (Franklin and Wulder, 2002).  

The Anderson land use and land cover classification system was developed to set specific 

standards and guidelines to be followed when analysing land use and land cover. This 

system also defined how to categorize different land covers and what constituted them to 

those classes. 
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Land use and land cover classifications have been transformed into a panacea for 

land inventory and has been adopted by a wide range of disciplines (Comber et al. 2005). 

A study done by Weiss et al. (2003) looked at land cover over long time scales in semi-

arid ecosystems to detect climate variation effects on vegetation. Using Advanced Very 

High-Resolution Radiometer (AVHRR) data they calculated the Normalized Difference 

Vegetation Index (NDVI) to detect areas of vegetated surfaces. Regarding semi-arid 

environments, vegetation canopies do not achieve complete coverage, making NDVI 

susceptible to the spectral influence of the soil in gaps between vegetation (Weiss et al., 

2003).  A study done by Civco et al., (2015) looked at (LULC) classifications using five 

different methods that detected change using Landsat Thematic Mapper. These methods 

included: traditional post-classification cross-tabulation, cross-correlation analysis, neural 

networks, knowledge-based expert systems, and image segmentation and object-oriented 

classification. They wanted to compare the results from each method to see how each 

method identified LULC and how well each performed in identifying change using multi-

temporal imagery. Their study showed that a comparison between several methods to 

identify LULC change could be applied, but that no single best method was identified. 

Using remotely sensed data to monitor fundamental processes of landscape change 

has been implemented for over five decades and image analysis applied to landscape 

ecological questions, species conservation, and other sustainability efforts has been 

growing (Pasher et al. 2007). Landscape analyses are concerned with how changes in 

landscape scale, resolution, and classification can have complex consequences for 

landscape pattern, analysis, and interpretation (Comber et al. 2005). Remote sensing for 

landscape planning can be applied for multiple purposes that can include targeting 
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locations for reclamation, identifying important areas for connectivity of a species, or 

focusing on areas where human activity is encroaching on monitored habitat.  

2.2 REMOTE SENSING OF DUNE HABITATS 

Understanding the dynamics of dune lands for habitat conservation can help with 

monitoring endemic species movement throughout a region. Moreover, image 

classification allows for identification of how soil interacts with vegetation where endemic 

species can be found throughout an entire ecosystem (Dzialak et al. 2012). Monitoring of 

dune landscapes requires an understanding that change can occur gradually or rapidly 

depending on certain factors that can be assessed when it comes to environmental and 

habitat conservation (Boyaci et al.2015).  

According to Hesp et al. (2002), dune blowouts are saucer-, cup- or trough-shaped 

depressions or hollows formed by wind erosion on a pre-existing sand deposit. Dunes are 

susceptible to a multitude of factors that can contribute to the initiation of becoming a 

blowout including: topographic acceleration of airflow over the dune crest, climate change, 

vegetation variation in space or vegetation clearance over time, high velocity wind erosion, 

and human activity (Hesp et al., 2002). The main factors contributing to blowouts in the 

Permian Basin region involve human development (oil and gas exploration) and high 

velocity wind erosion which can be attributed to the sparse vegetation cover on the dune 

crest.   

The literature related to classification of dune landscapes is mostly focused around 

coastal dune features, and few publications focus on semi-arid regions where dunes occur 

inland, although Jewell et al. (2014) suggests that the same effects that would occur inland, 
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such as human activity near dune features may increase the number of dune blowouts in 

each area.  

2.3 LANDSCAPE STUDIES SPECIFIC TO THE DUNES SAGEBRUSH 

LIZARD 

The Mescalero-Monahans shinnery sands ecosystem is home to the dunes 

sagebrush lizard (DSL) (Sceloporus arenicolus) which has emerged as a focal species of 

conservation. It has the second-most restricted geographic distribution among North 

American lizards (Painter et. al. 1999). A study by Dzialak et al., (2013) applied an object-

based image classification to produce and validate a spatially- explicit estimate of the 

shinnery oak soil-vegetation association throughout the range of the DSL. They collected 

458 sample points distributed throughout the study area which were used to delineate 242 

training polygons for the object-based classifiers. They used (NAIP) 1-m 

orthophotography for Texas and New Mexico for training polygon development. They 

developed a mask based on soil type due to the DSL preference for sand soil types using 

the Soil Survey Geographic Database. They then used Feature Analyst for image 

classification of Landsat 5 TM data collected across the study area and incorporated a 

digital elevation model (DEM) into the process to provide additional contextual 

information for object classification. Their results indicated a 10.3 percent reduction in the 

geographic extent of sand shinnery oak soil vegetation from 1986 to 2011. This translated 

into a rate of 0.41% annually. Over time, patch size and total extent increased through time 

in portions of Texas but decreased in New Mexico. 

The Mescalero-Monahans Sandhills region has been heavily impacted by 

development and a study done by Walkup et al. (2017) shows how landscape fragmentation 
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can impact a species’ population. Networks of roads built for oil and gas development 

result in persistent landscape fragmentation which cause species like the DSL, who rely on 

shinnery oak dunes, to be negatively impacted by fragmentation. Walkup et al. (2017) 

identified the demographic structure of species in a dune-dwelling lizard community and 

the effects that landscape fragmentation has on this community. The goal was to capture 

lizards on 27 pitfall grids in the Mescalero sands ecosystem, where nine grids were 

classified as fragmented and the other 18 grids were in unfragmented areas as control areas. 

Areas identified as fragmented consisted of 13 or more well pads in a section of 259 

hectares, based on prior research that demonstrated a negative correlation between lizard 

densities and oil well density (Leavitt, 2012). All the trapping grids were located in 

shinnery oak dunes with blowouts that were known to be occupied by DSL. The 27 

independent sites were similar in landscape characteristics with shinnery oak dune habitat 

that is required by the DSL in all trapping grids. This allowed for statistically independent 

capture data, while testing for the effects of landscape fragmentation. Each trapping grid 

had 30 pitfall traps spaced 20 m apart covering an area of 1.2 ha. Sampling was done from 

May to August 2009, from April to August in 2010, and from April to September in 2011-

2013. For each lizard captured, they recorded species, trap number, sex, and assigned a 

unique permanent mark by toe-clipping. Results from the capture sites for the DSL gave 

insight of how a specialist species is affected by isolation and habitat degradation following 

fragmentation. Capture rates of DSL in fragmented sites were very low across all years of 

capture compared to unfragmented sites and consistently declined across the 5 years of 

trapping. In the 18 unfragmented sites, capture rates of DSL increased from 2009 to 2011 

and then decreased from 2011 to 2013. From the capture rates reported, the results suggest 
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that this specialist species has a relatively high susceptibility to local extinction following 

fragmentation of habitat.  

A study done by Smolensky and Fitzgerald, (2011) looked at study sites in the 

Mescalero Sands ecosystem in New Mexico counties. This ecosystem is characterized by 

stabilized and semi-stabilized dunes interspersed with shinnery-oak, sand sagebrush, 

bunchgrasses, and sandy hammocks with honey mesquite. They quantified the abundance 

of lizards at 11 sites based on the presence of shinnery-oak-sand-dune-habitat, presence of 

dunes sagebrush lizard, and amount of oil and gas development. They assessed oil and gas 

development on the landscape by total surface area of caliche, which is the surface type of 

well pads and roads in a 259-ha, area of shinnery-oak dune habitat. They used GIS data 

from the New Mexico State Land Office to quantify total surface area of caliche and 

locations of oil pads and roads. They also looked at total area of blowouts at sites to 

measure the quantity of habitat for the dunes sagebrush lizard (DSL). The DSL inhabits 

blowouts, so the area of blowouts was integral in identifying suitable habitat. They 

measured area within the 11 sites within the 259 ha. Study area using ArcMap to determine 

average size of blowout available to dune-dwelling lizards. They created a polygon 

shapefile of all blowouts from aerial photographs taken in 2004. They quantified 

encounters of lizards by time from line transects in May-July 2005-2006. The number of 

transects at each site varied between 8-48 and each transect were 25 minutes in duration. 

These transects were located randomly within shinnery-oak-sand-dune habitat. They used 

a linear regression to test for a relationship between mean size of blowout and total area of 

blowouts, with total area of blowouts as the independent variable. Abundance of dunes 

sagebrush lizard varied across the study area and suggested that the extent of sand-dune 
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blowouts in the surrounding landscape was an important determinant of these abundances. 

There was no clear statistical evidence to support their hypothesis that oil and gas 

development correlated to reduced abundances of dune-dwelling lizards, or of the dunes 

sagebrush lizard. 

2.4 OBJECT VS. PER PIXEL LAND COVER CLASSIFICATION 

The availability of high-resolution remote sensing data has brought about debate 

within the remote sensing community as to whether object-based image analysis (OBIA) 

should be used rather than the traditional pixel-based image analysis for land cover 

classification. Numerous studies and peer reviewed articles have been published 

comparing the two analysis methods with recommendations for various approaches. 

According to Blaschke et al. (2013) we are entering a new paradigm in remote sensing with 

the increase of spatial resolution in satellite imagery and the increased implementation of 

OBIA classification in recent research. Since the early 2000s there has been an increase in 

literature that states OBIA provides more accurate classifications when compared to pixel-

based methods (Blaschke et al., 2010).  

Gao and Mas (2008) performed a study looking at how OBIA and PBIA classified 

different images at multiple spatial resolutions to determine accuracies. Using SPOT-5, 

LANDSAT-7 ETM+ and MODIS images, with four different spatial resolutions of 10, 30, 

100, and 250 m. The results from the classification analysis showed that at OBIA 

performed better than PBIA at higher spatial resolution, but as spatial resolution decreased 

and smoothing filters were applied, the PBIA increased while object-based accuracies 

decreased. Cleve et al. (2007) compared PBIA and OBIA using high-resolution aerial 

photography to classify wildland-urban interface. The study showed that object-based 
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performed better than pixel-based, with an improvement of 17.97% higher overall 

accuracy. The object-based approach recognized contextual values, such as texture and 

spatial context, where pixel-based only accounts pixel value. This allowed for OBIA to 

develop better image objects for the different classes to allow for higher accuracies (Cleve 

et al. 2007). Whiteside et al. (2011) mapped savannas in Australia using object-based and 

pixel-based classifications and compared accuracies. The ability of OBIA to use objects to 

reduce spectral variability in land cover types that are heterogenous, attributed primarily to 

the improved classification results. With 1-m high spatial resolution NAIP imagery, it is 

difficult with per-pixel approaches due to sensitivity to the discontinuous and variable 

nature of mesquite, sandy shrubland type of landscape. 

Unlike per pixel-based approaches, OBIA uses spectral, textural, spatial, 

topological, and hierarchical object characteristics to model features on the landscape 

(Hussain et al., 2013). For example, Aryaguna et. al. (2016) provided weights to 

wavelengths to improve their segmentation method and incorporated similarity, tolerance, 

mean, and variance to the segments to improve the representation for floristic composition. 

They also looked at how time intensive each image analysis was and reported OBIA being 

far more time intensive compared to PBIA. Even with the amount of time invested for 

OBIA classification their results reported the pixel-based analysis provided a better 

classification accuracy. Research results like this are subjective to the landscape being 

observed but shows that the debate between OBIA and pixel-based analysis is not settled.   

Applying different classifiers (fuzzy or nearest neighbour methods) for OBIA and 

pixel-based analysis can improve the classification accuracy depending on features being 

observed (Boyaci et al., 2017). With landscapes like urban city centers, OBIA 
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classifications outperform pixel-based due to the segmentation being able to delineate 

features with less confusion (Myint et al., 2011). Liu et al. (2010) mentions that OBIA has 

potential limitations related to segmentation scale. The segmentation process has the 

potential for under-segmentation and over-segmentation errors, which could create objects 

that do not represent real-world features (Hussain et al. 2013). Segmentation algorithms 

that are cluster-based such as K-means, region growing techniques, and mean-shift schema 

are dependent on the scale of the feature being segmented (Zehtabian et al. 2014).  

Therefore, OBIA approaches to image classification should integrate field data to allow for 

comprehensive and accurate identification of features. Integrating field data with a cluster-

based segmentation method can facilitate accurate analysis by merging small similar 

segments iteratively until the object reaches the user-defined threshold (Su et al. 2015).  

However, segmentation of dune landscapes can be difficult due to the object geometries; 

dunes tend to become mixed with vegetation and this requires proper scale parameters to 

control the output object size (Hussain et al. 2013). Each of the aforementioned studies 

compared PBIA and OBIA within a specific environment and the results show that 

accuracy of the classification is dependent on the features on the landscape.  Parameters 

set for one environment may not be able to be applied for a similar landscape but could 

benefit by applying the same methods for classification purposes. 
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3. METHODOLOGY 

3.1 STUDY AREA 

 The study area consists of portions of the Southern High Plains and Permian 

Basin region located in West Texas. Although the entire region is comprised of 14 

counties, I selected two (NAIP) quadrangles for image classification. The two 

quadrangles selected were Doodle Bug Well located in Crane County (Figure 1) and 

North Cowden NW located in Andrews County (Figure 2). These sites were selected 

based on field data collected and based on previous studies indicating suitable habitat for 

the DSL. 

 The landscape of West Texas consists of broad basins, mesas, and valleys 

bordered by sloping alluvial fans. This region is a part of the Chihuahuan desert that 

extends from Mexico towards southern New Mexico. Known for its rich deposits of 

petroleum and natural gas, the region is well- studied because of its geologic and 

economic importance. The West Texas Basin, also known as the Permian Basin, is 

composed of the eastern Midland Basin, the Central Basin Platform, and the western 

Delaware Basin. The sands in this region of West Texas seem to be derived from low-

lying border lands south of the Midland Basin (Warn and Sidwell, 1953).  

 The climate of West Texas is influenced by many factors, one of them being the 

North American Cordillera. This set of mountain ranges and plateaus are a barrier to air 

traveling from west to east. Precipitation in West Texas is more common in areas with 

higher elevation than lower elevations because of upslope flow and summertime 

thunderstorms. West Texas has a well-defined wet season and dry season. The dry season 



 

16 

is November through May, and the wet season is June through October. The peak rainfall 

months of July and August are due to the Southwest Monsoon, which is a flow pattern 

that brings moist tropical air and convection to West Texas. Rainfall changes over 

extended periods are closely related to changes in the pattern of the Southwest Monsoon. 

Depending on the amount of rainfall this region receives the vegetation coverage can 

change from year to year.  
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Figure 1. Doodle Bug Well NAIP imagery 
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Figure 2. North Cowden NW SW NAIP Imagery
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3.2 SITE SELECTION 

3.2.1 GEOSPATIAL DATA COLLECTION AND PROCESSING 

 One-meter spatial resolution quarter quadrangles of NAIP imagery were 

downloaded from the Texas Natural Resources Information System (TNRIS) for both 

locations. NAIP imagery was not radiometrically corrected prior to analysis. Imagery for 

Doodle Bug Well and North Cowden NW images were clipped to include field data 

collected within each image and to contain deposits of sand mixed in with vegetation and 

developed well pads. The data are showing digital number values due to lack of methods 

for retrieving surface reflectance from NAIP digital number values. Images selected for 

both sites consist of red, green, blue, and near-infrared (NIR) bands. Calculation of a 

NDVI layer was done using ERDAS indices tool. The NDVI band were layer stacked 

with the other bands to help identify vegetation covers and improve classification. NDVI 

was used to separate vegetated areas from sand dune features, due to the high contrast of 

vegetation and the low contrast of sand in NDVI outputs.  Features that can be easily 

distinguished using NDVI are developed areas and sand, which have low NDVI 

compared to vegetated areas.  

 The use of grey level co-occurrence texture features were added to each of the 

images used for classification. Grey level co-occurrence textures are based on co-

occurrence probabilities which provide a second-order method to generate texture 

features (Haralick, 1973). The probabilities “represent the conditional joint probabilities 

of all pair wise combinations of grey levels in the spatial window of interest, given two 
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parameters: interpixel distance and orientation” (Clausi, 2002, page 46). A grey level co-

occurrence matrix (GLCM) characterizes the configuration of grey scales in an image and 

is used to quantify textural variation in images (Sonka, 1999). Second-order statistics 

were chosen due to the relation between neighboring pixels being a key texture feature.  

Multiple second-order textures were calculated using GRASS GIS to determine which 

measures would contribute to the identification of features on the landscape.   

Inverse Distance Moment (IDM) and Entropy (ENT) texture measures were chosen 

for both images. IDM shows larger values for windows with little contrast. This will 

highlight features showing homogeneity across the landscape. ENT shows values with 

complex variability within an image. Entropy will identify areas where confusion 

between classes may occur. IDM and ENT were both tested at different window sizes for 

each image to determine which texture measure provided spatial separability between 

landscape features. The North Cowden NW SW quarter quad was layer stacked with 

IDM of NDVI band, with a window size of 31, and ENT of the NDVI band with a 

window size of 17. The larger window sizes allowed for the capture of larger image 

elements that fit within these texture scales. Doodle Bug Well used IDM and ENT of NIR 

band, with a window size of 3, which depicted the variation in neighboring pixels 

between the different vegetation and landscape features in the image. 

3.3 ANALYSIS  

3.3.1 OBJECT-BASED CLASSIFICATION 

OBIA involves the identification of image objects that contain similar pixel 

values based on texture, color, and tone through the process of segmentation. I used a 

mean-shift segmentation using ArcGIS Pro, which requires parameters such as spatial 
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detail, spectral detail, minimum segment size, and band indices. The segmentation 

parameters for North Cowden NW SW and Doodle Bug Well are provided in Table 1. 

Table 1.Spatial detail, Spectral Detail, Minimum Segment Size for each image 

Images 

 

North Cowden NW SW Doodle Bug Well 

 

Bands NIR, IDM, ENT Red, NIR, NDVI 

Spatial Detail 19 18 

Spectral Detail 12 13 

Minimum Segment Size 500 500 

 

Spatial detail defines the size of the neighborhood, the spectral detail defines the 

radius in multispectral space, and minimum segment size which allows for the image to 

not be over segmented. The band indices used for N Cowden NW SW were NIR, IDM, 

and ENT bands to identify segments. The band indices used for Doodle Bug Well were the 

red, NIR, and NDVI bands. The mean shift algorithm segmented each image and training 

segments were identified for object-based supervised classification in ArcGIS Pro. The 

training classes used were developed, developed caliche roads, developed well pads, 

developed roads, shin oak dune land, open sand, shin oak (light), shin oak (dark), mesquite 

shrubland, mesquite shrubland (dry), mesquite shrubland (healthy), grassy shrubland, and 

other vegetation. Mesquite shrubland was identified as segments consisting of a mesquite 

tree with grasses. Grassy shrubland was classified as various grasses interspersed with 

shrubs. The reason for this number of classes was to allow the classifier to differentiate 

between spectrally-similar classes and reduce confusion.  

Once the segments were selected for training data for each class, the selected 

segments were exported as shapefiles to be used for the pixel-based classification. This 

allowed the use of same training data across both classification methods. A maximum 
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likelihood classification was used in ArcGIS Pro, to follow the same algorithm used for 

the pixel-based approach.  

3.3.2 PIXEL-BASED IMAGE ANALYSIS 

Supervised pixel-based image classification was implemented to compare how 

well pixel-based could classify the high spatial resolution imagery compared to the 

object-based approach. The first step was to set up the training data that were used to 

perform the object-based approach. Each training site was selected by creating an area of 

interest from the selected segments used for the object-based approach, to classify the 

same signatures for each classification. A supervised pixel-based classification was 

performed using maximum likelihood decision rule, which is based on the probability 

that a pixel belongs to a class by using the covariance matrix. The equation assumes that 

these probabilities are equal for all classes and that the input bands have normal 

distributions. Each signature had equal weight to allow equal probability across all 

classes. After the classification was completed, the 12 classes were recoded to five 

classes including developed land, shin oak dune land, mesquite shrubland, grassy 

shrubland, and other vegetation. 

3.4 ACCURACY ASSESSMENTS AND COMPARISONS 

 After both OBIA and the pixel-based classifications were completed, accuracy 

assessments were conducted for both maps. The accuracy assessments determined how 

well each classification performed compared to reference data using aerial photo 

interpretation by the user. The multinomial distribution formula was used to calculate the 

number of sample points that were required per image to achieve an accuracy of 85 
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percent with a 5 percent error. A stratified random sample of 546 assessment points was 

calculated for N Cowden NW SW, and 646 points for Doodle Bug Well. For N Cowden 

NW SW and Doodle Bug Well, the same assessment points were used for pixel and 

object-based classifications. This was done using the update accuracy assessment points 

tool in ArcGIS Pro to transfer the same points and reference data to the next 

classification.  

An accuracy assessment error matrix was calculated using the compute confusion 

matrix tool in ArcGIS Pro and resulted in, reported user accuracies, producer accuracies, 

overall accuracies and Kappa coefficients of agreements for all classifications.  

Producer’s accuracy and user’s accuracy are related to commission and omission error, 

respectively. Commission error refers to misclassification by the user by labeling pixels 

of another class as belonging to the class of interest. Omission error happens when pixels 

belong to the proper class but are assigned a different class. Overall accuracy is 

calculated by adding the diagonal of correctly identified classes between user and 

producer by the total assessment points. Kappa coefficient is a measure of agreement 

between two individuals. Kappa is calculated by the observed level of agreement, 

compared to the value of what is expected if two individuals identifying a classification 

were completely independent. That is then divided by the maximum level of agreement 

for Kappa being 1 minus expected probability. Error matrices for each classification were 

produced and compared.  
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3.5 STATISTICAL ANALYSIS 

The overall accuracy for each OBIA and PBIA classification was compared by 

producing a test statistic and the difference in accuracy between the two thematic maps. I 

used a z test to compare proportions (equation 1) with alpha at 0.05 of significance 

 𝑧 =  
𝜋1− 𝜋2

√
𝜋1(1−𝜋1)

𝑛1
+

𝜋2(1−𝜋2)

𝑛2

  

if |z| > 1.96. The z test provides an objective measure to determine if the accuracies 

between the two different classifications is statistically significant where the null 

hypothesis is that there are no significant differences between the two overall accuracies.  
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4. RESULTS 

4.1 RESULTS OF PBIA AND OBIA CLASSIFICATIONS  

The PBIA for North Cowden NW SW used a total of 3,417,432 pixels across the 

entire image for training data. A total of 321 signatures were selected based on segments 

that were classified for the OBIA of North Cowden NW SW (Figure 3). The OBIA for 

North Cowden NW SW assigned a total 750 segments across the image to identify each 

class. The OBIA used a total of 826,548 pixels across the entire image of North Cowden 

NW SW for training data (Figure 4). Table 2 shows the number of training sites, number 

of pixels, and percent of pixels used to train the PBIA and OBIA classifications for North 

Cowden NW SW.  
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Table 2. Number of training signatures, number of pixels used per training class for 

pixel-based and object-based classification, percentage of pixels per total image pixels for 

North Cowden NW SW 

Image North Cowden NW SW (PBIA) North Cowden NW SW (OBIA) 

 # of 

training 

sites 

(signatures) 

# of 

pixels per 

training 

class 

 

Percent of 

total image 

pixels 

# of 

training 

sites 

(signatures) 

# of 

pixels per 

training 

class 

Percent 

of total 

image 

pixels 

Developed 18 662,202 1.4 37 68,947 0.14 

Developed 

Caliche 

Road 

14 21,779 0.05 31 45,388 

 

0.10 

Developed 

Road 

47 843,268 1.8 30 71,730 

 

0.15 

Grassy 

Shrubland 

45 761,012 1.6 153 131,203 

 

0.28 

Mesquite 

Shrubland 

45 404,907 0.86 81 84,277 

 

0.18 

Mesquite 

Shrubland 

(healthy) 

10 29,172 0.06 8 26,273 

 

0.06 

Mesquite 

Shrubland 

(dry) 

11 45,087 0.09 18 25,306 

 

0.05 

Open 

Sand 

28 46,188 0.10 67 78,749 

 

0.17 

Other 

Vegetation 

7 106,073 0.23 12 6,438 

 

0.01 

Shin Oak 

Duneland 

37 238,969 0.51 68 78,981 

 

0.17 

Shin Oak 

Dark 

40 179,465 0.38 120 83,646 

 

0.18 

Shin Oak 

Light 

19 79,310 0.17 125 70,177 

 

0.15 

Total 

number of 

signatures 

321 Number 

of pixels 

per image 

46,731,108 Total 

number of 

segments 

750  

 

The Doodle Bug Well OBIA assigned a total of 1,258 segments across the image 

for each of the classes selected (Figure 6). The purpose behind selecting this many 

segment samples was to have an adequate amount to be used for training data per class in 
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the pixel-based classification. The PBIA for Doodle Bug Well classified a total of 

1,050,257 pixels across the entire image. A total of 486 signatures were selected based on 

the segments that were classified for the OBIA of Doodle Bug Well (Figure 5). Table 3 

shows the number of training sites, number of pixels, and percent of pixels used to train 

the pixel-based and object-based classifications for Doodle Bug Well. These classes were 

then reclassified into the five classes of developed, shin oak dune land, mesquite 

shrubland, grassy shrubland, other vegetation. Tables 4 and 5 explain the distribution of 

pixels per classification after condensing the training classes into the five final classes for 

North Cowden NW SW and Doodle Bug Well, respectively. 
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Table 3. Number of training signatures, number of pixels used per training class for pixel-

based and object-based classification, percentage of pixels per total image pixels for 

Doodle Bug Well 

Image Doodle Bug Well (PBIA) Doodle Bug Well (OBIA) 

 # of 

training 

sites 

(signatures) 

# of 

pixels per 

training 

class 

 

Percent of 

total image 

pixels 

# of 

training 

sites 

(signatures) 

# of 

pixels per 

training 

class 

Percent 

of total 

image 

pixels 

Developed 46 115,550 0.17 29 81,225 0.12 

Developed 

Caliche 

Road 

26 103,822 0.15 54 86,625 0.12 

Developed 

Road 

56 95,115 0.14 87 94,673 0.14 

Grassy 

Shrubland 

42 90,694 0.13 202 121,695 0.17 

Mesquite 

Shrubland 

40 71,310 0.10 87 66,514 0.09 

Mesquite 

Shrubland 

(healthy) 

23 47,168 0.07 107 71,069 0.10 

Mesquite 

Shrubland 

(dry) 

43 85,258 0.12 74 54,881 0.08 

Open 

Sand 

62 149,748 0.21 122 126,760 0.18 

Other 

Vegetation 

6 9,132 0.01 10 1,259 0.002 

Shin Oak 

Duneland 

52 97,484 0.14 148 108,719 0.16 

Shin Oak 

Dark 

37 74,783 0.11 166 109,671 0.16 

Shin Oak 

Light 

53 110,193 0.16 124 119,373 0.17 

Total 

number of 

signatures 

486 

 

Number 

of pixels 

per image 

70,034,832 Total 

number of 

segments 

1,258  
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Table 4. North Cowden NW SW classes, pixels per class, percent of total image pixels 

per class 

Image North Cowden NW SW (PBIA) North Cowden NW SW (OBIA) 

 Pixels per class Percent of total 

image pixels 

Pixels per class Percent of total 

image pixels 

Developed 4,023,379 8.61 4,800,188 10.27 

Shin Oak 

Duneland 

14,093,324 30.16 26,859,705 57.47 

Mesquite 

Shrubland 

18,472,230 39.53 3,431,075 7.34 

Grassy 

Shrubland 

9,757,422 20.88 11,589,183 24.79 

Other 

Vegetation 

384,753 0.82 49,957 0.11 

 Number of 

pixels per 

image 

46,731,108 

pixels 

  

 

 

 

Table 5. Doodle Bug Well classes, pixels per class, percent of total image pixels per class 

Image Doodle Bug Well (PBIA) Doodle Bug Well (OBIA) 

 Pixels per class Percent of total 

image pixels 

Pixels per class Percent of total 

image pixels 

Developed 3,593,514 5.13 3,366,231 4.81 

Shin Oak 

Duneland 

33,492,998 47.82 26,301,758 37.56 

Mesquite 

Shrubland 

17,044,037 24.34 35,535,861 50.74 

Grassy 

Shrubland 

15,359,400 21.93 4,782,516 6.82 

Other 

Vegetation 

544,883 0.78 48,466 0.07 

 Number of 

pixels per 

image 

70,034,832 

pixels 
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Figure 3. North Cowden NW SW Pixel-based classification 
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Figure 4. North Cowden NW SW Object-based classification 
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Figure 5. Doodle Bug Well Pixel-based classification 
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Figure 6. Doodle Bug Well Object-based classification 
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4.2 ACCURACY RESULTS OF PBIA AND OBIA CLASSIFICATION  

Table 6 shows the resulting values for both pixel-based and object-based 

classifications for each of the images. The PBIA for North Cowden NW SW resulted in 

an overall accuracy of 43.60%. Most class specific accuracies were poor as the overall 

accuracy shows, but a one class was able to be identified with moderate agreement. Class 

with moderate agreement was Developed, which had a producer’s accuracy of 70%, as 

well as a user’s accuracy of 67%. Grassy shrubland resulted in poor agreement but with 

similar producer’s accuracy (44%) and user’s accuracy (45%). Shin oak dune land, 

mesquite shrubland, and other vegetation had poor agreement between producer’s and 

user’s accuracy. 

 The OBIA for North Cowden NW SW produced an overall classification 

accuracy of 74.41% and demonstrated a stronger agreement between reference and 

classified objects for most of the classes. Shin oak dune land showed strong agreement 

with a producer’s accuracy of 78%% and a user’s accuracy of 88%. Developed had a 

moderately strong agreement with producer’s accuracy of 88% and a user’s accuracy of 

68%. Grassy shrubland showed a moderate agreement with producer’s accuracy of 68% 

and a user’s accuracy of 59%. Mesquite shrubland resulted in a weak agreement with 

producer’s accuracy of 42% and a user’s accuracy of 35%.  

The PBIA for Doodle Bug Well performed better than the North Cowden NW 

pixel-based method with an overall accuracy of 51.83% and had better agreement 

between classes. Developed showed a moderately strong agreement with a producer’s 

accuracy of 73% and a user’s accuracy of 75%. Shin oak dune land showed a moderate 
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agreement with a producer’s accuracy of 64% and a user’s accuracy of 59%. Mesquite 

shrubland, grassy shrubland, and other vegetation all indicated weak agreement with 

varying accuracies among producer’s accuracy and user’s accuracy.   

The OBIA of Doodle Bug Well performed better than the pixel-based 

classification with an overall classification accuracy of 65.55%. Compared to the PBIA, 

the agreement between reference data and classified objects the agreement is stronger for 

most of the classes. Developed had a moderately strong agreement with a producer’s 

accuracy of 78.37% and a user’s accuracy of 93.55%. Shin oak dune land had a moderate 

agreement with a producer’s accuracy of 63.25% and a user’s accuracy of 73.66%. 

Mesquite shrubland showed a greater agreement than the pixel-based approach having 

moderate agreement with a producer’s accuracy of 76.10% and a user’s accuracy of 

63.11%. Grassy shrubland showed a weak agreement with a producer’s accuracy of 

22.22% and a user’s accuracy of 31.82%.  

Kappa coefficient of agreement statistics for all the classifications across both 

images indicates weak agreement for both of the OBIA classifications. The overall Kappa 

statistic for North Cowden NW SW for the OBIA classification of 0.5531 indicates a 

moderate agreement, whereas the value of 0.2368 for the PBIA of North Cowden NW 

SW shows a poor agreement. The Kappa coefficient for Doodle Bug Well indicates better 

agreement for the OBIA classification when compared to the PBIA classification. The 

overall Kappa coefficient for Doodle Bug Well OBIA showed a moderate agreement of 

0.4476, while the Kappa coefficient for the pixel-based classification shows a poor 

agreement of 0.2849. 
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The difference between two proportions was assessed by comparing PBIA and 

OBIA overall accuracy for each image to produce a z-score. The null hypothesis was that 

we will reject if the test statistic z is greater than z =1.44 and confidence interval of .85.  

North Cowden NW SW test statistic was equal to 11, and Doodle Bug Well test statistic 

was equal to 5.1. Since the z statistic was greater than 1.96, we can reject the null 

hypothesis that the two proportions were the greater than the test statistic. Concluding 

that the accuracies between the two map classifications are significantly different (Ott, 

2016).
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Table 6. Accuracy results for pixel-based and object-based for North Cowden NW SW and Doodle Bug Well 

Image North Cowden NW SW 

(Pixel-Based) 

North Cowden NW SW 

(Object-Based) 

Doodle Bug Well 

(Pixel-Based) 

Doodle Bug Well 

(Object-Based) 

 Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Developed 69.77 66.66 88.37 67.86 72.97 75 78.37 93.55 

Shin Oak 

Duneland 

38.1 84.47 77.59 88.22 63.96 58.58 63.25 73.66 

Mesquite 

Shrubland 

75.75 10.82 42.42 35 40.44 71.43 76.10 63.11 

Grassy 

Shrubland 

43.58 44.74 67.52 58.52 34.92 14.19 22.22 31.82 

Other 

Vegetation 

0 0 100 0.5 0 0 0 10 

Overall 

Classification 

Accuracy 

43.60 74.41 51.83 65.55 

Overall 

Kappa 

Coefficient 

0.2368 0.5531 0.2849 0.4476 
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5. DISCUSSION 

5.1 NAIP IMAGERY AND FIELD DATA COLLECTION 

The 2016 NAIP imagery utilized in this research allowed to produce a land-use 

land cover dataset with a high spatial resolution (1-m). However, the low spectral 

resolution of the NAIP imagery limited some land cover class separability. Shin oak dune 

land and developed classes were misclassified throughout the image. This could be 

solved with the implementation of imagery with better spectral resolution. This would 

increase class separability and accuracy of identifying land covers. The high spatial 

resolution also causes confusion in that certain features on the ground are larger than the 

1-m spatial resolution provided by the NAIP imagery. This caused certain features to be 

mixed in with other classes or misidentified in the accuracy assessment. This research 

supports the implementation of other imagery with better spectral resolution and 

radiometric resolution to improve identification of land cover. This was implemented by 

Johnson (2016) in a DSL study that incorporated Landsat 5 Thematic Mapper (TM) 

satellite imagery with NAIP imagery to show multi-temporal scenes to capture seasonal 

vegetation change. Their study tried to combine TM data with NAIP to improve 

classification of shin oak during seasonal “green-up” but were unable to produce the 

results they were expecting. 

Additionally, field data images for this research were collected in 2018 and the 

NAIP imagery was acquired in 2016. This temporal discrepancy made identifying land 

covers challenging due to vegetation being different colors when the aerial imagery was 

acquired. Certain landcovers, mesquite and shin oak, showed seasonal vegetation change, 

where the images used showed these landcovers varying in color. The images collected 
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for field data were taken in June, which under normal climatic conditions would capture 

the seasonal shin oak “green-up” (Johnson, 2016). GPS ground truth points were 

collected in certain locations around my study area to help identify vegetation. This GPS 

data were helpful but with the size of the pixels and the accuracy of the GPS units, the 

data was hard to determine what the line or polygon was identifying or if the feature was 

what was identified. The GPS data were used for validating certain landcovers that were 

delineated properly by my interpretation, if not the data was not used.  

5.2 INFLUENCE OF TEXTURE MEASURES ON SEGMENTATION 

Using the high spatial resolution NAIP imagery, the use of texture measures were 

implemented due to the poor spectral resolution. This allowed for additional information 

to be stacked with the fine spatial resolution of the NAIP imagery. Texture operators are 

beneficial to a segmentation using a region growing method. The use of the inverse 

distant moment (IDM) and entropy (ENT) texture measures were used for each of the 

images to help with the segmentation.  

Chen, 2004, added texture measures for multiple spatial resolutions with differing 

window sizes to determine how classification accuracies and transformed divergence 

values were affected. The transformed divergence values determined that texture 

improves the values substantially as the window size increases. The use of multiple 

texture measures from different window size did not result in significant improvement of 

classification accuracy. Texture features derived from high spatial resolution imagery can 

be used to increase land-cover classification accuracy (Franklin and Peddle, 1990). The 

information derived from the texture features can be used to increase land-cover 

classification from high spatial resolution imagery. 
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The use of texture for this landscape can be improved by implementing different 

measures additionally to the one’s chosen for this research. The use of different window 

sizes could be another factor that could be assessed depending on what is trying to be 

identified. The purpose of inputting texture was because pixel-based classifier does not 

consider texture or spatial information (Blaschke 2010). Texture was specifically used for 

the segmentation process for OBIA, which helped with delineating objects to be 

identified as training segments. The use of the texture measures did help with 

classification by providing additional context that provided separation between land 

cover classes.  

5.3 INFLUENCE OF CLASSIFICATION METHOD ON OUTCOMES 

Object-based image analysis creates meaningful statistic and texture calculation, 

an increased uncorrelated feature space using shape and topological features, and the 

close relation between real-world objects and image objects (Benz, 2004). OBIA can 

implement spatial concepts into the classification approach, whereas pixels only contain 

individual spectral values. Including contextual information such as shape and texture to 

objects produces objects that are indicative of what is on the ground and can help to 

reduce the “salt and pepper effect” (Blaschke 2010). The appropriate segmentation 

parameters must be set before classification due to over-segmentation and could produce 

the “salt and pepper effect” at a larger scale.  

When comparing PBIA and OBIA, the amount of time that went into the object-

based classification to test different texture measures and variations of segmentations 

required more work and time than the supervised pixel-based approach. Around fifty 

texture measures were produced at different window sizes using different bands to see 
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which measure was optimal for each image. Segmentations were produced multiple times 

to make sure the features were segmented properly for each image. If this amount of time 

was put into the PBIA by applying additional image post-processing methods, the 

accuracy of the pixel-based results could have been improved.  
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6. CONCLUSION 

This research performed a comparative analysis between OBIA and PBIA to assess the 

accuracy of each method for mapping endangered species habitat with heterogenous 

vegetation in a sandy ecosystem. The analysis used NAIP imagery stacked with NDVI 

and texture measures to perform OBIA and PBIA classifications. OBIA implemented 

IDM and ENT texture measures to enhance segmentation of objects. Segments used to 

train classes for OBIA were also used to train signatures for PBIA. The maximum 

likelihood algorithm was used for both classification methods to organize the image into 

twelve intermediate classes, which were recoded into five final classes. To perform 

accuracy assessments, the multinomial distribution formula was used to calculate the 

number of sample points required per image to achieve an accuracy of 85 percent with 5 

percent error. A stratified random sample of 546 assessment points was calculated for N 

Cowden NW SW, and 646 points for Doodle Bug Well. Overall accuracies for both 

OBIA classifications, have moderate accuracies compared to PBIA overall accuracies. 

This indicates that even with the added steps required for OBIA the improvements are not 

significantly greater. The difference between two proportions was assessed by comparing 

OBIA and PBIA overall accuracy for each image to produce a z-score. After calculating 

the difference between both classifications, I rejected the null hypothesis that the two 

proportions were the same.  

This research proves that OBIA will produce higher accuracies than PBIA but is 

not accurate enough to be reliable for this study area. To potentially improve results and 

classification accuracy, additional field data to train and validate the classifications would 
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be helpful, especially if the training samples were collected around the time imagery was 

acquired. The use of imagery with higher spectral and radiometric resolution could also 

be used to improve accuracies. Finally, additional texture measures could be 

implemented to the segmentation for improved delineation between objects. Future work 

should consider these improvements to the existing research. 
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