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ABSTRACT 

 

THE EFFECT OF MATHEMATICS RESEARCH ON MATHEMATICS MAJORS’ 

MATHEMATICAL BELIEFS 

 

by 

 

Joshua Earl Goodson, B.S., M.S. 

 

Texas State University-San Marcos 

May 2012 

 

SUPERVISING PROFESSORS: ALEXANDER WHITE & THOMAS KELLER 

 This is a dissertation about the beliefs that mathematics majors have about 

mathematics and how their beliefs are affected by the introduction of mathematics 

research.  The mathematics research presented to the students dealt with counting regular 

orbits of an action.  Research has shown that the beliefs that teachers hold about 

mathematics influences how they teach their classes.  For example, it has been observed 

that some teachers who believe mathematics as a static field might teach a drill and 

memorization type of class.  Four sections of an Introduction to Advanced Mathematics 

course were split into a two treatment and two control groups.    There were a total of 40 

students in the study; 22 in the treatment group and 18 in the control group.  The 

treatment group received a three weeks intervention at the end of the semester in which
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basic modern algebra content was presented to the student to prepare them for 

presentations pertaining to the mathematics research.  The study incorporated a 

pre/mid/post-survey format.  The pre-survey was given at the beginning of the semester; 

the mid-survey was given before the beginning of the three week intervention; and the 

post-survey was given at the end of the semester after the intervention.  Additional data in 

the form of written work and student interviews were collected to supplement survey 

data.  There was no statistical difference between the treatment and control groups for 

each administration of the survey.  However, there was a statistical difference between 

the post and mid-surveys at the .05 level and a statistical difference between the post and 

pre-surveys at the .02 level for the treatment group while the control group had 

significance levels of .12 and .09 respectively.  Additionally the survey subscale Status of 

Mathematics had statistically significant differences at the .00 level between the post and 

mid-surveys and between the post and pre-surveys in the treatment group while there was 

no significant difference for the control group (p-values > .3).  Supplemental data from 

student interviews and reflections showed mathematical growth and gave indications of 

students becoming interested in the idea of mathematics research.  These results reveal 

that the introduction of mathematics research had a positive impact on what the students 

believe about mathematics and their appreciation for the subject. 
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CHAPTER 1 

INTRODUCTION 

 This is a dissertation about the beliefs held by mathematics majors and how they 

are influenced by the presentation of mathematics research.  An experimental study was 

done with surveys administered to treatment and control groups to determine if the 

beliefs of the mathematics majors were influenced by the introduction to mathematics 

research.   

Background 

 The National Council of Teachers of Mathematics (NCTM) 2007 standards for 

teaching math state that teachers should engage their students in “worthwhile 

mathematical tasks.”  These tasks should engage students' intellect, develop their 

mathematical skills, help them make connections and develop a mathematical framework, 

and represent mathematics as an ongoing human endeavor.  Worthwhile mathematical 

tasks should discourage students from simply memorizing mathematics and promote the 

need to develop deep understanding of mathematics.  However, certain beliefs of teachers 

can get in the way of choosing worthwhile mathematical tasks. 

 Many teachers view mathematics as a static body of knowledge and facts 

(Brendefur & Frykholm, 2000; Cuoco, 2001; Stipek, Givvin, Salmon, & MacGyvers, 

2001).  This mindset leads teachers towards a teaching method that is not reform-oriented 

and emphasizes performance and memorization rather than understanding (Stipek et al.,  
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2001).  This belief about mathematics is not confined to a small subset of mathematics 

teachers but is held by teachers throughout the K-12 educational system (Ball, 1990).  

Table 1 

Description of What a Positive or Negative Belief is for Each Subscale 

 Negative Positive 
Composition of Mathematics Procedural Conceptual 

Structure of Mathematics Isolated Ideas Connected Ideas 

Status of Mathematics Dead Alive 

Doing Mathematics Procedural Conceptual 

Validating in Mathematics Told from Authority Self-Proof 

Learning Mathematics Memorization Understanding 

Usefulness of Mathematics Not Useful Useful 

Mathematicians are Unimportant/Not Good Important/Good 

 

 As teachers’ beliefs about mathematics directly affect the presentation of material 

and student engagement, it is important to explore how teachers view mathematics.  

Hence, this study dealt with the beliefs teachers have about mathematics.  Beliefs about 

mathematics were categorized as either positive or negative.  Table 1 lists the subscales 

that are represented in the survey that was administered to the students and what it means 

for a belief to be positive or negative in each subscale.  It is understood that many of the 

beliefs in the Negative column of Table 1 inform beliefs in Positive column.  For 

example there is a degree of memorization that is needed to understand mathematics.  
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Thus in this case the distinction, between negative and positive beliefs, is whether 

individuals believe that memorization is learning mathematics or understanding is 

learning mathematics.  

 While Table 1 mentions eight subscales, the literature tends to focus on a few of 

them.  Typically these include Doing, Learning, Usefulness, and Mathematicians in the 

context of student beliefs.  In the context of teacher beliefs the subscales often discussed 

include Composition, Status, Doing, and Learning. 

 There are many differences between the traditional and reform views of teaching 

mathematics.  The traditional view of teaching mathematics is based on a lecture style of 

teaching.  Attention is given to individual practice, the correctness and validity of student 

work, and efficient use of mathematical rules and algorithms.  Students are grouped 

homogeneously by ability.  The reform view of teaching mathematics is based on guided 

discovery.  Students are encouraged to invent and discuss mathematical techniques, find 

patterns, make connections, and engage in real-life problem solving.  Students are 

grouped heterogeneously by ability (Goldin, 2008).   

 From the definition of the reform method of teaching and comparing it to Table 1 

it can be seen that the reform method aims to combat the negative beliefs of mathematics.  

According to Schoenfeld (2002) “on tests of conceptual understanding and problem 

solving, students who learn from reform curriculum consistently outperform students 

who learn from traditional curricula by a wide margin” (p. 16).  However it should also 

be noted that when it came to being tested on basic mathematic skills there was no 

significant difference between the two curriculums. Thus a higher score on the survey 

corresponds to a reform-oriented belief system. 
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 This is not to say that someone who has a traditional style of teaching does not 

have positive beliefs concerning mathematics.  It is assumed that mathematics professors 

might have different beliefs about the mathematics they teach and the mathematics that 

they do professionally (i.e. research). Many articles discuss what mathematicians believe 

about mathematics and about how mathematics should be taught (Beswick, 2005; Cooney 

& Shealy, 1997; Cuoco, Goldenberg, and Mark, 1996; Cuoco, 2001; NCTM, 2007).  

However, they generally do not cite articles or provide research on how they came to 

their conclusions about what mathematicians believe. 

 NCTM (2007) states, “through the experiences of learning mathematics, 

prospective and practicing teachers develop many of their core beliefs about how 

mathematics is learned and, therefore, how it should be taught” (p. 119).   Cuoco, 

Goldenberg, and Mark (1996) say that students should be taught mathematics through the 

“habits of mind” of the mathematician.  In other words, the mathematics curriculum 

should be written from the perspective of how mathematicians conduct research and the 

methods they use rather than presenting students with mathematical results. NCTM and 

Cuoco et al. are in agreement that teachers should be taught from a mathematics research 

perspective. 

 Students have their beliefs about mathematics influenced by their teachers (Muis, 

2004; Wilkins & Ma, 2003).  One might think that as students enter high school and are 

taught by teachers who have majored in mathematics, who were themselves taught by 

mathematicians, they would develop a more positive conception of mathematics.  

However, many students' beliefs tend to become more negative the more they make their 

way through school (Wilkins & Ma, 2003).  Many students’ beliefs about mathematics 
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have a negative impact on their academic performance as well as their educational futures 

(Gilroy, 2002). 

 For example, students have a tendency to believe that understanding mathematics 

is unnecessary and knowing the rules is the only important thing about mathematics 

(Mason 2003; Muis, 2004).  However, this view neglects the problem solving aspect of 

mathematics that Cuoco, Goldenberg and Mark (1996) and NCTM (2000) point out is an 

important tool not only for mathematicians, but also professionals in other fields. 

 Also, NCTM (2007) calls for teachers to have an appreciation for the rigor and 

inquiry of mathematics. This is consistent with Cuoco et al.’s (1996) assertion that 

mathematics should be taught in a way that emphasizes mathematical thought and 

research.  This dissertation will use mathematical research as the catalyst for changing the 

beliefs of mathematics majors. 

Purpose 

 There is a need for both students and society to develop more positive beliefs 

about mathematics.  This will aid in producing more mathematics majors and 

mathematics teachers, improving students' achievement scores, and contribute to the 

functioning of society.  Students form their beliefs from a variety of places, including 

family, friends, the media, and their teachers.  Of these influences, the teacher is the 

person with whom students spend the most time dealing with topics of an explicit 

mathematical nature.  Thus, it is important that students be influenced by a teacher who 

has positive views and beliefs about mathematics. 

 Mathematics teachers are responsible for student growth in mathematics and 

influence the way in which their students think about mathematics as a subject.  
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Elementary teachers, the first to teach students mathematics professionally, often do not 

major in mathematics in college and generally have negative beliefs about mathematics 

and what it means to do mathematics (Undergraduate Degree Programs, n.d.; Szydlik, 

Szydlik, & Benson, 2003).  Therefore, many students begin their academic careers with 

teachers who possess a negative view of mathematics. Moreover, secondary mathematics 

teachers, who major in mathematics in college, have beliefs about mathematics that are 

similar to their primary teacher counterparts (Ball, 1990). 

 In addition, teachers who believe mathematics is computation and getting the 

correct answers are more likely to teach mathematics in a traditional way.  However, 

teachers who believe mathematics is a creative subject dealing with problem solving and 

investigation will more likely teach a reform-oriented class (Cross, 2009). 

 With teachers’ views of mathematics and teaching style in mind, this study aims 

to provide resources for supporting pre-service secondary mathematics teachers and 

contribute to the growing body of literature by providing an alternative way of 

introducing advanced mathematics to mathematics majors.  As Leatham (2006) states, 

research on teacher beliefs “has great potential to inform educational research and 

practice and is therefore worth the effort” (p. 91).  Additionally, Pajares (1992) states that 

“the investigation of teachers' beliefs is a necessary and valuable avenue of educational 

inquiry” (p. 326). 

 Thus the purpose of this dissertation is to determine if the presentation of 

mathematics research in a course that introduces advanced mathematics increases the 

positive mathematical beliefs of pre-service secondary mathematics teachers.  This 

includes raising pre-service teachers’ awareness of mathematics research and increasing 
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their appreciation of mathematics and mathematical rigor. 

Research Questions 

 The following research questions were investigated in this study.   

1. Do pre-service secondary mathematics teachers, pure mathematics majors, 

applied mathematics majors, and mathematics minors have different beliefs 

about mathematics? 

2. Do mathematics majors who participate in MATH 3330 with a mathematics 

research component demonstrate greater changes to their beliefs about 

mathematics than mathematics majors who participate in a standard MATH 

3330 course? 

3. Do pre-service secondary mathematics teachers who participate in MATH 

3330 with a mathematics research component demonstrate greater changes to 

their beliefs about mathematics than pre-service secondary mathematics 

teachers who participate in a standard MATH 3330 course? 

Null Hypotheses 

 The null hypotheses associated with the quantitative research questions in 

respective order are: 

1. Pre-service secondary mathematics teachers, pure mathematics majors, 

applied mathematics majors, and mathematics minors have the same beliefs 

about mathematics. 

2. Mathematics majors who participate in MATH 3330 from the perspective of 

mathematics research demonstrate the same changes to their beliefs about 

mathematics as mathematics majors who participate in a standard MATH 
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3330 course. 

3. Pre-service secondary mathematics teachers who participate in MATH 3330 

from the perspective of mathematics research demonstrate the same changes 

to their beliefs about mathematics as pre-service secondary mathematics 

teachers who participate in a standard MATH 3330 course. 

Mathematics Research 

 The intervention involves the presentation of mathematics research.  Thus, in 

order to accurately convey research experience to the students, the researcher was 

involved in an abstract algebra research project.  This project involved the action of 

extra-special groups acting on faithful irreducible modules.  Therefore, since mathematics 

research plays an important role in this research project it will have its own chapter in the 

dissertation.
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 This study looks into whether the beliefs of mathematics majors about 

mathematics and mathematicians are affected by taking the Introduction to Advanced 

Mathematics course with the addition of a mathematics research component.  This 

literature review addresses the problems associated with defining beliefs, explains the 

beliefs of students and teachers, and explores teachers’ influence on the beliefs of 

students.  The review examines different aspects of presenting advanced mathematics 

concepts, especially modern algebra, to students.  This includes problems students have 

with the abstraction of algebra and different ways of introducing abstract algebra to 

students.  The final section is a review dealing with background information used for the 

mathematics research. 

Beliefs 

 In reviewing the literature, the difficulty in defining beliefs becomes apparent.  

Many studies tend to have different views on what beliefs are.  In a commonly cited 

article, Pajares (1992) discusses beliefs in educational research.  Pajares (1992) points out 

that difficulty arises from the poor definitions and conceptualizations as well as differing 

understandings of beliefs within the literature.  He explains that the reason for this 

confusion is the lack of differentiation between beliefs and knowledge.  For example, is 

there a difference between believing the sun rises in the east and knowing the sun rises in 
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the east.  An acceptable distinction that Pajares identifies in the literature is that beliefs 

are about evaluation and judgment of one’s experiences while knowledge is about 

objective fact.  Thus, Pajares (1992) concludes that the construct of beliefs is not as 

ambiguous as some might believe it to be.  He concludes: 

When they are clearly conceptualized, when their key assumptions are examined, 

when precise meanings are consistently understood and adhered to, and when 

specific belief constructs are properly assessed and investigated, beliefs can be, as 

Fenstermacher predicted, the single most important construct in educational 

research.  (p. 329) 

Students’ Beliefs 

 Three aspects of student beliefs about mathematics are explored in this section: 

beliefs about mathematicians, beliefs about the nature of mathematics, and beliefs about 

the value of mathematics.  

 In an investigation of the images students have of mathematicians, Picker and 

Berry (2000) found that students tend to have a negative view of mathematicians.  For 

example, in drawings by 12-13 year olds mathematicians were depicted as coercive, 

foolish, nervous, and having special powers.  While the students in Picker and Berry’s 

study were not high school students, it has been observed that student beliefs about 

mathematics either do not change or tend to become less positive as they make their way 

through secondary school (McLeod, 1992; Wilkins & Ma, 2003).  

 Scientists and mathematicians are seen as frightening individuals who intimidate 

their students into doing their work correctly (McNarry & O'Farrell, 1971; Picker & 

Berry, 2000).    Many of these beliefs about mathematicians come from the way society 
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perpetuates stereotypes.  Picker and Berry point out that through teachers and the media, 

7th grade students perceive that a privileged few can do mathematics, mathematics is a 

special language for a selected few, and that mathematics should be done quickly.  This 

leads students to the conclusion that mathematicians are authoritarian figures (Picker & 

Berry 2000).   

 However, Rock and Shaw (2000) found that younger students show a decidedly 

different view of mathematicians.  They administered a qualitative survey asking students 

in grades K-8 the following questions: “(1) What do mathematicians do?  (2) What types 

of problems do mathematicians solve?  (3) What tools do mathematicians use?” (p. 551).  

Rock and Shaw asked for drawings from students in kindergarten to fourth grade (5 to 10 

year olds) showing the students' depictions of mathematicians.  Their drawings of 

mathematicians were more pleasing than the ones depicted by the seventh graders in the 

Picker and Berry study, with mathematicians smiling and working with other people.  

Clearly there is a shift in students’ opinions regarding mathematicians between the fourth 

and seventh grades. 

 Many students also have misconceptions about the work that mathematicians do 

and what it entails.  Rock and Shaw (2000) found that elementary students believed that 

mathematicians do work that is similar to the work that they are doing but with larger 

numbers, or simply do problems that other people do not know how to solve.  Many 

middle school students, when asked when they would hire a mathematician, either did not 

know when someone would hire a mathematician, did not know what a mathematician 

does, or think that people do not need mathematicians (Picker & Berry, 2000).  When the 

students did mention jobs for which you would hire a mathematician, the majority named 
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teaching, illustrating a general lack of knowledge about the work of mathematicians 

(Picker & Berry, 2000).  In one of several studies reviewed by Muis (2004), around a 

third of students thought mathematicians worked with symbols rather than ideas and 

believe that new discoveries are seldom made. 

 The NCTM Standards for teaching (1991) state that, “mathematics is a changing 

and evolving domain, one in which ideas grow and develop over time” (p. 26).  However, 

Muis (2004) states that students view mathematical knowledge as unchanging.  Muis' 

review of research shows that many students believe that mathematics is a set of 

fragmented rules and procedures, not a subject in which ideas grow and develop. 

 Students also believe that understanding mathematics is unnecessary and that the 

only thing that matters is knowing the rules to get to the correct answer (Mason, 2003; 

Muis 2004).  Furthermore, students who believe that all mathematics can be solved using 

rules and procedures rely on memorization as their main way of learning (Muis, 2004).  

This is not surprising as the literature shows that mathematics has traditionally been 

taught in a way that emphasizes facts and procedures that must be memorized in order to 

do well (NAEP, 1983; Schoenfeld, 1989; Wilkins & Ma, 2003). 

   Additionally, students believe that being able to do well in mathematics is a 

natural ability (Muis 2004; Schoenfeld, 1989).  This belief has a negative impact on 

motivation: a person who does not believe that he or she is good at mathematics will be 

less inclined to try to understand the subject (Gilroy, 2002).  Gilroy further points out that 

studies have shown that “student achievement is often related to factors that are 

controllable, such as effort and persistence, rather than innate ability” (p. 41), countering 

this widely held belief.   
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 Researchers have also investigated students' perceptions of the usefulness of 

mathematics.  In the early grade levels, students either believe mathematics is useful as a 

means of moving on to the next grade level or they express knowing that mathematics is 

useful but cannot give an example or reason why (Kloosterman, Raymond, & Emenaker, 

1996).  When students are able to express the usefulness of mathematics and as they 

move up through the grade levels, students give examples of jobs where mathematics is 

useful such as being an accountant or architect, or employed in other notable calculation 

based jobs (Kloosterman et al., 1996; Mason, 2003; Picker & Berry, 2000; Rock & Shaw, 

2000).  However, even many older students fail to see how mathematics can be useful in 

their lives (Gilroy, 2002).  This shortsighted view of the usefulness of mathematics, 

coupled with a dislike for mathematics, can affect the number of mathematics classes a 

student takes, or worse, convince a student to take mathematics classes at the last moment 

in college (Gilroy, 2002).  This in turn, can result in the student forgetting much of what 

they had learned in high school (Gilroy, 2002; Reyes, 1984).  

 Wilkins and Ma (2003) provide further insight into high school and college bound 

students in their analysis of data from the Longitudinal Study of American Youth 

(LSAY), which followed and surveyed 3116 students from grades 7-12.  Topics in the 

survey included attitude toward mathematics, the social importance of mathematics and 

the nature of mathematics.  The results showed that as high school students get older, 

their beliefs become less positive about mathematics and its social importance.  

Additionally, Wilkins and Ma found that students who want to attend college generally 

have more negative beliefs about mathematics than those who do not wish to go to 

college.  They believe that this is due to the added pressure of college entrance 
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requirements. 

 Studies also show that there is a link between what students believe about 

mathematics and their performance in mathematics (Gilroy, 2002).  As mentioned 

previously, students tend to believe that mathematical competency is an innate ability 

rather than an acquired one (Schoenfeld, 1989).  To compound the problem, society has 

developed the idea that intelligence and mathematics go hand in hand (Gilroy, 2002).  

Students believe that mathematical learning should take place in a matter of minutes 

(Muis, 2004).  If they are not able to answer a mathematics problem quickly, then they 

begin to believe that they will never solve the problem.  If a student believes that they are 

not good in mathematics, then they believe they are not smart, even though achievement 

in mathematics is linked more with effort than natural ability (Gilroy, 2002). 

 Dweck's 2007 article highlights some of the research she has done concerning 

student motivation in a broad educational setting.  She compared students who believe 

that intelligence is innate, which she describes as a fixed mind-set, with those who 

believe intelligence is about effort, which she describes as a growth mind-set.  Dweck 

provides insight into the effect that these different mindsets have on the motivation of the 

students.  A student who believes that intelligence is a natural ability is afraid to put forth 

effort when solving a problem because the student feels that if he or she is able to do 

something then no effort is needed.  In this case when material in the curriculum becomes 

challenging the student stops working.  Dweck provides the following example of what is 

happening to this student when the mathematics curriculum becomes more difficult: 

Up until then, he has breezed through math.  Even when he barely paid attention 

in class and skimped on his homework, he always got As.  But this is different.  
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It's hard.  The student feels anxious and thinks, “What if I'm not as good at math 

as I thought?  What if other kids understand it and I don't?”  At some level, he 

realizes that he has two choices: try hard, or turn off.  His interest in math begins 

to wane, and his attention wanders.  He tells himself, “Who cares about this stuff?  

It's for nerds.  I could do it if I wanted to, but it's boring.  You don't see CEOs and 

sports stars solving for x and y.  (p. 35) 

These students, when asked to choose between problems that are described as 

challenging but educational or problems that are easy with minimal opportunities for 

mistakes, will choose the easy ones. 

 On the other hand, students of the growth mind-set believe that intelligence can be 

developed through effort and education (Dweck, 2007).  These students care about 

learning, and when they make mistakes they try to make corrections.  For these students 

effort is not a thing to be scared of but to embrace.  Dweck offers a scenario for this type 

of student: 

She finds it new, hard, and confusing, unlike anything else she has ever learned.  

But she's determined to understand it.  She listens to everything the teacher says, 

asks the teacher questions after class, and takes her textbook home and reads the 

chapter over twice.  As she begins to get it, she feels exhilarated.  A new world of 

math opens up for her. (p. 35) 

These students, when presented with the same choice between problems, will choose the 

challenging educational problems. 

 Students considering a career in mathematics may compare themselves to 

professional mathematicians by looking for similarities (Brush, 1980).  However, high 
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school students generally do not liken themselves to mathematicians.  In 1980, Brush 

conducted a questionnaire of 510 high school juniors and seniors.  The questionnaire had 

two parts, one about mathematicians and the other about writers, with identical sets of 21 

items.  Survey results showed that mathematicians were considered less creative, 

independent, intuitive, sensitive, and gentle than writers, but were viewed as more 

competitive, stable, and rational, as well as calmer and wiser.  The students were also 

asked to rate themselves on the same 21 items and their ratings tended to agree more with 

how they rated the writers than with the mathematicians. 

 Research has shown that there is a positive correlation between positive beliefs 

about mathematics and mathematical achievement (Antonnen, 1969; Bouchey & Harter, 

2005; Fennema & Sherman, 1978; Furinghetti & Morselli, 2009; Grootenboer & 

Hemmings, 2007;).  Similarly, beliefs about the usefulness of mathematics have a 

positive correlation with mathematical achievement (Fennema & Sherman, 1977, 1978).  

Also, Schoenfeld (1983) points out that purely cognitive behavior is rare and that that it 

closely related with that of affective behaviors.  To further complicate matters, 

Grootenboer and Hemmings (2007) state: 

It appears that there is a cyclical or reciprocal relationship between beliefs and 

attitudes, and success in learning mathematics.  While it is more complex than a 

simple relationship, in general terms, success in mathematical learning seems to 

lead to more positive affective views about mathematics, which then lead to 

greater success in learning mathematics, and so forth, with the converse also 

being the case.  (p. 6) 
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Teacher Beliefs 

 According to NCTM (2007), one of the many roles of the teacher is fostering 

positive attitudes and values about mathematics, presenting mathematics as a human 

endeavor, and helping students understand the uses of mathematics in life.  Also, the 

mathematics teacher should foster “positive attitudes about the aesthetic and utilitarian 

values of mathematics” (NCTM, 2007, p. 6).  Research suggests that teachers' beliefs and 

values affect their teaching practices and hence students' mathematical learning (Clark & 

Peterson, 1986; Fang, 1996; Kagan, 1992; Peterson, Fennema, Carpenter, & Loef, 1989; 

Thompson, 1992).  Additionally, Muis (2004) points out that “scholars in mathematics 

education generally agree that the formal mathematics education students receive has a 

major influence on the development of their beliefs about mathematics” (p. 334).  Much 

of the research has been done with pre-secondary teachers: however, there has been some 

research involving secondary teachers as well as research comparing pre-secondary and 

secondary teachers.   

 Most teachers believe mathematics to be a static body of knowledge, with set 

rules and procedures to attain a correct answer and promote this idea in their teaching 

(Brendefur & Frykholm, 2000; Cuoco, 2001; Stipek et al., 2001).  A comparison of 

elementary teachers from 1968 and 1998 showed this perception of mathematics had not 

changed in over 30 years (Seaman, Szydlik, Szydlik, & Beam, 2005).  According to 

Battista (1994), teachers who believe that math is following set procedures will have 

trouble making sense of mathematics and thus will have difficulty effectively teaching 

and guiding students into inventing mathematical ideas.  In other words, in order for pre-

service teachers to become effective mathematics teachers they must develop an 
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understanding of the nature of mathematics (Steele, 1994).  NCTM (2007) further states 

that when a teacher presents mathematics as a static subject in which answers are derived 

from symbolic representation, it illustrates that that teacher does not have an acceptable 

view of the nature of mathematics.  Driving the point further, NCTM (2007) points out,  

“the very essence of studying mathematics is itself an exercise in exploring, conjecturing, 

examining, and testing, and in building new mathematical knowledge” (p. 85), and 

“mathematics is a dynamic discipline that continues to grow and expand in its uses in our 

culture” (p. 121).  Thus, teachers need to develop beliefs about mathematics that 

incorporate these aspects of the nature of mathematics. 

 Many of the beliefs that teachers have about mathematics are not limited to 

elementary and middle school teachers.  The idea of mathematics as a procedure is 

emphasized throughout all levels of mathematics education, including the college level 

(Battista, 1994).  Ball (1990) states: 

We are seeing few differences in ideas about mathematics between the elementary 

candidates and the mathematics majors.  Most of the prospective teachers in both 

groups tended to see mathematics as a body of rules and facts, a set of procedures 

to be followed step by step, and they considered rules as explanations.  Clearly, 

some secondary candidates did not see mathematics this way, while all the 

elementary candidates did.  However, the overlap between the two groups was 

larger than one might expect, given that the secondary candidates had had far 

more opportunity to be immersed in the discipline than had the elementary 

candidates. (p. 464) 

The only major difference between elementary and secondary teacher candidates was that 
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the secondary teacher candidates were more confident in their abilities in mathematics 

than their elementary counterparts (Ball, 1990).   

 Research shows that a teacher's beliefs play a crucial role in how they teach and 

interact with students (Buehl, Alexander, & Murphy, 2002; Hofer & Pintrich, 1997).  

NCTM (2007) states, “their conceptions of mathematics shape their choices of 

worthwhile mathematical tasks, the kinds of learning environments they create, and the 

nature of the discourse in their classrooms” (p. 119).  Teachers with beliefs about 

mathematics as a set of operations and rules have a positive correlation with an emphasis 

on performance rather than learning and a negative correlation with an emphasis on 

understanding (Stipek et al., 2001).  Additionally, teachers who believe mathematics is a 

static body of knowledge are more likely to teach a drill and memorization class 

(Charalambous, Panaoura, & Philippou, 2009). 

 Evidence of the causal relationship between teacher beliefs and teaching style is 

found in a study conducted by Cross (2009) of five secondary Algebra I teachers.  The 

study involved interviewing the teachers about their beliefs about mathematics and then 

observing their classroom environments.  Three of the teachers viewed mathematics as 

computation, calculation, and formulas.  The other two viewed mathematics as problem 

solving, learning how to think, and navigating one’s way through problem situations.  

The views that these teachers held manifested themselves in their classroom practices. 

 The three teachers that viewed mathematics as rules and procedures ran 

classrooms devoid of collaborative activities.  Classes tended to be teacher-centered 

lectures in which the teachers would elicit numeric or algebraic answers from students.  

Competence in mathematics was defined by performing accurate calculations and 



   20 

 

appropriately applying procedures while stating correct answers and detailing procedures 

were considered evidence of skill mastery (Cross, 2009). 

 In contrast, the teachers who viewed mathematics as thinking and problem solving 

conducted their classes more in line with current reform-oriented strategies.  They asked 

more probing questions rather than computational questions, encouraged their students to 

be in charge of their own learning, and asked them to examine their thinking.  These 

teachers believe that mathematics is a way of thinking and that students should be making 

their own sense and ideas about mathematics (Cross, 2009).  This finding supports 

Dweck's (2007) work.  Teachers who believe mathematics is about thinking and problem 

solving encourage their students to be in charge of their own learning and to put forth 

effort, and therefore promote a growth mind-set within the student.  

 Frank (1990) surveyed 131 pre-service teachers concerning twelve statements that 

he considers to be myths about mathematics.  He defines a math myth “as a belief about 

mathematics that is (potentially) harmful to the person holding that belief because belief 

in math myths can result in false impressions about how mathematics is done” (p. 10).  

Of the pre-service teachers that Frank surveyed, 63% thought being good at mathematics 

is a natural ability, which agrees with Foss and Kleinsasser's (1996) study.   

 Consider the teachers who believe that being good in mathematics is a natural 

ability and view them in light of Dweck's (2007) article.  Recall that what teachers 

believe effects their teaching and how they interact with students (Buehl, Alexander, & 

Murphy, 2002; Hofer & Pintrich, 1997).  So a teacher who believes that mathematical 

intelligence is a natural ability would promote a fixed mind-set within the students. 

 Pre-service teachers come to college with preconceived beliefs about 



   21 

 

mathematics, shaped by thousands of hours in classrooms as students, and instead of 

changing their beliefs by the time they leave, they become more comfortable with those 

beliefs (Book, Byers, & Freeman, 1983; Feiman-Nemser & Buchmann, 1987; Feiman-

Nemser, McDiarmid, Melnick, & Parker, 1988; Handal, 2003; Tabachnick & Zeichner, 

1984; Weinstein, 1989).  This is consistent with two assumptions made by teachers 

teaching grade school mathematics: that grade school provides most of the information 

that teachers need to know about mathematics, and that majoring in mathematics ensures 

knowledge of the subject matter (Ball, 1990; NCTM, 2007).  These ideas are founded on 

the assumption that remembering and doing mathematics are tantamount to 

understanding mathematics (Ball, 1990).  As Ball (1990) writes, “assuming that the 

content of first-grade mathematics is something any adult understands is to doom school 

mathematics to a continuation of the dull, rule-based curriculum that is so widely 

criticized” (p. 462). 

 Cuoco (2001) agrees with Ball that teachers are under the impression that what 

they learn in college is all they will need in order to teach mathematics effectively.  This 

places the teacher in a situation where a student could ask a question that the teacher 

might not be able to answer.  In order to teach effectively, Cuoco says that secondary 

mathematics teachers should become lifelong mathematics learners to help prepare them 

for the unexpected. 

 Mathematics educators agree that the way in which mathematics is presented to 

students has an effect on the students' beliefs (Muis, 2004).  As Carter and Norwood 

(1997) state: 

It is evident that what the teacher does in the classroom influences students' 
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beliefs about mathematics.  It is also evident that what teachers believe about 

mathematics and the teaching of mathematics influence what they do in the 

classroom and that their beliefs may be translated into students' beliefs. (p. 63) 

Additionally, the ways in which prospective teachers and in-service teachers are taught 

plays a crucial role in their beliefs (NCTM, 2007).  Therefore, it is vital that pre-service 

teachers learn about mathematics in a way that promotes problem solving and intellectual 

explorations in meaningful ways (NCTM, 2007).  Thus, changing teachers’ beliefs is 

essential in teacher development (Cooney, Shealy,  & Arvold, 1998). 

Changing Beliefs  

 Mason and Scrivani (2004) point out that studies that try to improve beliefs about 

mathematics are scarce.  They were only able to find two studies dealing with changing 

student beliefs, Higgins (1997) and De Corte, Verschaffel, and Eynde (2000), both of 

which had positive results in improving mathematical beliefs among students.  Mason 

and Scrivani were able to add to this body of literature with their study.  However, all 

three of these studies dealt with students in the fifth grade or middle school, not with 

college students or, more specifically, pre-service secondary mathematics teachers. 

 With regard to pre-service teachers, there is also a scarcity of studies dealing with 

changing beliefs about mathematics.  Szydlik, Szydlik, and Benson (2003) illustrate how 

they were able to alter the beliefs of pre-service elementary school teachers by focusing 

their problem solving class on different strategies, process reflection, and engagement in 

the process of exploration, conjecture, and argument.  Focusing on these processes would 

be a good design for an introductory to advanced mathematics course. 
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Teaching Advanced Mathematics 

 Cuoco et al. (1996) suggest a mathematics curriculum for teaching future teachers 

in which the teaching of mathematics emphasizes the methods that mathematicians use 

when conducting research, or implementing a mathematician's “habits of mind.”  In this 

way, the students learn about the ways that mathematicians think and how to use that 

thought process to solve problems.  In this curriculum students would be active in the 

creating, inventing, conjecturing, and experimenting processes of mathematics.  Students 

would be encouraged to experiment, to explore special cases, and to learn that false starts 

are part of the mathematical experience.  The mathematics of today fuels the technology 

of tomorrow, and so the goal of Cuoco et al. is to empower students for life after school 

and to “prepare them to be able to use, understand, control, modify, and make decisions 

about a class of technology that does not yet exist” (p. 401).   

 A mathematics course that revolves around ways of thinking rather than results 

benefits not only those who wish to pursue mathematics but also those who wish to 

pursue other fields of knowledge.  For example mathematical research techniques can be 

used in fields such as automotive repair, medicine, business, or any other profession that 

involves problem solving.  If students should learn to think like mathematicians, then 

teachers should learn to think like mathematicians (Cuoco et al., 1996).   

 One advantage of Cuoco and associates’ suggestion is that it encourages students 

to continue to try to solve a problem that they find difficult.  In this way, the curriculum 

will promote a growth mind-set within the students.  Also, this curriculum places an 

emphasis on problem solving; Cross (2009) showed that teachers who view mathematics 

in this way are more likely to teach in a reform-oriented way. 
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 Many prospective mathematics teachers are unable to make a connection between 

advanced mathematics classes and the courses that they took in high school and question 

how their college coursework in mathematics will help them in teaching mathematics 

(Cuoco, 2001; Fernandez & Jones, 2006).  “This is especially true in algebra, where 

abstract algebra is seen as a completely different subject from school algebra” (Cuoco, 

2001, p. 169).  For example, teachers feel that abstract algebra has nothing to do with 

teaching because they do not talk about groups and rings in their classes (Hill, 2003).  To 

exacerbate the problem, university faculty rarely make the connections for their students 

(Hill, 2003).  Wilkins and Ma (2003) state: 

If American society hopes to reverse the negative trends related to attitudes and 

beliefs about mathematics, we evidently must provide positive experiences in 

classrooms and in the home that portray positive values related to mathematics 

and its importance in a quantitatively complex society.  Teachers and school 

leaders have an important role in creating context that promote these ideals and 

values.  (p. 61) 

So pre-service secondary teachers need an experience with abstract algebra that will 

provide them an understanding of abstract structures, a structure high school algebra 

students should learn, that will help them make connections between high school and 

college mathematics (Cullinane, 2005; NCTM, 2000).  There are resources for instructors 

of future teachers that can help make the necessary connections to school mathematics 

and provide teachers with a more positive experience of advanced mathematics. 

Cullinane (2005), Hill (2003), Grassl and Mingus (2007), and Fernandez and Jones 

(2006) provide examples of how to make connections between advanced mathematics 
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and school mathematics that will be discussed later. 

 Abstract algebra plays an important role in learning advanced mathematics and 

therefore is important to any person learning advanced mathematics (Hazzan, 1999).  

However, abstract algebra is a difficult course for students; Grassl & Mingus (2007) list 

five reasons for the difficulty.  First, they suggest that students lack the “necessary strong 

foundation on which to build” (p. 582).  However, even when a student possesses a 

strong foundation they may still struggle with the course.  This may be because most of a 

student's courses before abstract algebra have “a strong computational component and 

seem to lack an emphasis on proof” (Grassl & Mingus, 2007, p. 582). 

 Second, the “timetable in abstract algebra is ferocious” (p. 582).  Students may 

cover several different topics each day and are expected to cover a plethora of content in 

only a few weeks.  Too much of this content is new to the students and thus represents an 

obstacle for them. 

 Third, the “concepts in abstract algebra are by their nature abstract” (p. 583).  In 

other words, students cannot simply solve a problem the same way the instructor solved it 

in class.  There is not an algorithm that will help do a proof that the student can utilize.  

The students also have little opportunity “to practice communicating, either verbally or in 

writing, mathematical ideas prior to taking abstract algebra” (p. 583).  In sum, students 

are underprepared for the abstractness of abstract algebra. 

 Finally, Grassl and Mingus (2007) point out that “the times they are a changing 

and so is the audience for the course…. [and] the methods of teaching and the content of 

the course have essentially remained constant” (p. 583).  They note that it is no longer 

just the best mathematics students taking abstract algebra, as there are students taking the 
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course who wish to pursue a career in public education and not necessarily mathematics.  

For this reason, the traditional form of lecturing might not be the best platform for 

teaching pre-service teachers.   

Teaching Abstract Algebra  

  Mathematics teachers should interact more with other mathematicians to gain 

more understanding of the complex and changing subject that is mathematics (NCTM, 

2007).  Pre-service mathematics teachers should be presented with the struggles that 

accompany the search for an elegant proof (NCTM, 2007).  Advanced mathematics 

courses, such as abstract algebra, can address these goals. 

 There are many ways to help pre-service mathematics teachers understand 

abstract algebra and to make the connections between abstract algebra and high school 

mathematics.  As previously mentioned, Fernandez and Jones (2006), Hill (2003), Grassl 

and Mingus (2007), and Cullinane (2005) provide information on relating advanced 

mathematics to high school mathematics.  Hazzan (1999) gives insight into the way 

students think about abstract algebra that can aid an instructor in teaching.  These articles 

are highlighted because they show that abstract algebra can be taught in a way that makes 

connections to high school mathematics and can be beneficial to students. 

 Mathematics teachers of algebra should “know how to apply the major concepts 

of abstract algebra to justify algebraic operations and formally analyze algebraic 

structures” (NCTM, 2007).  Fernandez and Jones (2006) provide recommendations for 

connecting undergraduate mathematics to the NCTM standards; they provide examples of 

implementing these techniques in a Methods in Teaching Mathematics course.  While the 

authors had plans to cover teaching abstract algebra topics, they were unable to do so 
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because some students had not yet had abstract algebra.  They do, however, provide a list 

of topics covered in abstract algebra and their connections to the standards.  The topics 

include permutation groups, homomorphisms, isomorphisms, the Euclidean algorithm, 

and Euler's function. 

 Hill (2003) describes the key to making connections between college mathematics 

and high school mathematics for pre-service teachers as making advanced mathematics 

relevant for them.  Hill discusses two case studies of methods that he uses to address the 

disconnect.  The first case study dealt with one of Hill's students doing student teaching.  

He had his student incorporate aspects of abstract algebra into her teaching.  She did this 

by having the students develop the complex number system using distance from the 

origin and the angle made with the positive x-axis of the plane.  Aspects of abstract 

algebra incorporated into the lesson include investigation, generalization, and use of 

axioms.  The second case study dealt with a workshop in which teachers explored the 

symmetries of a regular hexagon.  Through this exploration, teachers saw how 

symmetries are composed with each other, and then related symmetries to concepts such 

as permutation, function, one-to-one, onto, and commutativity, which ultimately led to a 

discussion of matrices of trigonometric functions to represent symmetries. 

 Grassl and Mingus (2007) took a different approach to helping students with 

abstract algebra.  They decided to team teach a course with one of the instructors serving 

as a mathematician and the other a mathematics educator.  The mathematics educator was 

able to provide leading questions regarding current material, make connections to other 

branches of mathematics, make worksheets to further cement ideas, and serve as a 

“watchdog for student speaking opportunities” (p. 584) (the mathematician was used to a 
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lecture style of teaching).  Through team teaching they were also able to employ 

cooperative learning groups and other constructivist methods that acted as examples for 

pre-service mathematics teachers in addition to producing better mathematicians. 

 Cullinane (2005) employed a method that made abstract algebra relevant to his 

students at the beginning of the course.  Cullinane outlines his method for deriving the 

ideas of binary operation and the group axioms through solving linear equations.  

Cullinane also used a form of constructivist teaching by utilizing class discussion and in-

class investigation. 

 Hazzan's (1999) article attempts to document the mental processes of students as 

they solve abstract algebra problems.  More specifically, Hazzan investigates how 

students take the abstract concepts and reduce the abstraction to make them accessible. 

For example, Hazzan explains that students tend to use numbers to help themselves 

interpret the abstractions.  He points out that this method is effective for the students but 

can be inappropriate in some situations and lead students astray, for example, when 

students think that a specific case or example is a proof.  Thus, pre-service secondary 

mathematics teachers need advanced mathematics classes that provide them with insight 

into how advanced mathematics relates to what they will be teaching and makes the 

advanced mathematics more accessible for them. 

 Many of these examples are used to show how to make traditional abstract algebra 

relevant to the students and future teachers.  However none of them consider using new 

mathematics as a way of implementing Cuoco’s suggestion of emphasizing the methods 

that mathematicians use to conduct research.  Cuoco’s suggested method has the benefit 

of allowing the students (and future teachers) to have a connection to advanced 
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mathematical work rather than just connecting to mathematics they did in high school. 

The Mathematics 

 Foulser (1969) discusses Huppert’s theorem in relation to finite solvable primitive 

permutation groups of rank greater than two.  However, the mathematics that is of 

interest to this research is in Foulser’s discussion in the third section of his paper.  In this 

section he addresses many properties of extra-special groups of prime exponent, their 

actions on faithful irreducible modules, and the orbits resulting from these actions. 

 Foulser spends much of the section providing basic information about extra-

special groups including their structure and their number of subgroups.  He then describes 

the action of the extra-special groups on faithful irreducible modules by discussing which 

elements are fixed or stabilized.  Ultimately, the section culminates by counting the 

number of regular orbits of the actions.  However, he did not extend his result to 

encompass all types of extra-special groups.  More information on the background of the 

problem of interest will be provided in Chapter 4, where the mathematics research is 

discussed. 

 Orbits play an important role in the proofs of many results.  Their importance in 

proving major results is illustrated in articles from Moretó and Wolf (2004) and Dolfi and 

Pacifici (2011).  However, in both of the articles, and in Foulser’s as well, orbits take a 

backseat to the results that they help prove.  	
  

Summary 

 Students should be viewed as potential new mathematicians and if they do not 

have a positive outlook of what a mathematician is and what a mathematician does then it 

can be expected that there are going to be fewer mathematicians in the future.  Sadly, 
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students appear to have negative beliefs about mathematics and mathematicians as well 

as misconceptions about the work of mathematicians.   

 As Pajares states, beliefs are about a person’s evaluation and judgment of 

experiences.  Thus, teachers should teach mathematics in such a way that students are 

provided with worthwhile mathematical experiences that lead to an appreciation of 

mathematics.  Studies show that when teachers have positive beliefs about mathematics 

they tend to teach accordingly.  However, it has been shown that many teachers have 

negative beliefs about mathematics, which is also evidenced in their teaching.  These 

beliefs are a product of years of education that teachers receive in school. 

 As educators of prospective teachers, it is important to provide these students with 

experiences that emphasize the problem solving, conjecturing, and creative thinking 

processes that go into doing mathematics.  Cuoco and associates’ suggestion of 

presenting mathematics from the prospective of a researcher is an example of way to 

emphasize many such experiences.   
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CHAPTER 3 

RESEARCH DESIGN 

 The purpose of this study is to investigate the introduction of advanced 

mathematics with a mathematics research component in the MATH 3330, “Introduction 

to Advanced Mathematics” course at Texas State University-San Marcos.  The study 

examines the effects that the introduction to mathematics research has on the beliefs that 

mathematics majors enrolled in this course hold of mathematicians and the nature of 

mathematics.  Beliefs in this study follow Pajares’ suggestion of being the evaluation and 

judgment of one’s experiences.  Thus we have provided a new experience to the students 

to see how they were affected.  The research questions investigated are: 

1. Do pre-service secondary mathematics teachers, pure mathematics majors, 

applied mathematics majors, and mathematics minors have different beliefs 

about mathematics? 

2. Do mathematics majors who participate in MATH 3330 with a mathematics 

research component demonstrate greater changes to their beliefs about 

mathematics than mathematics majors who participate in a standard MATH 

3330 course? 

3. Do pre-service secondary mathematics teachers who participate in MATH 

3330 with a mathematics research component demonstrate greater changes to 

their beliefs about mathematics than pre-service secondary mathematics  
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      teachers who participate in a standard MATH 3330 course? 

 The study uses a quantitative-methods approach to answer the above questions 

with supplemental data in the form of interviews and written papers from the 

experimental class to enhance the findings by providing insight into the survey responses.  

The study is a quasi-experimental design and uses Likert type pre/mid/post-surveys with 

two convenient samples of mathematics majors that enrolled in different sections of 

MATH 3330.  A higher score on the survey corresponds with a more reform-oriented 

belief system, in the context of education, about mathematics.   

Authorization and Informed Consent 

 A letter (see appendix A) was attached to the pre-survey in order to inform the 

students of the study and notifying them that participation in the study was voluntary.  

Consent was considered given if the student completed and turned in the survey.  

Students were asked in the survey if they wished to opt out of having their reflections 

used in the study. Students who participated in the interviews were provided with another 

consent form (Appendix C) dealing specifically with the interviews.   

Participants 

 Data were gathered over the course of two long semesters, Fall 2010 and Spring 

2011.  Since all mathematics majors at the university must take MATH 3330, a sample 

from this course could be considered an accurate representation of the mathematics major 

population of the university.  The participants in this study were a convenient sample of 

the students that were in the two MATH 3330 classes in each semester.  Table 2 

summarizes the sampling information as well as includes the number of students who 

took all three surveys that were administered.   



   33 

 

Table 2 

Students Who Enrolled In Course and Students Who Took the Survey Three Times 

 Treatment Control 

Semester In Course All Surveys In Course All Surveys 
Fall 22 10 29 10 

Spring 20 12 23 8 
 
 Four students were suppose to be chosen to participate in interviews in each 

semester.  They were chosen based on their pre-surveys and their major classification.  

Those four students who were chosen to participate in the interviews in the Fall semester 

included one pre-service teacher and one other mathematics major for both the highest 

pre-survey scores and the lowest pre-survey scores.  Students were to be selected in a 

similar fashion during the Spring semester but student unwillingness to reply made it not 

possible.  This resulted in three students being selected for interviews; all of which were 

pre-service teachers.  Two of these had high pre-test scores.  The initial selection process 

was designed so comparisons could be made between interviews of pure mathematics 

majors and pre-service secondary mathematics teachers as well as students with high and 

low pre-survey scores representatives. 

Introduction to Advanced Mathematics 

 The course MATH 3330, Introduction to Advanced Mathematics, is a class that 

all mathematics majors are required to take.  The university's website states that the 

course is “an introduction to the theory of sets, relations, functions, finite and infinite 

sets, and other selected topics. Algebraic structure and topological properties of 

Euclidean Space, and an introduction to metric spaces” 

(http://www.math.txstate.edu/degrees-programs/undergrad/ucourses.html).  The 
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department syllabus (Appendix H) provides more information about the course.  The 

class is meant to give students an idea of what it means to do pure mathematics and how 

to begin to structure proofs.  Generally this involves starting with certain axioms and 

definitions and proving elementary theorems.  Students learn how to begin their proofs, 

to justify their reasoning, and to appreciate mathematical rigor.  However, some of the 

context for the proofs is somewhat up to the instructor and could take on a flavor of the 

instructor’s field of specialty.  For example, if an instructor is an analyst, then the class 

curriculum may include an analysis slant or if the instructor is an algebraist, then the class 

curriculum may include more algebra.  Instructors do provide fundamental mathematical 

concepts such as set-theory and relations in the course.  

Data Sources 

 Quantitative data.  All students in the experimental and control classes were 

asked to take a survey (see Appendix B) three times during the semester.  The survey is a 

Likert-style instrument consisting of 62 statements with which the students will indicate 

their level of agreement.  The levels of agreement include strongly disagree, partly 

disagree, disagree, agree, partly agree, and strongly agree and will have point values of 1 

through 6 respectively. The highest score a student can get on the survey is 372 and the 

lowest is 62.  A higher score is interpreted to mean the student holds a reform-oriented 

belief system about mathematics. 

 This survey has 56 items adapted from the Conceptions of Mathematics Inventory 

(CMI) from Grouws (1994).  The statements are the same as those on the CMI; however, 

the original survey had a five-point Likert scale.  This was changed so that neutral was 

not an option and the students had to choose between agreeing and disagreeing.  These 
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items are divided into seven subscales, described in Table 3, with eight items each.  Half 

of the items are worded positively and half are worded negatively.  In analyzing the 

responses, positive items will receive the scale value corresponding to the level of 

agreement and negative items will be reversed by subtracting the initial survey value 

from seven. 

Table 3 

CMI Subscales (Star and Hoffmann, 2005, p. 28) 
Composition of Mathematical Knowledge.  Mathematical knowledge is either concepts, 

principles, and generalizations or facts, formulas, and algorithms. 

Structure of Mathematical Knowledge.  Mathematics is structured either as a coherent system or 

a collection of isolated pieces. 

Status of Mathematical Knowledge.  Mathematics as either a dynamic field or a static entity. 

Doing Mathematics.  Doing mathematics is either a process of sense-making or a process of 

obtaining results. 

Validating Ideas in Mathematics.  Validating ideas in mathematics occurs either through logical 

thought or via mandate from an outside authority. 

Learning Mathematics.  Learning mathematics is either a process of constructing and 

understanding or a process of memorizing intact knowledge. 

Usefulness of Mathematics.  Mathematics is viewed as either a useful endeavor or as a school 

subject with little value in everyday life or future work. 

 

 Star and Hoffmann (2005) point out that Grouws does not report any statistical 

reliability of the survey; however, they state that their study had Cronbach's alpha 

reliability values ranging from 0.26 to 0.87 while another study had Cronbach's alpha 
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reliability values ranging from 0.45 to 0.91.  There was no mention of factor analysis 

being performed on the data.  From the pre-survey it was found that the whole survey had 

a Cronbach’s alpha of 0.91, the subscale Status had 0.65, Usefulness had 0.74, 

Composition had 0.72, Learning had 0.63, Doing had 0.63, Validation had 0.66, and 

Structure had 0.58. 

The final 6 items on the survey measured students’ beliefs about mathematicians 

and developed for the purposes of this study.  These items consist of two positively 

worded questions and four negatively worded questions.  They were scored in the same 

fashion as the items from the CMI.  This part of the survey had a Cronbach's alpha 

reliability score of 0.48 from the pre-survey. 

 Supplemental data.  Supplemental data were collected in the form of written 

papers and interviews.  There were four written papers collected from every student in 

the treatment group participating in the study.  The first paper was assigned on the first 

day of class and is a narrative about each student’s mathematical journey.  It was 

designed to supplement and inform their survey responses.  Topics that the students were 

asked to include were how they became interested in mathematics, why they decided to 

major in mathematics or why they want to teach mathematics, and their beliefs on the 

nature of mathematics.  The other three papers were assigned at the end of each week of 

the treatment for the students to reflect on the presentation of mathematics research.  

These papers are included to provide insight into how the students’ beliefs changed 

during the intervention.  The students were asked to include any insights they gathered 

about mathematics, how the presentations related to topics discussed earlier in the week, 

and what they learned from the presentations. 
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 Interviews were conducted throughout the semester to explain missing data from 

their written papers, responses to the survey, and how their conceptions have changed by 

the intervention.  Four students were interviewed over the course of the Fall semester and 

three over the course of the Spring semester.  Three of the four students in the Fall 

semester were interviewed once at the beginning and once at the end of the semester.  

The fourth student did not reply to inquiries at the end of the semester and so was only 

interviewed at the beginning of the semester.  In the Spring semester only one student 

was interviewed at the beginning and end of the semester.  One of the other two students 

was interviewed at the beginning of the semester but did not respond to contact at the end 

of the semester.  The last student was added at the end of the semester to have at least two 

students interviewed at the end of the semester.   

 Each interview lasted between 30 to 45 minutes depending on how the student 

responded to questions.  An informal interview guide (Appendix D) was used to help 

conduct the first interviews. More questions were added for each individual student based 

on their responses on the pre-survey and the mathematics biography paper assigned on 

the first day of class.  An interview guide for each student was developed for the second 

interviews that were based on all their responses to all three surveys, all their reflection 

papers and the first interview. 

Procedure 

 The course used for the study was MATH 3330, Introduction to Advanced 

Mathematics.  This course was chosen because it is one of the first courses where 

students encounter advanced mathematics topics.  The course was team taught with a 

mathematics professor at Texas State University, who was the instructor of record.  
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Figure 1 illustrates how the semesters were structured.  The control and treatment groups 

had different instructors of record and they switched roles after the Fall semester.  So 

each instructor had a treatment class and a control class.  The first day of class was very 

typical as students were introduced to the class syllabus, the researcher, and the instructor 

of record.  At this point the pre-survey was administered with a letter of consent that 

describes the study and informed the students of their voluntary participation in the study.  

The students were then told of their first writing assignment, the mathematics biography 

narrative, and given a week to complete it.  The pre-survey was also administered in the 

control class on their first day. 

 

Figure 1. Semester Structure. 

 The data from the pre-survey were entered into the computer, the scores for 

negative worded questions were changed according to the method stated above, and a 

total score for each student’s survey was calculated. Two students, one of which was 

seeking secondary certification, whose pre-survey scores were among the highest and two 

students, one of which was seeking secondary certification, whose scores were among the 

lowest, were selected during the Fall semester for interviews. In the Spring a similar 

process was attempted but either students dropped the course without notification (before 

the first interview), never showed up for the interview, or never responded to the inquiry.  

In the Fall semester four students were interviewed within a month of the beginning of 
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school and two students in the Spring. 

 The instructor of record taught the first 11 weeks of the 14-week course.  The last 

three weeks were used for the intervention.  The intervention was put at the end of the 

course because the students would need the content from the course to help them with the 

advanced nature of the mathematics research that was presented.  At the start of the last 

three weeks of the semester the mid-survey was administered in the treatment and control 

classes.  This was done to control for any changes that might be attributed to the 

instructor of record teaching the course.   

Table 4 

Weekly Topics 

 Monday Friday 
Week 1 Groups, Subgroups Extra-Special p-Groups, 

Elementary p-Groups 

Week 2 Counting Number of Abelian Subgroups 

of an Extra-Special p-Group  

Week 3 Isomorphisms Number of Regular Orbits of 

the Action and Research 

Process 

 

 The study then followed a weekly format that included a content component at the 

beginning of the week and a research presentation component on the last day of the week.  

The content component provided students with fundamental advanced mathematical 

knowledge relevant to the mathematics research that was presented at the end of the 
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week.  The presentations at the end of the week were of the mathematics research that the 

researcher had done.  The homework following the presentation consisted of students 

writing a reflection related to the information from the past week.  Table 4 provides a 

detailed list of topics for each week.  Chapter 5 discusses what was in the lesson plans 

and presentations, how they were implemented in the classes, and changes made between 

the semesters. To see the final lesson plans see Appendix E. 

 For example, on the first day of the week the lesson covered the definitions of 

terms such as a group, abelian, and subgroup along with other relevant information, like 

examples.  The research that was presented to the students on Friday consisted of the 

definition of an extra-special group, exponent, and the various structures of the groups 

that were relevant to the mathematics research. 

 This purpose for using this type of intervention was based on Cuoco and 

associates’ (1996) suggestion of including a mathematician’s habit of mind through the 

inclusion of mathematics research in mathematical teaching.  Mathematics research can 

illustrate the hard work that is done in order to do mathematics, leading the students to a 

growth mind-set described in Dweck’s (2007) article.  Also, the students will get a 

glimpse of mathematics that they might not have seen before and thus enriching their 

mathematical beliefs.  

 On the last day of the semester the post-survey was administered to the treatment 

and control classes.  In the following days the students who were interviewed at the 

beginning of the semester were contacted for a second interview.  Three of the students in 

the Fall responded and were interviewed while one of the students in the Spring 

responded.  An attempt was made to reach out to other students in the Spring treatment 
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class for interviews with one student responding. 

Data Analysis 

 Quantitative data.  Data from the pre-survey were analyzed first using an 

independent samples t-test to determine whether there was any statistical difference 

between the control and treatment groups at the beginning of each semester and in the 

study as a whole.  The same was done with each subscale defined above.  Additionally 

averages and standard deviations for each question were found to give an idea where the 

students lie for each question and to see how close the treatment and control groups are 

for each question.  

 The data from the three administrations of the survey were used to answer each of 

the research questions outlined at the beginning of this chapter.  The null hypotheses 

associated with the research questions in respective order are: 

1. Pre-service secondary mathematics teachers, pure mathematics majors, 

applied mathematics majors, and mathematics minors have the same beliefs 

about the mathematics. 

2. Mathematics majors who participate in MATH 3330 from the perspective of 

mathematics research demonstrate the same changes to their beliefs about 

mathematics as mathematics majors who participate in a standard MATH 

3330 course. 

3. Pre-service secondary mathematics teachers who participate in MATH 3330 

from the perspective of mathematics research demonstrate the same changes 

to their beliefs about mathematics as pre-service secondary mathematics 

teachers who participate in a standard MATH 3330 course. 
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 Question 1 was investigated using ANOVA on the data from the pre-surveys.  The 

response variable was the pre-survey score and the predicting factor was the major.  The 

majors were coded categorically and students are either a pre-secondary mathematics 

teachers, pure mathematics majors, applied mathematics majors, or mathematics minors. 

 Questions 2 and 3 were first investigated using an independent samples t-test to 

determine if there was a significant difference between survey scores of the treatment 

group and the control group.  Then a paired t-test between each administration of the 

survey as a total score and the subscales was performed.  All pairs of administrations 

were analyzed in both groups to determine if there were any statistically significant 

changes at the .05 level.   

 Additional analysis was done to determine if there were any significant 

differences between an instructor’s treatment and control class.  An independent samples 

t-test was used to determine if there is a significant difference between their treatment 

and control groups across each survey and subscale. 

 Supplemental data.  All papers were copied and then returned to the students.  

All interviews were recorded and then transcribed by an outside source. The interviews 

and papers were read twice and coded using the subscales from the survey.  For example 

if a student mentioned something about how mathematics is done then that quote would 

be marked as “Doing” so that it could be used later when analyzing survey data. 

 The data were then reread looking for any illuminating or unexpected information.  

Several new themes presented themselves during the reading.  Some of these include 

connections to Dweck’s work, information on how the treatment affected future plans, 

and curiosity about what the students’ professors are researching.  After each new theme 
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presented itself the interviews and papers were read again to see if that new theme 

presented itself somewhere else. 

Summary 

 Using the quantitative data along with the supplemental data allowed for a richer 

examination of the students’ beliefs.  Unfortunately, several obstacles prevented the 

interview data from being as robust as it might have been.  Nevertheless, the surveys, 

papers, and interviews actually obtained did allow the research questions to be 

thoroughly investigated. 

. 



CHAPTER 4

THE MATHEMATICAL RESEARCH ON EXTRA-SPECIAL GROUPS

In this chapter we will discuss the mathematics research and proofs of the results

that I presented to students in the MATH 3330 course. It is assumed that the reader has an

Algebra knowledge base of at least a first semester graduate Algebra course in Group

Theory. It should be noted that in the presentation to the students the faithful irreducible

GF (qk)-module discussed here is referred to as an elementary abelian group. These two

descriptions of the group are equivalent, but the elementary abelian description was used

to simplify the discussion for the benefit of the students. However it will be referenced as

a GF (qk)-module in this chapter to keep it more in line with the texts used in the research

literature. Formal definitions will follow the introduction in the main sections below.

Let P be an extra-special p-group of order p2m+1 acting on a faithful irreducible

GF (qk)-module of dimension pm, where p and q are prime, m is a natural number, and k

is the smallest natural number for which p divides qk − 1. The parameter k will be

revisited later in the chapter.

Foulser (1969) counted the regular orbits of the action of P on such a

GF (qk)-module, when P is of exponent p. However, he did not consider the case where

the extra-special p-group has exponent p2 for odd p. In this chapter, I will extend Foulser’s

results to the exponent p2 case, when p is odd.

All extra-special p-groups have the same basic structure. When m = 1, the order

is p3, and we get the following structures as derived by Doerk and Hawkes (1992, p. 79):

• If P is of exponent p, then P = ⟨x, y : xp = yp = 1, [x, y] ∈ Z(P )⟩

44
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• If P is of exponent p2, then P = ⟨x, y : xp = yp
2
= 1, [x, y] = yp ∈ Z(P )⟩.

They then use these to explain the structure of P for any m. When P has exponent p2,

then P is a central product of m extra-special p-groups of order p3 of which m− 1 have

exponent p and one has exponent p2. When P is of exponent p, then it is a central product

of m extra-special p-groups of order p3 and exponent p. Thus the structure of the

extra-special p-group of exponent p2 is very similar to that of the extra-special groups of

exponent p. This is the basis for my approach of adapting Foulser’s formula to the

exponent p2 case.

To summarize, the main result of this chapter is to derive an exact formula for the

number of regular orbits of an extra-special p-group of exponent p2 acting on a faithful

irreducible GF (qk)-module, which is formally stated as Corollary 42 toward the end of

the chapter. Most definitions pertaining to this result will be provided in the text.

However, action and orbit will be discussed briefly now because of the prominent role they

play in the result. When for each g in a group G and u in a set U there is a unique element

u · g ∈ U such that u · 1 = u and (u · g) · h = u · (gh) for all u ∈ U and g, h ∈ G we say

that G acts on U . If G acts on U then an orbit is the set {u · g|g ∈ G} which is a subset of

U . It turns out that the orbits partition U into disjoint subsets. In my case I am interested

in regular orbits, orbits whose cardinality is equal to the order of the acting group.

Orbits play an important role in mathematics by assisting in the proving of many

results. For example, the formula for the number of regular orbits that Foulser derived was

not the final result, but was a result used in the process of proving the main result. In

addition to the examples given in the Chapter 2, other examples of recent work involving

orbits include Keller’s (2005) work on the k(GV )-problem and Wilson’s (2009) work

involving p-groups and Jordan algebras.
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Elementary Abelian Subgroups

Before we consider the action of interest we will look at the number of elementary

abelian subgroups in an extra-special p-group of length m and exponent p2. These

subgroups were shown by Foulser (1969) to be important to counting the orbits of the

action in the exponent p case and are just as important in the exponent p2 case. Before we

go any further we will formally define some terms that have already been used and terms

that will be used. Also, note that p > 2 and q are always distinct prime numbers. In the

second definition Φ(P ) is known as the Frattini subgroup of P and Z(P ) is the center of

P . The set P ′ = ⟨[x, y]|x, y ∈ P ⟩ is the commutator subgroup of P where

[x, y] = x−1y−1xy. It is a well-known fact that for extra-special groups even

P ′ = {[x, y]|x, y ∈ P}.

Definition 1. If G is a finite group, then the smallest positive integer n such that

gn = 1 for all g ∈ G is called the exponent of G.

Definition 2. Let P be a p-group. P is called extra-special if Φ(P ) = P ′ = Z(P )

and Z(P ) has order p. Thus Z(P ) = ⟨z⟩ for any 1 ̸= z ∈ Z(P ). Extra-special

p-groups have order p2m+1 and either exponent p or p2 (Doerk & Hawkes,

1992, p. 78). Following the work of Foulser, m will be defined as the length of

the extra-special p-group.

Definition 3. Let G be a group. Then G is a central product of normal subgroups

Hi, where i is a natural number with 1 ≤ i ≤ α, for some natural number α if

G = Πα
i=1Hi,

∩α
i=1Hi = Z(G), and hihj = hjhi for all hi ∈ Hi and hj ∈ Hj

when i ̸= j. Write G = H1 ◦H2 ◦ ... ◦Hm in this situation.

The first three definitions set up many of the important constructs that will be

discussed. However informal definitions will be provided as well throughout and the

reader is encouraged to seek out other material for more descriptive definitions. We now
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restate information from the introduction as a formal lemma so that it can be referenced

throughout the section.

Lemma 4. Let P be an extra-special p-group of length 1. If P is of exponent p, then

P = ⟨x, y : xp = yp = 1, 1 ̸= [x, y] ∈ Z(P )⟩

and if P is of exponent p2, then

P = ⟨x, y : xp = yp
2

= 1, 1 ̸= [x, y] = yp ∈ Z(P )⟩

(Doerk & Hawkes, 1992, p. 79). Note that when it is understood which

particular extra-special p-group of length 1 we are talking about we can simply

write P = ⟨x, y⟩.

The following two lemmas, which again formally give information that was in the

introduction, will provide important facts about the structures of these extra-special

p-groups, mainly that they are central products. Lemma 6 shows that in the case of the

group being of exponent p2 we can make the central product look almost identical to the

exponent p group but change one subgroup in the central product to an extra-special

p-group of exponent p2.

Lemma 5. Let P be an extra-special p-group of exponent p and length m. Then P

is the central product of m extra-special p-groups of exponent p of length 1.

Thus, we can write P = P1 ◦ P2 ◦ ... ◦ Pi ◦ ... ◦ Pm−1 ◦ Pm, where Pi = ⟨xi, yi⟩

is an extra-special p-group of exponent p with length 1 for 1 ≤ i ≤ m.

Proof. See Foulser (1969, p. 7-8) Lemma 3.4.

It is important to understand where the center of P , Z(P ), is in the central product

described in Lemma 5. We know from Definition 2 that the center is of order p. From
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Definition 3 we know that for all z ∈ Z(Pi), for any i, and g ∈ P such that g ̸∈ Pi,

gz = zg. Then we see that Z(Pi) is contained in Z(P ) and thus Z(Pi) = Z(P ). This

same idea is also true in the central product that we see in the following lemma, even

though by Lemma 4 it might appear that Pm has a different center than Pi for i < m in

Lemma 6.

Lemma 6. Let P be an extra-special p-group of exponent p2 and length m. Then

P is the central product of m− 1 extra-special p-groups of exponent p of

length 1 and one extra-special p-group of exponent p2 of length 1 (Doerk &

Hawkes, 1992, p. 79).

As mentioned earlier, an extra-special p-group P of exponent p2 and length m can

be written as the following central product P = P1 ◦ P2 ◦ ... ◦ Pi ◦ ... ◦ Pm−1 ◦ Pm, where

Pi = ⟨xi, yi⟩ is an extra-special p-group of exponent p with length 1 for 1 ≤ i ≤ m− 1

and Pm = ⟨xm, ym⟩ is an extra-special p-group of exponent p2 with length 1. It should be

noted that for any P of exponent p2 the generators for Pm, xm and ym, will be fixed. This

enables us to simplify the counting process by referencing xm and ym without them being

arbitrary suitable generators. Thus when discussing extra-special p-groups of exponent p2,

ym is the generator of order p2 for the remainder of the chapter. Also, when m = 1 the

central product P1 ◦ P2 ◦ ... ◦ Pm−1 is an empty central product, as m− 1 = 0, and will be

defined for our purposes as Z(P ).

Notation 7. Let P be an extra-special p-group of length m. Let the Pi ≤ P be as

in Lemma 5 and 6. Let r ∈ {0, ...,m}. When P has exponent p, let Sr,m

denote the set of elementary abelian subgroups of P such that if S ∈ Sr,m,

then |S| = pr+1 and Z(P ) ⊆ S. When P has exponent p2 and S > 1 we say

that S ≤ P is of type j = 1 when S ⊆ P1 ◦ ... ◦ Pm−1, of type j = 2 when

S ̸⊆ P1 ◦ ... ◦ Pm−1 and xm ∈ S, and of type j = 3 when S ̸⊆ P1 ◦ ... ◦ Pm−1

and xm ̸∈ S. Furthermore, let S j
r,m denote the set of elementary abelian



49

subgroups of P such that if S ∈ S j
r,m, then |S| = pr+1 and Z(P ) ⊆ S and S is

of type j ∈ {1, 2, 3}. We call r the length of any such S. Let Cr,m = |Sr,m|

and Cj
r,m = |S j

r,m|.

Notation 7 sets up many of the different sets that will be referenced often

throughout the chapter. Whenever Sr,m is referenced then an extra-special p-group of

exponent p is being discussed. When S j
r,m is referenced then we are discussing

extra-special p-groups of exponent p2. Furthermore, if S is an element of either set, then S

contains the center of the respective extra-special p-group, P , for which it is a subgroup.

Thus, as ⟨z⟩ = Z(P ), S has z as one of its generators.

Lemma 8. Let S ∈ Sr,m for 1 ≤ r ≤ m. Then:

1. There exist elements s1, ..., sr ∈ P − Z(P ) such that S = ⟨s1, ..., sr, z⟩

where the order of si is p, 1 ≤ i ≤ r.

2. Moreover, there exist subgroups P1, ..., Pm of P (each Pi is an extra-special

p-group of exponent p and of length 1) such that si ∈ Pi for 1 ≤ i ≤ r, and

P = P1 ◦ ... ◦ Pm.

Proof. See Foulser (1969, p. 11-12) Lemma 3.17.

Corollary 9. Let S ∈ S 1
r,m for 1 ≤ r ≤ m. Then:

1. There exist elements s1, ..., sr ∈ P − Z(P ) such that S = ⟨s1, ..., sr, z⟩

where the order of si is p, 1 ≤ i ≤ r.

2. Moreover, there exist subgroups P1, ..., Pm−1 of P (each Pi is an

extra-special p-group of exponent p) such that si ∈ Pi for 1 ≤ i ≤ r, and

P = P1 ◦ ... ◦ Pm. Thus S 1
m,m = ∅.

Proof. As P1 ◦ ... ◦ Pm−1 is an extra-special p-group of exponent p, this follows

from Lemma 8. Also there does not exist a subgroup S ≤ P1 ◦ ... ◦ Pm−1 of

order pm+1. Thus S 1
m,m = ∅.
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Lemma 8 and Corollary 9 might look the same but remember that we are talking

about extra-special p-groups with different exponents. In Lemma 8 Foulser shows that

these subgroups exist and how the generators relate to the larger group. Corollary 9 is part

of an extension to the exponent p2 case.

Lemma 10. Let P be an extra-special p-group of exponent p2 of length m. Then

for any integer α we have (ym)
αp ∈ Z(P ), and (xm)

α1(ym)
α2 is of order p2 for

all positive integers α1 (1 ≤ α1 ≤ p) and α2 (1 ≤ α2 ≤ p2 − 1) such that p

does not divide α2.

Proof. First consider that [xm, ym] = z ∈ Z(P ). Thus (xm)
−1(ym)

−1xmym = z

and so xmym = ymxmz. Thus, by induction, and the fact that the order of z is p

by Definition 2, it can be shown that xm(ym)
p = (ym)

pxm(z)
p = (ym)

pxm.

Thus, (ym)p ∈ Z(P ) and so (ym)
αp ∈ Z(P ).

Suppose p does not divide α2. Then, either (xm)
α1 = 1 or (xm)

α1 ̸= 1.

If (xm)
α1 = 1 then (xm)

α1(ym)
α2 = (ym)

α2 . Now consider

((ym)
α2)p = (ym)

α2p. Since p does not divide α2, p2 does not divide α2p. Thus

as the order of ym is p2, (ym)α2p ̸= 1. Thus the order of (ym)α2 is p2.

Suppose (xm)
α1 ̸= 1 and consider ((xm)

α1(ym)
α2)p. By induction it

can be shown that

((xm)
α1(ym)

α2)p = ((xm)
α1)p((ym)

α2)p(z)
p(p−1)

2
α1α2 = (ym)

α2p ̸= 1.

Thus the order of (xm)
α1(ym)

α2 is p2.

Definition 11. Let P be a p-group. Define Ω1(P ) to be the group generated by all

elements g ∈ P such that gp = 1.

It is easy to see that if P is of exponent p then Ω1(P ) = P . However when P is of

exponent p2 this is not true. Lemma 12 shows what Ω1(P ) is in this case. For further

information on Ω1(P ) the reader is directed to Isaacs’ Finite Group Theory book (2008, p.
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120). Also, in Lemma 13 we see CP (xm), which is the centralizer of ⟨xm⟩ in P .

Lemma 12. Let P be an extra-special p-group of exponent p2 and length m. Then

⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩ = Ω1(P ) for m ≥ 2 and

⟨x1⟩ × Z(P ) = Ω1(P ) for m = 1.

Proof. Let m ≥ 2. Clearly ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩ ⊆ Ω1(P ). Now

suppose α ∈ Ω1(P ) such that α ̸∈ ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩. Since

α ̸∈ ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩, α = sxi
my

j
m for some

s ∈ ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ and j not a multiple of p (if j was a multiple

of p then yjm ∈ Z(P ) ). Recall that [xm, ym] = z, so x−1
m y−1

m xmym = z. Then

xmym = ymxmz. This, with α ∈ Ω1(P ), means that 1 = αp = (sxi
my

j
m)

p.

Since s commutes with xm and ym and as we saw in Lemma 10 we get

(sxi
my

j
m)

p = sp · xip
m · yjpm · z

p(p−1)
2

ij = yjpm . This is a contradiction since the

order of ym is p2 and j is not a multiple of p. Hence such an α does not exist.

In the case that m = 1 we see that ⟨x1⟩ × Z(P ) ⊆ Ω1(P ). Also, if we

assume that α ∈ Ω1(P ) such that α ̸∈ ⟨x1⟩ × Z(P ) then α = zxi
1y

j
1 for some j

not a multiple of p and z ∈ Z(P ) by an argument identical to the case when

m ≥ 2. Such an α does not exist, again using an argument identical to the

m ≥ 2 case and the lemma is proved.

Lemma 13. Let S ∈ S 2
r,m for some 1 ≤ r ≤ m. Then there exist elements

s1, ..., sr−1 ∈ (P1 ◦ ... ◦ Pm−1)− Z(P ) such that S = ⟨s1, ..., sr−1, xm, z⟩.

Furthermore there exist subgroups P ∗
1 , ..., P

∗
m−1 of P (each P ∗

i is an

extra-special p-group of exponent p and of length 1) such that si ∈ P ∗
i for

1 ≤ i ≤ r − 1 and P = P ∗
1 ◦ ... ◦ P ∗

m−1 ◦ Pm.

Proof. Since xm ∈ S, then xm will be used as a generator for the subgroup. Thus

the remaining generators can be chosen from P1 ◦ ... ◦ Pm−1 and the result

follows from Lemma 8.

Lemma 14. Let S ∈ S 3
r,m for some 1 ≤ r ≤ m. Then there exist elements
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s1, ..., sr ∈ (P1 ◦ ... ◦ Pm−1)− Z(P ) with ⟨s1, ..., sr, z⟩ ∈ S 1
r,m such that

S = ⟨s1(xm)
j1 , ..., sr(xm)

jr , z⟩ where ji is a positive integer with 1 ≤ ji ≤ p

for all i with at least one ji ̸= p.

Proof. First, since S ∈ S 3
r,m, then xm ̸∈ S. Thus, if m = 1, then xm has to be in S.

Thus this lemma applies only when m > 1.

Note that for non-negative integers α1 and α2, if (ym)α2 ̸∈ Z(P ), then

(xm)
α1(ym)

α2 ̸∈ S as it has order p2 by Lemma 10. Since S ̸⊆ P1 ◦ ... ◦ Pm−1,

S must contain elements that do not commute with ym (because

CP (ym) = P1 ◦ ... ◦ Pm−1 · ⟨ym⟩). Hence S contains elements of the form sxj
m

for some 1 ̸= s ∈ P1 ◦ ... ◦ Pm−1 and 1 ≤ j ≤ p− 1. Also, as S is elementary

abelian, S ≤ Ω1(P ) = P1 ◦ ... ◦ Pm−1 × ⟨xm⟩ and thus all of the elements of S

have the form sxj
m for some 1 ̸= s ∈ P1 ◦ ... ◦ Pm−1 and 1 ≤ j ≤ p. Take

s1, ..., sr ∈ (P1 ◦ ... ◦ Pm−1)− Z(P ) so that S = ⟨s1(xm)
j1 , ..., srx

jr
m, z⟩ with

0 ≤ ji ≤ p and at least one ji ̸= p. As si(xm)
jish(xm)

jh = sh(xm)
jhsi(xm)

ji

for all integers i, h we get sish(xm)
ji+jh = shsi(xm)

ji+jh because

CP (xm) = P1 ◦ ... ◦ Pm−1 × ⟨xm⟩. This implies sish = shsi for all i and h.

Thus ⟨s1, ..., sr, z⟩ is abelian and so ⟨s1, ..., sr, z⟩ ∈ S 1
r,m. Thus the Lemma is

proved.

Lemmas 13 and 14 together with Corollary 9 for the exponent p2 case is

analogous to Lemma 8 for the exponent p case. To summarize what is said in Corollary 9,

Lemma 13, and Lemma 14, an elementary abelian p-group S of an extra-special p-group,

P = P1 ◦ ... ◦ Pm, of exponent p2 is either contained in P1 ◦ ... ◦ Pm−1 or it is not. If it is,

then we are in we are in the setting of Corollary 9 and we can use Lemma 8. If S is not in

P1 ◦ ... ◦ Pm−1 then it is contained in P1 ◦ ... ◦ Pm−1 × ⟨xm⟩, or ⟨z⟩ × ⟨x1⟩ when m = 1,

since we know that if ym is used we will have elements of order p2. So Corollary 9,

Lemma 13, and Lemma 14 account for all the elementary abelian p-subgroups that contain

the center of an extra-special p-group of exponent p2, as Lemma 8 does for an
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extra-special p group of exponent p.

Lemma 15. Let S = ⟨s1(xm)
j1 , ..., si(xm)

ji , ..., sr(xm)
jr , z⟩ and

S∗ = ⟨s∗1(xm)
j∗1 , ..., s∗i (xm)

j∗i , ..., s∗r(xm)
j∗r , z⟩ be in S 3

r,m, where ji is a positive

integer with 1 ≤ ji ≤ p for all i with at least one ji ̸= p, where j∗i is a positive

integer with 1 ≤ j∗i ≤ p for all i with at least one j∗i ̸= p, ⟨s1, ..., sr, z⟩ ∈ S 1
r,m,

and ⟨s∗1, ..., s∗r, z⟩ ∈ S 1
r,m . Then the following hold:

1. If ⟨s1, ..., sr, z⟩ ̸= ⟨s∗1, ..., s∗r, z⟩, then S ̸= S∗.

2. If si = s∗i for all i and ji ̸= j∗i for at least one i, then S ̸= S∗.

Proof. For Part 1 assume that S = S∗. Then there is a generator s∗ix
j∗i
m , for some i,

1 ≤ i ≤ r, of S∗ such that s∗i ̸∈ ⟨s1, ..., sr, z⟩ and

s∗i (xm)
j∗i = zl

∏r
α=1 (sα(xm)

jα)lα = zl(xm)
L1

∏r
α=1 (sα)

lα for some

non-negative integers l, lα and L1, 1 ≤ L1 ≤ p. Then

s∗i = zl(xm)
L2

∏r
α=1 (sα)

lα for some natural number L2 with 1 ≤ L2 ≤ p.

Either L2 = p or L2 ̸= p. If L2 = p then s∗i ∈ ⟨s1, ..., sr, z⟩, a

contradiction. If L2 ̸= p then s∗i ̸∈ P1 ◦ ... ◦ Pm−1, a contradiction. Thus

S ̸= S∗.

For Part 2 again assume S = S∗. Note that

⟨s1(xm)
j1 , ...si(xm)

ji , ..., sr(xm)
jr , z⟩ = ⟨s1(xm)

j∗1 , ..., si(xm)
j∗i , ..., sr(xm)

j∗r , z⟩

and jα ̸= j∗α for some α such that 1 ≤ α ≤ r. Without loss, assume that

jα < j∗α so j∗α = jα + β for some positive integer β such that 0 < β < p. Then

sα(xm)
j∗α = sα(xm)

jα(xm)
β . Thus (sα(xm)

jα)−1sα(xm)
jα(xm)

β = (xm)
β ∈ S,

which implies xm ∈ S, a contradiction. Thus S ̸= S∗.

In the following Lemmas we are interested in counting the number of subgroups

discussed in Lemma 8, Corollary 9, Lemma 13, and Lemma 14. If you look at Lemma 14
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and 15 you can pick two things to change in the construction of a subgroup S, either you

change the subgroup from P1 ◦ ... ◦ Pm−1 used in the construction (Part 1) or change the ji

for at least one of the xji
m (Part 2). In either case Lemma 15 shows that the result is a

different subgroup.

Lemma 16, Lemma 17, Lemma 18, and Lemma 19 are counting the number of

subgroups from Lemma 8, Corollary 9, Lemma 13, and Lemma 14 respectively. Since

Lemma 8 was from Foulser’s work, Lemma 16 is as well. Just as Corollary 9 followed

from Lemma 8, so too does Lemma 17 follow from Lemma 16. However Lemma 17 was

not as straightforward as Corollary 9 and thus is a lemma. Lemma 17, Lemma 18, and

Lemma 19 use Foulser’s result as well as basic counting principles in their results.

Lemma 16.

Cr,m =
r−1∏
i=0

(p2(m−i) − 1)

(pi+1 − 1)
, 0 ≤ r ≤ m and m ≥ 0.

Proof. For 1 ≤ r ≤ m see Foulser (1969, p. 12-13) Lemma 3.20. For r = 0 we get

the empty product, so C0,m = 1. This agrees with there being only one

elementary abelian subgroup of length zero that contains the center and that is

the center.

Lemma 17.

C1
m,m = 0 and

C1
r,m =

r−1∏
i=0

(p2(m−1−i) − 1)

(pi+1 − 1)
= Cr,m−1, 0 ≤ r < m and m ≥ 1.

Proof. First, it is obvious that C1
m,m = 0 since S 1

m,m = ∅. Now let r < m and

S ∈ S 1
r,m. Then S ≤ P1 ◦ ... ◦ Pm−1 which is an extra-special p-group with

length m− 1 of exponent p. Thus the result follows from Lemma 16.
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Lemma 18.

C2
r,m = C1

r−1,m, 1 ≤ r ≤ m and m ≥ 1.

Proof. We will find the cardinality of S 2
r,m by counting the number of ways to

select the generators for any S ∈ S 2
r,m. If xm ∈ S, then xm can be selected as

a generator. If m = 1, then r = 1 and S ∈ S 2
1,1 = {⟨xm, z⟩}. Then C2

1,1 = 1,

and the formula yields C2
1,1 = C1

1−1,1 = 1, as desired.

Suppose m ≥ 2, then CP (⟨xm⟩) = ⟨xm, P1 ◦ ... ◦ Pm−1⟩ and the

remaining r − 1 generators of S can be selected from ⟨P1 ◦ ... ◦ Pm−1⟩. Thus

we want the number of ways to choose r − 1 generators from an extra-special

p-group of exponent p and length m− 1. Thus there are Cr−1,m−1 such ways

which by Lemma 17 is C1
r−1,m.

Lemma 19.

C3
r,m = (pr − 1) · C1

r,m, 1 ≤ r ≤ m and m ≥ 1.

Proof. As stated in Lemma 14, a subgroup in S 3
r,m is of the form

S = ⟨s1xj1
m, ...six

ji
m, ..., srx

jr
m, z⟩ where ji is a natural number for 1 ≤ ji ≤ p

for all i such that at least one ji ̸= p and ⟨s1, ..., sr, z⟩ ∈ S 1
r,m. Thus by

Lemma 15 the number of ways to choose S is the number of ways to choose

⟨s1, ..., sr, z⟩ ∈ S 1
r,m times the number of ways to choose a sequence j1, ..., jr

where at least one ji ̸= p. By definition, the number of ways to choose

⟨s1, ..., sr, z⟩ is C1
r,m. The number of ways to choose a sequence j1, ..., jr

where at least one ji ̸= p is pr − 1. Thus, the number of ways to choose S is

C1
r,m · (pr − 1).

The Action of P

Up until this point we have been setting up information about the subgroups that



56

we will need to count the orbits. We now begin to look at the group action of interest in

this section. We will be looking at how an extra-special p-group of length m and exponent

p2 relates to an extra-special p-group of length m and exponent p. Since we know the

number of orbits in the exponent p case from Foulser (1969), this relation becomes key to

counting the orbits of the exponent p2 case. Notation 20, Definition 21, and Definition 22

define many of the terms in the statement of the problem in the introduction of this chapter.

Notation 20. A finite field is known as a Galois Field and is denoted by GF (qw)

with order qw where q is a prime number and w is a positive integer.

Definition 21. A group G ≤ GL(V ) acts irreducibly on a vector space V if the

only subspaces of V fixed by G are the trivial subspace 0 and V .

Definition 22. An action of a group G on a set Ω is faithful if and only if the

identity is the only element g ∈ G such that α · g = α for all α ∈ Ω.

To help visualize the difference and similarities between extra-special p-groups of

exponent p and p2 one can look at their matrix representations. Foulser (1969, p. 8-9,

Lemma 3.7) gives an explanations on the construction of these representations for the

exponent p case which the reader is encouraged to examine. A brief explanation of the

construction will be given here along with the contruction for the exponent p2 case. First,

let P be an extra-special p-group of length 1, then P has a faithful irreducible

representation over GF (qk). If P = ⟨x, y⟩ has exponent p2, then let ω ∈ GF (qk) have

multiplicative order p. Let x̄ and ȳ be the following p× p matrices:

ȳ =



0 1 0 . . . 0

0 0 1 . . . 0

...

ω 0 0 . . . 0


x̄ =



1 0

ω

. . .

0 ωp−1


.

One can see that P is isomorphic to ⟨x̄, ȳ⟩ with x mapped to x̄ and y mapped to ȳ either
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by hand or using the computer program GAP (The GAP Group, 2008) to verify. If

P = ⟨x, y⟩ has exponent p, then we can use the same ω that has order p. Again, let x̄ and

ȳ be the following p× p matrices:

ȳ =



0 1 0 . . . 0

0 0 1 . . . 0

...

1 0 0 . . . 0


x̄ =



1 0

ω

. . .

0 ωp−1


.

One can again see that P is isomorphic to ⟨x̄, ȳ⟩ with the same corresponding mapping.

So we can always look at extra-special p-groups in terms of these matrices and

when we compare the two cases we see that x̄ is the same. Additionally, when we view

the extra-special p groups of length m in terms of their central product and matrices, we

see that P1, P2, ..., Pm−1 can be exactly the same matrix groups in the exponent p2 case as

they are in the exponent p case. Also, in Pm we see that in either case xm is the same. So

the only generator whose matrix is different between the exponent p case and the exponent

p2 case is ym.

Now we can begin to see how the action is being done in this context. Note that

the set that is being acted upon is a vector space. In this case the action must respect

vector space operations. Let P be an extra-special p-group of exponent p or p2 acting on a

faithful irreducible GF (qw) module V . Let g ∈ P , v ∈ V and the action of P on V be

written as vg = v · g. In this action, v can be thought of as a row vector being multiplied

by the matrix representation of g.

In the following lemma there occurs what is known as a tensor product which we

will define informally with a brief discussion. A tensor product of two vector spaces V

and W over the same field F is denoted V ⊗W and is itself a vector space over F . If

{v1, ..., vn} and {w1, ...wm} are the bases for V and W respectively, then

{vi ⊗ wj|i = 1, ..., n, j = 1, ...,m} is a basis for V ⊗W . Thus an element in V ⊗W has
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the form
∑∑

aij(vi ⊗ wj) where each aij ∈ F . For a more formal discussion see Doerk

and Hawkes Chapter B (1992, p. 90).

Also, the parameter k, mentioned in the introduction to this chapter, has not been

discussed. We mention the following facts from the representation theory of finite groups

and refer interested readers to Huppert and Blackburn’s Finite Groups II, Chapter VII

(1982, p. 1). Consider P an extra-special p-group of length m acting on a faithful

irreducible GF (q)-module, V for some prime q ̸= p. If the action on V is restricted to the

center, Z, of P then we have the vector space VZ = V1 ⊕ ...⊕ Vpm where each Vi is a

faithful irreducible GF (q)-module of Z and |Vi| = qk where k is minimal such that

p|qk − 1, since Vi is irreducible. We can view Vi as a one-dimensional Z-module over

GF (qk), and V , viewed as a GF (qk)-module, is an absolutely irreducible P -module, in

other words it is still irreducible under a field extension.

Lemma 23. Let P ∗ = ⟨x∗
1, y

∗
1⟩ ◦ ... ◦ ⟨x∗

m, y
∗
m⟩ and P = ⟨x1, y1⟩ ◦ ... ◦ ⟨xm, ym⟩ be

extra-special p-groups of exponent p and p2 respectively. Let

V ∗ = V ∗
1 ⊗ ...⊗ V ∗

m be a faithful irreducible P ∗-module over GF (qk) and

V = V1 ⊗ ...⊗ Vm a faithful irreducible P -module over GF (qk). Then,

(
⟨x∗

1, y
∗
1⟩ ◦ ... ◦ ⟨x∗

m−1, y
∗
m−1⟩ × ⟨x∗

m⟩
)
V ∗

∼= (⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩)V.

Proof. It is obvious that

⟨x∗
1, y

∗
1⟩ ◦ ... ◦ ⟨x∗

m−1, y
∗
m−1⟩ × ⟨x∗

m⟩ ∼= ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩.

Since the matrix representation of the elements in both groups can be chosen

the same as discussed in the introduction to this section, it follows that the
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actions on the corresponding modules V ∗ and V are also equivalent; thus

(
⟨x∗

1, y
∗
1⟩ ◦ ... ◦ ⟨x∗

m−1, y
∗
m−1⟩ × ⟨x∗

m⟩
)
V ∗

∼= (⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩)V.

Lemma 23 is setting up important information needed for the main result. It shows

that when we restrict the acting group to ⟨x1, y1⟩ ◦ ... ◦ ⟨xm−1, ym−1⟩ × ⟨xm⟩ in both the

exponent p and p2 case, the actions are equivalent. We want this construction because it

contains all the subgroups that we discussed earlier and we will see that ym does not affect

the number of elements in regular orbits in the exponent p2 case.

Definition 24. Let V be a vector space. A point is a one-dimensional subspace of

V .

Lemma 25. Let P be an extra-special p-group, of exponent p and length m, acting

faithfully and irreducibly on the vector space V = V1 ⊗ ...⊗ Vm of order qkpm .

1. For any elementary abelian subgroup S ⊆ P with Z(P ) ≤ S there exists a

v ∈ V such that the corresponding point, GF (qk)v, is fixed by S (as a set).

2. There exist exactly pr(qkp
m−r − 1)/(qk − 1) fixed points for an elementary

abelian subgroup S of length r with Z(P ) ≤ S in P . These fixed points are

distributed equally in pr vector subspaces of dimension pm−r. These pr

vector spaces are permuted transitively by P .

Proof. See Foulser (1969, p. 14) Lemma 3.21.

Lemma 26. Let P , an extra-special p-group of length m, act on a faithful

irreducible GF (qk)-module V . Let S = ⟨s1, ..., sr, z⟩ be an elementary abelian

p-subgroup of P of length r that contains Z(P ). Let S0 = ⟨s1, ..., sr⟩ and

W = CV (S0). Then NP (W ) = NP (S0) = CP (S0).
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Proof. Let T = ⟨t1, ..., tr⟩ such that siti ̸= tisi for each i. Clearly

CP (S0) ≤ NP (S0). Working toward a contradiction, let x ∈ NP (S0) and

assume x ̸∈ CP (S0). Then there is an element s ∈ S0 such that sx = sz for

some 1 ̸= z ∈ Z(P ). This implies z ∈ S0, a contradiction. Thus,

NP (S0) = CP (S0).

To show that NP (S0) ⊆ NP (W ), let g ∈ NP (S0). Then

W g = CV (S0)
g = CV (S

g
0) = CV (S0) = W . Thus NP (S0) ⊆ NP (W ). Again,

working toward a contradiction, let g ∈ NP (W ) and assume g ̸∈ NP (S0).

Then g does not centralize S0, hence there is an element s ∈ S0 such that

sg = sz for some 1 ̸= z ∈ Z(P ). Then W = W g = CV (S0)
g = CV (S

g
0). Thus

for all w ∈ W , w is fixed by s and sg = sz. Hence w is fixed by z ∈ Z(P ), a

contradiction. Thus NP (W ) = NP (S0) = CP (S0).

Lemma 27. Let P , an extra-special p-group of length m, act on a faithful

irreducible GF (qk)-module V . Let S = ⟨s1, ..., sr, z⟩ be an elementary abelian

p-subgroup of P of length r that contains Z(P ). Let B = ⟨s1zj1 , ..., srzjr⟩

where 1 ≤ ji ≤ p for all i and W = CV (B). Then there are pr such B and if

we let Si (i = 1, ..., pr) be all such B and define Wi = CV (Si) for all i, then

the Wi have mutually trivial intersection.

Proof. Note that z ̸∈ B and as the order of z is p, the number of different such B is

pr, per the proof of Part 2 for Lemma 15. Thus, let Si (i = 1, ..., pr) be all such

B’s.

Let Wi = CV (Si) for all i. Working toward a contradiction, assume

there exist integers n1, n2 such that 1 ≤ n1, n2 ≤ pr, n1 ̸= n2, and

0 ̸= w ∈ Wn1 such that w ∈ Wn2 . Then

z−jαx−1
α wxαz

jα = w = z−j∗αx−1
α wxαz

j∗α for some xαz
jα ∈ Sn1 and

xαz
j∗α ∈ Sn2 with jα ̸= j∗α. This implies that wzβ = w for some 0 < β < p, a

contradiction as Z(P ) cannot fix a non-zero element of V . Thus
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Wn1 ∩Wn2 = {0} for all integers n1, n2 such that n1 ̸= n2 and

1 ≤ n1, n2 ≤ pr.

Lemma 28. Let P be an extra-special p-group, of exponent p2 and length m, acting

faithfully and irreducibly on the vector space V = V1 ⊗ ...⊗ Vm of order qkpm .

1. For any elementary abelian subgroup S ⊆ P with Z(P ) ≤ S there exists a

v ∈ V such that the corresponding point, GF (qk)v, is fixed by S (as a set).

2. There exist exactly pr(qkp
m−r − 1)/(qk − 1) fixed points for an elementary

abelian subgroup S of length r with Z(P ) ≤ S in P . These fixed points are

distributed equally in pr vector subspaces of dimension pm−r. These pr

vector spaces are permuted transitively by P .

Proof. For the most part Foulser (1969) did not use the fact that P was of exponent

p in the previous lemma. In either case the modules are the same and the

subgroups are the same, see Lemma 23. Thus, this follows mostly from

Lemma 25. The part that does not is the pr vector spaces that are permuted

transitively by P .

To prove this let S = ⟨s1, ..., sr, z⟩ be an elementary abelian subgroup

of P that contains Z(P ). Observe that the pr vector spaces mentioned above

are just the Wi for i = 1, ..., pr as defined in Lemma 27. Then

|W P
i | = |P : NP (Wi)|. By Lemma 26 |P : NP (Wi)| = |P : CP (Si)| = pr.

Hence all Wi are in a single orbit and thus permuted transitively by P .

In Lemma 25 Foulser shows what the action of any elementary abelian subgroup

of an extra-special p-group of exponent p does to the one-dimensional subspaces. In order

to fully prove a corresponding result for the exponent p2 case we needed Lemma 26 and

Lemma 27 to understand how these points behave within the action. Lemma 28 is then the

p2 case of Lemma 25 from Foulser. Foulser then goes on to describe what a stabilizer
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subgroup is, Definition 29, and then shows that all elementary abelian subgroups that

contain the center are stabilizer subgroups in this setting, Lemma 30.

Definition 29. Let P be an extra-special p-group that acts faithfully and irreducibly

on the vector space V = V1 ⊗ ...⊗ Vm. Call S ≤ Ω1(P ) a stabilizer subgroup

if it satisfies the following:

1. There exists a v ∈ V such that the point GF (qk)v is fixed by S and

2. if S∗ ≤ Ω1(P ) fixes GF (qk)v, then S∗ ≤ S.

In other words, S ≤ Ω1(P ) is a stabilizer group if and only if S is the exact

setwise stabilizer in Ω1(P ) of a point GF (qk)v for some v ∈ V .

Lemma 30. Let P and V be as in Lemma 25. Then the stabilizer subgroups of P

are all the subgroups contained in
m∪
r=0

Sr,m.

Proof. See Foulser (1969, p. 14-15) Lemma 3.22.

Definition 31. Let a finite group G act on a set Ω, let O be an orbit of this action,

and |O| = |G|. Then we call O a regular orbit.

In Lemma 32 the notation CP (v), which was used as the centralizer before, is

being used in this case to denote the set of stabilizers of an element. In this case CP (v) is

the set of elements in P that, in the action, send v to itself.

Lemma 32. Let P be an extra-special p-group of exponent p2 acting on a faithful

irreducible GF (qk)-module V . An element v ∈ V is in a regular orbit of P on

V if and only if v is in a regular orbit of Ω1(P ) on V .

Proof. If v is in a regular orbit of P acting on V , then CP (v) = {1}. Thus,

CΩ1(P )(v) = {1} and v is in a regular orbit of Ω1(P ).

Suppose v ∈ V is in a regular orbit of Ω1(P ), then CΩ1(P )(v) = {1}.

Let 1 ̸= g ∈ CP (v). Either o(g) = p or o(g) ̸= p. If o(g) = p, then g ∈ Ω1(P ),

so g ∈ CΩ1(P )(v) = 1. If o(g) ̸= p then 1 ̸= gp ∈ CP (v) and thus gp ∈ Ω1(P ).
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Thus gp ∈ CΩ1(P )(v) = {1} which is a contradiction. Thus CP (v) = {1} and v

is in a regular orbit of P .

The previous lemma shows what was mentioned earlier, that we do not have to

consider ym when counting the orbits of the action in question. It shows that the elements

that are in regular orbits Ω1(P ) are still in regular orbits when we extend the action to P

(note that the orbits are not necessarily the same between the two). In light of Lemma 32

and Lemma 23 we can use Foulser’s original formula to count the orbits with a

modification to the number of subgroups. We first need to identify the stabilizer subgroups

in the exponent p2 case. This is done in Lemma 33, which is analogous to Lemma 30,

which is from Foulser’s work.

Lemma 33. Let P act on a faithful irreducible GF (qk)-module as in Lemma 32.

The stabilizer subgroups of Ω1(P ) of the action are the elements of
m∪
r=1

(S 1
r,m ∪ S 2

r,m ∪ S 3
r,m).

Proof. By Lemma 23 the elementary abelian subgroups of Ω1(P ) that contain

Z(P ) are the same elementary abelian subgroups in the exponent p case. Thus

by Lemma 30 the elementary abelian subgroups of Ω1(P ) that contain Z(P ),

the elements in
m∪
r=1

(S 1
r,m ∪ S 2

r,m ∪ S 3
r,m), are stabilizer subgroups.

In Lemma 34 and Lemma 35 we are again looking at how these points are

behaving in the action. However you will notice that we do not explicitly discuss the

points in these lemmas. This is because we are looking at subspaces of V that contain the

points and this provides insight into what happens to the points in the action.

Lemma 34. Let P , an extra-special p-group of exponent p and length m, act on a

faithful irreducible GF (qk)-module V . Let S = ⟨s1, ..., sr, z⟩ be an elementary

abelian p-subgroup of P of length r that contains Z(P ). Let S0 = ⟨s1, ..., sr⟩

and W = CV (S0). Then |W | = qkp
m−r .

Proof. See Dornhoff (1969, p. 207) Lemma 3.
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Lemma 35. Let P , an extra-special p-group of exponent p2 and length m, act on a

faithful irreducible GF (qk)-module V . Let S = ⟨s1, ..., sr, z⟩ be an elementary

abelian p-subgroup of P . Let S0 = ⟨s1, ..., sr⟩ and W = CV (S0). Then

|W | = pkp
m−r .

Proof. In Dornhoff’s (1969) proof for the previous lemma he did not use the fact

that P was of exponent p. In either case the V from Lemma 30 and V from

this lemma are the same, and the subgroups are the same, see Lemma 23.

Thus, this result follows from Lemma 34.

Definition 36. Let P , an extra-special p-group of exponent p and length m, act on a

faithful irreducible GF (qk)-module. Define gm to be the number of points

whose exact stabilizer is Z(P ).

Definition 37. Let P , an extra-special p-group of exponent p2 and length m, act on

a faithful irreducible GF (qk)-module. Define g∗m to be the number of points

whose exact stabilizer is Z(P ).

Lemma 38 and Lemma 39 tell us how many points are stabilized by the particular

subgroups that we counted earlier. By knowing what points are stabilized by these

subgroups we will know that the elements associated with these points are not in a regular

orbit, which we will see later. Lemma 38 is associated with the exponent p case while

Lemma 39 is associated with the exponent p2 case.

Lemma 38. Let P , an extra-special p-group of exponent p and length m, act on a

faithful irreducible GF (qk)-module V . Let S be a stabilizer subgroup of P of

length r. The number of points whose exact stabilizer is S is prgm−r, where r

is the length of S.

Proof. By Lemma 8 there exists

Em−r = ⟨xr+1, yr+1⟩ ◦ ⟨xr+2, yr+2⟩ ◦ ... ◦ ⟨xm, ym⟩, an extra-special p group of

exponent p, such that S ∩ ⟨xr+1, yr+1⟩ ◦ ... ◦ ⟨xm, ym⟩ = Z(P). Then
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CP (Si) = S ◦ Em−r. Hence, by Lemma 26, NP (Wi) = S ◦ Em−r. The points

of Wi stabilized by exactly S are the points whose exact stabilizer in Em−r is

Z(P ). Wi is a faithful irreducible module of Em−r. To see this, assume Wi is

not faithful and let K be the kernel of the action of Em−r on Wi. Then

1 < K E Em−r, so z ∈ K, a contradiction. Thus the action is faithful. We

know that |Wi| = (qk)p
m−r and |Em−r| = p2(m−r)+1. Hence if Wi = X1 ⊕X2

where X1 is an irreducible module of Em−r, then with the same argument, X1

is also faithful, but then X1 is too small by Theorem 9.16 in Doerk and Hawkes

(1992). Therefore, Wi is indeed a faithful irreducible module of Em−r.

By Definition 36 the number of points of Wi whose exact stabilizer in

Em−r is Z(P ) is gm−r. Therefore the number of points of Wi stabilized exactly

by S is gm−r. Since by Lemma 27 there are pr different Wi, the number of

points of V whose exact stabilizer is S is prgm−r.

Lemma 39. Let P , an extra-special p-group of exponent p2 and length m, act on a

faithful irreducible GF (qk)-module V. Let S be a stabilizer subgroup of P of

length r. If S ∈ S 1
r,m, or if S ∈ S 3

r,m, then the number of points stabilized

exactly by S is prg∗m. If S ∈ S 2
r,m, then the number of points stabilized exactly

by S is prgm−r, where r is the length of S.

Proof. The proof for this lemma in the cases of S ∈ S 1
r,m and S ∈ S 3

r,m is the

same as Lemma 35 with slight modifications where appropriate. When

S ∈ S 1
r,m, then Em−r as defined in the proof of Lemma 38 is an extra-special

p-group of exponent p2, so we must use g∗m−r in place of gm−r. When

S ∈ S 2
r,m, then Em−r is an extra-special p-group of exponent p so we must use

gm−r from Foulser’s work.

For the case where S ∈ S 3
r,m we need to determine if there is an

element of order p2 in Em−r. From Lemma 14 S = ⟨s1xj1
m, ..., srx

jr
m, z⟩ (where

⟨s1, ..., sr, z⟩ ∈ S 1
r,m, 1 ≤ ji ≤ p for each i, and at least one ji ̸= p) and
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S0 = ⟨s1xj1
m, ..., srx

jr
m⟩. By Corollary 9 and Lemma 14 there exist t1, ..., tr ∈ P

such that ⟨s1, t1⟩ ◦ ... ◦ ⟨sr, tr⟩ is an extra-special p-group of exponent p.

Consider that [s1xj1
m, ymt

j∗1
1 ] = [xj1

m, ym][s1, t
j∗1
1 ] = zj1zj

∗
1 (as [xm, ym] = z), see

Lemma 4 and Definition 2. By a suitable selection of j∗1 , zj1zj∗1 = 1. Thus,

accordingly let y = ymt
j∗1
1 t

j∗2
2 ...t

j∗r
r , which is an element of order p2. We see that

[six
ji
m, y] = zjizj

∗
i = 1 since tn1 commutes with xm and sn2 when n1 ̸= n2.

Thus, y ∈ CP (S0) and so y ∈ Em−r. Therefore Em−r has exponent p2 and so

we must use g∗m−r.

Lemma 40. Let P , an extra-special p-group of exponent p and length m ≥ 0, act

on a faithful irreducible GF (qk)-module. Then

gm =
qkp

m − 1

qk − 1
−

m∑
r=1

Cr,mp
rgm−r with g0 = 1.

Proof. See Foulser (1969, p. 16).

Foulser did not discuss orbits but points whose exact stabilizer is the center of the

extra-special p-group of exponent p with length m. He uses gm for the number of points

whose exact stabilizer is the center. In Lemma 38 g∗m is used for this number in the

exponent p2 case. We will see later that gm and g∗m are directly related to the number of

regular orbits of their respective actions.

Theorem 41. Let P , an extra-special p-group of exponent p2 and length m ≥ 1, act

on a faithful irreducible GF (qk)-module. Then g∗0 = 0, and for m ≥ 1 we have

g∗m =
qkp

m − 1

qk − 1
−

m∑
r=1

pr(C1
r,mg

∗
m−r + C2

r,mgm−r + C3
r,mg

∗
m−r).

Proof. First, g∗0 = 0 since there are no extra-special p-groups of length 0 and

exponent p2 (in the case of an extra-special p-group of exponent p the center

can be defined as having length 0, but the center has exponent p; thus the
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center will not serve in the exponent p2 case). By Lemma 33 C1
r,m, C2

r,m, and

C3
r,m are the number of stabilizer subgroups in P of length r of their respective

type. By Lemma 39 the number of points having a given stabilizer subgroup of

length r as their exact stabilizer is prgm−r for type 2 and prg∗m−r for types 1

and 3. Thus the number of points having a stabilizer subgroup of length r as

their exact stabilizer is C1
r,mp

rg∗m−r + C2
r,mp

rgm−r + C3
r,mp

rg∗m−r. Since qk − 1

is the number of elements in a point, the total number of points in V is

(qkp
m − 1)/(qk − 1). Thus the total number of points whose exact stabilizer is

Z(P ) is

g∗m =
qkp

m − 1

qk − 1
−

m∑
r=1

(C1
r,mp

rg∗m−r + C2
r,mp

rgm−r + C3
r,mp

rg∗m−r).

Theorem 41 is subtracts out all the points whose exact stabilizer is an elementary

abelian p-group that contains the center. We see that the formula is recursive which makes

it complicated to calculate individual cases by hand as m becomes greater. It should be

noted that it does not give the regular orbits. Corollary 42 explains how to get the number

of regular orbits from the number found in Theorem 41. Note that this part was not shown

in Foulser’s article as he stopped with the number of points whose exact stabilizer is the

center. However the proof for Corollary 42 can be easily adapted to Foulser’s work.

Additionally, the examples that have been done with this formula have shown that

g∗m ≥ gm, which intuitively was to be expected. However it is not immediately clear how

the proof for this might be done.

Corollary 42. Let P be an extra-special p-group of exponent p2 of length m acting

on a faithful irreducible GF (qk)-module V . The number of regular orbits of

this action is
(qk − 1)g∗m

p2m+1
.
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Proof. By Lemma 32 the elements in regular orbits of Ω1(P ) on V are exactly the

elements in regular orbits of P on V . Thus the number of elements in regular

orbits of Ω1(P ) is equal to the number of elements in regular orbits of P . Thus

we will count the number of elements in regular orbits of the Ω1(P ) action

first.

Let x ∈ V be in a point not fixed by any stabilizer subgroup and let

X = GF (qk)v be the corresponding point. Assume x is not in a regular orbit

of the Ω1(P ) action. Then there is a 1 ̸= g ∈ Ω1(P ) (g ̸∈ Z(P )) such that

x · g = x. Then x is stabilized by all elements in ⟨g⟩. Also, X is stabilized by

Z(P ) = ⟨z⟩. So X is stabilized by ⟨g, z⟩. So that point is fixed by

⟨g, z⟩ > Z(P ), a contradiction. Thus, x is in a regular orbit. Thus all nonzero

elements in points that are fixed only by Z(P ) are in regular orbits of Ω1(P ).

Thus the number of elements in regular orbits in the Ω1(P ) action, and thus the

P action, is (qk − 1)g∗m.

The number of elements in a regular orbit of the P action on V is

p2m+1. Thus the number of regular orbits of P on V is

(qk − 1)g∗m
p2m+1

.

Concluding Remarks

At the onset of this project calculations of small examples were done using GAP

(The GAP Group, 2008), a computer program for computational discrete algebra.

Additionally GAP scripts written by Brian Doring and Dr. Frank Lübeck (see Appendix

G) were used to help perform the action and separate out the orbits in these examples.

Table 6 summarizes the calculations from GAP. The values in the table agree with the

formula derived in this chapter.
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Table 6

Regular Orbit Counts from GAP

regular orbits

p q m k exponent p exponent p2

3 2 1 2 1 2

3 2 2 2 1061 1070

3 5 1 2 568 576

3 7 1 1 10 12

3 7 2 1 165922 166012

3 11 1 2 65560 65600

3 19 1 1 246 252

3 31 1 1 1090 1100

5 2 1 4 8385 8388

5 11 1 1 1286 1288

7 2 1 3 6113 6114

To illustrate how the formula in Theorem 41 works and how to compute the

number of regular orbits, Corollary 42, an example will be shown now that can be

compared to Table 6. This example will be done for p = 3, q = 7, m = 2, and k = 1

(because 3 divides 7− 1).

C1
1,2 = 4 C1

2,2 = 0

C2
1,2 = 1 C2

2,2 = 4

C3
1,2 = 8 C3

2,2 = 0

g∗2 =
73

2 − 1

7− 1
− ((4 · 3 · 54 + 1 · 3 · 45 + 8 · 3 · 54) + (0 · 9 · 0 + 4 · 9 · 1 + 0 · 9 · 0))

g∗2 = 6725601− (2079 + 36) = 6723486
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number of regular orbits =
6 · 6723486

243
= 166012

A natural question to arise out of this work is ”how many orbits are there of other

sizes?” Probably the answer to this question can be found within the formula in Theorem

41. More specifically, C1
r,mp

rg∗m−r + C2
r,mp

rgm−r + C3
r,mp

rg∗m−r for a particular r,

1 ≤ r ≤ m, appears to be the number of points associated with a particular orbit size. This

has been verified for a couple of the examples using the GAP results.
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CHAPTER 5 

DESCRIPTION OF THE INTERVENTION 

 The purpose of the study was to introduce mathematics research to students in the 

Introduction to Advanced Mathematics course.  I conducted and presented the 

mathematics research, which focused on the area of Modern Algebra, specifically group 

theory, which is not a standard topic covered in this course.  As seen in Chapter 4 the 

definitions would be difficult for a typical student in MATH 3330 to understand.  So 

there needed to be lessons catered to the mathematical level of the course to lay a 

foundation of information so the students could begin to have an understanding of the 

mathematics research that would be presented.   

 Another challenge when developing the intervention was designing a format that 

would not be too demanding of the students in regard to the mathematical research but 

demanding enough for the course they were taking.  If all the course level material was 

presented to the students first followed by all of the mathematics research then the 

students could become overwhelmed with all the research that was presented.  So a 

format that broke the mathematics research into three parts and each part paired with 

material that could be in the course was used.  Each part had a week dedicated to it and so 

the intervention lasted three weeks. 

 Each week consisted of a launch, the lesson, and the presentation.  The launch 

was an activity or question, related to the lesson material, which the students could relate  
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to, to get them interested in the topic to be discussed.  The lesson that followed included 

definitions, theorems, and examples that were at the level of the course.  The 

presentations were slide presentations that provided the students with the information 

about the mathematics research. 

 The first presentation introduced students to the problem and various definitions, 

such as an extra-special group, needed to work on the problem.  Thus the first lesson was 

written to introduce students to the definition of a group and some examples of groups in 

order to prepare them for the definition of extra-special groups and elementary abelian 

groups.  The second presentation dealt with the counting of the various subgroups that 

were of interest.  Therefore the lesson for the second week dealt with fundamental 

counting principles, the basis for the counting of the subgroups in the second 

presentation.  The last presentation discussed the major connection with work done by 

Foulser and a discussion on my overall experience of doing mathematics research.  As a 

result, the lesson for the final week discussed the topic of isomorphism which is the 

central idea connecting my work to Foulser’s work.   

Table 6 

Major Topics Covered 

 Launch Proofs Presentation 

Week 1 Solving a linear 
equation 

Identity of Subgroups 
and Groups; 
Cancellation 

Introduction to 
problem 

Week 2 
How the Texas 
Lottery got their 

odds. 

Permutation and 
Combination 

Formulas 
Counting Subgroups 

Week 3 Tic-Tac-Toe Game Isomorphisms Solution and 
Research Process 
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 The purpose of this chapter is to give the reader information about how the lesson 

plans were developed, the rationale for certain activities and examples, how well the 

lessons went, and how the lessons were modified between semesters. This chapter is an 

outline of the lesson plans used in class and any specific details about the lesson can be 

found in the final lesson plans for the Spring semester in Appendix E. Table 6 gives an 

outline of topics discussed in each lesson and presentation. 

Week One Lesson and Presentation 

 The launch for the first week was from Cullinane (2005), which uses the act of 

solving a linear equation to develop the group axioms.  The purpose of presenting groups 

in this way was to give the students something familiar to make the idea of a group more 

relevant to them.  The lesson called for the equation 4 + x = 10 to be written on the board 

and the students to be asked to describe everything they know about solving this 

equation.  All equations of the form a +x = b where a, b, and x belong to a specific set 

have a unique solution if that set is a group.  The properties of a group are the minimal 

list that insures that we have a unique solution.  Integers and addition were used in the 

equation because the integers under addition are a group that the students can relate to 

easily.  The 4 was positive to elicit a discussion about using one operation and the need 

for associativity in solving this equation.  From this equation we see the need for the 

associative, inverse, and identity properties of groups. 

 After the launch concluded, the lesson asked the instructor to write the equation 

3x = 18 on the board followed by a discussion about solving this equation to illustrate 

that the set that the numbers come from is important, since it cannot be solved in the 

traditional way using only integers and multiplication.  This illustrates the need for the 
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closure property of groups.  Again integers were used because the integers under 

multiplication are an example of something that is not a group and were recognizable to 

the students to help them understand why.  Next the lesson asked for the formal definition 

of a group to be put on the board and how the group properties related to solving the 

previous equation. 

 The lesson then had the instructor put an example on the board.  The example was 

the integers modulo six under addition and was used to illustrate a multiplication table for 

the students.  The set of integers modulo six was used because it is an example of the 

smallest finite group in which the order has at least two prime factors and the operation 

has a straightforward explanation.  The multiplication table was used to illustrate one way 

in which a person can see how the operation of a group works.  Also since the group has 

two prime factors the subgroups can be easily identified. 

 After the example was verified to be a group, the subgroups with three elements 

and two elements were identified, and then a discussion about what it means to be a 

generator followed.  Subgroups and generators were discussed in the lesson because they 

play an important role in the mathematics research. 

 Since the course focuses on doing proofs, the lesson concluded with the class 

proving that the identity of a subgroup is the same identity as the larger group and that 

right and left cancelations hold in groups.  These proofs were chosen because they were 

basic theorems about groups. 

 Slide presentations were used to present the mathematics research to the students.  

The beginning of the presentation has the presenter inform the students that while they 

would have to reflect on the information presented, they were not expected to understand 
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it completely and would not be tested on the information. Next, the presentation 

introduced the problem to the students as well as definitions of terminology that they 

needed to understand for the two presentations that followed.  The last part in the 

presentation called for a discussion on the importance of Foulser’s work in the 

mathematics research presented. 

 For the most part the first week went according to the plan outlined above during 

the Fall semester except for the first activity.  During the activity I set up the equation 

that I wanted them to solve, but instead of asking them to tell me everything they knew 

about solving the equations I began by giving them restrictions on how I wanted them to 

solve the equation.  For example, since in a group we have only one operation I told them 

not to use subtraction, instead of letting it come up naturally in discussion.  After I gave 

the instructions the students appeared to be confused about what they were supposed to 

do.  Instead of continuing the discussion, I did the activity at the board, while still 

eliciting information from the students.  There was also the addition of the dihedral group 

of order eight into the presentation to give the students an example of a non-commutative 

group. 

 Based on the experience in the Fall some modifications to the lesson plans were 

made for the Spring.  The instructor of record pointed out that the uniqueness of an 

element’s inverse was assumed when it should have been proven.  So after the definition 

of a group was presented to the students a theorem about the uniqueness of an element’s 

inverse was given for the students to prove on their own.  The new Spring lesson asked 

that the students do the proof on their own to conserve time.  At the end of class the 

dihedral group that was provided in the Fall presentation was added to the lesson.  
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 The presentation in the Spring had each part sectioned off as a) understand the 

problem, b) know what happened in the past, and c) toy with an example.  The purpose of 

adding this information was to give an outline for the topic of the presentation and how it 

fits into the larger picture of solving the problem.  Understanding the problem pertains to 

the definitions that one needs to know before tackling a problem.  Knowing what was 

done in the past is in reference to Foulser’s work on the topic.  Toying with an example, a 

topic not discussed in the Fall semester, is a brief description of a small example that was 

done to aid in understanding the problem.  A brief description of a small example was 

added to show the students a concrete example. 

 For the most part, the Spring lesson progressed as intended.  For example, the 

activity closely followed the vignette that was developed for the lesson, although the 

students were quick to catch on to where we were going.  As a result, the activity went 

quicker than originally intended.  The students were responsive throughout the lesson and 

participated in the writing of the proofs.  The presentation went well and the students 

asked questions about things that they did not understand. 

Week Two Lesson and Presentation 

 The second lesson in the Fall began by having the instructor introduce an 

interesting fact about the odds of winning the Texas Lottery and ask the students how one 

might come up with those odds.  After a brief discussion of the lottery question the lesson 

had the instructor distribute a worksheet with examples of the sum rule, product rule, 

combinations, and permutations for the students to explore and count on their own or in 

groups.  The purpose of the worksheet was to familiarize the students with how the 

different types of counting problems were worded and the difference between them 
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before they were given formulas for combinations and permutations.  This worksheet was 

followed by more examples that were done as a class. 

 The research presentation for the second week continued the theme of counting 

established at the beginning of the week.  The presentation began with a reminder to the 

students about what was expected of them, a restatement of the problem that was being 

presented, and a brief recap of information that was important to the discussion for the 

presentation.  Next, Foulser’s formula for counting the number of a particular type of 

subgroup of the extra-special groups was discussed and how he arrived at the formula.  

Then a description of the types of subgroups of interest to the research, how they relate to 

Foulser’s work, and the formula derived for counting them were provided.   

 Given what happened at the beginning of the first lesson, when I gave the students 

confusing and incorrect instructions for solving the equation, I decided to do the first 

worksheet as a class. We then discussed definitions of the different counting methods and 

their formulas.  Originally there were no proofs written into the lesson, which was an 

oversight, so, the proofs for the permutation and combination formulas were added at the 

end of the lesson.  The Fall presentation also did not go as intended.  I was able to include 

the information about my own work but left out much of the explanation of how Foulser 

derived his formula. 

 For the Spring, the amount of information that was included in the lesson plan 

increased but the second worksheet was not carried over from the Fall semester.  

Theorems were included in the lesson to take the place of definitions or were added to the 

definitions of the four methods from the first worksheet.  These theorems are the ones 

that were proved in the Fall semester but were added to the lesson plan late. 
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 More information was included on many of the slides in the presentation in order 

to give students a better idea of the topic.  For example more information about what 

each variable is in the formula was included.  A slide that summarized the formula that 

was found for the total number of subgroups was presented at the end of the presentation. 

 I delivered the lesson as intended, with the exception that I showed the students 

two different proofs for the combination formula.  The presentation for this week went as 

intended aside from clarification questions from the students. 

Week Three Lesson and Presentation 

 The third lesson in the Fall began with the instructor having the students play a 

game.  The game was to be played with two players who take turns picking an integer 

between one and nine until each number has been picked or someone obtains the sum of 

15 with exactly 3 of their numbers.  The lesson called for the students to get into pairs 

and play the game for a few minutes.  After the game was played the lesson required the 

instructor to explain that the game was equivalent to playing tic-tac-toe and to draw a 

magic square with the digits one through nine in each box in the tic-tac-toe grid in such a 

way that each row, column, and diagonal sums to 15.  The lesson called for the instructor 

to show that there are only eight ways to sum to 15 with the digits 1 through 9.  The 

purpose of the game was to show that two objects, namely tic-tac-toe and magic squares 

in this example, could be equivalent even though they appear to be different. 

 Next, the lesson called for a sum of logarithms with the same base to be put on the 

board and to ask the students for another way that it could be written.  Logarithms were 

used because they are an example of a homomorphism that the students are familiar with 

and they are able to see how the operations are preserved.  Then the lesson had the 
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instructor discuss the formal definition of a homomorphism followed by introducing an 

example using the groups integers modulo six under addition and integers modulo seven 

without zero under multiplication.  These two groups were discussed in terms of 

homomorphisms, which were also shown to be one-to-one and onto.  It was explained 

that the groups are isomorphic and the definition of an isomorphism was provided.  The 

two groups were used because the students were already familiar with the integers 

modulo six from the first week of the intervention. 

 Next there was a discussion about what one gets when groups are isomorphic; the 

groups have the same number of elements and their operations behave in a similar 

manner.  Last, a theorem about how if we have an isomorphism from one group to 

another and one of the groups is abelian then the other must be abelian was proved as a 

class. 

 The presentation began the same as the first two in regard to expectations.  Next 

the rest of the research was to be presented along with the final result.  Then discussion 

on the experiences of doing mathematics research and how it can be related to students 

doing homework followed.  This was done to show the students that mathematics is done 

in similar ways that homework may be done.  For example, a student doing homework or 

a researcher doing research might try several approaches before finding one that works or 

look for examples to help shed light on how the proof might be done. 

 The Fall lesson went as it was intended except for minor adjustments based on 

student questions.  The presentation similarly went as intended.  Thus, the changes for the 

Spring semester were minimal.  Proofs regarding how the identity and inverses are 

mapped with a homomorphism were added to the end of the lesson.  This was done to 



   80 

 

increase the number of proofs done in class and to provide the students with the 

opportunity to understand what happens with homomorphisms, i.e. operations are 

preserved. 

 In the Spring semester the students were having a hard time understanding how to 

play the game so I decided that we would first play together with the class playing against 

me.  By the time we were done playing the first game everyone understood the rules and 

someone had already made the connection to tic-tac-toe.  There was no reason to have 

them play in pairs and the remainder of the lesson proceeded as intended. 

 The first section of the last presentation went as it was intended.  When I began 

the section on my experience doing research the students asked many questions about 

getting grants, working on grants, collaborating in mathematics, and other questions 

dealing with mathematics research.  I tried to answer all of their questions and questions 

that I could not answer I deferred to Dr. Morey or Dr. Keller, the instructors of record for 

the observed classes.  I tried to get the students’ attention back on the presentation but 

they continued to ask more questions.  I was only able to get through half of the second 

section of the presentation.  Initially this was thought of as an unpleasant experience but 

upon further reflection and discussions with colleagues, I decided that it was a positive 

experience because the students had become interested in mathematics research to the 

point that they wanted to know more even though it went beyond the scope of the 

presentation.  This experience will be discussed further in Chapter 7. 

Summary 

 It can be seen that the treatment groups from the Fall and Spring semesters 

received essentially the same lessons and presentations.  In some cases the Spring 
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students received instruction that was more polished than the Fall students.  However, 

this happens in any educational experience as an instructor repeatedly teaches a topic and 

refines their approach.   
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CHAPTER 6 

RESULTS 

 The following are the results obtained from two semesters of gathering survey 

data and supplemental data in the form of interviews and written work.  Four classes 

participated in the research project.  The two Introduction to Advanced Mathematics 

classes in the Fall 2010 semester and the two in the Spring 2011 semester were used for 

the study.  There were two instructors of record, each had a class in the Fall and one in 

the Spring and each had the treatment class once.   

 Survey data were collected three times during each semester.  First, at the 

beginning of the semester (pre-survey), the second time with three weeks remaining in 

the semester before the intervention was administered to the treatment (mid-survey), and 

a third time at the end of the three-week intervention (post-survey).  While there were 

anywhere from 20 to 29 students in each class at the beginning of the semester (16 to 25 

students in each class at the end of the semester) only data from students who took all 

three surveys were used in the results.  There were 11 students surveyed in the Fall 

treatment, 12 in the Spring treatment, 10 in the Fall control, and 7 in the Spring control.  

Table 7 summarizes the sample of students who took all three surveys. 

 Supplemental data in the form of 11 interviews from seven students and written 

work given predominantly during the intervention (one paper was assigned at the 

beginning of the semester) were gathered from the treatment group.  Four students were 
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interviewed in the Fall semester by the end of the first month of classes.  A follow-up 

interview was done with three of the students at the conclusion of the semester; contact 

could not be made with the fourth interviewee.  In the Spring semester two students were 

interviewed at the beginning of the semester. Although four was preferred, students did 

not respond to being contacted or did not show up for the interview.  At the end of the 

Spring semester only one of the two returned for a follow-up interview.  Additional 

students were contacted again for interviews but only one responded; so two students 

were interviewed at the end of the Spring. The names “Student 1” through “Student 7” 

will be used when quoting interviews. 

 A mathematical biography of two pages, including thoughts about the meaning of 

mathematics, was assigned on the first day of the semester to be turned in by the end of 

the following week.  A one-page reflection paper was assigned at the end of each 

mathematics research presentation.  Student names with numbers higher than “Student 7” 

will be used when quoting written work. 

Table 7 

Sample of Students 

 Treatment Control  

Major Fall Spring Fall Spring Total 
Pure Math 2 4 1 0 7 

Applied Math 2 1 0 0 3 

Math w/Cert 4 6 9 6 25 

Other 2 1 0 2 5 

Total 10 12 10 8 40 
 

 This chapter will be divided into three main sections.  The first section will 
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describe the students’ conceptions of mathematics according to the pre-survey and 

supplemental data from the beginning of the semester.  The second section will discuss 

any changes in the students’ conceptions as measured by the mid-survey after the 

instructors of record had completed their sections and before the intervention had started.  

The last section will discuss any changes due to the intervention as well as any other 

relevant findings from the post-survey and written assignment. 

 For the purposes of this study there are three levels of significance used to analyze 

the data.  There is implied significance (p-values between 0.2 and 0.15) and practical 

significance (p-values between 0.15 and 0.05), which in either case means there is an 

influence happening.  Statistical significance is at the traditional p-value of 0.05. 

 The purpose of the supplemental data was to enrich and complement the 

quantitative data.  So the subscales from the quantitative data (the surveys) were used as 

themes for analyzing the supplemental data as well as themes that were developed from 

interesting information that was an unforeseen consequence of the study. 

Students and Classes at the Beginning of the Semesters 

 The survey administered to the classes measured eight subscales in regard to their 

beliefs about mathematics: Composition, Structure, Status, Doing, Validating, Learning, 

Usefulness, and Mathematicians.  First, an analysis of the differences between the classes 

will be discussed.  Then, each subscale will be introduced along with an analysis of 

where the classes were at the beginning of the semester.  Students had six levels of 

agreement to choose from for each item on the survey and thus scores range from 1 to 6.  

Scores above 3.7 will be considered high, below 3.3 considered low, and between 3.3 and 

3.7 will be considered neutral scores.  Scores less than 5 will be considered having the 
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potential to increase.  The supplemental data will be included in relevant places to add 

perspective on where students were at the beginning of the semester.  The supplemental 

data in this section was taken from the papers written in the first week of class and 

interviews given within the first month of class. 

 Difference between the classes.  An independent t-test was performed on the first 

survey data, including each subscale separately, between the control and treatment groups 

to determine if the two groups started at the same level of mathematical conception.  No 

significant difference was found between the two groups.   

 Similarly, an analysis of variance (ANOVA) was also performed on the survey, 

including each subscale of the four classes, the two control and two treatment classes, to 

determine if all four classes started at the same level of mathematical conception.  In the 

case of the survey as a whole, there was no significant difference between the four 

classes.  Of the eight subscales only one, composition of mathematics, was significant.  A 

Tukey post-hoc test was conducted which showed a significant difference between the 

control class in the first semester and the treatment of the second semester.  It is believed 

that the difference between these two classes arose because of the high number of 

mathematics majors seeking secondary certification in the first semester control class 

who took all three surveys. 

 Where students were by subscale.  In this section a description of where the 

students are by subscales will be given.  Students in the treatment groups were grouped 

together when deriving the statistical data in this section.  Table 8 provides the range that 

the average scores for the items fell within for each subscale. 

 A high score in the Composition subscale means students think of mathematics as 
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concepts and generalizations where a low score means students think of mathematics as 

formulas and algorithms.  For six out of the eight items in this subscale the students 

generally scored high, between 4.01 and 4.74, on the survey.  In one of the two items the 

students scored 2.82, indicating that the students believe that there is always a rule to 

follow when doing a mathematics problem.  This was illustrated in the interview with 

student 4, when she was asked if she expected to take a course like MATH 3330 she said, 

“No, or at least I expected the class, if I was, to be a little bit more mathematical.”  Asked 

to explain what was meant the student said, “… And I’m like, ‘Um, is there a formula 

that I follow, like this is what I need to find so I find that and I find this,’” Similarly, on 

the topic of what mathematics is, student 7 says, “My concept of math in general before 

this class was basically formulas and calculations and that kind of thing.” On the last item 

the students’ average score of 3.64 points to a mix of beliefs about whether mathematics 

is made up of mostly procedures and facts.  Since all of the scores in this subscale fall 

below 5 there was room for increasing the scores.  This subscale was expected at the 

beginning of the study to be affected by either the course in general or the intervention. 

 High scores in the Structure subscale mean students believe that mathematics is a 

coherent system and a low score means the students think of mathematics as unrelated 

topics.  Students generally scored high in this subscale, between 4.22 and 5.64.  Only one 

item had a score above 5 and five of the eight had a score of 4.77 or less.  This suggests 

that the students already believed that topics in mathematics were interconnected before 

taking the class; however, there was room for increasing some scores.  In fact, student 5 

put the interconnectedness of mathematics this way, “Algebra, it’s part of everything; 

geometry, modern geometry, proofs, it’s part of modern algebra.  Algebra is everything.”  
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This subscale was expected at the onset of the study to be affected by either the course or 

the intervention. 

Table 8 

Mean Scores for the Lowest, Median, and Highest Item Averages for Each Subscale 

 Lowest Average Median Average Highest Average 
Composition 2.82 4.24 4.74 

Structure 4.22 4.76 5.64 

Status 3.25 4.41 4.99 

Doing 4.12 5.00 5.38 

Validating 3.32 4.82 5.27 

Learning 3.41 4.61 5.47 

Usefulness 5.04 5.12 5.58 

Mathematicians 3.44 4.58 5.11 
 

 High scores in the Status subscale mean that students see mathematics as an 

evolving field where a low score means students view mathematics as a never changing 

field.  The average of student responses on seven of the eight items was between 4.32 and 

4.99 indicating that students generally believe mathematics is a growing field.  However, 

the interviews indicate that while students might think mathematics is a growing field, 

they do not know how it is growing.  For example, student 2 said, “I feel like it’s 

changing.  I feel like it has to.”  One item scored an average of 3.25, which means many 

students believe that once you learn some thing in mathematics, then that thing is not 

going to change.  For example a student might think that a new or a more efficient 

method for solving a problem would or could not be developed.  There was room to 

increase scores for at least six of the eight items that have scores between 3.25 and 4.63.  

At the beginning of the study this subscale was expected to be affected by the 
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intervention. 

 A high score in the subscale Doing means that students believe that doing 

mathematics is a process of sense making and a low score means students believe 

mathematics is about getting an answer.  The average scores across all items in this 

subscale were 4.12 or higher and half were at least 5.04.  This indicates that there was a 

little room for increasing scores in this subscale.  The intervention and the course were 

expected to affect this subscale at the start of the study. 

 High scores in the Validating subscale indicate that students believe that 

validating mathematics work occurs through logical thought and low scores indicate that 

students believe that validation comes from an outside authority like an instructor or 

book.  While five of the eight items had average scores above 4, three items had average 

scores below 4, one of which was 3.32, a neutral score.  These scores suggest there are 

mixed beliefs about what it means to validate something in mathematics.  This mixed 

reaction can be seen in two quotes, one from student 4 and one from student 5.  Student 

4, who is in the process of explaining why the class is not mathematical, says, “So, I wish 

that this class was taken later because then I could prove what I already know instead of 

trying to prove what I don’t know to be true.”  In contrast, student 5, while discussing 

how one should learn mathematics, says, “I think you learn best when you figure it out 

yourself.”  There was room for increasing scores in this subscale.  The control was 

expected to be just as affected in this subscale as the treatment group. 

 High scores in the Learning subscale point to a belief that math is a subject about 

understanding and a low score means students believe that learning mathematics is about 

memorization.  A majority of the items had average scores of at least 4.14, four of whom 
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were between 4.88 and 5.47; however, two items, dealing with mathematics being about 

memorization, had scores of 3.49 and 3.41.  These neutral scores indicate that many 

students at the beginning of the semester value memorizing information to help them 

learn.  For example, student 1 says that memorizing is a “time saver” and student 3 says, 

“like for younger kids I feel like it is memorizing and I don’t really see like there’s just 

any other way… like explain one plus one equals two… you memorize that.”  Other 

students felt differently about it, for example student 2 said, “I think it might go a bit 

deeper than just memorization,” and that “instead of just memorizing it if you take the 

time to actually understand it, then it would be a lot better.”  Students 4 and 7 say that 

understanding is an important concept to mathematics because then you are able to 

“apply” what you have learned or you can “figure out” a formula if you have forgotten it. 

In regard to the survey, at least half of the items had room for improving scores. The 

control was expected to be just as affected in this subscale as the treatment group. 

 High scores in the subscale Usefulness indicate that students believe that 

mathematics is a worthwhile subject for anyone and a low score means they believe that 

it is not valuable to everyone.  Since everyone in this class is either a math major or 

minor it was no surprise that all items had an average score above a 5.  There is little 

room, if any, for scores to go up in this subscale.  It was anticipated that this subscale 

would not to be affected by either the course or the intervention when the study began. 

 High scores in the subscale Mathematicians mean that students think highly of 

mathematicians and what mathematicians do.  The average score for all items except one 

was at least 4.33 with the final item having an average of 3.44.  These scores point out 

that there was still some opportunity for increasing the scores for this subscale.  However 
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the course and the intervention was not expected to influence this subscale at the 

beginning of the study. 

 Insights from supplemental data.  Many of the subscales discussed above were 

present in the students’ first paper of the semester, which included their personal 

mathematics biography and their thoughts about the nature of mathematics.  The 

Usefulness of Mathematics and Doing Mathematics was apparent in nearly all of the 

students’ papers.  However, Structure, Status, and Learning were discussed less often, 

and Composition and Validation were rarely if ever discussed.  Also, some students 

showed signs of a fixed mind-set or a growth mind-set as described by Dweck (2007). 

 In the previous section it was shown that the Usefulness subscale scored high 

among every class.  While it was expected that mathematics majors would find 

mathematics useful, when providing example of its usefulness students would provide 

calculation-based or vague answers.  For example, student 21, “Math is not just 

theoretical, but practical.  You use it in everyday life,” and student 24, “Math is used in 

everyday life and in almost every job,” provide the theme that was apparent in most 

papers, mathematics is used in “everyday life” and “every job.”  Few students took the 

concept of mathematical usefulness a step further like student 18 who said, “Learning 

mathematics is about learning to think, and more importantly to think logically,” or the 

example from student 21 of how he used his problem solving skills from mathematics to 

increase efficiency at his job. 

 Doing Mathematics scored high on the survey but from the papers it appears that 

there might be some mixed feelings.  When the students discussed why they liked 

mathematics they indicated that when they did mathematics they knew they would 
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always get an answer and that answer was either right or wrong.  As student 12 says, 

“Because no matter who the teacher is, there will always be a right or wrong answer, and 

there is not a lot of room for subjectivity in a math class.”  However, some students 

included both the idea of coming up with a right answer and a process of sense making as 

student 21 who said, “The idea that I can explore concepts and solve problems using 

logic, patterns, and reasoning is exciting.  There is nothing better than coming up with the 

right solution to a problem.”   

 I believe these mixed feelings manifest themselves in some students because of 

competitions such as Number Sense, a competition described in the following quote.  

Student 20 shares some insight into Number Sense when describing her teacher, and first 

number sense team coach, in her paper, “She was a U.I.L. coach for an event that starts in 

the fourth grade – number sense.  (Number sense is a math event in which the contestants 

must complete mathematical questions mentally without being able to write anything 

down except the answer on the line provided, and contestants only have ten minutes to 

answer as many questions correctly as they can without skipping any.).”  This teacher, 

coach, was a person the student looked up to who encouraged her to tryout for the 

number sense team.  The full impact of this teacher, coach, is realized when the student 

mentions that she learned “many tricks and short-cuts” that she used in the rest of her 

mathematics classes.  Competitions such as these places an emphasis on finding correct 

answers rather than the process, influencing the contestants, individuals who are good at 

mathematics and potential mathematics majors to think that mathematics is a process of 

obtaining an answer. However, as seen from the survey in the previous section, it is not 

an overwhelming influence.  This might also have something to do with students valuing 
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memorization as discussed in the previous section. 

 One statement from the survey asked the students if mathematics was still being 

“invented.”  Many students agreed with this statement, however, many students had 

philosophical problems with the wording of this statement.  For example, student 8 said, 

“Contrary to some people’s thoughts, I am a firm believer that math was and is still being 

discovered, not invented,” and student 13 said, “We do not invent new math, but discover 

it.  All the axioms we have and have yet to discover were there before we found them and 

are still there now, along with many more waiting to be uncovered.”  This was an 

interesting development and will be explored more in Chapter 7. 

 The Structure of Mathematics was not mentioned often in the papers of the 

students, but when they did discuss it the students were explicit in their beliefs.  As 

student 10 put it, “I like to learn math because I find the concepts amazing in how well 

they mesh with the math I already know, as if its [sic] all part of some beautifully woven 

tapestry.”  Learning was also not a subscale that was discussed much in the papers; 

however, students would mention the importance of understanding what you are doing in 

mathematics.  As student 8 explained, “It is not as important to just getting the right 

answer in math, but instead understanding the concept and how it works, and also applies 

to us in our lives today.” 

 One interesting thing that came out of the papers is the number of students that 

began their mathematical careers either not liking mathematics or did not do well in grade 

school mathematics classes.  These students tended to have a growth mind-set as 

described by Dweck (2007).  Student 30 in particular struggled with mathematics at an 

early age but with encouragements from his father and hard work he was able to pass his 
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classes.  When he got to college he knew he was going to have to put in extra work, as he 

explained: 

With that shift I did take a different approach towards my math classes.  When I 

began College Algebra I made an active attempt to do all the homework that was 

assigned for the course.  Anything that I didn’t understand I went to the tutoring 

center for until I got it.  It paid off; I made an A in College Algebra.  I took the 

same approach with trigonometry and again got the same result. 

Student 28 is an example of a student who is somewhere between a fixed mind-set and a 

growth mind-set.  She is an example of one of the students that Dweck (2007) would 

describe as a student that always did well in mathematics and then when she got to a class 

that makes her struggle she gets frustrated.  However, the student does express the need 

to work hard in mathematics when she says, “You must be able to put forth the energy to 

study every day and must have a lot of motivation to do so,” and continues to explain that 

“Math is a subject that requires people to be attentive, motivated, and focused.”  What 

this says is that people who have made it this far, or those that will continue after this 

course, are probably developing a growth mind-set. 

Where the Students Were Before the Treatment 

 Three weeks before the end of each semester I took over the class to administer 

the intervention.  A survey was given before I started in order to determine any change in 

the students’ conception that was due to the intervention as opposed to the instructors.  

An ANOVA was used to determine if there were any differences between the four classes 

in regard to the conception survey, a t-test to test for differences between the control and 

treatment, and a paired t-test to look for changes between the pre and mid-surveys as well 
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as each subscale. 

 An ANOVA was performed on the mid-survey, including each subscale, between 

all four classes as was done with the pre-survey.  This time there was no significant 

difference on the survey as a whole or on any of the subscales.  In the pre-survey the 

Composition subscale had a significance of 0.018 and the mid-survey had a significance 

level of 0.177, indicating that while the two classes are still different they have moved 

close enough together that their differences are no longer statistically significant.  Again, 

the independent sample t-test revealed no difference between the control or treatment 

groups on the mid-survey as a whole or any of the subscales. 

Table 9 

Significance Values of Paired t-tests Between Pre and Mid-Surveys and Their Subscales 

 Treatment Control 

Subscales MD Sig MD Sig 
Surveys 0.121 0.085 0.064 0.356 

Composition 0.131 0.233 0.278 0.052 

Structure 0.176 0.175 -0.014 0.907 

Status -0.057 0.583 -0.021 0.878 

Doing 0.080 0.487 -0.028 0.779 

Validation 0.119 0.157 -0.028 0.799 

Learning 0.114 0.235 0.118 0.478 

Usefulness 0.148 0.121 0.069 0.520 

Mathematicians 0.303 0.039 0.157 0.179 
 
Note. MD = Mean Difference 

 A paired t-test was performed between the pre and mid-survey as a whole and 

between each subscale.  The results of the paired t-tests are summarized in Table 9.  In 

the treatment group there is a significance level of 0.085 for the difference between the 
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pre and mid-surveys.  While not statistically significant, it shows that the class as a whole 

effected the students’ beliefs about mathematics to a small degree.  However, when we 

consider each subscale individually we see that the only subscale that is statistically 

significant, at 0.039, is the students’ beliefs of Mathematicians.  This could be attributed 

to this being their first class that is dominated with mathematics majors taking the class, 

excluding electives.  For example, calculus is a mixture of mathematics majors and other 

science majors.  The students are able to gain a different perspective of a mathematics 

professor when the class is composed of what is assumed to be mostly mathematics 

majors.  Another possibility is that the students are growing in their self identification of 

a mathematician and thus affecting their beliefs about Mathematicians. 

 However, when we look at the paired t-tests for the control group we see a 

significance level of 0.356 for the difference between the pre and mid-surveys, which is 

not significant or close to being significant.  The treatment group being close to 

statistically significant might mean that the knowledge that they were part of the 

treatment group had an effect on the student’s beliefs of mathematics.  Also, the 

significance level for the Mathematician subscale for the control group was 0.179, again 

not significant.  However, it is reasonable to believe that the class was having an effect on 

the students’ beliefs of mathematicians, just not at a statistically significant level, 

especially considering the significance with the treatment group.  The Composition 

subscale does have practical significance in the control with a significance level of 0.052.  

This is interesting as the treatment group has a significances level of 0.233, not 

significant.  I cannot think of a reason for why there is such a drastic different between 

the two groups, especially since it was thought that the Composition subscale would be 
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effected by the course in general. 

Where the Students Were at the End of the Treatment 

 At the end of the intervention, also the end of the semester, the post-survey was 

administered to the students.  This survey was compared to both the pre-survey and mid-

survey using a paired t-test.  Table 10 summarizes the results from the paired t-tests for 

the surveys as a whole and each subscale in the survey.  Also, at the end of each 

mathematics research presentation a one-page reflection paper was assigned to attain the 

students’ perspectives concerning the presentations.  This section will be divided into a 

quantitative section and a supplemental data section for their respective data that were 

collected. 

 Quantitative analysis.  An independent samples t-test showed no significant 

difference between the treatment and control groups for any survey or subscale. 

However, the paired t-tests summarized in the first row of Table 10 shows that in the 

surveys as a whole there was a statistically significant change between the pre to post-

surveys and mid to post-surveys for the treatment group and not the control group.  Note 

that the change in the survey in the control group does show a practical significance, 

suggesting that the course does have an influence on the students’ beliefs of mathematics.  

However, the addition of the mathematics research provided the extra change to make it 

statistically significant.  Also, in Tables 9 and 10, the scores for the Usefulness of 

Mathematics did not change significantly across all cases.  Additionally, the scores for 

students’ beliefs of Mathematicians continued to increase with similar results as above in 

the section discussing results before the treatment. 

 Interestingly, there was no significant change between the pre and mid-survey for 



   97 

 

the control group in the Composition subscale, yet there is a small significance between 

the mid to post-surveys and the pre to post-surveys.  The subscale that had the most 

statistically significant change between all surveys in the control group is Validation.  

However, no significant change was evident in these subscales in the treatment group.  It 

can be assumed that something must have happened between the mid and post-surveys in 

the control that did not happen in the treatment to account for these changes.   

Table 10 

Significance Values of Paired t-tests of Pre and Mid-Surveys with the Post-Survey 

 Treatment Control 

 Post – Mid Post – Pre Post – Mid Post – Pre 

Subscales MD Sig MD Sig MD Sig MD Sig 
Survey .09 .05 .21 .02 .06 .12 .12 .09 

Composition .05 .51 .18 .21 -.03 .76 .24 .02 

Structure .05 .63 .22 .07 .08 .44 .06 .65 

Status .35 .00 .29 .00 .12 .30 .10 .34 

Doing .08 .24 .16 .12 -.03 .69 -.06 .52 

Validation .03 .74 .15 .27 .24 .02 .21 .02 

Learning .12 .13 .23 .08 .02 .82 .14 .32 

Usefulness -.01 .95 .14 .29 .02 .75 .09 .44 

Mathematicians .02 .90 .32 .07 .07 .32 .23 .06 
 
Note.  MD = Mean Difference 

 The course schedules (Appendix F) for the control classes indicate that during this 

window (between the mid and post-surveys) they addressed real analysis topics in the 

Fall and modern algebra topics in the Spring.  These topics present more abstract 

information to the students than information presented earlier in the semester, which 

accounts for the change in the Composition subscale. Also, many of the topics discussed 
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in the first part of the semester deal with topics that the students were familiar with but 

were presented in the context of proof.  The information presented toward the end of the 

course in the control group is different than most of the other information presented at the 

beginning in that it requires a more rigorous form of validation.  For example, something 

like proving that the sum of two even numbers is even might seem tedious and pointless 

to the students because it is something that they have known most of their mathematical 

lives.  However, proving something about a boundary point or a group, things that they 

might not be familiar with, is going to require using a logical thought process relying on 

definitions and other known properties to be done correctly. 

 In Table 9 the significance level for the subscale Status under both control and 

treatment is not contained in any defined significance level.  However, in Table 10 we 

see that the students’ beliefs of the Status of Mathematics in the treatment group has 

made a statistically significant change from both the pre-survey to the post-survey and 

the mid-survey to the post-survey with significance values of .00 for both. As student 8 

said, “I had no idea that people were still discovering new things about mathematics and 

adding to the books.  I thought all the math there was ended with calculus.  But I was 

wrong.  There is so much after that.”  In the control group there is still no significant 

change in the students’ beliefs about the Status of Mathematics.  Recall that the 

intervention, and not the course, was expected to influence this subscale.  Thus the 

expectation was met for this subscale. 

 The course was expected to influence the subscales Composition of Mathematics, 

Structure of Mathematics, Doing Mathematics, Validation of Mathematics, and Learning 

Mathematics, with the Structure of Mathematics and Doing Mathematics being 
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influenced by the intervention as well.  I expected there to be at least a practical 

significant change in these subscales in both the treatment and the control.  However, 

expectations in these subscales were not validated with Validation and Composition 

already discussed above.   

 As was shown in Tables 9 and 10 the scores for the Structure of Mathematics did 

not show significance in any of the paired t-tests for the control group. However, there 

was small level of significance from the pre-survey to the mid-survey and a practical 

level of significance from the pre-survey to the post-survey for the scores of the treatment 

group.  A possible explanation for these results is that the students were in the process of 

changing their conception about this subscale when the second survey was administered 

and continued to change to the point when the third survey was administered.  One 

explanation for why there was a change in the treatment group and not the control group 

is that the treatment group was more attuned to what was happening in class because they 

knew they were in the treatment group and more attention was going to be paid to them. 

 There was a practical level of significance of .08 from the pre-survey to post-

survey and of .13 from the mid-survey to the post-survey for the Learning subscale in the 

treatment group.  However, there was not any level of significance from the pre-survey to 

the mid-survey.  Again, this change is probably due to the students knowing that they are 

in the treatment group. 

 When comparing Tables 9 and 10 we see that the scores for Doing Mathematics 

changed enough between the mid and post-surveys for a practical significant change.  

Since there was no significance from the first to second survey with a significance level 

of .487, and there was no significant difference observed in the control group, the 
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intervention must have influenced the students’ beliefs.  This change could be attributed 

to the presentations showing the students mathematics being done differently from their 

past experiences. 

 There was not an adequate number of pre-service secondary mathematics teachers 

to get meaningful results. Nevertheless independent samples t-tests, comparing the 

treatment and control groups across all surveys and subscales, and paired tests, between 

each survey as a whole and for each subscale, were performed and analyzed on the 

survey data.  Table 11 summarizes significant data from the paired t-tests.   

Table 11 

Significance Values of Paired t-tests for Data Restricted to Pre-Service Teachers 

 Treatment Control 

 MD Sig MD Sig 
Post – Mid .10 .14 .08 .05 

Composition: Mid – Pre .04 .73 .35 .03 

Structure: Mid – Pre .35 .02 .03 .83 

Structure: Post – Pre .46 .03 .10 .53 

Status: Post – Mid .29 .07 .13 .33 

Validation: Post – Mid .03 .88 .32 .00 

Mathematicians: Post – Pre .52 .14 .26 .06 
 
Note.  MD = Mean Difference 

 The independent samples t-tests showed that the subscale Validation was 

statically significant with a value of 0.044 on the second survey between the treatment 

and control groups but nothing else was significant.  The treatment classes had the higher 

score in the Validation subscale on the mid-survey but by post-survey there was no 

longer a significant difference with a significant value of 0.400.  When we consider the 
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mean scores the treatment group went from 4.80 on the pre-survey, to 4.91 on the mid-

survey, and 4.93 again on the post-survey.  The control group went from 4.43 on the pre-

survey, to 4.39 on the mid-survey, and 4.70 on the post-survey.  So most of the changing 

occurred in the control group between the mid and post-surveys.  A paired t-test showed 

there was a significant difference, with a significant value of 0.00, between the post-

survey and mid-survey for the control group and no significant change for the treatment 

group.  So the material at the end of the course affected the pre-service teachers as well. 

 The paired t-test also showed significant changes for the control group between 

the mid and post-surveys with a significant value of 0.05.  It seems that this change 

occurred because of the subscales Validation, Composition, and Mathematicians.  The 

subscale Composition had a significant change between the pre and mid-surveys with a 

significant value of 0.03 and Mathematicians had change between the fist and post-

surveys with a significant value of 0.06.  So the course affects the pre-service teachers 

beliefs about the Composition of Mathematics early in the course while their beliefs of 

Mathematicians changes gradually over the course of the semester. 

 When we consider the Status subscale we see that there is no statistically 

significant results for either group but there is a practical significant value of .07 for the 

treatment group.  So again the intervention affected this subscale by increasing the survey 

scores.  Perhaps the pre-service teachers are more resistant to changing their beliefs in 

regard to this subscale. 

 An independent samples t-test was done on the data between each instructor’s 

treatment and control group.  The only significance found was in the subscale 

Composition for the instructor whose class was the control group during the Fall.  
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However, the classes were significantly different or close to significantly across all 

surveys.  The pre-survey had the most significantly different scores with a significant 

score of 0.01.  The difference became less significant for each survey.  So the students’ 

scores starting out different was the main factor for the scores being different throughout 

the semester. 

 Supplemental data analysis.  There were two types of supplemental data that 

were collected during and after the intervention.  First, every student had to turn in a 

reflection paper on the presentation of the mathematics research.  The other was a follow-

up interview of students interviewed at the beginning of the semester.  Three students 

returned for a follow-up interview during the Fall semester and one student in the Spring 

returned for a follow-up along with a student that was not interviewed at the beginning of 

the semester. 

 Only the follow-up interview with Student 4 had substance that would add to the 

study.  Recall that Student 4 believed that the course was not very mathematical.  The 

student mentioned something that I thought related to this idea of the class not being 

mathematical and the following discussion occurred (R = researchers, S = Student). 

R:  So last time you said you expected the class to be a bit more mathematical.  So 

do you think it’s more mathematical now, is that what you are saying? 

S:  The last half of it was more mathematical. 

R:  Can you explain that?  How was the last half more mathematical than the first 

half? 

S:  There were more numbers involved. 

R:  There were more numbers involved? 
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S:  Yeah, and it was more mathematical ideas that I’m used to rather than trying 

to prove something is even or odd. 

R:  Can you give me a definition of what it means to be mathematical? 

S:  To me, when I think of mathematics and other stuff, it’s more of, kind of step-

by-step kind of deal, but it, like right now, cause we’re dealing with numbers 

rather than ideas and stuff like that.  Then eventually it transfers from ideas to 

math.  It’s just more stuff, more formulas. 

At that the topic was concluded.  It appears that the student does not believe that 

something is mathematics unless it involves numbers.  The student believes that abstract 

mathematics is not mathematics until you use numbers.  It is interesting that the student 

thinks that a mathematics class is not mathematical.  The most likely explanation for why 

the student believes this is that the student has had the computational mathematics of 

grade school so engrained in her mind that she does not want to change what is 

comfortable. 

 There appeared to be three schools of thought about the definition of a reflection 

paper.  First were those who thought that you think about what was talked about, relate it 

to what you know, and share any thoughts about the information.  Second were those that 

thought they should tell me what I told them.  The last were those who would give a 

review of the presentation along with some negative tones about how they did not 

understand the material.  In general, with the exception of the second type, those 

definitions would be acceptable, but I told the students what I wanted in the reflection 

and also that they were not expected to completely understand the material.  For example, 

I wanted them to describe some connections to the lessons from the beginning of the 



   104 

 

week and most of them did not provide that in their reflections. 

 In the end, I received a mix of positive and negative comments for the first two 

reflections.  It seems that the students did not fully appreciate the mathematics 

presentations until after the third presentation.  For example, let us consider student 32 

and the student’s growth as seen through the reflections after each presentation.  After the 

first presentation the student is feeling down about not understanding the research 

material, “I have pretty much realized that I just don’t have what it takes to continue my 

mathematics degree to the graduate level.”  Following the second presentation we see that 

the student has had a change of heart about graduate school after realizing that I am in a 

doctoral program and not a masters program.  The student also confides with a friend in 

medical school about some apprehensions about graduate school and “Her response was, 

‘Well, I can’t perform surgery right now either, it’s baby steps.’”  After the third 

presentation it can be seen that, while the student is still overwhelmed with the 

mathematics research, she has a new appreciation for it. The student shares, “The 

presentations that you have given have intrigued me to do a little research into my 

professors to look at the research work that they have done.”  This illustrates that this 

student achieved one of the purposes of the study, increasing appreciation of mathematics 

and mathematical rigor. 

 The presentations convinced some students that mathematics in academia would 

not be for them.  Student 35 states in the third reflection, “the research itself didn’t seem 

too interesting to me, but the end result seems really cool to be a part of, which makes me 

realize I would most likely do better in industry rather than in the academic world.”  His 

statement is odd and leads me to believe that he still does not have a full understanding of 
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mathematics, because he based this feeling on a presentation that represents a small 

portion of mathematics.  In other words, he might not be interested in algebra but perhaps 

in a different topic.  On the other hand, student 27 felt inspired by the presentations to go 

to graduate school.  She says, “Overall I enjoyed the presentations.  I felt that it, plus my 

interest in mathematics, had compelled me to pursue mathematics in graduate school.”   

 “How can this be applied?” was a common theme among many of the students’ 

reflections.  Some of these students attempted to find their own applications for the 

research that was presented.  For example, student 25 wonders, “whether this knowledge 

might help to factorize large prime numbers.”  It should be noted that the student 

probably meant to say “large numbers” instead of “large prime numbers” or perhaps the 

student has a lack of understanding of prime numbers.  While I do not believe that the 

research can be used in this way it shows that the students have gained an appreciation of 

mathematics research that provides them with a curiosity that helps them understand the 

material in their own way. 

Summary 

 The results show that the intervention had the expected effect on what the students 

believe about the Status of Mathematics.  On the other hand there were mixed results 

when looking at the other subscales.  The course was expected to affect the subscales 

Composition, Structure, Doing, Validating, and Learning.  The subscales Composition 

and Validating were the two that had a statistically significant change due to the course.  

Additionally the intervention and the course were not expected to affect the subscale 

Mathematician however was close to being statistically significant for both the treatment 

and control. 
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 Furthermore the supplemental data provided insight into survey as well as 

unexpected information about the students.  In particular it provided insight into the 

growth that the students experienced as they struggled with the information that they 

were provided within the mathematics research presentations. 
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CHAPTER 7 

DISCUSSION 

 The purpose of this research study was to measure how the introduction of 

mathematics research in the course Introduction to Advanced Mathematics influences the 

mathematical beliefs of students, raises their awareness of mathematics research, and 

increases their appreciation of mathematics and mathematical rigor.  A review of the 

literature shows that the way teachers conceptualize mathematics influences the way they 

teach mathematics. 

 These ideas were investigated using quantitative data from three surveys that were 

enhanced with supplemental data from interviews and writing assignments.  The research 

questions will be revisited in this chapter along with conclusions based on the data.  

However, the study was not without imperfections, which are listed along with possible 

ways to improve the study. 

 Notice in Table 7 of Chapter 6 that 25 of the 40 students (about 63%) involved in 

the study were Mathematics majors seeking secondary certification.  So any conclusions 

drawn from the results say more about these particular students than the students in other 

mathematics majors. 

Conclusions and Interpretations 

 Conclusions are broken up into those directly related to the original research 

questions and those that go beyond the original research questions.  The conclusions  
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beyond the research questions were predominately from the supplemental data.  These 

conclusions are based on data that was found to be interesting or unexpected. 

 Conclusions related to the research questions.  The first question was: Do pre-

service secondary mathematics teachers, pure mathematics majors, applied mathematics 

majors, and mathematics minors have different beliefs about mathematics?  There were a 

disproportionate number of students seeking secondary mathematics certification 

compared to the other majors so this question cannot be adequately answered.  However 

an analysis of variance (ANOVA) was performed on the data and showed that there was 

no significant difference between the majors on the pre-survey. 

 The literature suggests that mathematics teachers believe that mathematics is a 

static body of knowledge, a set of rules and facts, and algorithmic processes (Ball, 1990; 

Brendefur & Frykholm, 2000; Stipek et al., 2001).  This suggested that their beliefs 

scores on the survey would be low and possibly lower than those of mathematics majors 

not seeking certification.  Since the scores were above a strict neutral level of 3.5 on the 

survey, their scores were high compared to what was expected from the literature.  The 

study also showed that there might not be a difference between the scores of those that 

will be teaching mathematics and those that will not. The pre-survey was administered at 

the beginning of the semester before the students took their first course on advanced 

mathematics and proofs, and at that point of the students’ mathematical career there was 

no difference in the beliefs scores of pre-service secondary mathematics teachers and 

those that are not pre-service teachers.  However, there may be a point in their 

mathematical careers that the two groups begin to deviate in their beliefs.   

 Pajares (1992) says that beliefs become harder to change the more they are 
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reinforced over time.  Conversely, the newer the belief the more vulnerable it is to 

change.  Perhaps the beliefs that future teachers acquire from their advanced mathematics 

courses were still so new and vulnerable to change.  Perhaps the mathematics majors that 

go on to become mathematicians, rather than K-12 teachers, will have their initial beliefs 

reinforced through the extra schooling required for advanced degrees. 

 Alternatively, the scores could be high because the education the students 

received in K-12 has changed to allow these beliefs to manifest themselves.  This would 

seem to disagree with what the literature says.  If true this implies that the research needs 

to be updated in this respect. 

 The second question was: Do mathematics majors who participate in MATH 3330 

with a component on mathematics research demonstrate greater changes to their beliefs 

about mathematics than mathematics majors who participate in a standard MATH 3330 

course? The third question is similar but deals specifically with pre-service secondary 

mathematics teachers.  Several conclusions can be made in regard to these questions.   

 There was a statistically significant increase in survey scores for students’ beliefs 

related to the Status of Mathematics for the treatment group and not the control group, as 

expected at the beginning of the study.  The literature, as stated above, suggests that 

many mathematics teachers believe that mathematics is a static body of knowledge (Ball, 

1990; Stipek et al., 2001).  This study implies that it is possible to change the beliefs by 

introducing students, and perhaps teachers, to mathematics research.  However, when we 

restrict to the secondary mathematics teachers we see that the intervention did not change 

their beliefs in a statistically significant way, although it did have a practically significant 

change.  This is related to what Pajares (1992) says about some beliefs being harder to 
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change than others.  These pre-service teachers might need more of the intervention for 

the beliefs to become more ingrained in them. 

 Also, there was a statistically significant increase in overall survey scores between 

the mid and post-surveys for the treatment group and not the control group, although 

there was a practical significant increase in scores for the control group.  This implies that 

the intervention was successful in increasing the students’ scores on the surveys.  

However, when we restrict the data to the pre-service teachers the results flip; the control 

group has a statistically significant change and the treatment group does not.  This could 

again be related to the information that was presented to the students in the control group 

toward the end of the semester.  Nevertheless, MATH 3330 appears to have improved the 

beliefs of the pre-service secondary mathematics teachers.  This again seems to contradict 

the literature, that argues teachers believe mathematics is a static body of knowledge, a 

set of rules and facts, and algorithmic (Ball, 1990; Brendefur & Frykholm, 2000; Stipek 

et al., 2001).  So we again consider the possibilities mentioned above when discussing the 

first research question.  The pre-service secondary mathematics teachers’ beliefs were 

new and vulnerable to change. 

 In regard to Mathematicians it appears that it does not matter whether the student 

was in the treatment group or the control group to have had their beliefs changed in a 

significant way.  Although there was not a statistical significance in the change, there was 

practical significance and the change for both groups was similar.  While many of these 

students could be future mathematicians, it appears that they can continue to grow and 

learn about the community they chose to join.  This growth in their beliefs probably 

stems from their limited exposure to advanced mathematics and the people who do 
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advanced mathematics.  The more they learn about the field they will be a part of the 

more they will understand that being a mathematician is not as limiting socially or 

professionally as they might have thought. 

 There was no significant change in the students’ conception of the Usefulness of 

Mathematics across both groups, which was expected.  It is possible mathematics majors 

think that mathematics is useful or they would not major in the subject.  This agrees with 

the literature that reports students who believe mathematics is useful perform better in 

mathematics (Fennema & Sherman, 1977, 1978).  When we look at the supplemental data 

we see that, while a few of the students mentioned the importance of mathematics in 

learning to think, most students provided examples that were calculation-based.  This 

concurs with the literature, which stated that students tend to provide examples of 

calculation based jobs (Kloosterman et al., 1996; Mason, 2003; Picker & Berry, 2000; 

Rock & Shaw, 2000). 

 When we look at the rest of the subscales there seem to be some differences from 

what was expected.  Subscales that were expected to change due to the course should 

have showed some change in both the treatment and the control groups.  There were 

significant positive changes in the control group only for the Composition and Validation 

subscales while there were significant positive changes for Structure, Doing, and 

Learning in the treatment group only.  Since the significant change occurred between the 

pre and post-surveys, and not the mid and post-surveys, it is assumed that the course 

itself played a large role in effecting the students’ beliefs in the treatment group for these 

subscales. 

 Mason and Scrivani (2004) state that there is a scarcity of studies that discuss 
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improving beliefs about mathematics.  The literature that exists indicates that it is 

possible to improve the beliefs of students and teachers in regard to mathematics (De 

Corte, Verschaffel, & Eynde, 2000; Mason & Scrivani, 2004; Szydlik, Szydlik, & 

Benson, 2003).  This study adds to this body of knowledge by showing that exposure to 

current mathematics research influences the beliefs of mathematics majors as does a class 

that introduces advanced mathematical thinking and proofs. 

 Conclusions beyond the research questions.  The treatment had unforeseen 

effects on the students that were nonetheless related to the purpose of the study.  For 

many students the intervention increased their appreciation of mathematics.  This is 

evident in the curiosity that the students expressed in their reflection papers.  Students 

sought out information about what their professor was up to in terms of research.  Others 

expressed fascination with the material and would try to understand it by thinking of 

ways that the mathematics research could be applied to concepts with which they were 

familiar.  This shows that if a student is interested in the material, no matter how much 

they do not understand it, they can have an appreciation for it and try to make sense of it 

in their own way.  This is related to the dilemma every teacher has of getting their 

students interested in the subject they are teaching so that the students would be 

interested enough to seek out information. 

 The presentations provided some students with further encouragement to attend 

graduate school.  Conversely, one student said that the presentations showed him that he 

did not want to go to graduate school.  While this can be considered a negative reaction to 

the intervention it is not necessarily a bad thing.  The student has found out that 

mathematics is probably not what he thought it was and so it might be good that he 
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decides to stop at a certain point before becoming disappointed in the future after 

spending time and money towards a major that might not be fulfilling in the long term.  

However, he should be encouraged to seek out understanding of other branches of 

mathematics that might suit his needs.   

 One of the interesting things that happened in the treatment group for the Spring 

semester was the number of questions that the students began to ask when the last 

presentation turned from the mathematics research to the mathematics research process. 

It seems that the students were more active in this portion because they felt like they 

could relate to and understand it.  The students appeared to be genuinely interested in the 

mathematics research process, wanting to know what it means to do collaborative work in 

mathematics, or wanting to understand why someone, government or otherwise, would 

want to fund mathematics research.  Thus the intervention was successful in providing 

the students with an opportunity to gain a greater appreciation for mathematics and 

mathematics research. 

 This greater appreciation can be attributed to a mixture of the intervention and the 

students’ natural curiosity.  The students, who did not have insight about what professors 

of mathematics do outside of teaching, probably would have been curious about getting 

paid to think and do mathematics or traveling and giving talks about mathematics.  In 

other words, the thought of getting paid to do something you enjoy doing and to have 

your travel expenses paid for presenting something you enjoy sounds like an appealing 

proposition.   

 The intervention provided the students with the context in which mathematics 

work is done.  They were first presented with a complicated problem that they did not 
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understand and assumed that the problem was done in a brief amount of time.  However 

when they learned in the third presentation that the problem had been worked on for over 

a year using many of the same strategies that they use when doing their homework they 

became more interested in the idea of mathematics research.  

 It is as if the students went through a cycle of belief about what it means for 

mathematicians to do mathematics.  First, many of them believed that mathematics was 

computation and mathematicians’ research was finding ways of improving applications.  

Next, the students were shocked when they were presented with a problem that might not 

have any real world applications in the near future and that seemed to be complicated.  

Finally, during the third presentation, the students realized that the mathematics research 

that was presented was done in much the same way that they do their work with more 

advanced mathematics, and that with hard work they too could do mathematics research.  

Most of the students then saw mathematics as a growing field that is not confined entirely 

to the realm of computations and applications.   

 Unfortunately not every student experienced the intervention in this way.  Student 

32 in particular was a good example of this as well as a good example of what Dweck 

described as a fixed mind-set.  This student believed that graduate mathematics is too 

complicated and decided that he would not attempt graduate school.  As stated above, this 

is not necessarily a bad thing since the student probably will save himself time, money, 

and frustration by not attending graduate school. 

Limitations and Suggestions for Improvement 

 There were many limitations over the course of this study.  They fall into three 

main categories: sampling, intervention, and honesty.  Sampling limitations include 



   115 

 

sample size, method of selection, and student willingness.  The sampling method used 

was a convenient sampling of students that happened to take the Introduction to 

Advanced Mathematics course.  Therefore, it was not a random sample, which could cast 

doubt on the validity of the statistical results.  Unreliable survey participation was another 

limitation.  There were a total 40 students who took the survey three times, as shown in 

Table 7 of Chapter 6.  There were a total of 94 students between the four classes used in 

the study but, for a variety of reasons, not all took the survey three times.  A total of 18 

students withdrew from the class during the semester and the others either chose not to 

participate in the study or were not in class the day the survey was administered.  The 

students were given a week to finish the first survey; however, because the intervention 

only lasted for three weeks and began with three weeks left in the semester, the second 

and third surveys were administered on one day. Each student not in class was a missed 

survey. 

 Another problem with sampling arose with the control group.  A majority of the 

students that participated were mathematics majors seeking secondary certification (with 

one pure mathematics major and no applied mathematics majors).  Therefore there were a 

disproportionate number of secondary certification students in the control group 

compared to the treatment group.  I believe the reason for this is that the pure and applied 

mathematics majors felt compelled to participate because they were in the treatment 

group receiving the intervention while the ones in the control group were indifferent 

about the study.  The secondary certification students in the control group may have felt 

compelled to participate in the study because the study was a mathematics education 

study, something that related to their chosen career path. 
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 There are several ways to deal with these sampling limitations.  One is to do the 

study multiple times to provide a greater sample size.  Another way to increase the 

sample size is to provide better incentives for participating, especially in the control 

groups.  In the control group the incentive used was a homework grade for turning 

something in, either a letter stating they did not want to participate or the completed 

survey.  Only four students wrote letters stating they did not want to participate in the 

study and it was observed that a majority of the students that did not participate did not 

care about getting the homework grade.  A gift card as a gift for participating would be an 

example of a greater incentive for participating.   

 Intervention limitations include the time needed for implementation and the length 

of the survey.  Many students expressed in their reflections that they thought the class 

was going at a faster pace than they were used to for the early part of the semester.  This 

included not only the weekly lessons during the first part of the week but also the 

presentations during the second part of the week.  The students wished that there were 

more time for class discussion, as opposed to lecturing, during the research presentations.  

A possible solution to this would be to have a one-hour weekly seminar outside of the 

class that would run the whole semester.  It could also be offered as an elective one-hour 

credit for mathematics majors.  This approach would be limited to the students who had 

to take a particular class and the control group would be students who had not taken the 

course.  There would be problems with recruiting students to attend the seminar but this 

design is a legitimate alternative to the current study. 

 The length of the survey was 62 statements in which the students had to choose 

strongly agree, agree, partially agree, partially disagree, disagree, or strongly disagree.  
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The survey took at least ten minutes for most students to complete.  The students, in their 

haste to finish the survey, may have not read the statements, not completely understood 

the statements, or become fatigued while taking the survey to the point that it affected 

their answers.  It is possible to take out some of the subscales, especially Usefulness, 

since it was considered a subscale that would not change.   

 Another problem with the survey is that it is a self-report survey, which puts into 

question the accuracy of the students’ answers.  The same can be said of the interviews 

and the written work.  A larger sample size might lessen the effect of this limitation. 

Suggestions for Future Studies 

 This study chose to look into how beliefs change for students after an intervention 

in MATH 3330.  The natural question of what beliefs mathematicians have of 

mathematics arises from this research.  Additional questions center on what beliefs 

practicing secondary mathematics teachers and graduating seniors have of mathematics.  

These groups could be studied separately, or one could study the similarities and 

difference between the three groups. 

 Another study could focus on high school students, with a topic that is reasonable 

for high school students to understand.  The researcher could go to the school for several 

weeks to give guest lectures on the topic.  In this study the researcher would not teach the 

class leading up to the presentation of the mathematics research. 

 The literature shows as students enter into college they attempt to avoid 

mathematics as much as possible (Gilroy, 2002).  Students could be choosing majors or 

changing majors because of their avoidance of mathematics.  It would be interesting to 

study how their belief about mathematics inform their choices, besides the fact that they 



   118 

 

do not think they are good.  In this case the survey used for this dissertation could be too 

limiting.  It would probably be better to do a qualitative study to get the most information 

about their mathematical beliefs.  Interview topics could include but are not limited to 

mathematics history, best mathematics moment, worst mathematics moment, how those 

moments influence their life, what constitutes doing mathematics.  This study would help 

inform practitioners of how they could cater their instruction in order to alleviate some of 

the tension that students have toward mathematics. 

 Similarly pre-service elementary and middle school teachers could be studied to 

see how their beliefs about mathematics influenced their decision to go into teaching.  

From experience many of these students are shocked when they find out the amount of 

mathematics that they are required to take in order to get their degree.  At Texas State 

University-San Marcos elementary pre-service teacher have to take at least three 

mathematics courses and four for middle school certification students.  They include 

College Algebra and two or three seemingly “remedial” classes after College Algebra.  

That is, the content was at the elementary and middle school levels, but the focus is on 

understanding the structure of the lower grades content more so than a redo of that 

content.  These courses have the potential to present a new picture of mathematics for the 

students that is less about calculation and more about explaining relationships, 

particularly between procedure and concepts.  It would be interesting to know if students 

enrolled in these courses have changes in their beliefs, if so in what ways, and how these 

hypothetical changes compare to secondary certification seeking students. 

Suggestions for Practitioners 

 One of the natural curiosities that students have is wanting to know what their 
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professors do besides teach.  One suggestion for instructors that teach MATH 3330 is to 

try to emphasize connections between their research and the material in the course.  In 

fact this suggestion can be extended to all upper level mathematics classes in college.  It 

provides the students with a glimpse of what it means to do research in mathematics and 

what they might be doing if they choose to go to graduate school as well as how what 

they are learning in the course relates to these issues.   

 Another suggestion for instructors of MATH 3330 is to have the students find 

research from current faculty and have them present it to the class.  The students could 

connect a face with the research and perhaps would be more interested in it, since they 

would have access to the individual who did the research, and the researcher could 

answer any questions the students might have.  The instructor might need to vet research 

papers to ensure that the topic was not too difficult and that the students would be able to 

complete assigned tasks.   

 Texas State has a robust Honors Math Camp in the summer, which periodically 

leads to campers publishing articles.  Instead of presenting on faculty research the 

students could present the research of the Math Campers.  This ensures that the topics are 

at a level that the students can understand. 

Concluding Thoughts 

 The purpose of this study was to see if the presentation of mathematics research 

would manifest positive beliefs about mathematics as described in Table 12, copied from 

Table 1 in the first chapter.  The results and conclusions of the study showed that the 

desired change in student beliefs was attained, especially in regard to the changing nature 

of mathematics.  While students in the beginning believed that mathematics was a 
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growing field, it was more of a feeling of “it has to be” than of really knowing that it is 

growing. 

 The hope is that this study encourages more college instructors to include aspects 

of current mathematics research in their advanced mathematics courses.  This idea of 

introducing mathematics research will hopefully trickle down into the high school ranks.  

As was discussed, the Math Camp students at that level are able to carry out mathematics 

research.  Admittedly the students that come through Math Camp are extraordinary, but it 

would be possible to find topics that the average high school student could understand. 

Table 12 

Description of What a Positive or Negative Belief is for Each Subscale 

 Negative Positive 
Composition of Mathematics Procedural Conceptual 

Structure of Mathematics Isolated Ideas Connected Ideas 

Status of Mathematics Dead Alive 

Doing Mathematics Procedural Conceptual 

Validating in Mathematics Told from Authority Self-Proof 

Learning Mathematics Memorization Understanding 

Usefulness of Mathematics Not Useful Useful 

Mathematicians are Unimportant/Not Good Important/Good 

 

 Graph theory is an excellent example of a mathematics topic that students at the 

high school level can understand at a basic level, especially because of its graphic nature.  
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It is also new enough to the students that any subject discussed could provide the student 

with a sense that mathematics is a growing field.  Graph theory also provides example of 

a topic that is pure mathematics but can be easily applied in the real world in certain 

situations.  It also shows a part of mathematics that is a little less calculation based than 

the algebra and geometry that students are exposed to in high school. 

 While some students had a less than stellar experience every student got 

something out of the treatment.   For example one student decided he might not want to 

attend graduate school.  He now does not have to waste his money to find out he does not 

like it.  Another student, who has taken the class several times has expressed renewed 

interest after the treatment, and is considering going to graduate school. 

 I am encouraged though by the reactions of the students on the last day of the 

treatment, particularly in the Spring semester.  The students seemed genuinely interested 

in the idea of mathematics research and how it is conducted.  With any luck these 

students will carry the experience that they had in the treatment group with them as they 

continue their mathematical careers. 
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APPENDIX A 

CONSENT LETTER 

 
Research and Survey Consent Letter – Experimental Group 

 
Dear student enrolled in MATH 3330: 
 
We are seeking your help in a research dissertation project investigating the appreciation 
that different groups of people have of mathematics, including beliefs about the value of 
mathematics and mathematicians. 
 
The project involves the administration of surveys that consist of a series of statements 
with which you will be asked to rate your level of agreement.  Participation is completely 
voluntary: your grade in this class will not be affected by your participation. 
 
Also, you will have written assignments periodically throughout the semester for 
homework.  The survey will ask for your permission to use your reflections for the 
purposes of the study.  However, the reflections will still be collected as a homework 
grade for the course.  
 
Your responses will remain confidential and will only be known to myself and the 
dissertation committee.  Identifiable information will be destroyed at the end of the 
project.  You have the option of dropping out of the study at anytime.  Simply inform me 
in person or by email of your wish to be dropped from the study. 
 
You indicate your voluntary agreement to participate by completing and returning this 
survey to me.  Thank you for volunteering to participate in this research project.  Keep 
this letter for your own reference. 
 
Sincerely, 
 
 
 
Joshua Goodson 
Texas State University – Mathematics Department 
jg1356@txstate.edu 
(512) 245-4740 
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Research and Survey Consent Letter – Control Group 

 
 
 
Dear student enrolled in MATH 3330: 
 
We are seeking your help in a research dissertation project investigating the appreciation 
that different groups of people have of mathematics, including beliefs about the value of 
mathematics and mathematicians. 
 
The project involves the administration of surveys that consist of a series of statements 
with which you will be asked to rate your level of agreement.  Participation is completely 
voluntary: your grade in this class will not be affected by your participation. 
 
Your responses will remain confidential and will only be known to myself and the 
dissertation committee.  Identifiable information will be destroyed at the end of the 
project.  You have the option of dropping out of the study at anytime.  Simply inform me 
in person or by email of your wish to be dropped from the study. 
 
You indicate your voluntary agreement to participate by completing and returning this 
survey to me.  Thank you for volunteering to participate in this research project.  Keep 
this letter for your own reference. 
 
Sincerely, 
 
 
 
Joshua Goodson 
Texas State University – Mathematics Department 
jg1356@txstate.edu 
(512) 245-4740
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APPENDIX B 

SURVEY 

 
Name: ___________________________ 
 
Directions: Circle the appropriate response that corresponds to your overall level of agreement for each 
statement.  SD (Strongly Disagree), D (Disagree), PD (Partly Disagree), PA (Partly Agree), A (Agree), and 
SA (Strongly Agree).  CIRCLE ONLY ONE. 
 

	
  	
   	
  	
   	
  	
   SD	
   D	
   PD	
   PA	
   A	
   SA	
  

1	
   .	
   There is always a rule to follow when solving a 
mathematical problem. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

2	
   .	
   Learning mathematics involves more thinking 
than remembering information. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

3	
   .	
   Mathematics has very little to do with students' 
lives. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

4	
   .	
   Memorizing formulas and steps is not that 
helpful for learning how to solve mathematics 
problems. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

5	
   .	
   When two students don't agree on an answer in 
mathematics, they need to ask the teacher or 
check the book to see who is correct. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

6	
   .	
   Finding solutions to one type of mathematics 
problem cannot help you solve other types of 
problems. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

7	
   .	
   You know something is true in mathematics 
when it is in a book or an instructor tells you. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

8	
   .	
   In mathematics there are many problems that 
can't be solved by following a given set of steps. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

9	
   .	
   When learning mathematics, it is helpful to 
analyze your mistakes. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
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10	
   .	
   Being able to use formulas well is enough to 
understand the mathematical concept behind the 
formula. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

11	
   .	
   When you learn something in mathematics, you 
know the mathematics learned will always stay 
the same. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

12	
   .	
   Diagrams and graphs have little to do with other 
things in mathematics like operations and 
equations. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

13	
   .	
    The field of mathematics is always growing and 
changing. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

14	
   .	
   Mathematics will not be important to students in 
their life's work. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

15	
   .	
   Concepts learned in one mathematics class can 
help you understand material in the next 
mathematics class. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

16	
   .	
   Asking questions in mathematics class means 
you didn't listen to the instructor well enough. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

17	
   .	
   If you cannot solve a mathematics problem 
quickly, then spending more time on it won't 
help. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

18	
   .	
   Learning computational skills, like addition and 
multiplication, is more important than learning to 
solve problems. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

19	
   .	
   Learning to do mathematics problems is mostly a 
matter of memorizing the steps to follow. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

20	
   .	
   Most mathematical ideas are related to one 
another. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

21	
   .	
   When you learn mathematics, it is essential to 
compare new ideas to mathematics you already 
know. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

22	
   .	
   When two classmates don't agree on an answer, 
they can usually think through the problem 
together until they have a reason for what is 
correct. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

23	
   .	
   Students can make new mathematical 
discoveries, as well as study mathematicians' 
discoveries. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
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24	
   .	
   There is little in common between the different 
mathematical topics you have studied, like 
measurement and fractions. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

25	
   .	
   Mathematicians work with symbol rather than 
ideas. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

26	
   .	
   Sometimes when you learn new mathematics, 
you have to change ideas you have previously 
learned. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

27	
   .	
   New mathematics is always being invented. SD	
   D	
   PD	
   PA	
   A	
   SA	
  

28	
   .	
   Solving a problem in mathematics is more a 
matter of understanding than remembering. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

29	
   .	
   When working mathematics problems, it is 
important that what you are doing makes sense 
to you. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

30	
   .	
   Knowing mathematics will help students earn a 
living. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

31	
   .	
   Taking mathematics is a waste of time for 
students. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

32	
   .	
   Essential mathematical knowledge is primarily 
composed of ideas and concepts. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

33	
   .	
   When one's method of solving a mathematics 
problem is different from the instructor's method, 
both methods can be correct. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

34	
   .	
   One can be quite successful at doing 
mathematics without understanding it. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

35	
   .	
   Mathematics is a worthwhile subject for 
students. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

36	
   .	
   Students should expect to have little use for 
mathematics when they get out of school. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

37	
   .	
   Knowing why an answer is correct in 
mathematics is as important as getting a correct 
answer. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

38	
   .	
   Mathematics today is the same as it was when 
your parents were growing up. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
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39	
   .	
   Students need mathematics for their future work. SD	
   D	
   PD	
   PA	
   A	
   SA	
  

40	
   .	
   In mathematics, the instructor has the answer and 
it is the student's job to figure it out. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

41	
   .	
   While formulas are important in mathematics, 
the ideas they represent are more useful. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

42	
   .	
   Understanding the statements a person makes is 
an important part of mathematics. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

43	
   .	
   New discoveries are seldom made in 
mathematics. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

44	
   .	
   Often a single mathematical concept will explain 
the basis for a variety of formulas. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

45	
   .	
   Mathematicians enjoy working in collaboration 
with others. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

46	
   .	
   When you do an exploration in mathematics, you 
can only discover something already known. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

47	
   .	
   If you knew every possible formula, then you 
could easily solve any mathematical problem. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

48	
   .	
   Mathematicians have a large range of career 
opportunities available to them. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

49	
   .	
   Learning mathematics involves memorizing 
information presented to you. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

50	
   .	
   Mathematics consists of many unrelated topics. SD	
   D	
   PD	
   PA	
   A	
   SA	
  

51	
   .	
   Many of the things that mathematicians do are 
being taken over by computers. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

52	
   .	
   Justifying the statements a person makes is an 
important part of mathematics. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

53	
   .	
   The field of mathematics is for the most part 
made up of procedures and facts. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
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54	
   .	
   The work that mathematicians do is the same 
work that students do in grade school but with 
larger numbers. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

55	
   .	
   Students will use mathematics in many ways as 
adults. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

56	
   .	
   Mathematics involves more thinking about 
relationships among things such as numbers, 
points, and lines than working with separate 
ideas. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

57	
   .	
   Mathematicians are hired mainly to make precise 
measurements and calculations for scientists. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

58	
   .	
   You can only find out that an answer to a 
mathematics problem is wrong when it is 
different from the book's answer or when the 
instructor tells you. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

59	
   .	
   You can only learn mathematics when someone 
shows you how to work a problem. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

60	
   .	
   It is important to convince yourself of the truth 
of a mathematical statement rather than to rely 
on the word to others. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

61	
   .	
   Mathematicians do not appreciate other fields of 
knowledge. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
  

62	
   .	
   Computation and formulas are only a small part 
of mathematics. 

SD	
   D	
   PD	
   PA	
   A	
   SA	
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Directions:  Answer the following by circling the response that described you the most. 
 
Gender: M F 
 
 
Major (circle one): 
 
 Pure Mathematics      Applied Mathematics 
 
 Mathematics with Secondary Teacher Certification  Mathematics Minor 
 
 Other:_________________________________ 
 
 
Number of college credit hours completed: 
 
       0-25 hours  26-50 hours  51-75 hours  more than 75 
hours 
 
 
Do you plan on getting a graduate degree in mathematics? 
 
 Yes  No 
 
 
Do you plan on getting a graduate degree in mathematics education? 
 
 Yes  No 
 
 
Do you give permission for the use of your written assignments to be used in the 
research study? 
 
 Yes  No 
 
 
Would you be willing to participate in a series of interviews throughout the 
semester? 
  
 Yes  No 
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APPENDIX C 

INTERVIEW CONSENT FORM 

 
Interview Research Consent Form 

 
Texas State University IRB Number:   
Principal Investigator: Joshua Goodson, Texas State University – Mathematics 
Department 

 
Introduction 

 You are being interviewed today because you indicated on the in class survey that 

you would be willing to participate in a series of interviews.  You need to know: 

• Your participation is entirely voluntary 

• You may choose not to take part in this study or you may withdraw from the 

study at any time without fear of jeopardizing your standing within the course or 

the University. 

• You have the right to refuse to answer any questions for any reason. 

  

Purpose 

 The purpose of this research project is to investigate the beliefs that mathematics 

major have about mathematics and mathematicians.  The interview is expected to last one 

hour and should not exceed one hour and 30 minutes.   

 

Risks of the Study 

 There are no foreseeable risks to participating in the study. 

 

Benefits of the Study 

 You may receive no benefit from taking part in the study.  The research may give 

us knowledge to help mathematics education in the future. 
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Participation 

 You do not have to participate in this study if you do not want to.  To opt out, 

simply say so and leave.  You may also stop participating at any time by contacting 

Joshua Goodson to inform him of your decision.   

 

 

Other Information 

Confidentiality.  When the results of this research study are reported in Joshua 

Goodson’s dissertation, academic journals, or other scholarly activities, your identity will 

remain confidential.   Your thoughts, ideas, and answers to the questions will be 

attributed to an alias (student 1, students 2, etc.).   All identifiable information will be 

kept digitally and will be destroyed upon conclusion of the study. 

 

Taking you off the study. The investigators can decide to withdraw you from the study 

at any time. The investigators reserve the right to decide what data (in the form of 

comments or information obtained from interviews) will be included in the study or in 

publications written based on the findings of the study. Your comments and/or interview 

may or may not be fully or partially included in publications based on this study. 

 

Questions and Concerns.  Any questions regarding your rights as a participant should be 

directed to the IRB chair, Dr. Jon Lasser (512-245-3413 – lasser@txstate.edu), or Ms. 

Becky Northcut, Compliance Specialist (512-245-2102).  

 

Consent Form.  Please keep a copy of this consent form in case you wish to read it 

again. 

 

If you wish to participate in this interview, please sign below: 

 
Document Consent 

I understand the information included in this form. I have asked any questions that I have 
about this study, its risks and potential benefits, and my options for participating in it 
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with Joshua Goodson, the primary contact. My questions so far have been answered. By 
signing this document I indicate my understanding that I can withdraw at any time, and 
my assertion that I am at least eighteen years old. Further, my signature below indicates 
my willingness to participate in an interview and my understanding that I can stop this 
interview at any time. 
 
 
______________________________________________ 
Print Name - Interviewee 
 
______________________________________________    
Sign Name - Interviewee       Date 
 
 
______________________________________________    
Joshua Goodson – Interviewer Obtaining Consent   Date 
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APPENDIX D 

INFORMAL INTERVIEW GUIDE 

 
1. Describe your mathematical background that led you to your current major. 

2. What is the most pivotal moment your mathematics career and what does it mean 

to you? 

3. If you were to defining mathematics to someone who does not know what 

mathematics is, what would you say? 

4. Explain what you think is the most important concept in mathematics? 

5. When you think of a mathematician, what picture comes to your mind? 
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APPENDIX E 

LESSONS 

 

Week 1 Lesson 

Lesson Plan 1 

Title: What Group Am I In 
 
Author: Joshua Goodson 
 
Objectives: 

• The students will investigate properties of groups 
 
Book:  Smith, D., Eggen, M., & Andre, R.  A Transition to Advanced Mathematics: 6th 
Ed. Thomson Brooks/Cole (2006). 
 
Procedures: 
 In this lesson students will investigate the properties that define a group.  This 
lesson is adapted from Cullinane’s (2005) article about making abstract algebra relevant 
to future teachers.  The lesson is constructed in such a way so that students are able to 
make a connection between abstract algebra and the algebra they teach, or took, in high 
school.  While the definition of a group is explored in a way that different from the way 
that the group structure is normally thought as, it never the less makes it relevant to the 
student.   
 
Vocabulary: 

1. Group 
a. A set G together with an associative binary operation “

€ 

⋅ ” defined on G such 
that there exist 

€ 

e∈G  with the following properties 
1. For each 

€ 

x ∈G,x⋅ e = e⋅ x = x  
2. For each 

€ 

x ∈G there exists 

€ 

y ∈G  such that 

€ 

x⋅ y = y⋅ x = e  
2. Subgroup 

a. A subset 

€ 

H ⊆G  is a subgroup of G if H is closed under “

€ 

⋅ ” in G and forms a 
group with respect to “

€ 

⋅ ”. 
3. Abelian 

a. A group G is abelian if and only if the operation is commutative. 
4. Generators 
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Activities: 
 The first activity begins by asking the students to solve the linear equation 
x+4=10.  From here we try to guide the students into naming some of the group 
properties from solving this simple linear equation and getting them to understand which 
properties are needed and which are not needed to solve the equation. 
 
 Instructor: Solve this linear equation  
 Board: x+4=10? 
 
 See the Likely Vignette at the end of the lesson to see how this activity might 
happen. You can lead a discussion with you at the board or lead the discussion with a 
student at the board.  We want to use as few properties as possible.  Allow them to solve 
and ask them questions such as “Do we really need to use the commutative property?”    
We want to minimize the number of properties that we use. 

• Examples of things we do not want students to do 
o To go straight to 𝑥=6, because we need to use the properties 
o Do subtraction of 4 on both sides because we only want to use addition 
o Do vertical addition of -4 because in this case we do not know where the -

4 is being added to 
 Discuss if it matters (Not in this case because of the commutative 

property but what about matrices) 
 Remember we want to limit the number of properties as much as 

we can 
 Do 𝑥+4+(−4)=𝑥+(−4) (Add in the same position on both sides) 

  
 After they have outlined the procedure for solving the equation: 
 
 Instructor: Which properties of integers are needed in order to solve the 
equation? 
 
 We are trying to guide the students to some of the group properties.  Desired 
answers we want them to give include the associative property, the identity 0, and an 
integer’s additive inverse (the negative of the integer).  Be sure to note the above 
properties on the board.  Note that at this point students might think that the commutative 
property is needed when it is not.  Others might wonder about the need for the associative 
property. 
 
After these properties have been found and discussed: 
 
 Instuctor:   Is the number set that we are working in important?  For example, 
suppose we had 3x=18 and I asked you to solve in the integers using only multiplication 
in the traditional way, could you solve it? 
 Board:   3x=18 
 Here we are trying to show them that if we only used multiplication we cannot 
solve this equation unless we were using rational numbers.  Desired answer is no 
because 1/3 is not an integer.   
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 Taking many of these properties that we found for solving these equations, we can 
form the definition of what we call a Group.    
 
 Board: 

A group is a set G, together with an operation “*”  defined on the set, and denoted 
(G,*), such that: 
1. For all x and y in G, x*y is in G 
2. For all x, y, and z in G, (x*y)*z = x*(y*z) 
3. There exist an element e in G such that x*e = e*x=x for all x in G. 
4. For all x in G there exist a y in G such that x*y=y*x=e. 

 
(Note to instructor: This definition is equivalent to the one above.) 
 
 Provide some simple examples of groups on the board.  Inform the students that 
we use multiplication as an abstract operation a lot of the time when we are talking about 
groups in general. 
 
 Instructor: Another example of a group is the rationals without zero under 
multiplication 
 Board: (Q-{0}, *) 
 Instructor: Let us quickly run down the group axioms but we will not do a 
formal proof.   
Verify each axiom with students informally. 
 
Theorem not to be proved in class.   
 Instructor: The following theorem will not be proved in class.   However it is 
necessary to know and understand, it will also help shorten what we need to write when 
doing a proof.  I encourage you to attempt the proof on your own.  If you need help on 
any proof I ask you to try, feel free to come by my office hours. 
 Board: Theorem:  Let G be a group.  Then the inverse of any element in G 
is unique. 
 
 Instructor: Thus, we can denote the inverse of an element, x, in a group G as  
x-1.   
 Board: The inverse of an element, x “in” G is denoted x-1 
 Instructor: Thus when we write x-1 it is understood to be the inverse of x so in 
our proof we need not say let y be an inverse of x and we do not need to worry about 
there being multiple inverses for elements. 
 
 Prove the following theorem with the class helping. 
Cancellation Theorem:  Let G be a group and a,b,x be in G.   

a) If ax = bx then a = b. 
b) If xa = xb then a = b. 

 
Abridged Proof:  a) Let G be a group and a,b,x be in G such that ax = bx.  Then x-1 is in 
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G and a = a1 = ax x-1 = bx x-1 = b1 = b.  Proof for b is similar. 
 
 Instructor:   One way to display information about a group is with a 
multiplication table (also called operation table) for finite groups.  Consider the integers 
modulo six with addition.   
 
Construct the following table with the students. 
 
Example: (ℤ6, +) 

 0 1 2 3 4 5 
0 0 1 2 3 4 5 
1 1 2 3 4 5 6 
2 2 3 4 5 6 0 
3 3 4 5 6 0 1 
4 4 5 6 0 1 2 
5 5 6 0 1 2 3 

 
Check the group axioms informally for the above set with the students to find that it is a 
group. 
 

Instructor: We will come back to this example in just a minute.  If I said that a 
group had a subgroup, what would that mean to you?   

 Desired Answer: A subgroup is a subset of the group and is itself a group. 
 Instructor: Is it possible that for a subgroup to have a different identity element 
than the larger group? 
 Desired Answer: No. 
 
Have them attempt a proof. 
 
Theorem: If H is a subgroup of G then the identity in H is the identity in G. 
 
Abridged Proof:    Let 1H be the identity in H and 1G be the identity in G.  Let x be in H.  
Then x1H = x = x1G.  By the cancelation theorem 1H = 1G. 
 
 
 Instructor: Let us return to the table of ℤ6.  Can you find any subgroups in this 
group? 
 Desired Answer: The set 0, 2 and 4 or the set 0 and 3. 
 Board: {0, 2, 4} {0, 3} 
 
Check the group properties informally as a class.  
 
 Instructor: Note that the identity must be in the set.  What do you notice about 
these subgroups?  In other words, what happens when you continuously add 2 to itself? 
 Desired Answer: We get the subgroup 0, 2, 4. 
 Instructor: We call 2 a generator for the subgroup.  In fact, notice that 1 is a 
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generator for the whole group. 
 
At this point we are going to foreshadow the idea of isomorphism 
 
 Instructor: Do these subgroups look like they could be an integers mod x set or 
do they behave like different integer mod sets?  Do not answer this question, just think 
about it.  You might notice that in ℤ6the operation is still commutative.  When a group is 
commutative we call it an abelian group or we say the group is abelian.  This type of 
group is named after one of the “godfathers” of algebra Abel. 
 We can construct groups that are not abelian.  For example you might recall that 
multiplication with matrices does not always commute.  We can construct a non-abelian 
group that way but I think it would be more interesting to discuss what is known as the 
dihedral group of order 8.  The order of a group is the number of elements in the group.  
One of the reasons I think this group is more interesting is because it is derived not from 
numbers but from the different positions of a square.   
 
Derive the dihedral group with the students using the procedure below if needed.  Be sure 
to illustrate to the students how the operation is performed after deriving the group. 
 
 First we start with a square and label each corner whatever we want, just to keep 
track of how the square is positioned.  (If they do not come up with anything just label it 
a,b,c,d counter clockwise).  What are some different positions that this square can be in, 
for example it could look like this b,c,d,a?   What are some other ones?  (Draw all 8 of 
them on the board).  This was our original square (point to the first one a,b,c,d) and we 
call this the identity square).  Lets look at this one, what must we do to the identity square 
to get this one (do this with each square.  Afterward show them that some are a 
combination of the others.  For example the 180 degree turn is two 90 degree turns.  This 
will give us names for each element in our set.  Then show them how to multiply to of 
them and then encourage them to make the operation table for the group).  We will not be 
proving that this is a group but I encourage you to make the operation table and 
investigate the group properties on your own.  The purpose of this exercise is that I 
wanted to show a group that was not commutative, in other words not abelian.  If we do a 
90 degree rotation times a flip then it is different than a flip and then a 90 degree rotation. 
 
Assessment: 
Homework: 
Turn in  
 6.2 – 3, 13 & 6.3 – 3 
For extra practice 
 6.2 – 9, 16 & 6.3 – 4, 7, 8 
 
Reference: 
Cullinane, M. J. (2005). Motivating the notions of binary operation and group in an 
abstract algebra course. PRIMUS: Problems, Resources, and Issues in Mathematics 
Undergraduate Studies, 15(4), 339-348.
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Likely Vignette 
of first activity 

 
T:  Solve x+4 = 10 and show your work 
 
S:  x + 4 = 10 
          -4     -4 
            x = 6 
 
T:  What exactly does this mean? 
 
S:  Subtract 4 from both sides 
 
T:  The -4s look like they’re floating, what do they mean in terms of the “=” sign.  Why 
not subtract 4 from each side in a separate line. 
 
S:  x + 4 – 4 = x – 4 
 
T:  Now finish from there. 
 
S:  I did, x = 6. 
 
T:  Why is x by itself? 
 
S:  4 – 4 = 0 
 
T:  For what we are doing we want to show each step.  This is actually what we started 
with since we are subtracting 4 from the quantity that is x + 4: 
 ( x + 4 ) = 10 
 ( x + 4 ) – 4 = 10 – 4 
How do we know we can “do” 4 – 4 if we have this? (act out associative property with 
hands) 
 
S:  Associative 
 
T:  We need to be careful, is subtraction associative?  
  (Consider asking them if the following is true: 5 – 4 – 2 = ( 5 – 4 ) – 2 = 5 – ( 4 – 
2 )) 
 We do know that addition is, so is there a way to do this problem with only 
addition. 
 
S:  yes, x + 4 + (-4) = 10 + (-4) 
 
T:  Now we can use the associative property x + ( 4 + -4 ) = 10 + -4 
 How do we know 4 + -4 = 0 
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S:  -4 is the opposite of 4; or -4 same magnitude different sign; or additive inverses 
 
T:  So -4 is the additive inverse of 4 (define if necessary) 
 
T:  x + 0 = 6.  Student wrote x = 6, why does this follow? 
 
S:  Anything plus 0 is itself. 
 
T:  So adding 0 does not change the number, does not change its identity, so we call 0 the 
additive identity.  So here is what the problem looks like now: 
 
x + 4 = 10 
( x + 4 ) + -4 = 10 + -4 equality property 
x + ( 4 + -4 ) = 10 + -4 associative 
x + 0 = 6   additive inverse (need this to exist to cancel the 4) 
x = 6    additive identity (if didn’t exist we would have a problem 
solving) 
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Week 2 Lesson 

 
Lesson Plan 2 

 
Title: How many what…? 
 
Author: Joshua Goodson 
 
Objectives: 

• The students will be able to count permutations and combinations, use the product 
rule and sum rule, 

• The students will be able to apply counting techniques to different aspects of 
groups. 

 
Book:  Smith, D., Eggen, M., & Andre, R.  A Transition to Advanced Mathematics: 6th 
Ed. Thomson Brooks/Cole (2006). 
 
Procedure: 
 Instructor: Who in here is familiar with counting?  For example, on the Texas 
Lottery homepage it tells us that there are 25,827,165 different number combinations in 
Lotto Texas. (Choose six from 54 numbers).  Who knows how they came up with this 
number?  This is the type of counting that we will be discussing today. 
  
This lesson begins with a worksheet in which the students will work alone or in small 
groups to count some elementary problems.  After a few minutes gather the class up and 
spend a few minutes discussing the problems.   
 
 Instructor: The first problem is an example of what we call the sum rule.  
What do you think the second problem is an example of?   
 Desired Answer: The product rule.   
 Instructor: The third is an example of a permutation and the fourth a 
combination.  What were your strategies for solving the problems (Aside from writing 
them all out)? 
 Desired Answer: Answers may vary. 
 Instructor: How would you define the sum rule?  
 
Theorem 2.16: Sum Rule:  If A and B are disjoint sets with |A|=m and |B|=n then 
|AUB|=m+n 
 
Here students might just say that it is the sum of the number of two things or collection of 
things.  We need express to them that the numbers are from two sets or a collection of 
things or objects.  Also, they might not say that the sets need to be disjoint.  If they do 
not, provide them with an example in which two set are not disjoint. 
 
 Instructor: How would you define the product rule? 
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Theorem 2.19: Product Rule: If two independent tasks T1 and T2 are to be performed, 
and T1 can be performed in m ways and T2 in n ways, then the two tasks can be 
performed in mn ways. 
 
Just as disjoint sets were important for the definition of the sum rule, the two tasks here 
need to be independent.  Again provide an example of tasks that are not independent. 
 
 Instructor: How would you define a permutation? 
 
Permutation: A permutation of a set with n elements is an arrangement of the elements 
of the set in a specific order.   
 
Theorem 2.22: The number of permutations of any r distinct objects taken from a set of 
n objects is n!/(n-r)! 
 
Proof:  Let S be a set with n elements.  We will pick r elements of S in any arbitrary 
order.  There are n elements in S, so there are n options for the first element.  Then there 
are (n-1) elements left in S that have not been picked, so there are (n-1) options for the 
2nd element.  Then there are (n-2) for the 3rd element and so on.  Thus there are (n-(r-1)) 
options for the rth element.  Each selection is independent of the each other so by the 
product rule 

n(n-1)(n-2)…(n-r+1) = n!/(n-r)!  
 
 Instructor: How would you define a combination? 
 
Combination: A combination of n elements taken r at a time is the selection of an r-
element subset from an n-element set.  The number of combinations is denoted (n over r).   
 
Theorem 2.23:  Let n be a positive integer and r be an integer such that 0<=r<=n, n!/r!(n-
1)! 
 
Proof:  Let A be a set with n elements.  By Theorem 2.22, the number of permutations of 
all n objects is n! 
 The n objects can also be arranged by first selecting r objects, arranging them, and 
arranging the remaining n-r objects.  There are (n over r) ways to select r objects, r! ways 
to arrange them, and (n-r)! ways to arrange the rest.  By the product rule, the number of 
permutations of the n objects is (n over r)*r!*(n-r)!. 
 
 Instructor: So if we were to go back to the lottery example, what type of 
problem is that? 
 Desired Answer: Combination. 
 
 
Do a couple more problems as a class. 
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Example: How many subsets are there for a set with n elements? 
 
Example:  How many 3 element subsets are there for a set of n>= 3 elements? 
 
Assessment: 
Homework:   
Turn in 
 4, 14  
For extra practice 
 5, 8, 13 
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Week 3 Lesson 

 
Lesson Plan 3 

 
Title: Are we the same? 
 
Author: Joshua Goodson 
 
Objectives: 

• The students will become familiar with the ideas of homomorphisms and 
isomorphisms. 

• The students will become familiar with how two groups are “the same” up to 
isomorphisms. 

 
Book:  Smith, D., Eggen, M., & Andre, R.  A Transition to Advanced Mathematics: 6th 
Ed. Thomson Brooks/Cole (2006). 
 
Procedure:    
 Instructor: Today we are going to begin the day by playing a game.  The game 
is a two player game in which you take turns picking an integer between 1 and 9.  Once a 
number has been picked it cannot be picked again.  The first player to have exactly three 
numbers add to fifteen is the winner.  If, after all the numbers have been picked, no one 
has exactly three that add to fifteen, then there is no winner. 
 
Make sure the students understand the game and allow them a few minutes to play in 
pairs. 
 
 Instructor: Did you gain any insights into how to play the game?  Believe it or 
not the game that you were playing can be set up to look like this… 
 Board: 
 

8 3 4 

1 5 9 

6 7 2 

 
 Instructor: If you notice, picking the numbers is like picking a square in this 
table.  And having a sum of 15 is like completing a row, column, or diagonal in this table.  
What game is this like playing?   
 Desired Answer: Tic-tac-toe.  
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 Instructor:  The point of this exercise is to illustrate that two things that look 
seemingly different can turn out to be considered the same thing.  This is the topic that 
we are going to be discussing today. Consider the function f(x) = log(x).   
 Board: f(x) = log(x).  
 Instructor: Suppose we had f(5)+f(6) = log(5) + log(6). 
 Board: f(5)+f(6) = log(5) + log(6) 
 Instructor: How can we rewrite this (Or write it the other way and ask how can 
we rewrite this)?   
 Desired Answer: log(5)+log(6) = log(5*6). 
 Board:   log(5)+log(6) = log(5*6) 
 Instructor: This is a function that maps the positive rationals under 
multiplication to the reals under addition and is what is called a homomorphism. What do 
you think that means? 
 Board: 
 A homomorphism from a group (A,*) to a group (B,+) is a mapping f such that 
for all x,y in A, f(a*b) = f(a)+f(b).   
 Instructor: Thus, as (Q+, *) and (R, +) are groups, logarithms are 
homomorphisms.  Is this function 1-1?   
 Desired Answer: Yes. 
 Instructor: Be sure to prove that on your own.  Is this function onto?   
 Desired Answer:  No, because the image is countable and real numbers are not. 
 
Write the groups (Z6,+) and this on the board (Z7-0,*). 
 
 Instructor:  Here are two groups.  If you do not believe me prove the axioms to 
yourself.  Is there a homomorphism from one to the other?  
 
Give the students time to think and consider any ideas that they have. 
  
 Instructor:  There is, consider the mapping from 1 in Z6 to 3 in Z7.  Recall the 
generators we discussed a couple of weeks ago.   
 
Write all the mappings on the board based on the mapping from 1 in Z6 to 3 in Z7 
 
 Instructor: There is something else about this example. Is it 1-1?  
 Desired Answer: Yes 
 Instructor: Is it onto? 
 Desired Answer: Yes 
 Instructor: In this case, when a homomorphism is 1-1 and onto we call it an 
isomorphism.   
 Board:  A homomorphism that is 1-1 and onto is called an isomorphism. 
 Instructor: What do we know about the sets when we have 1-1 and onto 
functions from one to the other?  
 Desired Answer: They have the same order. 
 Instructor: We also get something extra when a function is an isomorphism, 
we can also say that the groups behave in the same way. Also, recall the subgroups of Z6 
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discussed a couple of weeks ago.  What do you think the two subgroups would be 
isomorphic to?   
 Desired Answer: Z2 and Z3.   
 
Put the groups on the board and compare. 
 
 
 
The following are proofs to be done as a class while time permits. 
 
Proofs: 
 
Theorem 6.15b:Suppose we had two groups (A,*) and (B,+), A is abelian, and we know 
that f:A->B is an isomorphism.  In this case we can show that B is abelian. 
Do the following proof together. 
Proof:  f(a) + f(b) = f(a*b) = f(b*a) = f(b) + f(a) 
 
Theorem 6.14b: Let f be a homomorphism from (A,*) to (B,+).  If e is the identity in A 
then f(e) is the identity in B. 
 
Proof:  Let e_A be in A, then f(e) is in B.  Then f(e)=f(e*e)=f(e)+f(e).  So, by 
cancellation, e_b = f(e). 
 
Theorem 6.14c:  Let f be a homomorphism from (A,*) to (B,+). If x^-1 is the inverse for 
x in A, then f(x^-1) is the inverse for f(x) in B. 
 
Proof:  Let x be in A and x^-1 be the inverse for x in A.  e_B = f(e_A) = f(x * x^-1) = 
f(x) + f(x^-1).  Thus, f(x^-1) = f(x)^-1. 
 
Assessment: 
Homework: 13, 19 
 
Extra practice: 
 
6.4: 12, 14, 20 
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APPENDIX F 

CLASS TOPICS SCHEDULES 

Fall 2010 Treatment 
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Spring 2011 Treatment 

 



   150 

 
 

 
Spring 2011 Control 
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APPENDIX G 

 
GAP SCRIPTS 

 
Brian Doring’s 
MaxOrbitSimp.txt 
 
cl:=ConjugacyClasses(G); 
cl1:=List(cl,x->AsSet(cl1),OnSets); 
O:=OrbitLengths(A,AsSet(cl1),OnSets); 
Print(“For the subgroup A of Aut(G) of size “,Size(A),”, the maximum size of 
Maximum(O), “\n”); 
 
Frank Lübeck’s 
 
g := ExtraspecialGroup(3^5,'+'); 
r := IrreducibleRepresentations(g,GF(7));; 
List(r, h-> DimensionOfMatrixGroup(Image(h))); 
g1 := Image(r[1]); 
one := One(g1); 
numorbs := 1/Size(g1) * Sum(ConjugacyClasses(g1), c-> Size(c) * 
                                                                               7^(9RankMat(Representative(c)-one))); 
vsp := GF(7)^9; 
enum := Enumerator(vsp); 
found := BlistList([1..Size(vsp)], []);; 
sizes := 0*[1..Size(g1)];; 
for i in [1..Size(vsp)] do 
 if not found[i] then 
    orb := Orbit(g1, enum[i]); 
    for v in orb do 
      found[NumberFFVector(v,7)+1] := true; 
    od; 
    sizes[Length(orb)] := sizes[Length(orb)] + 1; 
  fi; 
  # show progress and stop when numorb orbits were found 
  if i mod 100000 = 0 then 
    if Sum(sizes) = numorbs then break; fi; 
    Print(i/100000, " (",Sum(sizes),") \c"); 
  fi; 
od; 
# result, numbers of orbits of size 1, 3, 9, 27, 81, 243 
sizes{List([0..5],i->3^i)}; 
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APPENDIX H 
 

MATH 3330 DEPARTMENT SYLLABUS 
 
 

 
Course Information Instructor Information 
 
Semester – Name –  
Course – MATH 3330 Office –   
Section –  Telephone –   
Class Time – Email –  
Class Room – Office Hours –   
   
Course Title – Introduction to Advanced Mathematics 
 
Course Description – An introduction to the theory of sets, relations, functions, 
finite and infinite sets, and other selected topics. Algebraic structure and 
topological properties of Euclidean Space, and an introduction to metric spaces. 
Prerequisite: MATH 2471 with a grade of “C” or higher. 
 
Objectives – The goal of Introduction to Advanced Mathematics is to provide 
students an opportunity to learn to prove mathematical theorems. This course 
provides an introduction to higher level abstraction in mathematics. This is 
achieved within the following framework: 
 

• Logic 
• Set theory 
• Number Theory 
• Properties of real numbers 
• Functions 

 
Textbook –  
 
Brief Course Outline – 
           
Attendance Policy -  
 
Important Dates: 
     Exams -  see course calendar 
     Final Exam –  
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     Drop Dates -  
        Drop with no record -  
        Drop with an automatic W – by 5:00 pm on  
        Last day to withdraw from the University – at the office of the Registrar by 
          5 pm on  
 
Grading – 
 
Academic Honor Code 

As members of a community dedicated to learning, inquiry and creation, the 
students, faculty and administration of our university live by the principles in this 
Honor Code. These principles require all members of this community to be 
conscientious, respectful and honest. 

We are conscientious. 

We complete our work on time and make every effort to do it right. We come to 
class and meetings prepared and are willing to demonstrate it. We hold 
ourselves to doing what is required, embrace rigor, and shun mediocrity, special 
requests, and excuses. 

We are respectful. 

We act civilly toward one another and we cooperate with each other. We will 
strive to create an environment in which people respect and listen to one 
another, speaking when appropriate, and permitting other people to participate 
and express their views. 

We are honest. 

We do our own work and are honest with one another in all matters. We 
understand how various acts of dishonesty, like plagiarizing, falsifying data, and 
giving or receiving assistance to which one is not entitled, conflict as much with 
academic achievement as with the values of honesty and integrity. 

The Pledge for Students  

Students at our university recognize that, to ensure honest conduct, more is 
needed than an expectation of academic honesty, and we therefore adopt the 
practice of affixing the following pledge of honesty to the work we submit for 
evaluation: 

      Honor Code web site    http://txstate.edu/effective/upps/upps-07-10-01.html 
 
Electronic Devices - Cellular Telephones, Pagers, Palm Pilots or any device 
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that may distract from the class should be turned off before class begins and may 
not be on the desk during class or tests.   
 
Special Needs – Students with special needs, as documented by the Office of 
Disability Services, should identify themselves at the beginning of the semester. 
 
Resources - 
  
Texas State Endorses Wingspread Journal’s Seven Principles for Good Practice 
in Undergraduate Education: 
 
1.  Student-faculty intellectual interaction 
2.  Intellectual interaction with fellow students, except when it interferes with 
assignments to be completed on an independent basis 
3.  Active Learning 
4.  Prompt feedback 
5.  Timely completion of tasks 
6.  High expectations, and 
7.  Respect for diverse talents and ways of learning 
 

Notes: 
 

1. The instructor reserves the right to deviate from the syllabus in a short term basis to 
better serve the students enrolled in the course. 
2. Due to diverse background of students, instructor may be required to devote more time 
on reviews and consequently deviate from the following calendar. 
3. The instructor may select a different textbook or other ancillary material, however, the 
same concepts will be covered. 
4. The instructor may deviate from the sequential order presented below, however the 
outlying concepts will be covered. 
5. Some concepts, like logic, may be integrated within other contexts and therefore 
covered accordingly. 
6. Instructor may deviate in scheduling tests and reviews depending on the pace. 
Moreover, some instructors review material in an ongoing basis and thereby the following 
schedule will be adjusted accordingly. 
7. Some instructors give a daily/weekly test in an ongoing basis, and therefore the 
following test schedule will not necessarily be applicable. The sequential order of the 
material will be adjusted accordingly. 
 
 
 

Course Calendar 
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