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ABSTRACT

This thesis examines an algorithm that is a combination of the Elias Delta and
Huffman algorithms known as §-Huffman. Exploiting the fact that Elias Delta codes are
uniquely decodable and tend to allocate fewer bits to small integers, while Huffman
coding is a lossless compression method that provides compressed symbols with a bit rate
that is relatively close to the entropy of the source.

The thesis “Dynamic Unbounded Integer Compression” by Naga Sai Gowtham
Mulpuri explored achievable compression ratios in the context of §-Huffman encoding
and used the frequency of inputs as the estimation for the probability distribution of the
&-Huffman algorithm on synthetic data and real-world posting list data.

Our work focuses on different assumptions about the way to estimate the
probability function for the §-Huffman algorithm. Assumptions such as using a
Geometric Probability Mass Function in the estimation of the probability distribution of
the §-Huffman algorithm are made and methods such as slice and reset with the 6-
Huffman algorithm are introduced.

We examine the practical and theoretical bounds on the compression capabilities
of integer compression methods. Additionally, we devise methods for efficient
compression of integers regardless of their specific probability distribution function. The
focus of our work has been on the §-Huffman algorithm’s compression, rather than on its

computation complexity.

xil



Twelve experiments with twelve variants of the dynamic §-Huffman algorithm
are performed. The experiments use one or more of three source data sets: synthetic data
from several Geometric Probability Mass Functions (GPMF) and Poisson, real-world
data from sorted inverted index gaps from Wikipedia, and a benchmark that attempts to
represent realistic workload data from Silesia. The entropy estimates of these data sets
and the average bit rate of the §-Huffman algorithms offer a way to construct a
comparative evolution of the performance of these algorithms.

From these experiments, the best variant out of the twelve §-Huffman algorithms
for synthetic data, real-world data, and benchmark data are determined.

Finally, given the results of the experiments, assuming GPMF without
knowledge concerning the exact value of parameters, the best variant out of the twelve §-

Huffman algorithms is identified
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1. INTRODUCTION

This thesis examines different assumptions about the estimation of the probability
function for the §-Huffman algorithm ([15]) and looks at experimental results for finite or
infinite data sets to evaluate the theoretical and practical utility of the §-Huffman
algorithm.

Work by Mulpuri shows how the new §-Huffman algorithm can be effective for
Information Retrieval (IR) applications via its lossless data compression capability [15].
Comparatively, there are fewer experiments with the §-Huffman algorithm in [15] than in
this work. Experiments performed in [15] make only one assumption for the estimation of
the probability function of the §-Huffman algorithm. Finally, [ 15] only performs
experiments with the §-Huffman algorithm on synthetic data and real-world posting list
data. However, the experimental results in [15] does show the bit rate values of the -
Huffman algorithm to be very close to the entropy of the data source and that it is the best
among other integer compression techniques such as Comma code, Elias Gamma code,
Elias Delta code, Elias Omega code, Fibonacci code, and Golomb code. Experimental
results in [15] also show that the §-Huffman algorithm provides the best bit rate value
versus the “gzip” and “bzip2” compression algorithms in most of the cases when there
are large data sets.

The §-Huffman algorithm is worth further exploration, and this paper further
explores the §-Huffman algorithm through manipulation of the estimation of the
probability function to examine the practical compression capabilities of integer
compression methods and the theoretical bounds (i.e., universality and asymptotical

optimality) on the compression capabilities of integer compression methods devised by



Tamir et al. and to devise methods for efficient compression of integers regardless of
their specific probability distribution function [18].

This thesis empirically explores twelve different approaches for the estimation of
the probability function for the §-Huffman algorithm to identify the theoretical and
practical capabilities of dynamic integer compression methods with synthetic and realistic
data. The experiments analyze and compare the performance of static compression and
dynamic compression techniques with variants of §-Huffman. In addition, this paper
analytically evaluates the theoretical performance of these variants.

The hypothesis of this work is that these several variants of the §-Huffman
algorithms can be highly efficient for practical applications; they possess the property of
asymptotically optimality and can be augmented with efficient update procedures.

To the best of the writer’s knowledge, this is the first attempt to primarily address
the estimation of the probability function for the §-Huffman algorithm and to develop
update algorithms and establish practical and theoretical performance measures.

The rest of this thesis is as follows: Chapter 2 provides background information;
Chapter 3 contains the literature review; Chapter 4 outlines the experiments; Chapter 5
examines the experimental results; Chapter 6 evaluates the results, and Chapter 7

concludes and considers future work.



2. BACKGROUND
This chapter explains the relevant data and integer compression terms in this
paper.
2.1 Data Compression
Data compression reduces the number of bits required to store or transmit data.
This section covers common data compression terms.
2.1.1 Bit Rate and Compression Ratio. The bit rate (BR) is the average number

of bits needed to transmit input symbols from a data source.

__ total number of bits sent

BR =

number of input symbols’

The compression ratio (CR) is the ratio of the size of the input stream to the

size of input stream
size of output stream

output stream. CR =

[7].

2.1.2 Entropy. The entropy is the theoretical lower bound on the communication
bit rate over a noiseless communication channel. The entropy (H) of a source X with
alphabet A, = {a; ... a,} and probabilities (p; ... p,) is given by
H(X) = = Xi=1 pilog,(py) [1].

2.1.3 Uniquely Decodable. A uniquely decodable code is a code that can be
decoded in one, and only one, way [1].

2.1.4 Prefix Code. A prefix code is code that has no code-word that is a prefix to
another code-word [1].

2.1.5 Universal Code. A universal code is a code that compresses messages,
regardless of the probability distribution function of these messages, to code-words
whose average length is bounded by C;H, + C, and C; and C, are constants greater than or

equal to 1. It is asymptotically optimal if the constant value C; = 1.



2.1.6 Fixed-Length Code. A fixed-length code (FLC) is a code that uses the same
number of bits or bytes to represent each symbol from a data source. Fixed-length codes
are also known as block codes [2]. The benefit of FLC is the ease of use (encoding and
decoding). The issue, however, is that FLC addresses the worst case scenario and does
not enable compression via assignment of a smaller length code to the most probable
symbols.

2.2 Types of Compression

2.2.1 Variable-Length Code. A variable-length code (VLC) is a code that can
vary in length [2]. Their advantage is that they can allocate the smallest possible code to
the most common symbols, which on average enables better bit rates and compression
ratios.

2.2.2 Lossless Compression. A lossless compression is a compression technique
that involves no loss of information. If data have been losslessly compressed, the original
data can be recovered exactly from the compressed data. Lossless compression is
generally used for applications that cannot tolerate any difference between the original
and reconstructed data [1].

2.2.3 Lossy Compression. A lossy compression is a compression technique that
involves loss of information. Data that have been compressed with lossy compression
generally cannot be recovered or reconstructed exactly. In return for this distortion in the
reconstruction, we can generally obtain much higher compression ratios than is possible

with lossless compression [1].



2.2.4 Bit-level Compression and Byte-level Compression. The bit-level
compression generates a variable number of bits for each input symbol while the byte-
level compression encodes symbols’ bits and/or bytes into a variable number of bytes.
2.3 Compression Algorithms

This section discusses the different compression methods for the algorithms in
this thesis and explains the details of the algorithms.

2.3.1 Elias Gamma Code. The Elias Gamma code can encode positive
unbounded integers. Given a non-negative integer n, the Elias Gamma representation of
n involves the binary equivalent of n, B(n), and the length of the bit string that
represents the binary equivalent of n, that is |[B(n)|. The final Elias Gamma
representation is (|B(n)| — 1) number of zeroes than the binary representation of the
given number [3].

For example, to find the Elias Gamma code for n = 4, first find the binary
equivalent of 4, which is B(4) = 100. The length of the bit string that represents the
binary equivalent of 4, that is |B(4)| = 3. The final Elias Gamma representation is
|B(4)| — 1 number of zeroes than the binary representation of the given number n = 4,
which is 00100 and the first two zeroes are from the result of (|B(4)| — 1).

Elias Gamma code provides high compression when the data set has mainly
integers of smaller values versus integers of larger values. Elias Gamma code is a
universal code.

2.3.2 Elias Delta Code. The Elias Delta code further encodes the Elias Gamma

code for a given non-negative number n. In general, the Elias Delta code replaces the first



field of zeroes of the Elias Gamma code with the Elias Gamma code of that field [3].
Elias Delta code is relatively efficient and is asymptotically optimal.

2.3.3 Elias Omega Code and Huffman Code. The Elias Omega code applies
recursion that employs Elias Gamma code on the |B(n)| element. The Huffman code
uses code-words that are not a prefix to another code-word. Huffman code is used when
the probability values of the data in the source sequence are known. The Huffman code
can be represented as a binary tree in which the external nodes or leaves correspond to
the symbols [1].

Example: A source contains the symbols {a, b, ¢, d} and the known probability
values for the source data input of (adcabacb) are [p(a) = %, p(b) = i, p(c) =
1 1

The Huffman code procedure follows:

1. Generate a list for the symbols with the probability values decreasing in value.

Symbol  Probability Value

1
a -
2
1
b :
4
1
C —
8
d

8
Figure 2.1: Probability value step 1
2. Combine the two symbols that have the two smallest probability values. If the new

symbol has the same probability value as another symbol in the list, place the new

symbol at the head of the order in the list for that probability value.



Symbol  Probability Value Symbol  Probability Value

1 1
a . a st

2 2

1 1
b - —> cd -

4 4

1 1
Cc - b -

8 4
d

8
Figure 2.2: Probability value step 2

3. Continue to combine symbols until only one symbol remains in the list.

Symbol  Probability Value Symbol  Probability Symbol  Probability
a % —> bcd % —> abcd =
cd =2 a z
4 2
b -
4

Figure 2.3: Probability value step 3

4. Work in reverse order to generate the Huffman tree. The number of bits in the
Huffman code of a symbol is the depth of that symbol in the Huffman tree and its code is
a description of the path from the root of the Huffman tree to the symbol (e.g., use 0 for a

left branch and 1 for a right branch).



root

bcd a

Figure 2.4: Huffman Tree

Table 2.1: Huffman Codes
Symbol [Huffman Code

a 1

d 001

c 000

a 1

b 01

a 1

c 000

b 01

The final Huffman code for the source input (adcabacb) is “1001000101100001”".

2.3.4 Dynamic Huffman Code. The dynamic Huffman code is used when the
probability values of the data in the source sequence are unknown. The code process of
the dynamic Huffman code estimates these probability values via accumulated weights as

the data arrives at the encoder. The initial Huffman tree for the dynamic Huffman code



has only one special node to represent the list of all data which are “not yet transmitted”
by the dynamic Huffman code known as the NYT node. Generally, the NYT node has a
permanent weight value of 0 in the Huffman tree.

2.3.5 6-Huffman. The §-Huffman is a combination of Elias Delta and Huffman
compression algorithms. Elias Delta uniquely encodes unknown data (e.g., unbounded
integers) and Huffman assigns a code value to the resultant Elias Delta data. The
combination of the two allows for a one pass compression of unbounded data.

6-Huffman works as follows. The NYT initially contains all data. When the first
data element n arrives at the encoder, n is removed from the NYT and placed into an
‘already transmitted’ list (AT) with a weight value of 1. The encoder transmits the
Huffman code of the NYT along with the Elias Delta code of n to the decoder [3]. Then,
with the new AT value, the encoder and decoder update their Huffman trees.

When an integer n that is already in the AT list arrives, its Huffman code is sent
to the decoder. Next, the weight value of n in the AT list increases by 1. Finally, with the
new AT value, the encoder and decoder update their Huffman trees. Although
enforcement of the sibling property can provide an efficient way to update, it is not
strictly enforced in this work as we are not concerned about the computational
complexity of the update process.

2.3.6 6-Huffman Probability Formulas. The §-Huffman probability formulas

are used by the §-Huffman algorithms in this thesis to update their Huffman trees. This

frequency count of n

includes (p,,) = and,

sumof all frequency counts’

(pn)

The dynamic probability formula one (P1) = (1 — )™V * a, and,



i is the current iteration of the §-Huffman algorithm experiment,
n is data from an input source that reaches the encoder,

Zf) n is the sum of all data n in a segment of data,

i

And is given by =

Ton’
(P1)
The dynamic probability formula two (P2) = % , and,
n is data from an input source that reaches the encoder,
c is the total count of a data n,
n. is the total count of the n‘"* data,
And N is given by the sum of all data n.
(P2)

2.4 Inverted Index

2.4.1 Inverted Index. The inverted index is the first major concept in information
retrieval (IR) [4]. An index always maps back from terms to the parts of a document
where they occur. The basic idea of an inverted index is to keep a dictionary of terms,
then for each term, there is a list that records which documents the term occurs in. Each
item in the list, which records that a term appeared in a document, is conventionally
called a posting.

For example:
[ Dictionary | [ Postings |
[ grei ] - [621 ][ 628 ][ 632 ][ 717 ][ 802 ][ 803 ][ 958 ]
[ rousei | - [ 10846 ][ 15601 ][ 32579 ][ 34760 ][ 43564 ][ 128800 ]

[ state ] > [12]025][303 ][ 305 ][ 307 ][ 308][ 309][ 324 ][ 330 ][ 332 ]

10



2.4.2 Gap Construction. The gap construction is the process of attaining the
differential change between the consecutive document IDs [5]. Since the IDs are unique
and are sorted by the web-crawler, we cannot get a value of 0. Furthermore, this process
adds redundancy to a given posting list, and, generally, the gaps between indexes are
smaller on average than the index themselves. Hence, the distribution of gaps “prefers”
small integers.

For example, given the first 10 items of the posting list for the Wikipedia search
term "state" is: ("state”; 12,25,303,305,307,308, 309, 324, 330, 332), the result
after gap construction is: ("state"; 12,13,278,2,2,1,1,15,6, 2 ). Notice that the gap
index has multiples of the same number and a smaller average index value.

2.5 Distributions

2.5.1 Geometric Probability Mass Function (GPMF). The geometric
probability mass function is the probability distribution of the number of failures in a
random event before the first success; support is on the set {0,1,2,3 -+ }. It is the
probability that the first occurrence of success, in a set of binary independent trials,
occurs after X trials, each with a success probability p. It is given by Probability (X =
k)= —-p)1p fork =123, ..

2.5.2 Poisson Mass Function (PMF). The Poisson mass function is a discrete
probability distribution function that expresses the probability of a given number of
events to occur in a fixed interval of time and / or space if these events occur with a

known average rate and independently of the time since the last event. It is given by

. Ake=2 . .
P(k events in interval) = —— and A is the average number of events per interval.

k!

11



2.6 Sibling property

2.6.1 Sibling property. The sibling property is when a binary tree with p leaves
of nonnegative weight is a Huffman tree and

(1) The p leaves have nonnegative weights w1, ..., wp, and the weight of each

internal node is the sum of the weights of its children; and

(2) The nodes can be numbered in non-decreasing order by weight, so that nodes

2j — 1 and 2j are siblings, for 1 < j < p — 1, and their common parent node
is higher in the numbering [6].
2.7 Types of o-Huffman Algorithms

This section discusses the different assumptions made by the §-Huffman variants
for the probability estimation for the §-Huffman algorithm. Except where discussed, the
6-Huffman variants assume the encoder and decoder dynamically update the probability
value as the last step in the algorithm process and assumes the NYT initially contain the
set of all integers.

2.7.1 8-Huffman (n+1). The §-Huffman (n+1) uses the feature that for every
integer n > 1, the Elias Delta (&) code n (6(n)) has a most significant bit (MSB) of 0.
When an un-encountered integer n arrives, n is removed from the NYT list and placed
into the AT list with a weight value of 1. The encoder transmits the Elias Delta code for
the new value n, < §(n + 1) >, to the decoder. Then, with the new AT value, the
encoder and decoder update their Huffman trees.

When an encountered integer n arrives, it’s current Huffman code and a flag bit of

‘1,” thatis < 1, H(n) >, is sent to the decoder. Next, the weight value of n in the AT list

12



increases by 1. Finally, with the new AT value, the encoder and decoder update their
Huffman trees.

2.7.2 6-Huffman (Flag/Fixed Length Coding(FLC)). The §-Huffman
(Flag/Fixed Length Coding (FLC)) assumes integers are bounded. When an un-
encountered integer n arrives, n is removed from the NYT list and placed into the AT list
with a weight value of 1. The encoder transmits a flag bit ‘0’ and the FLC of n, that is
< 0,FLC(n) >, to the decoder. Then, with the new AT value, the encoder and decoder
update their Huffman trees.

When an encountered integer n arrives, its current Huffman code and a flag bit of
‘1,” thatis < 1, H(n) >, is sent to the decoder. Next, the weight value of n in the AT list
increases by 1. Finally, with the new AT value, the encoder and decoder update their
Huffman trees.

2.7.3 9-Huffman (Reconstruction with an Exception Code). The §-Huffman
(Reconstruction with an Exception Code) assumes, upon the arrival of an un-encountered
integer n, n 1s removed from the NYT and placed into the AT list with a weight of 1. The
value of the path to a special symbol node that represents the NYT in the Huffman tree is
the “Huffman code for the NYT” (H(NYT)) and it maintains a weight of 0. This value
along with the Elias Delta code of n, that is < H(NYT), §(n) > is transmitted to the
decoder. Then, with the updated AT, the current encoder and decoder Huffman trees are
efficiently updated.

When an encountered integer n arrives, its current Huffman code, < H(N) >, is
sent to the decoder. Next, the weight value of n in the AT list increases by 1. Finally,

with the new AT value, the encoder and decoder update their Huffman trees.
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2.7.4 6-Huffman (Update using the Sibling Property with an Exception
Code). The §-Huffman (Update using the Sibling Property with an Exception Code)
assumes, upon the arrival of an un-encountered integer n, n is removed from the NYT
and placed into the AT list with a weight of 1. The Huffman code of the NYT and the
Elias Delta code of n, that is < H(NYT), §(n) >, is transmitted to the decoder. Next,
with the updated AT, the current encoder and decoder Huffman trees are efficiently
updated via the sibling property [6].

When an encountered integer n arrives, its current Huffman code, < H(n) >, is
sent to the decoder. Next, the weight value of n in the AT list increases by 1. Finally,
with the new AT value, the encoder and decoder update their Huffman trees.

2.7.5 6-Huffman (Static Probability). The §-Huffman (Static Probability)
assumes the H(NYT) initially starts with a weight of 1. Upon the arrival of an un-
encountered integer n, n is removed from the NYT and placed into the AT list with a
weight value that is determined by a GPMF with probability value of 0.01 if n is from
GPMF data or a Poisson probability mass function with A = 128 if it is from Poisson data.
The Huffman code of the NYT, along with the Elias Delta code of n, that is <
H(NYT),&(n) > is transmitted to the decoder. Next, the weight value of NYT is updated
by subtracting the weight of n from the weight of the NYT. Then, with the updated AT,
the current encoder and decoder Huffman trees are efficiently updated.

When an encountered integer n arrives, its current Huffman code, < H(n) >, is
sent to the decoder. No updates are made to the AT list or to the Huffman trees of the

encoder and decoder.
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2.7.6 6-Huffman (Sibling/Static Probability). The §-Huffman (Sibling/Static
Probability) makes the assumption in the estimation of the probability function to use a
static probability of 0.01 with a GPMF for all data sets, with the exception of A = 128 for
data sets with a Poisson probability mass function.

Initially, the NYT node in the Huffman tree has a weight value of 1. When an un-
encountered value n from an input source arrives at the encoder, n is removed from the
NYT and placed into the AT list. Next, the encoder transmits the H(NYT) code and the
Elias Delta code of n, that is < H(NYT), §(n) >, to the decoder. Then both the encoder
and decoder generate a probability value for the new value n with the use of the GPMF
with a static probability of 0.01, or in the case that n belongs to a Poisson probability
mass function, the use of A = 128 with a Poisson probability mass function. Then the
current weight of the NYT node decreases by the same amount as the probability value of
the new value n. Finally, both the encoder and decoder update their Huffman trees and
keep the sibling property.

When an encountered value n arrives at the encoder that is already in the AT list,
its current Huffman code, < H(n) >, is sent to the decoder. No updates are made to the
AT list or to the Huffman trees of the encoder and decoder.

2.7.7 -Huffman (Dynamic Probability P2). The §-Huffman (Dynamic
Probability P2) makes the assumption in the estimation of the probability function that
the encoder and decoder dynamically update their probability values for the data n as the
last step in the algorithm process with the use of the dynamic probability formula P2.

Initially, the Huffman tree contains only the NYT node that starts with and

maintains a weight value of zero. When an un-encountered value n arrives, n is removed
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from the NYT and placed into the AT list. The encoder transmits the H(NYT) code and
the Elias Delta code of n, that is < H(NYT), §(n) >, to the decoder. Then both the
encoder and decoder update their Huffman trees with the use of the dynamic probability
formula P2. The formula P2 generates probability values for all values of n in the AT list.
These probability values act as their weight values for the new Huffman tree.

When an encountered value n arrives at the encoder that is already in the AT list,
its current Huffman code, < H(n) >, is sent to the decoder. No updates are made to the
AT list or to the Huffman trees of the encoder and decoder.

2.7.8 8-Huffman (Dynamic Probability P1/Slice). The §-Huffman (Dynamic
Probability P1/Slice) makes the assumption in the estimation of the probability function
that the encoder and decoder dynamically update their probability values for the data n as
the last step in the algorithm process after a set number of iterations (i) at the start of the
algorithm and then after 128 iterations, the size of a slice segment (L), occur with the use
of the dynamic probability formula P1.

§-Huffman (Dynamic Probability P1/Slice) assumes the H(NYT) initially starts
with a weight value of 1. When an un-encountered value n arrives, n’s weight value,
calculated from the formula P1, is subtracted from the weight value of H(NYT) in the
Huffman tree. The value of H(NYT) can decrease towards a minimum of zero as the
algorithm runs.

For the first 16 iterations, when an un-encountered value n arrives, n is removed
from the NYT and is placed into the AT list with a weight value determined by the
formula P1 and the value of H(NYT) is updated. The encoder sends nothing to the

decoder. The encoder uses these first 16 data set values to learn about the data source.
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At the end of iteration 16, the algorithm updates the Huffman tree with the use of
formula P1 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 16 iterations to inform
the decoder that an un-encountered value had arrived.

Then the algorithm performs a loop and executes the same procedures when an
un-encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable t
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6 for the next 2¢ iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P1. The encoder transmits the H(NYT) value
from the end of iteration 2¢ and the Elias Delta code of n, that is < H(NYT), §(n) >, to
the decoder. At the end of iteration 2t*1, the algorithm updates the Huffman tree with the
use of formula P1 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 2¢*1 iterations to
inform the decoder that an un-encountered value had arrived.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, when an un-

encountered value n arrives, n is removed from the NYT and placed into the AT list with
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a weight value determined by the formula P1. The encoder transmits the H(NYT) value
from the end of the previous slice (L) and the Elias Delta code of n, that is <
H(NYT),5(n) >, to the decoder. At the end of 128 iterations, the algorithm updates the
Huffman tree with the use of formula P1 to generate probability values for all values in
the AT list and updates the H(NYT) value.

When an encountered value n that belongs to AT arrives, for the first 16
iterations, the encoder sends nothing to the decoder. The encoder uses these first 16 data
set values to learn about the data source. At the end of iteration 16, the algorithm updates
the Huffman tree with the use of the formula P1 and updates the H(NYT) value.

Then the algorithm performs a loop and executes the same procedures when an
encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable ¢
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6, in the next 2¢ iterations, the encoder sends
the Huffman code, < H(n) >, value for the data value n at the end of iteration 2¢. At the
end of iteration 2¢*1, the algorithm updates the Huffman tree with the use of the formula
P1 and updates the H(NYT) value.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, the encoder

transmits the < H(n) > value from the end of the previous slice (L) to the decoder. At
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the end of 128 iterations, the algorithm updates the Huffman tree with the use of the
formula P1 and updates the H(NYT) value.

2.7.9 6-Huffman (Dynamic Probability P2/Slice). The §-Huffman (Dynamic
Probability P2/Slice) makes the assumption in the estimation of the probability function
that the encoder and decoder dynamically update their probability values for the data n as
the last step in the algorithm process after a set number of iterations (i) at the start of the
algorithm and then after 128 iterations, the size of a slice segment (L), occur with the use
of the dynamic probability formula P2.

&-Huffman (Dynamic Probability P2/Slice) assumes the H(NYT) initially starts
with and maintains a weight value of 0.

For the first 16 iterations, when an un-encountered value n arrives, n is removed
from the NYT and placed into the AT list with a weight value determined by the formula
P2 and the value of H(NYT) is updated. The encoder sends nothing to the decoder. The
encoder uses these first 16 data set values to learn about the data source.

At the end of iteration 16, the algorithm updates the Huffman tree with the use of
formula P2 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 16 iterations to inform
the decoder that an un-encountered value had arrived.

Then the algorithm performs a loop and executes the same procedures when an
un-encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64

iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
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the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable ¢
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6 for the next 2¢ iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P2. The encoder transmits the H(NYT) value
from the end of iteration 2¢ and the Elias Delta code of n, that is < H(NYT), §(n) >, to
the decoder. At the end of iteration 2¢*1, the algorithm updates the Huffman tree with the
use of formula P2 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 2¢*1 iterations to
inform the decoder that an un-encountered value had arrived.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P2. The encoder transmits the H(NYT) value
from the end of the previous slice (L) and the Elias Delta code of n, that is <
H(NYT),8(n) >, to the decoder. At the end of 128 iterations, the algorithm updates the
Huffman tree with the use of formula P2 to generate probability values for all values in
the AT list and updates the H(NYT) value.

When an encountered value n that belongs to AT arrives, for the first 16
iterations, the encoder sends nothing to the decoder. The encoder uses these first 16 data
set values to learn about the data source. At the end of iteration 16, the algorithm updates

the Huffman tree with the use of the formula P2 and updates the H(NYT) value.
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Then the algorithm performs a loop and executes the same procedures when an
encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable t
with a start value of 4 and end value of 6, thatis t = 4 ... 6 1s used.

Therefore, the loop is: for t = 4 ... 6, in the next 2¢ iterations, the encoder sends
the Huffman code, < H(n) >, value for the data value n at the end of iteration 2¢. At the
end of iteration 2¢*1, the algorithm updates the Huffman tree with the use of the formula
P2 and updates the H(NYT) value.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, the encoder
transmits the < H(n) > value from the end of slice (L) to the decoder. At the end of 128
iterations, the algorithm updates the Huffman tree with the use of the formula P2 and
updates the H(NYT) value.

2.7.10 6-Huffman (Dynamic Probability P1/Slice/Reset). The §-Huffman
(Dynamic Probability P1/Slice/Reset) makes the assumption in the estimation of the
probability function that the encoder and decoder dynamically update their probability
values for the data n as the last step in the algorithm process after a set number of
iterations (i) at the start of the algorithm and then after 128 iterations, the size of a slice
segment (L), occur with the use of the dynamic probability formula P1. For L = 1 ... oo,
after the Huffman tree is updated, this algorithm resets the Y5 n value in the dynamic

probability formula P1 to zero and the NYT weight value back to one.
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§-Huffman (Dynamic Probability P1/Slice/Reset) assumes the H(NYT) initially
starts with a weight of 1. When an un-encountered value n arrives, n’s weight value,
calculated from the formula P1, is subtracted from the weight value of H(NYT) in the
Huffman tree. The value of H(NYT) can decrease towards a minimum of zero as the
algorithm runs.

For the first 16 iterations, when an un-encountered value n arrives, n is removed
from the NYT and placed into the AT list with a weight value determined by the formula
P1 and the value of H(NYT) is updated. The encoder sends nothing to the decoder. The
encoder uses these first 16 data set values to learn about the data source.

At the end of iteration 16, the algorithm updates the Huffman tree with the use of
formula P1 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 16 iterations to inform
the decoder that an un-encountered value had arrived.

Then the algorithm performs a loop and executes the same procedures when an
un-encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable ¢
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6 for the next 2¢ iterations, when an un-

encountered value n arrives, n is removed from the NYT and placed into the AT list with

22



a weight value determined by the formula P1. The encoder transmits the H(NYT) value
from the end of iteration 2¢ and the Elias Delta code of n, that is < H(NYT), 5(n) >, to
the decoder. At the end of iteration 2t*1, the algorithm updates the Huffman tree with the
use of formula P1 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 2¢*1 iterations to
inform the decoder that an un-encountered value had arrived.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P1. The encoder transmits the H(NYT) value
from the end of the previous slice (L) and the Elias Delta code of n, that is <
H(NYT),5(n) >, to the decoder. At the end of 128 iterations, the algorithm updates the
Huffman tree with the use of formula P1 to generate probability values for all values in
the AT list and updates the H(NYT) value. Then the algorithm resets the Y5 n value in
the formula P1 to zero and the NYT weight value back to one.

When an encountered value n that belongs to AT arrives, for the first 16
iterations, the encoder sends nothing to the decoder. The encoder uses these first 16 data
set values to learn about the data source. At the end of iteration 16, the algorithm updates
the Huffman tree with the use of the formula P1 and updates the H(NYT) value.

Then the algorithm performs a loop and executes the same procedures when an
encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64

iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
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the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable ¢
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6, in the next 2¢ iterations, the encoder sends
the Huffman code, < H(n) >, value for the data value n at the end of iteration 2¢. At the
end of iteration 2¢*1, the algorithm updates the Huffman tree with the use of the formula
P1 and updates the H(NYT) value.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, the encoder
transmits the < H(n) > value from the end of the previous slice (L) to the decoder. At
the end of 128 iterations, the algorithm updates the Huffman tree with the use of the
formula P1 and updates the H(NYT) value. Then the algorithm resets the Y4 n value in
the formula P1 to zero and the NYT weight value back to one.

2.7.11 6-Huffman (Dynamic Probability P2/Slice/Reset). The §-Huffman
(Dynamic Probability P2/Slice/Reset) makes the assumption in the estimation of the
probability function that the encoder and decoder dynamically update their probability
values for the data n as the last step in the algorithm process after a set number of
iterations (i) at the start of the algorithm and then after 128 iterations, the size of a slice
segment (L), occur with the use of the dynamic probability formula P2. For L = 1 ... oo,
after the Huffman tree is updated, this algorithm resets the weight values for all integers
currently in the AT list to 0.

§-Huffman (Dynamic Probability P2/Slice/Reset) assumes the H(NYT) initially

starts with and maintains a weight value of 0.
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For the first 16 iterations, when an un-encountered value n arrives, n is removed
from the NYT and placed into the AT list with a weight value determined by the formula
P2 and the value of H(NYT) is updated. The encoder sends nothing to the decoder. The
encoder uses these first 16 data values to learn about the data source.

At the end of iteration 16, the algorithm updates the Huffman tree with the use of
formula P2 to generate probability values for all values of n in the AT list. These
probability values act as their weight values for the new Huffman tree. The algorithm
updates the H(NYT) value which the algorithm keeps for the next 16 iterations to inform
the decoder that an un-encountered value had arrived.

Then the algorithm performs a loop and executes the same procedures when an
un-encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable ¢
with a start value of 4 and end value of 6, that is t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6 for the next 2¢ iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P2. The encoder transmits the H(NYT) value
from the end of iteration 2! and the Elias Delta code of n, that is < H(NYT), §(n) >, to
the decoder. At the end of iteration 2¢*1, the algorithm updates the Huffman tree with the
use of formula P2 to generate probability values for all values of n in the AT list. These

probability values act as their weight values for the new Huffman tree. The algorithm
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updates the H(NYT) value which the algorithm keeps for the next 2¢*1 iterations to
inform the decoder that an un-encountered value had arrived.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, when an un-
encountered value n arrives, n is removed from the NYT and placed into the AT list with
a weight value determined by the formula P2. The encoder transmits the H(NYT) value
from the end of the previous slice (L) and the Elias Delta code of n, that is <
H(NYT),5(n) >, to the decoder. At the end of 128 iterations, the algorithm updates the
Huffman tree with the use of formula P2 to generate probability values for all values in
the AT list and updates the H(NYT) value. Then the algorithm resets the weight values
for all integers currently in the AT list to 0.

When an encountered value n that belongs to AT arrives, for the first 16
iterations, the encoder sends nothing to the decoder. The encoder uses these first 16 data
set values to learn about the data source. At the end of iteration 16, the algorithm updates
the Huffman tree with the use of the formula P2 and updates the H(NYT) value.

Then the algorithm performs a loop and executes the same procedures when an
encountered value n arrives for the next 16 iterations before it restarts the loop and
performs the same procedures for the next 32 iterations and then again for the next 64
iterations. At the end of the loop execution, the algorithm is at the end of iteration 128, or
the size of the first slice segment, that is L = 1. For this reason, to explain what occurs
after the first 16 iterations in the algorithm, a power value of 2 with a counter variable t
with a start value of 4 and end value of 6, thatis t = 4 ... 6 is used.

Therefore, the loop is: for t = 4 ... 6 for the next 2¢ iterations, the encoder sends

the Huffman code, < H(n) >, value for the data value n at the end of iteration 2¢. At the
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end of iteration 2¢*1, the algorithm updates the Huffman tree with the use of the formula
P2 and updates the H(NYT) value.

Then for slice numbers L = 1 ... oo, for the next 128 iterations, the encoder
transmits the < H(n) > value from the end of slice (L) to the decoder. At the end of 128
iterations, the algorithm updates the Huffman tree with the use of the formula P2 and
updates the H(NYT) value. Then the algorithm resets the weight values for all integers
currently in the AT list to 0.

2.7.12 6-Huffman (Fixed Length Coding). The §-Huffman (FLC) assumes the
integers are bounded and the H(NYT) starts with and maintains a weight value of 0.
When a new integer n arrives, n is removed from the NYT list and placed into the AT list
with a weight value of 1. The encoder transmits the H(NYT), and the FLC of n, that is
< H(NYT), FLC(n) >, to the decoder. Then, with the new AT value, the encoder and
decoder update their Huffman trees.

When an integer n that is already in the AT list arrives, its current Huffman code,
< H(n) >, is sent to the decoder. Next, the weight value of n in the AT list increases by

1. Finally, with the new AT value, the encoder and decoder update their Huffman trees.
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3. LITERATURE REVIEW

This chapter compares the work done in this thesis to the methods and techniques
of compression of bounded and unbounded integers performed by other researchers. To
the best of this writer’s knowledge, this is the first work that uses the reported approach
for estimating the probability mass function for the §-Huffman algorithm.

Orlitsky et al. dealt with patterns and how to use them in compression algorithms
that could work on alphabets of unbounded size [8], and Merhav et al. works with two-
sided geometric distributions [9]. This work replaces the emphasis from patterns or two-
sided geometric distributions to the §-Huffman.

Gallager et al. [10] Kato et al. [11] and Abrahams et al. [12] assume that the
integers have a specific type of probability mass function in their works of interest. This
paper works with the §-Huffman algorithm with different assumptions about the
probability mass function.

Uyematsu and Kanaya work updates the LZ77 and LZ78 algorithms to fit
unbounded integers [13]. This work replaces the emphasis from the LZ77 and LZ78
algorithms to that of the §-Huffman.

“Universal Lossless Coding of Sources with Large and Unbounded Alphabets” by
En-hui Yang and Yunwei Jia [14], consider the general case, where the alphabet may
increase without bound, and the decoder does not know how it grows. To encode such a
data sequence X = x;x, ... x,,, they combine Elias coding with a dynamically updated
binary search tree. The proposed algorithm works as follows: For each symbol x; in the
input sequence, if it has not appeared before in x; ... x;_; , use the Elias code to encode x;

and then add this symbol to the corresponding leaf sub-alphabet and update the tree
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structure; if x; has appeared before, then encode the corresponding path in the dynamic
tree and the index in the corresponding leaf sub-alphabet. We use the §-Huffman
algorithm to handle unbounded integers.

“Dynamic Unbounded Integer Compression” by Naga Sai Gowtham Mulpuri [15]
explores the possibility of combining integer compression methods with a new dynamic
Huffman compression algorithm known as §-Huffman. It shows the bit rate values of the
6-Huffman algorithm to be very close to the entropy of the data source and that it is the
best among other integer compression techniques such as Comma code, Elias Gamma
code, Elias Delta code, Elias Omega code, Fibonacci code, and Golomb code.
Additionally, [15] compares the bit rate of 6-Huffman to the bit rate of the compression
techniques “gzip” and “bzip2.” The work in [15] mainly explores the achievable
compression ratios in the context of §-Huffman encoding.

“Adaptive Single-Pass Compression of Unbounded Integers” by Hyatt,
Christopher Rice [16] explores the ability to dynamically compress data in one pass with
Variable length nibbles with Tunstall (VLNT) and Delta-Tunstall (§-T).

The main difference among our current work from [15] and [16] is that we focus
on different assumptions about the estimation of the probability function for the §-
Huffman algorithm. Inclusive for this work is that all §-Huffman algorithms are

examined prior to comparison to [15] which is provided in Chapter 6.
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4. EXPERIMENTAL SETUP

This chapter discusses the setup methodology and summarizes the twelve
experiments. Chapters 5 and 6 discuss the results of these experiments.

The experiments use one or more of three data sets: synthetic data, real-world data
from sorted inverted index gaps from Wikipedia, and benchmark data from Silesia that
attempts to represent realistic workload data. The entropy estimates of these data sets and
the average bit rate of the twelve §-Huffman algorithms offer a way to construct a
comparative evolution of the performance of the §-Huffman algorithms.

4.1 Summary of Input Sources
This section discusses the input sources and their general characteristics.
4.1.1 Synthetic Data. The synthetic data derives from two general probability
mass functions: GPMF and Poisson. Four different data sets make up the synthetic input
data: Data GPMF 0.01, Data GPMF 0.1, Data GPMF 0.5, and Poisson. Each of the inputs
consists of positive integers that distribute with different probabilities. For the GPMF
inputs, the probabilities are 0.01, 0.1, and 0.5. The Poisson input uses a A = 128.
e “Data GPMF 0.01” contains 10,000 integers. The minimum integer value is 1
and maximum integer value is 826.

e “Data GPMF 0.1” contains 10,000 integers. The minimum integer value is 1
and maximum integer value is 99.

e “Data GPMF 0.5” contains 10,000 integers. The minimum integer value is 1
and maximum integer value is 14.

e “Poisson” contains 10,000 integers. The minimum integer value is 89 and

maximum integer value is 147.
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4.1.2 Wikipedia Gap Sources. The Wikipedia gap sources are from the sorted
inverted indexes for several common search terms from Wikipedia at the end of the year
2015. The search terms the experiments use are “2015”, “Bollywood”, “Grei”, “Rousei”,
and “State.”
e “2015” contains 324,888 integers. The minimum integer value is 1 and
maximum is 75,130.

e “Bollywood” contains 10,605 integers. The minimum integer value is 1 and
maximum is 474,315.

e “Grei” contains 49,973 integers. The minimum integer value is 1 and
maximum is 421,836.

e “Rousei” is the smallest data set and contains 211 integers. The minimum
integer value is 754 and maximum is 1,932,275.

e “State” is the biggest data set and contains 1,237,789 integers. The minimum
integer value is 1 and maximum is 37,064.
4.1.3 Silesia Sources. The Silesia sources are a standard data set that can compare
compression algorithms. The data set is made up of 12 different data sets made up of
many different formats of data [17].
e “dickens” contains the text of the works of Charles Dickens. The total number
of bytes is 10,192,446. The minimum value is 9 and maximum is 129.

e “mozilla” contains the tarred executables of Mozilla 1.0. The total number of
bytes is 51,220,480. The minimum value is 0 and maximum is 255.

e “mr” contains a collection of MRI images. The total number of bytes is

9,970,564. The minimum value is 0 and maximum value is 255.
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“nci” contains a database of chemical structures. The total number of bytes is
33,553,445. The minimum value is 10 and maximum value is 118.

“ooffice” contains the dll from Open Office 1.01. The total number of bytes is
6,152,192. The minimum value is 0 and maximum value is 255.

“osdb” contains the Open Source Database Benchmark (osdb) in the MySQL
format. The total number of bytes is 10,085,684. The minimum value is 0 and
maximum value is 255.

“reymont” contains the book Chlopi by Wladyslaw Reymont. The total
number of bytes is 6,627,202. The minimum value is 0 and maximum value is
255.

“samba” contains the source code of Samba 2-2.3. The total number of bytes
is 21,606,400. The minimum value is 0 and maximum value is 255.

“sa0” contains the SAO star catalog in the form of bin data. The total number
of bytes is 7,251,944. The minimum value is 0 and maximum value is 255.
“webster” contains the 1913 unabridged dictionary text. The total number of
bytes is 41,458,703. The minimum value is 10 and maximum value is 126.
“xml” contains a collection of XML files. The total number of bytes is
5,345,280. The minimum value is 0 and maximum value is 252.

“x-ray” contains a collection of x-ray pictures. The total number of bytes is

8,474,240. The minimum value is 0 and maximum value is 255.
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4.2 Experiment Summaries

This section summarizes each of the twelve experiments. To allow comparisons
among the different §-Huffman variants, experiments that use the benchmark data set
Silesia do so as a data set of integers.

4.2.1 Experiment 1: Experiment 1 evaluates the §-Huffman (n+1) assumptions
for the estimation of the probability function. The average bit rate results are compared to
the entropy of the synthetic data sets of 10,000 integers that use a GPMF with probability
values 0.5, 0.1, 0.01, and a Poisson probability mass function, with A = 128.

4.2.2 Experiment 2: Experiment 2 evaluates the §-Huffman (Flag/FLC)
assumptions for the estimation of the probability function. The average bit rate results are
compared to the entropy of the synthetic data sets of 10,000 integers, that this algorithm
handles as a data set of bytes, that use a GPMF with probability values 0.5, 0.1, 0.01, and
a Poisson probability mass function, with A = 128.

4.2.3 Experiment 3: Experiment 3 evaluates the §-Huffman (Reconstruction with
an Exception Code) assumptions for the estimation of the probability function. The
average bit rate results are compared to the entropy of the synthetic data sets for both
10,000 integers and 10,000 integers, that this algorithm handles as a data set of bytes, of
GPMF with probability values 0.5, 0.1, 0.01, and a Poisson probability mass function,
with A = 128. The average bit rate results are also compared to the entropy of the
benchmark data set Silesia.

4.2.4 Experiment 4: Experiment 4 evaluates the §-Huffman (Update using the
Sibling Property with an Exception Code) assumptions for the estimation of the

probability function. The average bit rate results are compared to the entropy of the
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synthetic data sets of 10,000 integers that use a GPMF with probability values 0.5, 0.1,
0.01, and a Poisson probability mass function, with A = 128. The average bit rate results
are also compared to the entropy of the real-world data from the sorted inverted index
gaps from Wikipedia.

4.2.5 Experiment 5: Experiment 5 evaluates the §-Huffman (Static Probability)
assumptions for the estimation of the probability function. The average bit rate results are
compared to the entropy of the synthetic data sets of 10,000 integers that use a GPMF
with probability values 0.5, 0.1, 0.01, and a Poisson probability mass function, with A =
128. The average bit rate results are also compared to the entropy of the real-world data
from the sorted inverted index gaps from Wikipedia.

4.2.6 Experiment 6: Experiment 6 evaluates the §-Huffman (Sibling/Static
Probability) assumptions for the estimation of the probability function. The average bit
rate results are compared to the entropy of the synthetic data sets of 10,000 integers that
use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson probability mass
function, with A = 128. The average bit rate results are also compared to the entropy of
the real-world data from the sorted inverted index gaps from Wikipedia.

4.2.7 Experiment 7: Experiment 7 evaluates the §-Huffman (Dynamic
Probability P2) assumptions for the estimation of the probability function. The average
bit rate results are compared to the entropy of the synthetic data sets of 10,000 integers
that use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson probability mass
function, with A = 128. The average bit rate results are also compared to the entropy of
the real-world data from the sorted inverted index gaps from Wikipedia and the

benchmark data set Silesia.
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4.2.8 Experiment 8: Experiment 8 evaluates the §-Huffman (Dynamic
Probability P1/Slice) assumptions for the estimation of the probability function. The
average bit rate results are compared to the entropy of the synthetic data sets of 10,000
integers that use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson probability
mass function, with A = 128. The average bit rate results are also compared to the entropy
of the real-world data from the sorted inverted index gaps from Wikipedia and the
benchmark data set Silesia.

4.2.9 Experiment 9: Experiment 9 evaluates the §-Huffman (Dynamic
Probability P2/Slice) assumptions for the estimation of the probability function. The
average bit rate results are compared to the entropy of the synthetic data sets of 10,000
integers that use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson probability
mass function, with A = 128. The average bit rate results are also compared to the entropy
of the real-world data from the sorted inverted index gaps from Wikipedia and the
benchmark data set Silesia.

4.2.10 Experiment 10: Experiment 10 evaluates the §-Huffman (Dynamic
Probability P1/Slice/Reset) assumptions for the estimation of the probability function.
The average bit rate results are compared to the entropy of the synthetic data sets of
10,000 integers that use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson
probability mass function, with A = 128. The average bit rate results are also compared to
the entropy of the real-world data from the sorted inverted index gaps from Wikipedia
and the benchmark data set Silesia.

4.2.11 Experiment 11: Experiment 11 evaluates the §-Huffman (Dynamic

Probability P2/Slice/Reset) assumptions for the estimation of the probability function.
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The average bit rate results are compared to the entropy of the synthetic data sets of
10,000 integers that use a GPMF with probability values 0.5, 0.1, 0.01, and a Poisson
probability mass function, with A = 128. The average bit rate results are also compared to
the entropy of the real-world data from the sorted inverted index gaps from Wikipedia
and the benchmark data set Silesia.

4.2.12 Experiment 12: Experiment 12 evaluates the §-Huffman (FLC)
assumptions for the estimation of the probability function. The average bit rate results are
compared to the entropy of the synthetic data sets of 10,000 integers, that this algorithm
handles as a data set of bytes, that use a GPMF with probability values 0.5, 0.1, 0.01, and
a Poisson probability mass function, with A = 128. The average bit rate results are also
compared to the entropy of the real-world data from the sorted inverted index gaps that
this algorithm also handles as a data set of bytes, from Wikipedia, and the benchmark

data set Silesia.
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5. EXPERIMENTAL RESULTS

This chapter discusses the results of the twelve experiments. In the context of this
paper the term local observations refers to observations made based on experimental
values in the current experiment being evaluated and experimental values in prior
experiments, if there are any, while the term global observations refers to observations
made based on all experimental values. This chapter makes only local observations, so
the bit rate values for the experiments are only shown to the second decimal place.
However, Chapter 6 makes global observations for the experiments in this chapter and to
show the differences between some of the d-Huffman bit rate value results; Chapter 6
expands the bit rate value results beyond the second decimal place.
5.1 Experiment 1: 6-Huffman (n+1) compression of synthetic data (integers)

6-Huffman (n+1) estimates the probability function based on the use of the
formula p,, at the end of an iteration. Figure 5.1 compares the 6-Huffman (n+1) bit rate

value results to the entropy values of the data set.

® 3-Huffman (n+1) = Entropy
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6.40
5.74

3.00

GPMF(0.01) GPMF(0.1) GPMF(0.5) Poisson (A=128)

Figure 5.1: 6-Huffman (n+1) bit rate values vs. Entropy
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From figure 5.1 it can be noted that, for §-Huffman (n+1), the bit rate values
differ from their respective entropy values from a low difference of 1.00-bit for GPMF
(0.5) to a higher difference of 1.21 bits for GPMF (0.01).
From this experiment it can be noted that the §-Huffman (n+1) generates bit rate
values that are higher than the entropy; 1.21 bits more for GPMF (0.01), 1.04 bits more
for GPMF (0.1), 1.00-bit more for GPMF (0.5), and 1.05 bits more for Poisson (A=128)
relative to the entropy of the synthetic data set of integers.
The final note for experiment 1 is that a plausible explanation for these results is
that the §-Huffman code provides a lower bit rate in data sets when numerous repetitions
of small integers are involved because of the repeated use of those integers from the
Huffman tree which are already updated and requires fewer bits to encode than that of a
new value from the data sets. In this case:
e The GPMF (0.5) data set contains very small integers with significant amount
of repetitions. The maximum input value is 14 and the minimum is 1.

e The GPMF (0.1) data set contains medium small integers with numerous
repetitions. The maximum input value is 99 and minimum is 1.

e The GPMF (0.01) data set contains medium small to medium large integers
with numerous repetitions. The maximum input value is 826 and minimum is
1.

e The Poisson data set contains medium to medium large integers with

numerous repetitions. The maximum input value is 147 and minimum is 89.
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This allows the §-Huffman (n+1) to generate the highest bit rate value relative to
entropy for GPMF (0.01) and the lowest bit rate value relative to entropy for GPMF
(0.05).

5.2 Experiment 2: -Huffman (Flag/FLC) compression of synthetic data (bytes)
6-Huffman (Flag/FLC) estimates the probability function based on the use of the
formula p,, at the end of an iteration. Figure 5.2 compares the §-Huffman (Flag/FLC) bit

rate values to the entropy values of the data set.

® 5-Huffman (Flag/FLC) ® Entropy
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Figure 5.2: 3-Huffman (Flag/FLC) bit rate values (bytes) vs. Entropy

From figure 5.2 it can be noted that, for §-Huffman (Flag/FLC), the bit rate values
differ from their respective entropy values from a low difference of 1.19 bits for GPMF
(0.5) to a high difference of 1.20 bits for GPMF (0.1).

From this experiment it can be noted that the §-Huffman (Flag/FLC) generates bit

rate values that are higher than the entropy; 1.19 bits more for GPMF (0.01), 1.20 bits
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more for GPMF (0.1), 1.19 bits more for GPMF (0.5), and 1.20 bits more for Poisson
(A=128) relative to the entropy of the synthetic data set of integers handled as bytes in
this experiment.

The final note for experiment 2 is that the higher bit rate values relative to entropy
are expected for this experiment, based on the results from experiment 1 and from the
issue of the use of fixed length coding, in that the code uses the same number of bits to
represent each symbol from the data source, but it is addressing the worst case scenario
and does not enable compression via assignment of a smaller length code to the most
probable symbols.

5.3 Experiment 3: 6-Huffman (Reconstruction with an Exception Code)

Experiment 3 is divided into three parts: part 3a explains the compression of the
synthetic data (integers), part 3b explains the compression of the synthetic data (bytes),
and part 3¢ explains the compression of the benchmark data set Silesia.

5.3.1 Experiment 3a: Synthetic Data Set (integers). 6-Huffman (Reconstruction
with an Exception Code) estimates the probability function based on the use of the
formula p,, and the use of a special symbol that represents the NYT and maintains a value
of 0. Figure 5.3 compares the §-Huffman (Reconstruction with an Exception Code) bit

rate values to the entropy values of the data set.
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® §-Huffman (Reconstruction with an Exception Code) = Entropy
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Figure 5.3: -Huffman (Reconstruction with an Exception Code) bit rate values vs. Entropy

From figure 5.3 it can be noted that, for §-Huffman (Reconstruction with an
Exception Code), the bit rate values differ from their respective entropy values from a
low difference of 0.01-bit for GPMF (0.5) to a high difference of 0.78-bit for GPMF
(0.01).

From this experiment it can be noted that the §-Huffman (Reconstruction with an
Exception Code) generates bit rate values that are higher than the entropy; 0.78-bit more
for GPMF (0.01), 0.11-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and
0.10-bit more for Poisson (A=128) relative to the entropy of the synthetic data set of
integers.

It can be noted that the §-Huffman (Reconstruction with an Exception Code)
generates lower bit rate values; 0.43-bit fewer for GPMF (0.01), 0.93-bit fewer for GPMF
(0.1), 0.99-bit fewer for GPMF (0.5), and 0.96-bit fewer for Poisson (A=128) versus o-
Huffman (n+1).

The final note for experiment 3a is that the §-Huffman (Reconstruction with an

Exception Code) use of a special symbol, that represents the NYT and maintains a value

41



of 0, improves its ability to keep un-encountered values n that are seen by the encoder to
enter the Huffman tree nearer the bottom of the Huffman tree where values with fewer
occurrences and thus longer code-words are kept. Encountered values n that have been
seen more often in the input data stream are preferably towards the top of the Huffman
tree, closer to the root node, with shorter code-words that are used to send to the decoder.
This improvement keeps the bit rate values lower relative to entropy versus the -
Huffman (n+1) from experiment 1.

5.3.2 Experiment 3b: Synthetic Data Set (bytes). Figure 5.4 compares the §-
Huffman (Reconstruction with an Exception Code) bit rate values to the entropy values

of the data set.

® §-Huffman (Reconstruction with an Exception Code) = Entropy
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Figure 5.4: 6-Huffman (Reconstruction with an Exception Code) bit rate values (bytes) vs. Entropy

From figure 5.4 it can be noted that, for §-Huffman (Reconstruction with an

Exception Code), the bit rate values differ from their respective entropy values from a
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low difference of 0.19-bit for GPMF (0.5) to a high difference of 0.25-bit for GPMF
(0.01).

From this experiment it can be noted that the §-Huffman (Reconstruction with an
Exception Code) generates bit rate values that are higher than the entropy; 0.25-bit more
for GPMF (0.01), 0.22-bit more for GPMF (0.1), 0.19-bit more for GPMF (0.5), and
0.21-bit more for Poisson (A=128) relative to the entropy of the synthetic data set of
integers handled as bytes in this experiment.

It can be noted that the §-Huffman (Reconstruction with an Exception Code)
generates lower bit rate values; 0.94-bit fewer for GPMF (0.01), 0.98-bit fewer for GPMF
(0.1), 1.00-bit fewer for GPMF (0.5), and 0.99-bit fewer for Poisson (A=128) versus §-
Huffman (Flag/FLC).

The final note for experiment 3b is that the §-Huffman (Flag/FLC) variant,
because of the issue with fixed length coding as discussed in experiment 3a, generates
worse bit rate values relative to entropy versus the §-Huffman (Reconstruction with an
Exception Code) variant which can generate smaller length code for the most probable
symbols.

5.3.3 Experiment 3c: Benchmark Data Set (Silesia). Figure 5.5 compares the 6-
Huffman (Reconstruction with an Exception Code) bit rate values to the entropy values

of the data set.
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® §-Huffman (Reconstruction with an Exception Code) = Entropy
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Figure 5.5: 6-Huffman (Reconstruction with an Exception Code) bit rate values vs. Entropy

From figure 5.5 it can be noted that, for §-Huffman (Reconstruction with an
Exception Code), the bit rate values differ from their respective entropy values from a
low difference of 0.01-bit for Silesia (nci) to a high difference of 0.04-bit for Silesia
(dickens) and Silesia (xml).

From this experiment it can be noted that the §-Huffman (Reconstruction with an
Exception Code) generates bit rate values that are higher than the entropy; 0.04-bit more
for Silesia (dickens), 0.02-bit more for Silesia (mozilla), 0.03-bit more for Silesia (mr),
0.01-bit more for Silesia (nci), 0.02-bit more for Silesia (ooffice), 0.02-bit more for
Silesia (osdb), 0.02-bit more for Silesia (reymont), 0.03-bit more for Silesia (samba),
0.03-bit more for Silesia (sao), 0.03-bit more for Silesia (webster), 0.04-bit more for
Silesia (xml), and 0.03-bit more for Silesia (x-ray) relative to the entropy of the

benchmark data set Silesia.
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The final note for experiment 3c is that this is expected since the files in the
Silesia data set are made up of very large amount of data of small integer values relative
to the files in the synthetic and Wikipedia data sets. This is a favorable condition for the
&-Huffman algorithm and the §-Huffman (Reconstruction with an Exception Code)
algorithm has already proven in experiments 3a and 3b that the use of a special symbol,
that represents the NYT and maintains a value of 0, improves on its ability to generate
lower bit rate values relative to entropy.

5.4 Experiment 4: 6-Huffman (Update using the Sibling Property with an Exception
Code)

Experiment 4 is divided into two parts: part 4a explains the compression of the
synthetic data (integers) and part 4b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia.

5.4.1 Experiment 4a: Synthetic Data Set (integers). §-Huffman (Update using
the Sibling Property with an Exception Code) estimates the probability function based on
the use of the formula p,,, the use of a special symbol that represents the NYT and
maintains a value of 0, and enforcement of the sibling property. Figure 5.6 compares the
6-Huffman (Update using the Sibling Property with an Exception Code) bit rate values to

the entropy values of the data set
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® 3-Huffman (Update using the Sibling Property with an Exception Code) = Entropy

8.88

9.00 §

8.00 |

545 535
482 470

2.01 2.00

1.00 +

0.00 +
GPMF(0.01) GPMF(0.1) GPMF(0.5) Poisson(A = 128)

Figure 5.6: 6-Huffman (Update using the Sibling Property with an Exception Code) bit rate values
vs. Entropy

From figure 5.6 it can be noted that, for §-Huffman (Update using the Sibling
Property with an Exception Code), the bit rate values differ from their respective entropy
values from a low difference of 0.01-bit for GPMF (0.5) to a high difference of 0.83-bit
for GPMF (0.01).

From this experiment it can be noted that the §-Huffman (Update using the
Sibling Property with an Exception Code) generates bit rate values that are higher than
the entropy; 0.83-bit more for GPMF (0.01), 0.11-bit more for GPMF (0.1), 0.01-bit more
for GPMF (0.5), and 0.10-bit more for Poisson (A=128) relative to the entropy of the
synthetic data set of integers.

It can be noted that the §-Huffman (Update using the Sibling Property with an

Exception Code) assumptions for the estimation of the probability function cause it to:
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¢ Generate an identical bit rate value for GPMF (0.5) and higher bit rate values;
0.05-bit more for GPMF (0.01), 0.01-bit more for GPMF (0.1), and 0.01-bit
more for Poisson (A=128) versus the bit rate values of the 6-Huffman
(Reconstruction with an Exception Code).

o Generate lower bit rate values; 0.38-bit fewer for GPMF (0.01), 0.93-bit fewer
for GPMF (0.1), 0.99-bit fewer for GPMF (0.5), and 0.95-bit fewer for
Poisson (A=128) versus the bit rate values of the 6-Huffman (n+1).

The final note for experiment 4a is that the §-Huffman (Update using the Sibling
Property with an Exception Code) enforcement of the sibling property does not improve
the bit rate value relative to entropy versus the §-Huffman (Reconstruction with an
Exception Code) from experiment 3a. Due to the nature of the GPMF data as discussed in
experiment 1, it appears the §-Huffman (Reconstruction with an Exception Code) variant
is able to generate an estimation of the probability mass function that matches the
synthetic data very closely that it left very little for the sibling property to improve on in
the §-Huffman (Update using the Sibling Property with an Exception Code) variant.

5.4.2 Experiment 4b: Real-world Data (Wikipedia). Figure 5.7 compares the §-
Huffman (Update using the Sibling Property with an Exception Code) bit rate values to

the entropy values of the data set.
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® 3-Huffman (Update using the Sibling Property with an Exception Code) = Entropy
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Figure 5.7: 6-Huffman (Update using the Sibling Property with an Exception Code) bit rate values
vs. Entropy

From figure 5.7 it can be noted that, for §-Huffman (Update using the Sibling
Property with an Exception Code), the bit rate values differ from their respective entropy
values from a low difference of 0.04-bit for Wikipedia (State) to a high difference of
121.34 bits for Wikipedia (Rousei).

From this experiment it can be noted that the §-Huffman (Update using the
Sibling Property with an Exception Code) generates a higher bit rate value relative to the
entropy of the real-world data from the sorted inverted index gaps from Wikipedia.

It can be noted that the bit rate values are somewhat expected for this experiment.

The §-Huffman (Update using the Sibling Property with an Exception Code) uses the

frequency countof n

formula p,, = , which means the values it generates are

sum of all frequency counts

susceptible to sets with a smaller number of symbols with very large integer values like

the Wikipedia (Rousei) file:
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e “Rousei” is the smallest data set and contains 211 integers. The minimum
integer value is 754 and maximum is 1,932,275. For this experiment it
generates the largest bit rate value of 129.06 bits.

compare this to the Wikipedia (State) file:

e “State” is the biggest data set and contains 1,237,789 integers. The minimum
integer value is 1 and maximum is 37,064. For this experiment it generates the
smallest bit rate value of 6.63 bits.

This explains the relatively large bit rate value generated by 6-Huffman (Update
using the Sibling Property with an Exception Code) for the Wikipedia (Rousei) file and
the relatively small bit rate value for the Wikipedia (State) file and the final experimental
values seen in experiment 4b. That is, the relatively small difference of 0.04-bit more for
Wikipedia (State) which has 1,237,789 index gap values and 0.15-bit more for Wikipedia
(2015) which has 324,888 index gap values than for the smaller files with the relatively
larger difference of 2.14 bits more for Wikipedia (Grei) which has 49,973 index gap
values, 10.78 bits more for Wikipedia (Bollywood) which has 10,605 index gap values,
and the relatively very large difference of 121.34 bits more for Wikipedia (Rousei) which
only has 211 index gap values.

5.5 Experiment 5: 6-Huffman (Static Probability)

Experiment 5 is divided into two parts: part 5a explains the compression of the
synthetic data (integers) and part 5b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia.

5.5.1 Experiment Sa: Synthetic Data Set (integers). §-Huffman (Static

Probability) estimates the probability function based on the use of a GPMF function with
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a static probability value of 0.01 if the input data is from GPMF or Wikipedia and a PMF
function with a static probability value of A=128 if the input data is from Poisson. It uses
a special symbol NYT in the Huffman tree that starts with a value of 1 and decreases over
time. Figure 5.8 compares the §-Huffman (Static Probability) bit rate values to the

entropy values of the data set.

® 5-Huffman (Static Probability) = Entropy
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Figure 5.8: 3-Huffman (Static Probability) bit rate values vs. Entropy

From figure 5.8 it can be noted that, for §-Huffman (Static Probability), the bit
rate values differ from their respective entropy values from a low difference of 0.41-bit
for GPMF (0.01) to a high difference of 2.09 bits for GPMF (0.1).

From this experiment it can be noted that the §-Huffman (Static Probability)
generates bit rate values that are higher than the entropy; 0.41-bit more for GPMF (0.01),
2.09 bits more for GPMF (0.1), 2.07 bits more for GPMF (0.5), and 1.66 bits more for

Poisson (A=128) relative to the entropy of the synthetic data set of integers.

50



It can be noted that the §-Huffman (Static Probability) assumptions for the
estimation of the probability function cause it to:

e Generate a lower bit rate value of 0.43-bit fewer for GPMF (0.01) and higher

bit rate values; 1.98 bits more for GPMF (0.1), 2.06 bits more for GPMF (0.5),
and 1.55 bits more for Poisson (A=128) versus the bit rate values of the 6-
Huffman (Update using the Sibling Property with an Exception Code).

e Generate a lower bit rate value of 0.38-bit fewer for GPMF (0.01) and higher
bit rate values; 1.99 bits more for GPMF (0.1), 2.06 bits more for GPMF (0.5),
and 1.56 bits more for Poisson (A=128) versus the bit rate values of the §-
Huffman (Reconstruction with an Exception Code).

e Generate a lower bit rate value of 0.81-bit fewer for GPMF (0.01) and higher
bit rate values; 1.06 bits more for GPMF (0.1), 1.07 bits more for GPMF (0.5),
and 0.60-bit more for Poisson (A=128) versus the bit rate values of the §-
Huffman (n+1).

The final note for experiment 5a is that the §-Huffman (Static Probability) bit rate
values relative to entropy results for GPMF (0.01) and Poisson (A=128) are not lower,
even though it uses a GPMF function with a static probability value of 0.01 if the input
data is from GPMF and a PMF function with a static probability value of A=128 if the
input data is from Poisson. This appears to be caused by the use of the special symbol
NYT in the Huffman tree that starts with a value of 1 and decreases over time. This leads
the §-Huffman (Static Probability) to generate worse bit rate values relative to entropy
versus the §-Huffman (n+1) for the synthetic data set, with the exception of GPMF

(0.01).

51



5.5.2 Experiment 5b: Real-world Data (Wikipedia). Figure 5.9 compares the &-

Huffman (Static Probability) bit rate values to the entropy values of the data set.

B 3-Huffman (Static Probability) = Entropy
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Figure 5.9: 3-Huffman (Static Probability) bit rate values vs. Entropy

From figure 5.9 it can be noted that, for §-Huffman (Static Probability), the bit
rate values differ from their respective entropy values from a low difference of 0.38-bit
for Wikipedia (2015) to a high difference of 17.79 bits for Wikipedia (Rousei).

From this experiment it can be noted that the §-Huffman (Static Probability)
generates higher bit rate values relative to the entropy of the real-world data from the
sorted inverted index gaps from Wikipedia.

As in experiment 4b, it can be noted the o-Huffman (Static Probability) for larger
files generates the relatively small difference of 0.38-bit more for Wikipedia (2015) and

0.69-bit more for Wikipedia (State) than for the smaller files with the relatively larger
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difference of 7.52 bits more for Wikipedia (Grei), 12.82 bits more for Wikipedia
(Bollywood), and 17.79 bits more for Wikipedia (Rousei).

It can be noted that 5-Huffman (Static Probability) generates a lower bit rate value
of 103.55 bits for Wikipedia (Rousei) and higher bit rate values; 0.23-bit more for
Wikipedia (2015), 2.04 bits more for Wikipedia (Bollywood), 5.38 bits more for
Wikipedia (Grei), and 0.65-bit more for Wikipedia (State) versus the bit rate values of the
d-Huffman (Update using the Sibling Property with an Exception Code).

The final note for experiment 5b is that unlike experiment 5a, this experiment
shows the §-Huffman (Static Probability) use of a GPMF with a static value of 0.01 and
use of a special symbol NYT in the Huffman tree that starts with a value of 1 makes it
less susceptible to the number of symbols seen in a data set file. This allows the §-
Huffman (Static Probability) to generate better bit rate values relative to entropy versus
the 5-Huffman (Update using the Sibling Property with an Exception Code) from
experiment 4b.

5.6 Experiment 6: 6-Huffman (Sibling/Static Probability)

Experiment 6 is divided into two parts: part 6a explains the compression of the
synthetic data (integers) and part 6b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia.

5.6.1 Experiment 6a: Synthetic Data Set (integers). §-Huffman (Sibling/Static
Probability) estimates the probability function based on the use of a GPMF function with
a static probability value of 0.01 for input data from GPMF or Wikipedia and a PMF
function with a static probability value of A=128 for input data from Poisson. It uses a

special symbol NYT in the Huffman tree that starts with a value of 1 and decreases over
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time and enforces the sibling property. Figure 5.10 compares the §-Huffman

(Sibling/Static Probability) bit rate values to the entropy values of the data set.
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Figure 5.10: 3-Huffman (Sibling/Static Probability) bit rate values vs. Entropy

From figure 5.10 it can be noted that, for §-Huffman (Sibling/Static Probability),
the bit rate values differ from their respective entropy values from a low difference of
0.01-bit for GPMF (0.5) to a high difference of 0.41-bit for GPMF (0.01).

From this experiment it can be noted that the §-Huffman (Sibling/Static
Probability) generates bit rate values that are higher than the entropy; 0.41-bit more for
GPMF (0.01), 0.08-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and 0.24-bit
more for Poisson (A=128) relative to the entropy of the synthetic data set of integers.

It can be noted that the §-Huffman (Sibling/Static Probability) assumptions for

the estimation of the probability function cause it to:
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Generate lower bit rate values; 2.02 bits fewer for GPMF (0.1), 2.06 bits
fewer for GPMF (0.5), and 1.41 bits fewer for Poisson (A=128) and generates
an identical bit rate value for GPMF (0.01) versus the bit rate values of the §-
Huffman (Static Probability).

Generate lower bit rate values; 0.43-bit fewer for GPMF (0.01) and 0.04-bit
fewer for GPMF (0.1). It generates an identical bit rate value for GPMF (0.5)
and a higher bit rate value of 0.14-bit more for Poisson (A=128) versus the bit
rate values of the §-Huffman (Update using Sibling Property with an
Exception Code).

Generate lower bit rate values; 0.37-bit fewer for GPMF (0.01) and 0.03-bit
fewer for GPMF (0.1). It generates an identical bit rate for GPMF (0.5) and a
higher bit rate value of 0.15-bit more for Poisson (A=128) versus the bit rate
values of the §-Huffman (Reconstruction with an Exception Code).

Generate lower bit rate values; 0.80-bit fewer for GPMF (0.01), 0.96-bit fewer
for GPMF (0.1), 0.99-bit fewer for GPMF (0.5), and 0.81-bit fewer for

Poisson (A=128) versus the bit rate values of the §-Huffman (n+1).

The final note for experiment 6a is that the §-Huffman (Sibling/Static Probability)

additional enforcement of the sibling property allow it to generate better bit rate values
relative to entropy for GPMF (0.5), GPMF (0.1), and Poisson versus the §-Huffman
(Static Probability) from experiment 5a even though both use the same GPMF formula
with a static 0.01 probability value and a NYT that starts at 1 and decreases over time.
This is in contrast to the relatively small bit rate values relative to entropy differences

made between the §-Huffman (Update using the Sibling Property with an Exception

55



Code) from experiment 4a and the §-Huffman (Reconstruction with an Exception Code)
from experiment 3a and their use of a special symbol NYT that has a permanent value of
0. The §-Huffman (Sibling/Static Probability) generates better bit rate values relative to
entropy versus the §-Huffman (n+1).

5.6.2 Experiment 6b: Real-world Data (Wikipedia). Figure 5.11 compares the

6-Huffman (Sibling/Static Probability) bit rate values to the entropy values of the data

set.
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Figure 5.11: 6-Huffman (Sibling/Static Probability) bit rate values vs. Entropy
From figure 5.11 it can be noted that, for §-Huffman (Sibling/Static Probability),
the bit rate values differ from their respective entropy values from a low difference of

0.38-bit for Wikipedia (2015) to a high difference of 17.79 bits for Wikipedia (Rousei).
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From this experiment it can be noted that the §-Huffman (Sibling/Static
Probability) generates higher bit rate values relative to the entropy of the real-world data
from the sorted inverted index gaps from Wikipedia.

As in experiments 4b and 5b, it can be noted that the 6-Huffman (Sibling/Static
Probability) for larger files generates the relatively small difference of 0.38-bit more for
Wikipedia (2015) and 0.69-bit more for Wikipedia (State) than for the smaller files with
the relatively larger difference of 7.52 bits more for Wikipedia (Grei), 12.82 bits more for
Wikipedia (Bollywood), and 17.79 bits more for Wikipedia (Rousei).

It can be noted that the §-Huffman (Sibling/Static Probability) assumptions for
the estimation of the probability function cause it to:

¢ Generate identical bit rate values for Wikipedia (2015), Wikipedia

(Bollywood), Wikipedia (Grei), Wikipedia (Rousei), and Wikipedia (State)
versus the bit rate values of the §-Huffman (Static Probability).

e Generate a lower bit rate value of 103.55 bits for Wikipedia (Rouse1) and

higher bit rate values; 0.23-bit more for Wikipedia (2015), 2.04 bits more for
Wikipedia (Bollywood), 5.38 bits more for Wikipedia (Grei), and 0.65-bit
more for Wikipedia (State) versus the bit rate values of the §-Huffman
(Update using the Sibling Property with an Exception Code).

It can be noted that the §-Huffman (Sibling/Static Probability) additional
enforcement of the sibling property does not improve on any bit rate values versus the §-
Huffman (Static Probability) like it did in experiment 6a. This is somewhat similar to
how the §-Huffman (Update using the Sibling Property with an Exception Code)

additional enforcement of the sibling property from experiment 4a hardly improved the
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bit rate value results relative to entropy of the §-Huffman (Reconstruction with an
Exception Code) from experiment 3a for the synthetic data.

The final note for experiment 6b is much like how the §-Huffman
(Reconstruction with an Exception Code) was able to generate an estimation of the
probability mass function that matched the synthetic data very closely that it left very
little for the sibling property to improve on in the §-Huffman (Update using the Sibling
Property with an Exception Code) variant, the §-Huffman (Static Probability) estimation
of the probability mass function matches the Wikipedia data very closely that the §-
Huffman (Sibling/Static Probability) additional enforcement of the sibling property has
nothing to improve on.

5.7 Experiment 7: 6-Huffman (Dynamic Probability P2)

Experiment 7 is divided into three parts: part 7a explains the compression of the
synthetic data (integers), part 7b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia, and part 7c explains the compression of the
benchmark data set Silesia.

5.7.1 Experiment 7a: Synthetic Data Set (integers). §-Huffman (Dynamic
Probability P2) estimates the probability function based on the use of a special symbol
that represents the NYT and maintains a value of 0 and the formula P2. Figure 5.12
compares the §-Huffman (Dynamic Probability P2) bit rate values to the entropy values

of the data set.
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B 3-Huffman (Dynamic Probability P2)  ® Entropy
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Figure 5.12: 3-Huffman (Dynamic Probability P2) bit rate values vs. Entropy
From figure 5.12 it can be noted that, for §-Huffman (Dynamic Probability P2),
the bit rate values differ from their respective entropy values from a low difference of
0.01-bit for GPMF (0.5) to a high difference of 0.78-bit for GPMF (0.01).
From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2) generates bit rate values that are higher than the entropy; 0.78-bit more for GPMF
(0.01), 0.11-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and 0.10-bit more
for Poisson (A=128) relative to the entropy of the synthetic data set of integers.
It can be noted that the §-Huffman (Dynamic Probability P2) assumptions for the
estimation of the probability function cause it to:
e (Generate a lower bit rate value of 0.15-bit fewer for Poisson (A=128). It
generates an identical bit rate value for GPMF (0.5) and higher bit rate values;
0.38-bit more for GPMF (0.01) and 0.03-bit more for GPMF (0.1) versus the

bit rate values of the §-Huffman (Sibling/Static Probability).
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e Generate lower bit rate values; 1.99 bits fewer for GPMF (0.1), 2.06 bits
fewer for GPMF (0.5), and 1.56 bits fewer for Poisson (A=128) and a higher
bit rate value of 0.38-bit more for GPMF (0.01) versus the bit rate values of
the §-Huffman (Static Probability).

e Generate lower bit rate values; 0.05-bit fewer for GPMF (0.01), 0.01-bit fewer
for GPMF (0.1), and 0.01-bit fewer for Poisson (A=128) and an identical bit
rate value for GPMF (0.5) versus the bit rate values of the §-Huffman (Update
using Sibling Property with an Exception Code).

e Generate identical bit rate values for GPMF (0.01), GPMF (0.1), GPMF (0.5),
and Poisson (A=128) versus the bit rate values of the §-Huffman
(Reconstruction with an Exception Code).

e Generate lower bit rate values; 0.43-bit fewer for GPMF (0.01), 0.93-bit fewer
for GPMF (0.1), 0.99-bit fewer for GPMF (0.5), and 0.96-bit fewer for
Poisson (A=128) versus the bit rate values of the §-Huffman (n+1).

It can be noted that the §-Huffman (Dynamic Probability P2) and §-Huffman
(Reconstruction with an Exception Code) are both similar in that they both use a special
symbol NYT that starts with and maintains a value of 0. The main difference is that the
6-Huffman (Dynamic Probability P2) uses the formula P2 which assumes N is the sum of
all input values while the §-Huffman (Reconstruction with an Exception Code) uses the
formula p,, which assumes N is the total number of symbols that have been seen so far.
This difference appears to be offset by the nature of the GPMF data as discussed in

experiment 1, small integers with multiple repetitions. This causes the §-Huffman
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(Dynamic Probability P2) to generate bit rate values relative to entropy that are similar to
the §-Huffman (Reconstruction with an Exception Code).

Note that since the §-Huffman (Dynamic Probability P2) performs the same as
the §-Huffman (Reconstruction with an Exception Code), it is expected that it generates
better bit rate values relative to entropy than the §-Huffman (Update using Sibling
Property with an Exception Code) variant which the §-Huffman (Reconstruction with an
Exception Code) variant performed better than in experiment 4a and the §-Huffman
(n+1) variant which the §-Huffman (Reconstruction with an Exception Code) variant
performed better than in experiment 3a.

Note that the §-Huffman (Dynamic Probability P2) variant is different than the J-
Huffman (Static Probability) variant in two main areas, the §-Huffman (Dynamic
Probability P2) variant uses an NYT symbol that starts with and maintains a value of 0
and the formula P2 for the estimation of the probability function while the §-Huffman
(Static Probability) variant uses an NYT symbol that starts with a value of 1 and
decreases over time and the GPMF function with a static probability value of 0.01 for the
estimation of the probability function. This allows the §-Huffman (Dynamic Probability
P2) to generate better bit rate values relative to entropy for GPMF (0.5), GPMF (0.1), and
Poisson while the §-Huffman (Static Probability) only generates a better bit rate value
relative to entropy for GPMF (0.01) for the synthetic data set.

The final note for experiment 7a is that the §-Huffman (Sibling/Static Probability)
inclusion of the enforcement of the sibling property allows it to generate better bit rate
values relative to entropy for GPMF (0.01) and GPMF (0.1) and a similar bit rate value

relative to entropy for GPMF (0.5) versus the §-Huffman (Dynamic Probability P2). The
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6-Huffman (Dynamic Probability P2) only generates a better bit rate value relative to
entropy for Poisson in this experiment. A plausible explanation for this is the §-Huffman
(Sibling/Static Probability) use of a GPMF function with a static probability value of 0.01
for the estimation of the probability function.

5.7.2 Experiment 7b: Real-world Data (Wikipedia). Figure 5.13 compares the

6-Huffman (Dynamic Probability P2) bit rate values to the entropy values of the data set.
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Figure 5.13: 0-Huffman (Dynamic Probability P2) bit rate values vs. Entropy

From figure 5.13 it can be noted that, for §-Huffman (Dynamic Probability P2),
the bit rate values differ from their respective entropy values from a low difference of
0.04-bit for Wikipedia (State) to a high difference of 23.59 bits for Wikipedia (Rousei).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2) generates higher bit rate values relative to the entropy of the real-world data from the
sorted inverted index gaps from Wikipedia. As in experiments 4b, 5b, and 6b it can be
noted the 6-Huffman (Dynamic Probability P2) for larger files generates the relatively

small difference of 0.14-bit more for Wikipedia (2015) and 0.04-bit more for Wikipedia
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(State) than for the smaller files with the relatively larger difference of 2.04 bits more for

Wikipedia (Grei), 10.22 bits more for Wikipedia (Bollywood), and 23.59 bits more for

Wikipedia (Rousei).

It can be noted that the §-Huffman (Dynamic Probability P2) assumptions for the

estimation of the probability function cause it to:

Generate lower bit rate values; 0.24-bit fewer for Wikipedia (2015), 2.60 bits
fewer for Wikipedia (Bollywood), 5.48 bits fewer for Wikipedia (Grei), and
0.65-bit fewer for Wikipedia (State) and a higher bit rate value of 5.80 bits
more for Wikipedia (Rousei) versus the bit rate values of the §-Huffman
(Sibling/Static Probability).

Generate lower bit rate values; 0.24-bit fewer for Wikipedia (2015), 2.60 bits
fewer for Wikipedia (Bollywood), 5.48 bits fewer for Wikipedia (Gret1), and
0.65-bit fewer for Wikipedia (State) and a higher bit rate value of 5.80 bits
more for Wikipedia (Rousei) versus the bit rate values of the §-Huffman
(Static Probability).

Generate lower bit rate values; 0.01-bit fewer for Wikipedia (2015), 0.56-bit
fewer for Wikipedia (Bollywood), 0.10-bit fewer for Wikipedia (Grei), and
97.75 bits fewer for Wikipedia (Rousei) and an identical bit rate value for
Wikipedia (State) versus the bit rate values of the §-Huffman (Update using

the Sibling Property with an Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P2) and §-Huffman

(Update using the Sibling Property with an Exception Code) are similar in that they both

use a special symbol NYT that starts with and maintains a value of 0. The main
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difference is that §-Huffman (Dynamic Probability P2) uses the formula P2 while §-
Huffman (Update using the Sibling Property with an Exception Code) uses the formula
Pn. This allows the §-Huffman (Dynamic Probability P2) to generate a similar bit rate
value as 6-Huffman (Update using the Sibling Property with an Exception Code) for
Wikipedia (2015) and slightly better bit rate values relative to entropy for the other
Wikipedia files.

The final note for experiment 7b is that the §-Huffman (Dynamic Probability P2)
use of a special symbol NYT that starts with and maintains a value of 0 and the formula
P2 while the §-Huffman (Sibling/Static Probability) uses a NYT symbol that starts with a
value of 1 and decreases over time and the GPMF function with a static probability value
0f 0.01 for the estimation of the probability function, leads the §-Huffman (Dynamic
Probability P2) to generate better bit rate values relative to entropy for all Wikipedia files
except for Wikipedia (Rousei). For similar reasons, the §-Huffman (Dynamic Probability
P2) generates better bit rate values relative to entropy for all Wikipedia files, except for
Wikipedia (Rousei), versus the §-Huffman (Static Probability) variant.

5.7.3 Experiment 7c: Benchmark Data Set (Silesia). Figure 5.14 compares the

6-Huffman (Dynamic Probability P2) bit rate values to the entropy values of the data set.
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Figure 5.14: 6-Huffman (Dynamic Probability P2) bit rate values vs. Entropy

From figure 5.14 it can be noted that, for §-Huffman (Dynamic Probability P2),
the bit rate values differ from their respective entropy values from a low difference of
0.01-bit for Silesia (nci) to a high difference of 0.04-bit for Silesia (dickens) and Silesia
(xml).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2) generates bit rate values that are higher than the entropy; 0.04-bit more for Silesia
(dickens), 0.02-bit more for Silesia (mozilla), 0.03-bit more for Silesia (mr), 0.01-bit
more for Silesia (nci), 0.02-bit more for Silesia (ooffice), 0.02-bit more for Silesia (osdb),
0.02-bit more for Silesia (reymont), 0.03-bit more for Silesia (samba), 0.03-bit more for
Silesia (sao), 0.03-bit more for Silesia (webster), 0.04-bit more for Silesia (xml), and
0.03-bit more for Silesia (x-ray) relative to the entropy of the benchmark data set Silesia.

It can be noted that the §-Huffman (Dynamic Probability P2) generates essentially
identical bit rate values for; Silesia (dickens), Silesia (mozilla), Silesia (mr), Silesia (nci),

Silesia (ooffice), Silesia (osdb), Silesia (reymont), Silesia (samba), Silesia (sao), Silesia
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(webster), Silesia (xml), and Silesia (x-ray) versus the bit rate values of the §-Huffman
(Reconstruction with an Exception Code).

The final note for experiment 7c is that the §-Huffman (Dynamic Probability P2)
and the §-Huffman (Reconstruction with an Exception Code) are similar in that they both
use a special symbol NYT that starts with and maintains a value of 0. The main
difference is that the 6-Huffman (Dynamic Probability P2) uses the formula P2 while the
6-Huffman (Reconstruction with an Exception Code) uses the formula p,,. However, due
to the nature of the Silesia data files as discussed in experiment 3c, the §-Huffman
(Reconstruction with an Exception Code) was able to generate an estimation of the
probability mass function that matched the Silesia data very closely that it left very little
for the §-Huffman (Dynamic Probability P2) variant to improve on.

5.8 Experiment 8: 6-Huffman (Dynamic Probability P1/Slice)

Experiment 8 is divided into three parts: part 8a explains the compression of the
synthetic data (integers), part 8b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia, and part 8c explains the compression of the
benchmark data set Silesia.

5.8.1 Experiment 8a: Synthetic Data Set (integers). §-Huffman (Dynamic
Probability P1/Slice) estimates the probability function based on the use of a special
symbol that represents the NYT and starts with a value of 1 and decreases over time, use
of the formula P1, and segmentation of the input data into slices (L). Figure 5.15
compares the §-Huffman (Dynamic Probability P1/Slice) bit rate values to the entropy

values of the data set.
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Figure 5.15: 3-Huffman (Dynamic Probability P1/Slice) bit rate values vs. Entropy

From figure 5.15 it can be noted that, for §-Huffman (Dynamic Probability
P1/Slice), the bit rate values differ from their respective entropy values from a low
difference of 0.01-bit for GPMF (0.5) to a high difference of 1.64 bits for Poisson (A =
128).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P1/Slice) generates bit rate values that are higher than the entropy; 0.40-bit more for
GPMF (0.01), 0.07-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and 1.64
bits more for Poisson (A=128) relative to the entropy of the synthetic data set of integers.

It can be noted that the §-Huffman (Dynamic Probability P1/Slice) assumptions
for the estimation of the probability function cause it to:

e (Generate lower bit rate values; 0.38-bit fewer for GPMF (0.01) and 0.04-bit

fewer for GPMF (0.1), an identical bit rate value for GPMF (0.5), and a higher
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bit rate value of 1.55 bits more for Poisson (A = 128) versus the bit rate values
of the §-Huffman (Dynamic Probability P2).

Generate a lower bit rate value of 0.01-bit fewer for GPMF (0.1), identical bit
rate values for GPMF (0.01) and GPMF (0.5), and a higher bit rate value of
1.40 bits more for Poisson (A = 128) versus the bit rate values of the §-
Huffman (Sibling/Static Probability).

Generate lower bit rate values; 2.03 bits fewer for GPMF (0.1), 2.06 bits
fewer for GPMF (0.5), and 0.01-bit fewer for Poisson (A = 128) and an
identical bit rate value for GPMF (0.01) versus the bit rate values of the §-
Huffman (Static Probability).

Generate lower bit rate values; 0.43-bit fewer for GPMF (0.01) and 0.05-bit
fewer for GPMF (0.1), an identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.54 bits more for Poisson (A = 128) versus the bit rate values
of the §-Huffman (Update using Sibling Property with an Exception Code).
Generate lower bit rate values; 0.38-bit fewer for GPMF (0.01) and 0.04-bit
fewer for GPMF (0.1), an identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.55 bits more for Poisson (A = 128) versus the bit rate values
of the §-Huffman (Reconstruction with an Exception Code).

Generate lower bit rate values; 0.81-bit fewer for GPMF (0.01), 0.97-bit fewer
for GPMF (0.1), and 1.00-bit fewer for GPMF (0.5) and a higher bit rate value
of 0.59-bit more for Poisson (A = 128) versus the bit rate values of the §-

Huffman (n+1).
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It can be noted that the §-Huffman (Dynamic Probability P1/Slice) and 6-
Huffman (Sibling/Static Probability) are similar in that they both use an NYT that starts
with a value of 1 and decreases over time. The main difference is that the §-Huffman
(Dynamic Probability P1/Slice) uses the formula P1 and segments the input data into
slices while the §-Huffman (Sibling/Static Probability) uses a GPMF with a static
probability of 0.01. This leads the §-Huffman (Dynamic Probability P1/Slice) to generate
similar bit rate values relative to entropy for GPMF (0.5) and GPMF (0.01) and a slightly
better bit rate value relative to entropy for GPMF (0.1) while the §-Huffman
(Sibling/Static Probability) generates a better bit rate value relative to entropy for
Poisson.

Note that the §-Huffman (Static Probability) is similar to the §-Huffman
(Sibling/Static Probability) with the enforcement of the sibling property removed.
Therefore, it is expected the §-Huffman (Static Probability) generates worse bit rate
values relative to entropy versus the §-Huffman (Dynamic Probability P1/Slice). The
exception is a similar bit rate value relative to entropy for GPMF (0.01). A plausible
explanation for this is the §-Huffman (Static Probability) use of a GPMF with a static
probability of 0.01 for the estimation of the probability function while the §-Huffman
(Dynamic Probability P1/Slice) uses the formula P1 for the estimation of the probability
function.

Note that the §-Huffman (Dynamic Probability P1/Slice) uses the formula P1,
uses a special symbol that represents the NYT and starts with a value of 1 and decreases
over time, and segments the input data into slices. The §-Huffman (Dynamic Probability

P2) uses the formula P2 and a special symbol that represents the NYT that starts with and
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maintains a value of 0. This leads the §-Huffman (Dynamic Probability P1/Slice) to
generate better bit rate values relative to entropy for GPMF (0.1) and GPMF (0.01), a bit
rate value relative to entropy that is similar to the Huffman (Dynamic Probability P2) for
GPMF (0.5) and a worse bit rate value relative to entropy for Poisson. A plausible
explanation for this is the §-Huffman (Dynamic Probability P1/Slice) use of the formula
P1 while the §-Huffman (Dynamic Probability P2) uses the formula P2.

Note that the §-Huffman (Dynamic Probability P1/Slice) and §-Huffman (Update
using Sibling Property with an Exception Code) main difference is that the §-Huffman
(Dynamic Probability P1/Slice) uses the formula P1, uses a special symbol that represents
the NYT and starts with a value of 1 and decreases over time, and segments the input data
into slices while the §-Huffman (Update using Sibling Property with an Exception Code)
uses the formula p,,. This leads the §-Huffman (Dynamic Probability P1/Slice) to
generate better bit rate values relative to entropy for GPMF (0.1) and GPMF (0.01), a bit
rate value relative to entropy that is similar to the §-Huffman (Update using Sibling
Property with an Exception Code) for GPMF (0.5) and a worse bit rate value relative to
entropy for Poisson.

Note that the §-Huffman (Dynamic Probability P1/Slice) has nothing in common
with the §-Huffman (Reconstruction with an Exception Code). The §-Huffman
(Reconstruction with an Exception Code) is similar to the §-Huffman (Update using
Sibling Property with an Exception Code) in that they both use the formula p,,.
Therefore, the similar bit rate values relative to entropy performance of the 6-Huffman
(Dynamic Probability P1/Slice) versus the §-Huffman (Reconstruction with an Exception

Code) is expected.
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The final note for experiment 8a is that the §-Huffman (Dynamic Probability
P1/Slice) generates better bit rate values relative to entropy versus §-Huffman (n+1) for
all GPMF files, but worse for the Poisson file. A plausible explanation for these results is
the §-Huffman (Dynamic Probability P1/Slice) use of the formula P1 for its estimation of
the probability function.

5.8.2 Experiment 8b: Real-world Data (Wikipedia). Figure 5.16 compares the

6-Huffman (Dynamic Probability P1/Slice) bit rate values to the entropy values of the

data set.
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Figure 5.16: 5-Huffman (Dynamic Probability P1/Slice) bit rate values vs. Entropy
From figure 5.16 it can be noted that, for §-Huffman (Dynamic Probability

P1/Slice), the bit rate values differ from their respective entropy values from a low

difference of 0.18-bit for Wikipedia (State) to a high difference of 16.16 bits for

Wikipedia (Rousei).
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From this experiment it can be noted that the §-Huffman (Dynamic Probability

P1/Slice) generates a higher bit rate value relative to the entropy of the real-world data

from the sorted inverted index gaps from Wikipedia. As in experiments 4b, 5b, 6b, and

7b it can be noted the 3-Huffman (Dynamic Probability P1/Slice) for larger files

generates the relatively small difference of 0.23-bit more for Wikipedia (2015) and 0.18-

bit more for Wikipedia (State) than for the smaller files with the relatively larger

difference of 1.12 bits more for Wikipedia (Grei), 4.37 bits more for Wikipedia

(Bollywood), and 16.16 bits more for Wikipedia (Rousei).

It can be noted that the §-Huffman (Dynamic Probability P1/Slice) assumptions

for the estimation of the probability function cause it to:

Generate lower bit rate values; 5.85 bits fewer for Wikipedia (Bollywood),
0.92-bit fewer for Wikipedia (Grei), and 7.43 bits fewer for Wikipedia
(Rouset1) and higher bit rate values; 0.09-bit more for Wikipedia (2015) and
0.14-bit more for Wikipedia (State) versus the bit rate values of the J-
Huffman (Dynamic Probability P2).

Generate lower bit rate values; 0.15-bit fewer for Wikipedia (2015), 8.45 bits
fewer for Wikipedia (Bollywood), 6.40 bits fewer for Wikipedia (Grei), 1.63
bits fewer for Wikipedia (Rousei), and 0.51-bit fewer for Wikipedia (State)
versus the bit rate values of the §-Huffman (Sibling/Static Probability).
Generate lower bit rate values; 0.15-bit fewer for Wikipedia (2015), 8.45 bits
fewer for Wikipedia (Bollywood), 6.40 bits fewer for Wikipedia (Grei), 1.63
bits fewer for Wikipedia (Rousei), and 0.51-bit fewer for Wikipedia (State)

versus the bit rate values of the §-Huffman (Static Probability).
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e Generate lower bit rate values; 6.41 bits fewer for Wikipedia (Bollywood),
1.02 bits fewer for Wikipedia (Grei), and 105.18 bits fewer for Wikipedia
(Rousei) and higher bit rate values; 0.08-bit more for Wikipedia (2015) and
0.14-bit more for Wikipedia (State) versus the bit rate values of the J-
Huffman (Update using the Sibling Property with an Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P1/Slice) uses the
formula P1, uses a special symbol that represents the NYT and starts with a value of 1
and decreases over time, and segments the input data into slices. The §-Huffman
(Dynamic Probability P2) uses the formula P2 and a special symbol that represents the
NYT that starts with and maintains a value of 0. This leads the §-Huffman (Dynamic
Probability P1/Slice) to generate better bit rate values relative to entropy for the smaller
size files Wikipedia (Grei), Wikipedia (Bollywood), and Wikipedia (Rousei) while the §-
Huffman (Dynamic Probability P2) generates better bit rate values relative to entropy for
the larger size files Wikipedia (2015) and Wikipedia (State).

Note that the §-Huffman (Static Probability) and the §-Huffman (Sibling/Static
Probability) both generate similar bit rate values relative to entropy, and the §-Huffman
(Dynamic Probability P1/Slice) generates better bit rate values relative to entropy than
both of them. The main difference is the §-Huffman (Dynamic Probability P1/Slice) uses
the formula P1 and segments the input data into slices while the §-Huffman
(Sibling/Static Probability) and §-Huffman (Static Probability) use a GPMF with a static
probability of 0.01 for the estimation of the probability function. This leads the 6-

Huffman (Dynamic Probability P1/Slice) to generate better bit rate values relative to
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entropy for all Wikipedia files versus the §-Huffman (Sibling/Static Probability) and §-
Huffman (Static Probability).

Note that the §-Huffman (Dynamic Probability P1/Slice) generates better bit rate
values relative to entropy for the smaller size files Wikipedia (Grei), Wikipedia
(Bollywood), and Wikipedia (Rousei) than for the larger size files Wikipedia (2015) and
Wikipedia (State).

The final note for experiment 8b is that the §-Huffman (Dynamic Probability
P1/Slice) and §-Huffman (Update using Sibling Property with an Exception Code) main
difference is that the 6-Huffman (Dynamic Probability P1/Slice) uses the formula P1, a
special symbol that represents the NYT and starts with a value of 1 and decreases over
time, and segments the input data into slices while the §-Huffman (Update using Sibling
Property with an Exception Code) uses the formula p,,. This leads the §-Huffman
(Dynamic Probability P1/Slice) to generate better bit rate values relative to entropy for
the smaller size files Wikipedia (Grei), Wikipedia (Bollywood), and Wikipedia (Rouse1)
while the §-Huffman (Update using the Sibling Property with an Exception Code)
generates better bit rate values relative to entropy for the larger size files Wikipedia
(2015) and Wikipedia (State).

5.8.3 Experiment 8c: Benchmark Data Set (Silesia). Figure 5.17 compares the
6-Huffman (Dynamic Probability P1/Slice) bit rate values to the entropy values of the

data set.
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Figure 5.17: 0-Huffman (Dynamic Probability P1/Slice) bit rate values vs. Entropy

From figure 5.17 it can be noted that, for §-Huffman (Dynamic Probability
P1/Slice), the bit rate values differ from their respective entropy values from a low
difference of 0.83-bit for Silesia (x-ray) to a high difference of 3.63 bits for Silesia (nci).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P1/Slice) generates bit rate values that are higher than the entropy; 3.22 bits more for
Silesia (dickens), 1.52 bits more for Silesia (mozilla), 2.35 bits more for Silesia (mr), 3.63
bits more for Silesia (nci), 1.48 bits more for Silesia (ooffice), 1.02 bits more for Silesia
(osdb), 2.42 bits more for Silesia (reymont), 1.52 bits more for Silesia (samba), 0.90-bit
more for Silesia (sao), 2.65 bits more for Silesia (webster), 2.08 bits more for Silesia
(xml), and 0.83-bit more for Silesia (x-ray) relative to the entropy of the benchmark data
set Silesia.

It can be noted that the §-Huffman (Dynamic Probability P1/Slice) assumptions

for the estimation of the probability function cause it to:
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e Generate higher bit rate values; 3.18 bits more for Silesia (dickens), 1.50 bits
more for Silesia (mozilla), 2.32 bits more for Silesia (mr), 3.62 bits more for
Silesia (nci), 1.45 bits more for Silesia (ooffice), 1.00-bit more for Silesia
(osdb), 2.40 bits more for Silesia (reymont), 1.49 bits more for Silesia
(samba), 0.88-bit more for Silesia (sao), 2.62 bits more for Silesia (webster),
2.04 bits more for Silesia (xml), and 0.80-bit more for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P2).

e Generate higher bit rate values; 3.18 bits more for Silesia (dickens), 1.50 bits

more for Silesia (mozilla), 2.32 bits more for Silesia (mr), 3.62 bits more for
Silesia (nci), 1.45 bits more for Silesia (ooffice), 1.00-bit more for Silesia
(osdb), 2.40 bits more for Silesia (reymont), 1.49 bits more for Silesia
(samba), 0.88-bit more for Silesia (sao), 2.62 bits more for Silesia (webster),
2.04 bits more for Silesia (xml), and 0.80-bit more for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Reconstruction with an Exception
Code).

The final note for experiment 8c is that the §-Huffman (Dynamic Probability
P1/Slice) use of the formula P1, a NYT that starts with a value of 1 and decreases over
time, and use of the slice method leads the §-Huffman (Dynamic Probability P1/Slice) to
generate worse bit rate values relative to entropy versus the §-Huffman (Dynamic
Probability P2) and §-Huffman (Reconstruction with an Exception Code) for the Silesia

data set.
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5.9 Experiment 9: 6-Huffman (Dynamic Probability P2/Slice)

Experiment 9 is divided into three parts: part 9a explains the compression of the
synthetic data (integers), part 9b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia, and part 9c explains the compression of the
benchmark data set Silesia.

5.9.1 Experiment 9a: Synthetic Data Set (integers). §-Huffman (Dynamic
Probability P2/Slice) estimates the probability function based on use of a special symbol
that represents the NYT and maintains a value of 0, use of the formula P2, and
segmentation of the input data into slices (L). Figure 5.18 compares the §-Huffman

(Dynamic Probability P2/Slice) bit rate values to the entropy values of the data set.

= §-Huffman (Dynamic Probability P2/Slice) = Entropy
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Figure 5.18: 6-Huffman (Dynamic Probability P2/Slice) bit rate values vs. Entropy
From figure 5.18 it can be noted that, for §-Huffman (Dynamic Probability
P2/Slice), the bit rate values differ from their respective entropy values from a low

difference of 0.01-bit for GPMF (0.5) to a high difference of 0.81-bit for GPMF (0.01).
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From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2/Slice) generates bit rate values that are higher than the entropy; 0.81-bit more for
GPMF (0.01), 0.11-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and 0.09-bit
more for Poisson (A=128) relative to the entropy of the synthetic data set of integers.

It can be noted that the §-Huffman (Dynamic Probability P2/Slice) assumptions
for the estimation of the probability function cause it to:

e Generate a lower bit rate value of 1.55 bits fewer for Poisson (A = 128), an
identical bit rate value for GPMF (0.5), and higher bit rate values; 0.41-bit
more for GPMF (0.01) and 0.04-bit more for GPMF (0.1) versus the bit rate
values of the §-Huffman (Dynamic Probability P1/Slice).

e Generate a lower bit rate value of 0.01-bit fewer for Poisson (A = 128),
identical bit rate values for GPMF (0.1) and GPMF (0.5), and a higher bit rate
value of 0.02-bit more for GPMF (0.01) versus the bit rate values of the §-
Huffman (Dynamic Probability P2).

e Generate a lower bit rate value of 0.15-bit fewer for Poisson (A = 128), an
identical bit rate value for GPMF (0.5), and higher bit rate values; 0.40-bit
more for GPMF (0.01) and 0.03-bit more for GPMF (0.1) versus the bit rate
values of the §-Huffman (Sibling/Static Probability).

e Generate lower bit rate values; 1.99 bits fewer for GPMF (0.1), 2.06 bits
fewer for GPMF (0.5), and 1.57 bits fewer for Poisson (A = 128) and a higher
bit rate value of 0.40-bit more for GPMF (0.01) versus the bit rate values of

the §-Huffman (Static Probability).
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e Generate lower bit rate values; 0.03-bit fewer for GPMF (0.01), 0.01-bit fewer
for GPMF (0.1), and 0.01-bit fewer for Poisson (A = 128) and an identical bit
rate value for GPMF (0.5) versus the bit rate values of the §-Huffman (Update
using Sibling Property with an Exception Code).

e Generate a lower bit rate value of 0.01-bit fewer for Poisson (A = 128),
identical bit rate values for GPMF (0.1) and GPMF (0.5), and a higher bit rate
value of 0.03-bit more for GPMF (0.01) versus the bit rate values of the §-
Huffman (Reconstruction with an Exception Code).

e Generate lower bit rate values; 0.40-bit fewer for GPMF (0.01), 0.93-bit fewer
for GPMF (0.1), 0.99-bit fewer for GPMF (0.5), and 0.96-bit fewer for
Poisson (A = 128) versus the bit rate values of the §-Huffman (n+1).

The final note for experiment 9a is that the §-Huffman (Dynamic Probability
P2/Slice) additional use of the slice method cause it to generate a better bit rate value
relative to entropy for Poisson, similar bit rate values relative to entropy for GPMF (0.1)
and GPMF (0.5), and a worse bit rate value relative to entropy for GPMF (0.01) versus
the §-Huffman (Dynamic Probability P2).

5.9.2 Experiment 9b: Real-world Data (Wikipedia). Figure 5.19 compares the
6-Huffman (Dynamic Probability P2/Slice) bit rate values to the entropy values of the

data set.
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® §-Huffman (Dynamic Probability P2/Slice) = Entropy
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Figure 5.19: 6-Huffman (Dynamic Probability P2/Slice) bit rate values vs. Entropy

From figure 5.19 it can be noted that, for §-Huffman (Dynamic Probability
P2/Slice), the bit rate values differ from their respective entropy values from a low
difference of 0.04-bit for Wikipedia (State) to a high difference of 21.80 bits for
Wikipedia (Rousei).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2/Slice) generates higher bit rate values relative to the entropy of the real-world data
from the sorted inverted index gaps from Wikipedia. As in experiments 4b, 5b, 6b, 7b,
and 8b it can be noted the d-Huffman (Dynamic Probability P2/Slice) for larger files
generates the relatively small difference of 0.14-bit more for Wikipedia (2015) and 0.04-
bit more for Wikipedia (State) than for the smaller files with the relatively larger
difference of 2.06 bits more for Wikipedia (Grei), 10.21 bits more for Wikipedia

(Bollywood), and 21.80 bits more for Wikipedia (Rousei).
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It can be noted that the §-Huffman (Dynamic Probability P2/Slice) assumptions

for the estimation of the probability function cause it to:

Generate lower bit rate values; 0.09-bit fewer for Wikipedia (2015) and 0.14-
bit fewer for Wikipedia (State) and higher bit rate values; 5.84 bits more for
Wikipedia (Bollywood), 0.94-bit more for Wikipedia (Grei), and 5.64 bits
more for Wikipedia (Rousei) versus the bit rate values of the §-Huffman
(Dynamic Probability P1/Slice).

Generate lower bit rate values; 0.01-bit fewer for Wikipedia (Bollywood) and
1.79 bits fewer for Wikipedia (Rousei), identical bit rate values for Wikipedia
(2015) and Wikipedia (State), and a higher bit rate value of 0.02-bit more for
Wikipedia (Grei) versus the bit rate values of the §-Huffman (Dynamic
Probability P2).

Generate lower bit rate values; 0.24-bit fewer for Wikipedia (2015), 2.61 bits
fewer for Wikipedia (Bollywood), 5.46 bits fewer for Wikipedia (Greti), and
0.65-bit fewer for Wikipedia (State) and a higher bit rate value of 4.00 bits
more for Wikipedia (Rousei) versus the bit rate values of the §-Huffman
(Sibling/Static Probability).

Generate lower bit rate values; 0.24-bit fewer for Wikipedia (2015), 2.61 bits
fewer for Wikipedia (Bollywood), 5.46 bits fewer for Wikipedia (Grei), and
0.65-bit fewer for Wikipedia (State) and a higher bit rate value of 4.00 bits
more for Wikipedia (Rousei) versus the bit rate values of the §-Huffman

(Static Probability).
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e Generate lower bit rate values; 0.57-bit fewer for Wikipedia (Bollywood),
0.08-bit fewer for Wikipedia (Grei), and 99.55 bits fewer for Wikipedia
(Rousei) and identical bit rate values for Wikipedia (2015) and Wikipedia
(State) versus the bit rate values of the §-Huffman (Update using the Sibling
Property with an Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P2/Slice) and the §-
Huffman (Dynamic Probability P1/Slice) main difference is the 6-Huffman (Dynamic
Probability P2/Slice) use of the formula P2 and a NYT that starts with and maintains a
value of 0 while the §-Huffman (Dynamic Probability P1/Slice) uses the formula P1 and
a NYT that starts with a value of 1 and decreases over time. This leads the §-Huffman
(Dynamic Probability P2/Slice) to generate better bit rate values relative to entropy for
the larger size files Wikipedia (2015) and Wikipedia (State) while the §-Huffman
(Dynamic Probability P1/Slice) generates better bit rate values relative to entropy for the
smaller size files Wikipedia (Grei), Wikipedia (Bollywood), and Wikipedia (Rousei).

The final note for experiment 9b is that the addition of the slice method leads the
6-Huffman (Dynamic Probability P2/Slice) to generate better bit rate values relative to
entropy for Wikipedia (Bollywood) and Wikipedia (Rouset1), a similar bit rate value
relative to entropy for Wikipedia (2015) and worse bit rate values relative to entropy for
Wikipedia (State) and Wikipedia (Grei) versus the §-Huffman (Dynamic Probability P2).

5.9.3 Experiment 9c: Benchmark Data Set (Silesia). Figure 5.20 compares the
6-Huffman (Dynamic Probability P2/Slice) bit rate values to the entropy values of the

data set.

82



® §-Huffman (Dynamic Probability P2/Slice) ® Entropy

Ven
N

8.00 § 20

6.66
6.64
6.62
6.59
6.63
6.60

6.13
0

4.57
453
4.87
4.84
5.00
497

3.71
6

Figure 5.20: 0-Huffman (Dynamic Probability P2/Slice) bit rate values vs. Entropy

From figure 5.20 it can be noted that, for §-Huffman (Dynamic Probability
P2/Slice), the bit rate values differ from their respective entropy values from a low
difference of 0.01-bit for Silesia (nci) to a high difference of 0.04-bit for Silesia (dickens)
and Silesia (xml).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2/Slice) generates bit rate values that are higher than the entropy; 0.04-bit more for
Silesia (dickens), 0.02-bit more for Silesia (mozilla), 0.03-bit more for Silesia (mr), 0.01-
bit more for Silesia (nci), 0.03-bit more for Silesia (ooffice), 0.02-bit more for Silesia
(osdb), 0.03-bit more for Silesia (reymont), 0.03-bit more for Silesia (samba), 0.03-bit
more for Silesia (sao), 0.03-bit more for Silesia (webster), 0.04-bit more for Silesia (xml),
and 0.03-bit more for Silesia (x-ray) relative to the entropy of the benchmark data set

Silesia.

83



It can be noted that the §-Huffman (Dynamic Probability P2/Slice) assumptions

for the estimation of the probability function cause it to:

Generate lower bit rate values; 3.18 bits fewer for Silesia (dickens), 1.50 bits
fewer for Silesia (mozilla), 2.32 bits fewer for Silesia (mr), 3.62 bits fewer for
Silesia (nci), 1.45 bits fewer for Silesia (ooffice), 1.00-bit fewer for Silesia
(osdb), 2.40 bits fewer for Silesia (reymont), 1.49 bits fewer for Silesia
(samba), 0.88-bit fewer for Silesia (sao), 2.62 bits fewer for Silesia (webster),
2.04 bits fewer for Silesia (xml), and 0.80-bit fewer for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P1/Slice).
Generate a lower bit rate value; 0.01-bit fewer for Silesia (xml) and identical
bit rate values for; Silesia (dickens), Silesia (mozilla), Silesia (mr), Silesia
(nci), Silesia (ooffice), Silesia (osdb), Silesia (reymont), Silesia (samba),
Silesia (sao), Silesia (webster), and Silesia (x-ray) versus the bit rate values of
the §-Huffman (Dynamic Probability P2).

Generate identical bit rate values for; Silesia (dickens), Silesia (mozilla),
Silesia (mr), Silesia (nci), Silesia (ooffice), Silesia (osdb), Silesia (reymont),
Silesia (samba), Silesia (sao), Silesia (webster), Silesia (xml), and Silesia (x-
ray) versus the bit rate values of the §-Huffman (Reconstruction with an

Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P2/Slice) use of the

formula P2 and a NYT that starts with and maintains a value of 0 while the §-Huffman

(Dynamic Probability P1/Slice) use of the formula P1 and a NYT that starts with a value

of 1 and decreases over time, leads the §-Huffman (Dynamic Probability P2/Slice) to
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generate better bit rate values relative to entropy versus the §-Huffman (Dynamic
Probability P1/Slice) for the Silesia data set.

The final note for experiment 9c is that the §-Huffman (Dynamic Probability
P2/Slice) additional use of the slice method leads it to generate a better bit rate value
relative to entropy for the Silesia (xml) file and similar bit rate values relative to entropy
for the other files in the Silesia data set versus the §-Huffman (Dynamic Probability P2).
5.10 Experiment 10: 0-Huffman (Dynamic Probability P1/Slice/Reset)

Experiment 10 is divided into three parts: part 10a explains the compression of
the synthetic data (integers), part 10b explains the compression of real-world data from
the sorted inverted index gaps from Wikipedia, and part 10c explains the compression of
the benchmark data set Silesia.

5.10.1 Experiment 10a: Synthetic Data Set (integers). §-Huffman (Dynamic
Probability P1/Slice/Reset) estimates the probability function based on the use of a
special symbol that represents the NYT and starts with a value of 1 and decreases over
time, use of the formula P1, segmentation of the input data into slices (L), and after the
Huffman tree is updated at the end of a slice L, resetting the Y'5 n value in the formula P1
to zero and the NYT value back to one. Figure 5.21 compares the §-Huffman (Dynamic

Probability P1/Slice/Reset) bit rate values to the entropy values of the data set.
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® §-Huffman (Dynamic Probability P1/Slice/Reset) = Entropy
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Figure 5.21: 6-Huffman (Dynamic Probability P1/Slice/Reset) bit rate values vs. Entropy

From figure 5.21 it can be noted that, for §-Huffman (Dynamic Probability
P1/Slice/Reset), the average bit rate values differ from their respective estimated entropy
values from a low difference of 0.01-bit for GPMF (0.5) to a high difference of 1.64 bits
for Poisson (A = 128).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) generates bit rate values that are higher than the entropy; 0.40-bit more
for GPMF (0.01), 0.07-bit more for GPMF (0.1), 0.01-bit more for GPMF (0.5), and 1.64
bits more for Poisson (A=128) relative to the entropy of the synthetic data set of integers.

It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset)
assumptions for the estimation of the probability function cause it to:

e Generate lower bit rate values; 0.40-bit fewer for GPMF (0.01) and 0.04-bit

fewer for GPMF (0.1), identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.55 bits more for Poisson (A = 128) versus the bit rate values

of the §-Huffman (Dynamic Probability P2/Slice).

86



Generate identical bit rate values for GPMF (0.01), GPMF (0.1), GPMF (0.5),
and Poisson (A = 128) versus the bit rate values of the §-Huffman (Dynamic
Probability P1/Slice).

Generate lower bit rate values; 0.38-bit fewer for GPMF (0.01) and 0.04-bit
fewer for GPMF (0.1), identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.55 bits more for Poisson (A = 128) versus the bit rate values
of the §-Huffman (Dynamic Probability P2).

Generate identical bit rate values for GPMF (0.01), GPMF (0.1), and GPMF
(0.5) and a higher bit rate value of 1.40 for Poisson (A = 128) versus the bit
rate values of the §-Huffman (Sibling/Static Probability).

Generate lower bit rate values; 2.02 bits fewer for GPMF (0.1), 2.06 bits
fewer for GPMF (0.5), and 0.01-bit fewer for Poisson (A = 128) and an
identical bit rate value for GPMF (0.01) versus the bit rate values of the §-
Huffman (Static Probability).

Generate lower bit rate values; 0.43-bit fewer for GPMF (0.01) and 0.04-bit
fewer for GPMF (0.1), identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.54 bits more for Poisson (A = 128) versus the bit rate values
of the §-Huffman (Update using Sibling Property with an Exception Code).
Generate lower bit rate values; 0.38-bit fewer for GPMF (0.01) and 0.04-bit
fewer for GPMF (0.1), identical bit rate value for GPMF (0.5), and a higher
bit rate value of 1.55 bits more for Poisson (A = 128) versus the bit rate values

of the §-Huffman (Reconstruction with an Exception Code).
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e Generate lower bit rate values; 0.81-bit fewer for GPMF (0.01), 0.97-bit fewer
for GPMF (0.1), and 1.00-bit fewer for GPMF (0.5) and a higher bit rate value
of 0.59-bit more for Poisson (A = 128) versus the bit rate values of the §-
Huffman (n+1).

It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset)
generates similar bit rate values relative to entropy versus the §-Huffman (Dynamic
Probability P1/Slice). The §-Huffman (Dynamic Probability P1/Slice/Reset) additional
use of the reset method does not generate any significant changes to the bit rate values
relative to entropy for the synthetic data.

Note that the §-Huffman (Dynamic Probability P1/Slice/Reset), similar to the §-
Huffman (Dynamic Probability P1/Slice) in the previous experiment 9a, generates better
bit rate values relative to entropy for GPMF (0.5), GPMF (0.1), and GPMF (0.01) while
the §-Huffman (Dynamic Probability P2/Slice) generates better bit rate values relative to
entropy for Poisson.

The final note for experiment 10a is that the §-Huffman (Dynamic Probability
P1/Slice/Reset) has the same strengths and weaknesses as the §-Huffman (Dynamic
Probability P1/Slice) had with the other §-Huffman algorithms with experiments with the
synthetic data set.

5.10.2 Experiment 10b: Real-world Data (Wikipedia). Figure 5.22 compares
the §-Huffman (Dynamic Probability P1/Slice/Reset) bit rate values to the entropy values

of the data set.
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® §-Huffman (Dynamic Probability P1/Slice/Reset) = Entropy
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Figure 5.22: 3-Huffman (Dynamic Probability P1/Slice/Reset) bit rate values vs. Entropy

From figure 5.22 it can be noted that, for §-Huffman (Dynamic Probability
P1/Slice/Reset), the bit rate values differ from their respective entropy values from a
better than entropy difference of 0.21-bit for Wikipedia (State) to a high difference of
16.16 bits for Wikipedia (Rousei). These better bit rate values relative to entropy are
further evaluated in Chapter 6. For now, only comparisons of the bit rate values relative
to entropy results for the §-Huffman variants are discussed.

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) generates a better bit rate value relative to the entropy of the real-world
data from the sorted inverted index gaps from Wikipedia for the two largest files, 0.15-bit
fewer for Wikipedia (2015) and 0.21-bit fewer for Wikipedia (State) than for the smaller
files with the larger difference of 0.89-bit more for Wikipedia (Grei), 6.81 bits more for

Wikipedia (Bollywood), and 16.16 bits more for Wikipedia (Rousei).
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It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset)

assumptions for the estimation of the probability function cause it to:

Generate lower bit rate values; 0.29-bit fewer for Wikipedia (2015), 3.40 bits
fewer for Wikipedia (Bollywood), 1.16 bits fewer for Wikipedia (Grei), 5.64
bits fewer for Wikipedia (Rousei), and 0.25-bit fewer for Wikipedia (State)
versus the bit rate values of the §-Huffman (Dynamic Probability P2/Slice).
Generate lower bit rate values; 0.38-bit fewer for Wikipedia (2015), 0.22-bit
fewer for Wikipedia (Grei), and 0.39-bit fewer for Wikipedia (State), identical
bit rate value for Wikipedia (Rousei), and a higher bit rate value of 2.44 bits
more for Wikipedia (Bollywood) versus the bit rate values of the §-Huffman
(Dynamic Probability P1/Slice).

Generate lower bit rate values; 0.29-bit fewer for Wikipedia (2015), 3.41 bits
fewer for Wikipedia (Bollywood), 1.14 bits fewer for Wikipedia (Grei), 7.43
bits fewer for Wikipedia (Rousei), and 0.25-bit fewer for Wikipedia (State)
versus the bit rate values of the §-Huffman (Dynamic Probability P2).
Generate lower bit rate values; 0.53-bit fewer for Wikipedia (2015), 6.01 bits
fewer for Wikipedia (Bollywood), 6.63 bits fewer for Wikipedia (Grei), 1.63
bits fewer for Wikipedia (Rousei), and 0.90-bit fewer for Wikipedia (State)
versus the bit rate values of the §-Huffman (Sibling/Static Probability).
Generate lower bit rate values; 0.53-bit fewer for Wikipedia (2015), 6.00 bits
fewer for Wikipedia (Bollywood), 6.63 bits fewer for Wikipedia (Grei), 1.63
bits fewer for Wikipedia (Rousei), and 0.90-bit fewer for Wikipedia (State)

versus the bit rate values of the §-Huffman (Static Probability).
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e Generate lower bit rate values; 0.30-bit fewer for Wikipedia (2015), 3.96 bits
fewer for Wikipedia (Bollywood), 1.25 bits fewer for Wikipedia (Grei),
105.18 bits fewer for Wikipedia (Rousei), and 0.25-bit fewer for Wikipedia
(State) versus the bit rate values of the §-Huffman (Update using the Sibling
Property with an Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset) with the
addition of the reset method generates better bit rate values relative to entropy for
Wikipedia (2015), Wikipedia (State), and Wikipedia (Grei), a similar bit rate value
relative to entropy for Wikipedia (Rousei), and a worse bit rate value relative to entropy
for Wikipedia (Bollywood) versus the §-Huffman (Dynamic Probability P1/Slice).

The final note for experiment 10b is that the §-Huffman (Dynamic Probability
P1/Slice/Reset) generates better bit rate values relative to entropy for all Wikipedia files
versus the §-Huffman (Dynamic Probability P2/Slice), the §-Huffman (Dynamic
Probability P2), the §-Huffman (Sibling/Static Probability), the §-Huffman (Static
Probability), and the 6-Huffman (Update using the Sibling Property with an Exception
Code) for the Wikipedia data set.

5.10.3 Experiment 10c: Benchmark Data Set (Silesia). Figure 5.23 compares
the §-Huffman (Dynamic Probability P1/Slice/Reset) bit rate values to the entropy values

of the data set.
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® §-Huffman (Dynamic Probability P1/Slice/Reset) = Entropy
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Figure 5.23: 0-Huffman (Dynamic Probability P1/Slice/Reset) bit rate values vs. Entropy

From figure 5.23 it can be noted that, for §-Huffman (Dynamic Probability
P1/Slice/Reset), the bit rate values differ from their respective entropy values from a low
difference of 0.89-bit for Silesia (sao) to a high difference of 3.63 bits for Silesia (nci).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) generates bit rate values that are higher than the entropy; 3.22 bits more
for Silesia (dickens), 1.33 bits more for Silesia (mozilla), 1.50 bits more for Silesia (mr),
3.63 bits more for Silesia (nci), 1.42 bits more for Silesia (ooffice), 1.02 bits more for
Silesia (osdb), 2.42 bits more for Silesia (reymont), 1.45 bits more for Silesia (samba),
0.89-bit more for Silesia (sao), 2.66 bits more for Silesia (webster), 2.06 bits more for
Silesia (xml), and 0.96-bit more for Silesia (x-ray) relative to the entropy of the
benchmark data set Silesia.

It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset)

assumptions for the estimation of the probability function cause it to:
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Generate higher bit rate values; 3.18 bits more for Silesia (dickens), 1.31 bits
more for Silesia (mozilla), 1.47 bits more for Silesia (mr), 3.63 bits more for
Silesia (nci), 1.40 bits more for Silesia (ooffice), 1.00-bit more for Silesia
(osdb), 2.40 bits more for Silesia (reymont), 1.42 bits more for Silesia
(samba), 0.86-bit more for Silesia (sao), 2.63 bits more for Silesia (webster),
2.02 bits more for Silesia (xml), and 0.94-bit more for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P2/Slice).
Generate lower bit rate values; 0.19-bit fewer for Silesia (mozilla), 0.85-bit
fewer for Silesia (mr), 0.06-bit fewer for Silesia (ooffice), 0.07-bit fewer for
Silesia (samba), 0.01-bit fewer for Silesia (sao), and 0.02-bit fewer for Silesia
(xml), identical bit rate values for; Silesia (dickens), Silesia (nci), Silesia
(osdb), and Silesia (reymont), and higher bit rate values; 0.01-bit more for
Silesia (webster) and 0.14-bit more for Silesia (x-ray) versus the bit rate
values of the §-Huffman (Dynamic Probability P1/Slice).

Generate higher bit rate values; 3.18 bits more for Silesia (dickens), 1.31 bits
more for Silesia (mozilla), 1.47 bits more for Silesia (mr), 3.63 bits more for
Silesia (nci), 1.40 bits more for Silesia (ooffice), 1.00-bit more for Silesia
(osdb), 2.40 bits more for Silesia (reymont), 1.42 bits more for Silesia
(samba), 0.86-bit more for Silesia (sao), 2.63 bits more for Silesia (webster),
2.02 bits more for Silesia (xml), and 0.94-bit more for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P2).

Generate higher bit rate values; 3.18 bits more for Silesia (dickens), 1.31 bits

more for Silesia (mozilla), 1.47 bits more for Silesia (mr), 3.63 bits more for
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Silesia (nci), 1.40 bits more for Silesia (ooffice), 1.00-bit more for Silesia
(osdb), 2.40 bits more for Silesia (reymont), 1.42 bits more for Silesia
(samba), 0.86-bit more for Silesia (sao), 2.63 bits more for Silesia (webster),
2.02 bits more for Silesia (xml), and 0.94-bit more for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Reconstruction with an Exception
Code).

It can be noted that the §-Huffman (Dynamic Probability P1/Slice/Reset)
additional use of the reset method leads it to generate equal or better bit rate values
relative to entropy for all Silesia files except the Silesia (webster) and Silesia (x-ray) files
versus the §-Huffman (Dynamic Probability P1/Slice).

The final note for experiment 10c¢ is that the §-Huffman (Dynamic Probability
P1/Slice/Reset) has the same weakness as the §-Huffman (Dynamic Probability P1/Slice)
versus the §-Huffman (Dynamic Probability P2/Slice), the §-Huffman (Dynamic
Probability P2), and the §-Huffman (Reconstruction with an Exception Code) for the
Silesia data set.

5.11 Experiment 11: 8-Huffman (Dynamic Probability P2/Slice/Reset)

Experiment 11 is divided into three parts: part 11a explains the compression of
the synthetic data (integers), part 11b explains the compression of real-world data from
the sorted inverted index gaps from Wikipedia, and part 11c explains the compression of
the benchmark data set Silesia.

5.11.1 Experiment 11a: Synthetic Data Set (integers). §-Huffman (Dynamic
Probability P2/Slice/Reset) estimates the probability function based on the use of a

special symbol that represents the NYT and maintains a value of 0, use of the formula P2,
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segmentation of the input data into slices (L), and after the Huffman tree is updated at the
end of a slice L, resetting the values for all data currently in the AT list to 0. Figure 5.24
compares the §-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values to the

entropy values of the data set.

® 3-Huffman (Dynamic Probability P2/Slice/Reset) = Entropy
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Figure 5.24: 6-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values vs. Entropy

From figure 5.24 it can be noted that, for §-Huffman (Dynamic Probability
P2/Slice/Reset), the bit rate values differ from their respective entropy values from a low
difference of 0.04-bit for GPMF (0.5) to a high difference of 4.45 bits for GPMF (0.01).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2/Slice/Reset) generates bit rate values that are higher than the entropy; 4.45 bits more
for GPMF (0.01), 0.47-bit more for GPMF (0.1), 0.04-bit more for GPMF (0.5), and
0.53-bit more for Poisson (A=128) relative to the entropy of the synthetic data set of

integers.
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It can be noted that the §-Huffman (Dynamic Probability P2/Slice/Reset)

assumptions for the estimation of the probability function cause it to:

Generate a lower bit rate value of 1.11 bits fewer for Poisson (A = 128) and
higher bit rate values; 4.05 bits more for GPMF (0.01), 0.40-bit more for
GPMF (0.1), and 0.04-bit more for GPMF (0.5) versus the bit rate values of
the §-Huffman (Dynamic Probability P1/Slice/Reset).

Generate higher bit rate values; 3.64 bits more for GPMF (0.01), 0.36-bit
more for GPMF (0.1), 0.04-bit more for GPMF (0.5), and 0.45-bit more for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Dynamic
Probability P2/Slice).

Generate lower bit rate values; 4.00 bits fewer for GPMF (0.01), 4.30 bits
fewer for GPMF (0.1), 1.96 bits fewer for GPMF (0.5), and 6.46 bits fewer for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Dynamic
Probability P1/Slice).

Generate higher bit rate values; 3.67 bits more for GPMF (0.01), 0.36-bit
more for GPMF (0.1), 0.04-bit more for GPMF (0.5), and 0.44-bit more for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Dynamic
Probability P2).

Generate higher bit rate values; 4.04 bits more for GPMF (0.01), 0.40-bit
more for GPMF (0.1), 0.04-bit more for GPMF (0.5), and 0.29-bit more for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Sibling/Static

Probability).
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e Generate lower bit rate values; 1.62 bits fewer for GPMF (0.1), 2.03 bits
fewer for GPMF (0.5), and 1.12 bits fewer for Poisson (A = 128) and a higher
bit rate value of 4.04 bits more for GPMF (0.01) versus the bit rate values of
the §-Huffman (Static Probability).

e Generate higher bit rate values; 3.62 bits more for GPMF (0.01), 0.36-bit
more for GPMF (0.1), 0.03-bit more for GPMF (0.5), and 0.43-bit more for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Update using
Sibling Property with an Exception Code).

e Generate higher bit rate values; 3.67 bits more for GPMF (0.01), 0.36-bit
more for GPMF (0.1), 0.03-bit more for GPMF (0.5), and 0.44-bit more for
Poisson (A = 128) versus the bit rate values of the §-Huffman (Reconstruction
with an Exception Code).

e Generate lower bit rate values; 0.57-bit fewer for GPMF (0.1), 0.96-bit fewer
for GPMF (0.5), and 0.52-bit fewer for Poisson (A = 128) and a higher bit rate
value of 3.24 bits more for GPMF (0.01) versus the bit rate values of the §-
Huffman (n+1).

It can be noted that the §-Huffman (Dynamic Probability P2/Slice/Reset)
additional use of the reset method leads it to generate worse bit rate values relative to
entropy versus the §-Huffman (Dynamic Probability P2/Slice). It can be noted that the §-
Huffman (Dynamic Probability P2/Slice/Reset) generates worse bit rate values relative to

entropy versus the §-Huffman (Dynamic Probability P2).
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Note that the §-Huffman (Dynamic Probability P2/Slice/Reset) use of the reset
method cause it to generate a worse bit rate value relative to entropy for the GPMF (0.01)
file versus the §-Huffman (n+1).

The final note for experiment 11a is that, overall, the additional use of the reset
method by the §-Huffman (Dynamic Probability P2/Slice/Reset) does not generate better
bit rate values relative to entropy results for the synthetic data versus the other 6-
Huffman algorithms used in the experiments for the synthetic data set.

5.11.2 Experiment 11b: Real-world Data (Wikipedia). Figure 5.25 compares
the §-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values to the entropy values

of the data set.
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Figure 5.25: 6-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values vs. Entropy

From figure 5.25 it can be noted that, for §-Huffman (Dynamic Probability

P2/Slice/Reset), the bit rate values differ from their respective entropy values from a low
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difference of 1.94 bits for Wikipedia (State) to a high difference of 21.80 bits for
Wikipedia (Rousei).

From this experiment it can be noted that the §-Huffman (Dynamic Probability
P2/Slice/Reset) generates a higher bit rate value relative to the entropy of the real-world
data from the sorted inverted index gaps from Wikipedia. The d-Huffman (Dynamic
Probability P2/Slice/Reset) for larger files generates the relatively large difference of 4.49
bits more for Wikipedia (2015) and 1.94 bits more for Wikipedia (State) than for the
smaller files with the relatively larger difference of 8.10 bits more for Wikipedia (Grei),
16.65 bits more for Wikipedia (Bollywood), and 21.80 bits more for Wikipedia (Rousei).

It can be noted that the §-Huffman (Dynamic Probability P2/Slice/Reset)
assumptions for the estimation of the probability function cause it to:

e Generate higher bit rate values; 4.64 bits more for Wikipedia (2015), 9.83 bits

more for Wikipedia (Bollywood), 7.20 bits more for Wikipedia (Grei), 5.64
bits more for Wikipedia (Rousei), and 2.15 bits more for Wikipedia (State)
versus the bit rate values of the §-Huffman (Dynamic Probability
P1/Slice/Reset).

e (Generate an identical bit rate value for Wikipedia (Rousei) and higher bit rate
values; 4.34 bits more for Wikipedia (2015), 6.44 bits more for Wikipedia
(Bollywood), 6.04 bits more for Wikipedia (Grei), and 1.90 bits more for
Wikipedia (State) versus the bit rate values of the §-Huffman (Dynamic
Probability P2/Slice).

e Generate higher bit rate values; 4.26 bits more for Wikipedia (2015), 12.27

bits more for Wikipedia (Bollywood), 6.98 bits more for Wikipedia (Grei),
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5.64 bits more for Wikipedia (Rousei), and 1.76 bits more for Wikipedia
(State) versus the bit rate values of the §-Huffman (Dynamic Probability
P1/Slice).

e Generate a lower bit rate value of 1.79 bits fewer for Wikipedia (Rousei) and
higher bit rate values; 4.35 bits more for Wikipedia (2015), 6.43 bits more for
Wikipedia (Bollywood), 6.06 bits more for Wikipedia (Grei), and 1.90 bits
more for Wikipedia (State) versus the bit rate values of the §-Huffman
(Dynamic Probability P2).

e Generate higher bit rate values; 4.11 bits more for Wikipedia (2015), 3.83 bits
more for Wikipedia (Bollywood), 0.58-bit more for Wikipedia (Gret), 4.00
bits more for Wikipedia (Rousei), and 1.25 bits more for Wikipedia (State)
versus the bit rate values of the §-Huffman (Sibling/Static Probability).

e (Generate higher bit rate values; 4.11 bits more for Wikipedia (2015), 3.83 bits
more for Wikipedia (Bollywood), 0.58-bit more for Wikipedia (Gret), 4.00
bits more for Wikipedia (Rousei), and 1.25 bits more for Wikipedia (State)
versus the bit rate values of the §-Huffman (Static Probability).

e Generate a lower bit rate value of 99.55 bits fewer for Wikipedia (Rousei) and
higher bit rate values; 4.34 bits more for Wikipedia (2015), 5.87 bits more for
Wikipedia (Bollywood), 5.96 bits more for Wikipedia (Grei), and 1.90 bits
more for Wikipedia (State) versus the bit rate values of the §-Huffman
(Update using the Sibling Property with an Exception Code).

The final note for experiment 11b is that similar to the previous experiment 11a,

the §-Huffman (Dynamic Probability P2/Slice/Reset) additional use of the reset method
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leads it to generate the worse bit rate values relative to entropy results for the Wikipedia
data versus the other §-Huffman algorithms used in the experiments for the real-world
data set, with the one exception of a better bit rate value relative to entropy for the
Wikipedia (Rousei) file versus the §-Huffman (Update using the Sibling Property with an
Exception Code).

5.11.3 Experiment 11c: Benchmark Data Set (Silesia). Figure 5.26 compares
the §-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values to the entropy values

of the data set.
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Figure 5.26: 0-Huffman (Dynamic Probability P2/Slice/Reset) bit rate values vs. Entropy

From figure 5.26 it can be noted that, for §-Huffman (Dynamic Probability
P2/Slice/Reset), the bit rate values differ from their respective entropy values from a
better than entropy difference of 0.04-bit for Silesia (samba) to a high difference of 2.61
bits for Silesia (sao).

From this experiment it can be noted that the §-Huffman (Dynamic Probability

P2/Slice/Reset) generates a lower bit rate value of 0.04-bit fewer for Silesia (samba) and
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higher bit rate values; 0.38-bit more for Silesia (dickens), 0.31-bit more for Silesia

(mozilla), 0.95-bit more for Silesia (mr), 0.22-bit more for Silesia (nci), 1.17 bits more

for Silesia (ooffice), 2.06 bits more for Silesia (osdb), 0.59-bit more for Silesia (reymont),

2.61 bits more for Silesia (sao), 0.51-bit more for Silesia (webster), 0.10-bit more for

Silesia (xml), and 2.53 bits more for Silesia (x-ray) relative to the entropy of the

benchmark data set Silesia.

It can be noted that the §-Huffman (Dynamic Probability P2/Slice/Reset)

assumptions for the estimation of the probability function cause it to:

Generate lower bit rate values; 2.84 bits fewer for Silesia (dickens), 1.02 bits
fewer for Silesia (mozilla), 0.55-bit fewer for Silesia (mr), 3.42 bits fewer for
Silesia (nci), 0.25-bit fewer for Silesia (ooffice), 1.83 bits fewer for Silesia
(reymont), 1.49 bits fewer for Silesia (samba), 2.15 bits fewer for Silesia
(webster), and 1.96 bits fewer for Silesia (xml) and higher bit rate values; 1.04
bits more for Silesia (osdb), 1.72 bits more for Silesia (sao), and 1.56 bits
more for Silesia (x-ray) versus the bit rate values of the §-Huffman (Dynamic
Probability P1/Slice/Reset).

Generate a lower bit rate value of 0.07-bit fewer for Silesia (samba) and
higher bit rate values; 0.34-bit more for Silesia (dickens), 0.28-bit more for
Silesia (mozilla), 0.92-bit more for Silesia (mr), 0.21-bit more for Silesia
(nci), 1.15 bits more for Silesia (ooffice), 2.04 bits more for Silesia (osdb),
0.57-bit more for Silesia (reymont), 2.59 bits more for Silesia (sao), 0.48-bit

more for Silesia (webster), 0.06-bit more for Silesia (xml), and 2.50 bits more
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for Silesia (x-ray) versus the bit rate values of the §-Huffman (Dynamic
Probability P2/Slice).

Generate lower bit rate values; 2.84 bits fewer for Silesia (dickens), 1.22 bits
fewer for Silesia (mozilla), 1.40 bits fewer for Silesia (mr), 3.41 bits fewer for
Silesia (nci), 0.31-bit fewer for Silesia (ooffice), 1.83 bits fewer for Silesia
(reymont), 1.56 bits fewer for Silesia (samba), 2.14 bits fewer for Silesia
(webster), and 1.98 bits fewer for Silesia (xml) and higher bit rate values; 1.04
bits more for Silesia (osdb), 1.71 bits more for Silesia (sao), and 1.70 bits
more for Silesia (x-ray) versus the bit rate values of the §-Huffman (Dynamic
Probability P1/Slice).

Generate a lower bit rate value of 0.07-bit fewer for Silesia (samba) and
higher bit rate values; 0.34-bit more for Silesia (dickens), 0.28-bit more for
Silesia (mozilla), 0.92-bit more for Silesia (mr), 0.21-bit more for Silesia
(nci), 1.15 bits more for Silesia (ooffice), 2.04 bits more for Silesia (osdb),
0.57-bit more for Silesia (reymont), 2.59 bits more for Silesia (sao), 0.48-bit
more for Silesia (webster), 0.06-bit more for Silesia (xml), and 2.50 bits more
for Silesia (x-ray) versus the bit rate values of the §-Huffman (Dynamic
Probability P2).

Generate a lower bit rate value of 0.07-bit fewer for Silesia (samba) and
higher bit rate values; 0.34-bit more for Silesia (dickens), 0.28-bit more for
Silesia (mozilla), 0.92-bit more for Silesia (mr), 0.21-bit more for Silesia
(nci), 1.15 bits more for Silesia (ooffice), 2.04 bits more for Silesia (osdb),

0.57-bit more for Silesia (reymont), 2.59 bits more for Silesia (sao), 0.48-bit
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more for Silesia (webster), 0.06-bit more for Silesia (xml), and 2.50 bits more
for Silesia (x-ray) versus the bit rate values of the §-Huffman (Reconstruction
with an Exception Code).

It can be noted that the §-Huffman (Dynamic Probability P2/Slice/Reset)
generates better bit rate values relative to entropy, with the exception of the Silesia (sao)
and Silesia (x-ray) files, versus the §-Huffman (Dynamic Probability P1/Slice/Reset).

The final note for experiment 11c is that, based on the bit rate values relative to
entropy results for all §-Huffman algorithms from this and previous experiments with the
Silesia data set, that overall the addition of the slice method or the slice and reset methods
for certain §-Huffman algorithms does not make any noticeable significant improvement
to the bit rate values relative to entropy versus the §-Huffman (Dynamic Probability P2)
and the §-Huffman (Reconstruction with an Exception Code) for the Silesia data set.

5.12 Experiment 12: 6-Huffman (FLC)

Experiment 12 is divided into three parts: part 12a explains the compression of
the synthetic data (bytes), part 12b explains the compression of real-world data from the
sorted inverted index gaps from Wikipedia (bytes), and part 12¢ explains the compression
of the benchmark data set Silesia.

5.12.1 Experiment 12a: Synthetic Data Set (bytes). §-Huffman (FLC) estimates
the probability function based on the use of the formula p,, at the end of an iteration.
Figure 5.27 compares the §-Huffman (FLC) bit rate values to the entropy values of the

data set.
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® 3-Huffman (FLC) = Entropy
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Figure 5.27: 3-Huffman (FLC) bit rate values (bytes) vs. Entropy

From figure 5.27 it can be noted that, for §-Huffman (FLC), the bit rate values
differ from their respective entropy values from a low difference of 0.19-bit for GPMF
(0.5) to a high difference of 0.23-bit for GPMF (0.01).

From this experiment it can be noted that the §-Huffman (FLC) generates bit rate
values that are higher than the entropy; 0.23-bit more for GPMF (0.01), 0.21-bit more for
GPMF (0.1), 0.19-bit more for GPMF (0.5), and 0.21-bit more for Poisson (A=128)
relative to the entropy of the synthetic data set of integers (bytes).

It can be noted that the §-Huffman (FLC) assumptions for the estimation of the
probability function cause it to:

e (Generate lower bit rate values; 0.03-bit fewer for GPMF (0.01) and 0.01-bit

fewer for Poisson (A=128) and identical bit rate values for GPMF (0.1) and
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GPMF (0.5) versus the bit rate values of the §-Huffman (Reconstruction with
an Exception Code).

e Generate lower bit rate values; 0.96-bit fewer for GPMF (0.01), 0.98-bit fewer

for GPMF (0.1), 1.00-bit fewer for GPMF (0.5), and 0.99-bit fewer for
Poisson (A=128) versus the bit rate values of the §-Huffman (Flag/FLC).

It can be noted that the §-Huffman (FLC) variant generates better bit rate values
relative to entropy for GPMF (0.1) and GPMF (0.01) versus the §-Huffman
(Reconstruction with an Exception Code) variant.

The final note for experiment 12a is that the §-Huffman (FLC) variant generates
better bit rate values relative to entropy versus the §-Huffman (Flag/FLC) variant, that
uses a flag bit, for the synthetic data set of integers (bytes).

5.12.2 Experiment 12b: Real-world Data (Wikipedia) (bytes). Figure 5.28

compares the §-Huffman (FLC) bit rate values to the entropy values of the data set.

® 5-Huffman (FLC) = Entropy
7.53
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Figure 5.28: 6-Huffman (FLC) bit rate values (bytes) vs. Entropy
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From figure 5.28 it can be noted that, for §-Huffman (FLC), the bit rate values
differ from their respective entropy values from a low difference of 0.06-bit for
Wikipedia (Grei) to a high difference of 1.92 bits for Wikipedia (Rousei).

The final note for experiment 12b is that the §-Huffman (FLC) generates a higher
bit rate value relative to the entropy of the real-world data from the sorted inverted index
gaps from Wikipedia; 0.19-bit more for Wikipedia (State), 0.14-bit more for Wikipedia
(2015), 0.06-bit more for Wikipedia (Grei), 0.08-bit more for Wikipedia (Bollywood),
and 1.92 bits more for Wikipedia (Rousei) relative to the entropy of the real-world data
set Wikipedia handled as bytes.

5.12.3 Experiment 12c: Benchmark Data Set (Silesia). Figure 5.29 compares

the §-Huffman (FLC) bit rate values to the entropy values of the data set.

® 5-Huffman (FLC) = Entropy vien

N
oS~
Nl
o0 | 83 g9g 33
o
6.00 - Tiln
S~ N
o< Sy
[~ Q0 <
in ~ <
500 T ﬂ-lf)
Pt
) =%
 4.00 - en
=
=
3.00 - 3¢
[e\Ke\|
2.00 A
1.00 4
0.00 +
S > N o 0 S @ o o >
& (-‘)\\ & & &S S SRS & o8 & ,&‘tﬁ
¥ Q Q O & > 0 4+
SN S & ° <

Figure 5.29: 6-Huffman (FLC) bit rate values vs. Entropy
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From figure 5.29 it can be noted that, for §-Huffman (FLC), the bit rate values
differ from their respective entropy values from a low difference of 0.01-bit for Silesia
(nci) to a high difference of 0.04-bit for Silesia (dickens).

From this experiment it can be noted that the §-Huffman (FLC) generates bit rate
values that are higher than the entropy; 0.04-bit more for Silesia (dickens), 0.02-bit more
for Silesia (mozilla), 0.03-bit more for Silesia (mr), 0.01-bit more for Silesia (nci), 0.02-
bit more for Silesia (ooffice), 0.02-bit more for Silesia (osdb), 0.02-bit more for Silesia
(reymont), 0.03-bit more for Silesia (samba), 0.03-bit more for Silesia (sao), 0.03-bit
more for Silesia (webster), 0.04-bit more for Silesia (xml), and 0.03-bit more for Silesia
(x-ray) relative to the entropy of the benchmark data set Silesia.

It can be noted that the §-Huffman (FLC) assumptions for the estimation of the
probability function cause it to:

e Generate lower bit rate values; 0.34-bit fewer for Silesia (dickens), 0.28-bit

fewer for Silesia (mozilla), 0.92-bit fewer for Silesia (mr), 0.21-bit fewer for
Silesia (nct1), 1.15 bits fewer for Silesia (ooffice), 2.04 bits fewer for Silesia
(osdb), 0.57-bit fewer for Silesia (reymont), 2.59 bits fewer for Silesia (sao),
0.48-bit fewer for Silesia (webster), 0.06-bit fewer for Silesia (xml), and 2.50
bits fewer for Silesia (x-ray) and a higher bit rate value of 0.07-bit more for
Silesia (samba) versus the bit rate values of the §-Huffman (Dynamic
Probability P2/Slice/Reset).

e Generate lower bit rate values; 3.18 bits fewer for Silesia (dickens), 1.31 bits

fewer for Silesia (mozilla), 1.47 bits fewer for Silesia (mr), 3.63 bits fewer for

Silesia (nct1), 1.40 bits fewer for Silesia (ooffice), 1.00-bit fewer for Silesia
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(osdb), 2.40 bits fewer for Silesia (reymont), 1.42 bits fewer for Silesia
(samba), 0.86-bit fewer for Silesia (sao), 2.63 bits fewer for Silesia (webster),
2.02 bits fewer for Silesia (xml), and 0.94-bit fewer for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P1/Slice/Reset).
Generate identical bit rate values for; Silesia (dickens), Silesia (mozilla),
Silesia (mr), Silesia (nci), Silesia (ooffice), Silesia (osdb), Silesia (reymont),
Silesia (samba), Silesia (sao), Silesia (webster), Silesia (xml), and Silesia (x-
ray) versus the bit rate values of the §-Huffman (Dynamic Probability
P2/Slice).

Generate lower bit rate values; 3.18 bits fewer for Silesia (dickens), 1.50 bits
fewer for Silesia (mozilla), 2.32 bits fewer for Silesia (mr), 3.62 bits fewer for
Silesia (nci), 1.45 bits fewer for Silesia (ooffice), 1.00-bit fewer for Silesia
(osdb), 2.40 bits fewer for Silesia (reymont), 1.49 bits fewer for Silesia
(samba), 0.88-bit fewer for Silesia (sao), 2.62 bits fewer for Silesia (webster),
2.04 bits fewer for Silesia (xml), and 0.80-bit fewer for Silesia (x-ray) versus
the bit rate values of the §-Huffman (Dynamic Probability P1/Slice).
Generate identical bit rate values for; Silesia (dickens), Silesia (mozilla),
Silesia (mr), Silesia (nci), Silesia (ooffice), Silesia (osdb), Silesia (reymont),
Silesia (samba), Silesia (sao), Silesia (webster), Silesia (xml), and Silesia (x-
ray) versus the bit rate values of the §-Huffman (Dynamic Probability P2).
Generate identical bit rate values for; Silesia (dickens), Silesia (mozilla),
Silesia (mr), Silesia (nci), Silesia (ooffice), Silesia (osdb), Silesia (reymont),

Silesia (samba), Silesia (sao), Silesia (webster), Silesia (xml), and Silesia (x-
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ray) versus the bit rate values of the §-Huffman (Reconstruction with an
Exception Code).

The final note for experiment 12c¢ is that the §-Huffman (FLC) generates bit rate
values relative to entropy results that are similar to the better performing §-Huffman
algorithms in experiment 11c, the §-Huffman (Reconstruction with an Exception Code)
and the §-Huffman (Dynamic Probability P2) for the Silesia data set.

5.13 Conclusion

This section concludes Chapter 5 with figures that compare the §-Huffman
variants bit rate value results relative to entropy for the synthetic data set, the real-world
data set Wikipedia, and the benchmark data set Silesia.

5.13.1 Results of data sets (integers). Figures 5.30, 5.32, and 5.35 present the
legend for their associated §-Huffman figures in this section. The bit rate values are on
the horizontal axis and the file names are on the vertical axis. Figure 5.31 compares the
bit rate values of the ten §-Huffman variants experiments with the synthetic data set

handled as integers.
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® Entropy

B 5-Huffman n+1

® §-Huffman Reconstruction with an Exception Code

® 5-Huffman Update using Sibling Property with an Exception Code

® 3-Huffman Static Probability

® §-Huffman Sibling/Static Probability

o-Huffman Dynamic Probability P2

d-Huffman Dynamic Probability P1/Slice

o-Huffman Dynamic Probability P2/Slice

o-Huffman Dynamic Probability P1/Slice/Reset

d-Huffman Dynamic Probability P2/Slice/Reset

Figure 5.30: Legend for Figure 5.31
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Figure 5.31: 0-Huffman variants bit rate values vs. Entropy for the synthetic data set
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For ease of readability, figure 5.33 compares the bit rate values of the eight §-
Huffman variants experiments with the real-world data set Wikipedia to the bit rate
values of entropy with the Wikipedia (Rousei) results removed while figure 5.34
compares the bit rate values of the eight §-Huffman variants experiments with the real-
world data set Wikipedia to the bit rate values of entropy with the Wikipedia (Rousei)

results included.

® Entropy

® §-Huffman Update using the Sibling Property with an Exception Code

d-Huffman Static Probability

® 3-Huffman Sibling/Static Probability

® §-Huffman Dynamic Probability P2

d-Huffman Dynamic Probability P1/Slice

o-Huffman Dynamic Probability P2/Slice

o-Huffman Dynamic Probability P1/Slice/Reset

o-Huffman Dynamic Probability P2/Slice/Reset

Figure 5.32: Legend for Figure 5.33
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Figure 5.33: 6-Huffman variants bit rate values vs. Entropy for real-world data set from Wikipedia

without Rousei
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Figure 5.34: 6-Huffman variants bit rate values vs. Entropy for real-world data set from Wikipedia

with Rousei
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The last figure for section 5.13.1, figure 5.36 shows the bit rate value results of all
6-Huffman variants experiments with the benchmark data set Silesia and the entropy of
the data set. To display all the data in one figure, the data label value for each file groups

in figure 5.36 indicates the entropy value for that file.

® Entropy

® 3-Huffman Reconstruction with an Exception Code

® 5-Huffman Dynamic Probability P2

® 3-Huffman Dynamic Probability P1/Slice

® 3-Huffman Dynamic Probability P2/Slice

d-Huffman Dynamic Probability P1/Slice/Reset

d-Huffman Dynamic Probability P2/Slice/Reset

o0-Huffman FLC

Figure 5.35: Legend for Figure 5.36
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Figure 5.36: 6-Huffman variants bit rate values vs. Entropy for each file in the data set Silesia
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5.13.2 Results of data sets (bytes). Figure 5.37 compares the bit rate values of

the §-Huffman variants experiments with the synthetic data set handled as bytes.

= Entropy

® 3-Huffman FLC

= 9-Huffman Flag/FLC

® 3-Huffman Reconstruction with an Exception Code
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Figure 5.37: -Huffman variants bit rate values (bytes) vs. Entropy for the synthetic data set

Figure 5.38 compares the bit rate values of the §-Huffman (FLC) variant

experiments with the real-world data set Wikipedia handled as bytes.
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Figure 5.38: 0-Huffman (FLC) bit rate values (bytes) vs. Entropy for real-world data set from

Wikipedia
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6. RESULTS EVALUATION

This chapter evaluates the results and discusses the variations of the compression
algorithms. This chapter focuses on global observations for the experiments and to show
the differences between some of the §-Huffman bit rate value results; this chapter
expands the bit rate value results beyond the second decimal place. To further explain the
bit rate results of the §-Huffman (Dynamic Probability P1/Slice/Reset) algorithm that is
seen in Chapter 5 in experiment 10b for the real-world data sets from Wikipedia, a brief
explanation is given first.

From section 2.1.2 in Chapter 2: entropy is the theoretical lower bound on the
communication bit rate over a noiseless communication channel. The entropy (H) of a
source (X) with alphabet A, = {a, ... a,,} and probabilities (p; ... p,) is given by
H(X) = = )i, pilog,(p;) [1]. This formula is used to generate the entropy values for
all data sets used in the experiments. All §-Huffman experiments met this criterion, with
the exception of the §-Huffman (Dynamic Probability P1/Slice/Reset) algorithm where it
performed slightly better than the entropy values for Wikipedia data set file “2015” by
0.150-bit and file “State” by 0.2092 bit.

These slightly better values were further evaluated. A plausible explanation for
this is the dynamic methods of the §-Huffman (Dynamic Probability P1/Slice/Reset)
algorithm and the characteristics of these two files. From section 2.7.10 in Chapter 2, the
algorithm uses the first 16 input data values to learn about the probability characteristic of
the files prior to generating the first Huffman tree that is used by the encoder and
decoder. The algorithm uses the dynamic probability formula (P1) = (1 — @)™V x«

to generate values for symbols in the Huffman tree, which is updated multiple times
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during the first 128 iterations but not between every iteration. Then the symbols in the
Huffman tree are zeroed out and updated only at designated iterations identified as a slice
(L) by the algorithm. For the characteristics of the two files, both are from Wikipedia
data sets, which mostly lend themselves to following a geometric distribution function.
The two files are the largest data files in the Wikipedia data sets, giving the algorithm
multiple chances to have slice segments where the code in the Huffman tree are utilized
efficiently and the data from the files are small values and highly concentrated among
those small values. All this leads to the slightly better values in the experiment.

Global observations follow:
Synthetic Data Evaluation
1. The bit rate value results for the top three §-Huffman experiments for the synthetic

data set GPMF (0.01) are shown in table 6.1.

Table 6.1: 6-Huffman (Probability Assumption) vs. Difference in Entropy

o-Huffman (Probability Assumption) e]l)lltif:;;n:fe (f;ll'\(/);;;l;g.m)
O-Huffman (Dynamic Probability P1/Slice) 0.402
d-Huffman (Dynamic Probability P1/Slice/Reset) 0.405
O-Huffman (Static Probability) 0.406

From table 6.1 it can be noted that the §-Huffman (Dynamic Probability P1/Slice)
is the closest to the entropy of the GMPF (0.01) data set.

2. The bit rate value results for the top three §-Huffman experiments for the synthetic

data set GPMF (0.1) are shown in table 6.2.
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Table 6.2: 6-Huffman (Probability Assumption) vs. Difference in Entropy

o-Huffman (Probability Assumption)

Difference from the
entropy of GMPF (0.1)

d-Huffman (Dynamic Probability P1/Slice)

0.068

o-Huffman (Dynamic Probability P1/Slice/Reset)

0.072

0-Huffman (Sibling/Static Probability)

0.075

From table 6.2 it can be noted that the §-Huffman (Dynamic Probability P1/Slice)

is the closest to the entropy of the GMPF (0.1) data set.

3. The bit rate value results for the top three §-Huffman experiments for the synthetic

data set GPMF (0.5) are shown in table 6.3.

Table 6.3: 0-Huffman (Probability Assumption) vs. Difference in Entropy

6-Huffman (Probability Assumption) e]l)lltif(f;;noc: (f;ll'\(/)lllr)lFtl;g 5)
d-Huffman (Dynamic Probability P1/Slice) 0.00625
d-Huffman (Dynamic Probability P1/Slice/Reset) 0.00635
o-Huffman (Dynamic Probability P2/Slice) 0.00775

From table 6.3 it can be noted that the §-Huffman (Dynamic Probability P1/Slice)

is the closest to the entropy of the GMPF (0.5) data set.

4. The bit rate value results for the top three §-Huffman experiments for the synthetic

data set Poisson (A = 128) are shown in table 6.4.

Table 6.4: 6-Huffman (Probability Assumption) vs. Difference in Entropy

6-Huffman (Probability Assumption)

Difference from the entropy
of Poisson (A = 128)

d-Huffman (Dynamic Probability P2/Slice) 0.0888
o-Huffman (Reconstruction with an Exception Code) |0.0970
d-Huffman (Dynamic Probability P2) 0.0972
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From table 6.4 it can be noted that the §-Huffman (Dynamic Probability P2/Slice)
is the closest to the entropy of the Poisson (A = 128) data set.

Overall, based on the average of the bit rate error for each §-Huffman variant
experiment with the synthetic data set; the best §-Huffman variants to evaluate the
synthetic data set are the §-Huffman (Dynamic Probability P1/Slice) and the §-Huffman
(Dynamic Probability P2/Slice).

5. Figure 6.1 compares the bit rate values of ten §-Huffman variants experiments with

the synthetic data set to the bit rate values of [15].
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Figure 6.1: 6-Huffman variants and [15] bit rate values vs. Entropy for the synthetic data set
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From figure 6.1 it can be noted that [ 15] generates an 8.9-bit rate value for GPMF
(0.01). §-Huffman variants that generate lower bit rate values than [15]:
e §-Huffman (Dynamic Probability P1/Slice) with an 8.4-bit rate value.
e J-Huffman (Static Probability), §-Huffman (Sibling/Static Probability), and
&-Huffman (Dynamic Probability P1/Slice/Reset) with an 8.5-bit rate value.
e J-Huffman (Reconstruction with an Exception Code) and §-Huffman
(Dynamic Probability P2) with bit an 8.8-bit rate value.
the same bit rate value as [15]:
e J-Huffman (Update using Sibling Property with an Exception Code) and -
Huffman (Dynamic Probability P2/Slice).
and higher bit rate values than [15]:
e §-Huffman (n+1) with a 9.3-bit rate value.
e §-Huffman (Dynamic Probability P2/Slice/Reset) with a 12.5-bit rate value.
For GPMF (0.1), all §-Huffman variants, with the exception of the §-Huffman
(Dynamic Probability P2/Slice/Reset) variant with a 5.2-bit rate value, §-Huffman (n+1)
variant with a 5.7-bit rate value, and the §-Huffman (Static Probability) variant with a
6.8-bit rate value, generate the same 4.8-bit rate value as [15].
For GPMF (0.5), all §-Huffman variants, with the exception of the §-Huffman
(n+1) variant with a 3.0-bit rate value and the §-Huffman (Static Probability) variant with
a 4.1-bit rate value, generate the same 2.0-bit rate value as [15].
From figure 6.1 it can be noted that [ 15] generates a 5.5-bit rate value for Poisson

(A =128). §-Huffman variants that generate lower bit rate values than [15]:
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e §-Huffman (Reconstruction with an Exception Code), §-Huffman (Dynamic
Probability P2), and §-Huffman (Dynamic Probability P2/Slice) with a 5.4-bit
rate value.

the same bit rate value as [15]:

e §-Huffman (Update using Sibling Property with an Exception Code).
and higher bit rate values than [15]:

e J-Huffman (Sibling/Static Probability) with a 5.6-bit rate value.

e J-Huffman (Dynamic Probability P2/Slice/Reset) with a 5.9-bit rate value.

e J-Huffman (n+1) with a 6.4-bit rate value.

e J-Huffman (Static Probability), §-Huffman (Dynamic Probability P1/Slice),
and §-Huffman (Dynamic Probability P1/Slice/Reset) with a 7.0-bit rate
value.

Overall, based on the average of the bit rate for each §-Huffman variant and [15];
6-Huffman (Sibling/Static Probability), §-Huffman (Reconstruction with an Exception
Code), 6-Huffman (Dynamic Probability P2), and §-Huffman (Dynamic Probability
P2/Slice) have bit rate values that are the closest to [15].

However, when taking the average bit rate of [15] and comparing them to the
entropy of the synthetic data set, it does not outperform the §-Huffman (Sibling/Static
Probability), §-Huffman (Reconstruction with an Exception Code), §-Huffman (Dynamic
Probability P2), §-Huffman (Update using Sibling Property with an Exception Code), and

6-Huffman (Dynamic Probability P2/Slice).
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The final note for synthetic data evaluation is that the §-Huffman (Dynamic
Probability P2/Slice) is the only §-Huffman variant to perform favorably in both the
experiments for the synthetic data set and in the comparison with [15].

Real-world Data Evaluation
6. The bit rate value results for the top three §-Huffman experiments for the real-world

data set Wikipedia (2015) are shown in table 6.5.

Table 6.5: o-Huffman (Probability Assumption) vs. Difference in Entropy

Difference from the
o0-Huffman (Probability Assumption) entropy of Wikipedia
(2015)
d-Huffman (Dynamic Probability P1/Slice/Reset) -0.150
O-Huffman (Dynamic Probability P2) 0.141
d-Huffman (Dynamic Probability P2/Slice) 0.142

From table 6.5 it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) is the closest to the entropy of the Wikipedia (2015) data set.
7. The bit rate value results for the top three §-Huffman experiments for the real-world

data set Wikipedia (Bollywood) are shown in table 6.6.

Table 6.6: o-Huffman (Probability Assumption) vs. Difference in Entropy

Difference from the
o-Huffman (Probability Assumption) entropy of Wikipedia
(Bollywood)
d-Huffman (Dynamic Probability P1/Slice) 4.373
d-Huffman (Dynamic Probability P1/Slice/Reset) 6.814
d-Huffman (Dynamic Probability P2/Slice) 10.210

From table 6.6 it can be noted that the §-Huffman (Dynamic Probability P1/Slice)

is the closest to the entropy of the Wikipedia (Bollywood) data set.
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8. The bit rate value results for the top three §-Huffman experiments for the real-world

data set Wikipedia (Grei) are shown in table 6.7.

Table 6.7: 6-Huffman (Probability Assumption) vs. Difference in Entropy

o0-Huffman (Probability Assumption) Olgl‘f;?ll;?;ecgii:(()grte?)e entropy
o-Huffman (Dynamic Probability P1/Slice/Reset) 0.894
o-Huffman (Dynamic Probability P1/Slice) 1.117
d-Huffman (Dynamic Probability P2) 2.039

From table 6.7 it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) is the closest to the entropy of the Wikipedia (Grei) data set.
9. The bit rate value results for the top three §-Huffman experiments for the real-world

data set Wikipedia (Rousei) are shown in table 6.8.

Table 6.8: 0-Huffman (Probability Assumption) vs. Difference in Entropy

Difference from the
o-Huffman (Probability Assumption) entropy of Wikipedia
(Rousei)
O-Huffman (Dynamic Probability P1/Slice) 16.16040
d-Huffman (Dynamic Probability P1/Slice/Reset) 16.16040
o-Huffman (Static Probability) 17.79070

From table 6.8 it can be noted that the §-Huffman (Dynamic Probability P1/Slice)
is the closest to the entropy of the Wikipedia (Rousei) data set.
10. The bit rate value results for the top three §-Huffman experiments for the real-world

data set Wikipedia (State) are shown in table 6.9.
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Table 6.9: 6-Huffman (Probability Assumption) vs. Difference in Entropy

Difference from the
o-Huffman (Probability Assumption) entropy of Wikipedia
(State)
d-Huffman (Dynamic Probability P1/Slice/Reset) -0.2092
o-Huffman (Dynamic Probability P2) 0.0436
o-Huffman (Dynamic Probability P2/Slice) 0.0438

From table 6.9 it can be noted that the §-Huffman (Dynamic Probability
P1/Slice/Reset) is the closest to the entropy of the Wikipedia (State) data set.

Overall, based on the average of the bit rate error for each §-Huffman variant
experiment with the real-world data set from Wikipedia; the best §-Huffman variants to
evaluate the real-world data set from Wikipedia are the §-Huffman (Dynamic Probability
P1/Slice) and the §-Huffman (Dynamic Probability P1/Slice/Reset).

11. Figure 6.2 compares the bit rate values of eight §-Huffman variants experiments with

the real-world data set Wikipedia to the bit rate values of [15].
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Figure 6.2: 6-Huffman variants and [15] bit rate values vs. Entropy for Wikipedia Data

From figure 6.2 it can be noted that [ 15] generates an 8.7-bit rate value for

Wikipedia (2015). §-Huffman variants that generate lower bit rate values than [15]:

e §-Huffman (Dynamic Probability P1/Slice/Reset) with an 8.4-bit rate value.
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e J-Huffman (Dynamic Probability P2) and §-Huffman (Dynamic Probability
P2/Slice)
the same bit rate value as [15]:
e J-Huffman (Update using the Sibling Property with an Exception Code) and
&-Huffman (Dynamic Probability P1/Slice).
and higher bit rate values than [15]:
e J-Huffman (Static Probability) and §-Huffman (Sibling/Static Probability)
with an 8.9-bit rate value.
e J-Huffman (Dynamic Probability P2/Slice/Reset) with a 13.0-bit rate value.
From figure 6.2 it can be noted that [ 15] generates a 22.5-bit rate value for
Wikipedia (Bollywood). §-Huffman variants that generate lower bit rate values than [15]:
e §-Huffman (Dynamic Probability P1/Slice) with a 16.3-bit rate value.
e 4-Huffman (Dynamic Probability P1/Slice/Reset) with an 18.8-bit rate value.
e §-Huffman (Dynamic Probability P2) and §-Huffman (Dynamic Probability
P2/Slice) with a 22.2-bit rate value.
and higher bit rate values than [15]:
e §-Huffman (Update using the Sibling Property with an Exception Code) with
a 22.7-bit rate value.
e §-Huffman (Static Probability and Sibling/Static Probability) with a 24.8-bit
rate value.
e §-Huffman (Dynamic Probability P2/Slice/Reset) with a 28.6-bit rate value.
From figure 6.2 it can be noted that [ 15] generates a 13.0-bit rate value for

Wikipedia (Grei). §-Huffman variants that generate lower bit rate values than [15]:
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e §-Huffman (Dynamic Probability P1/Slice/Reset) with an 11.8-bit rate value.
e §-Huffman (Dynamic Probability P1/Slice) with a 12.0-bit rate value.
e J-Huffman (Dynamic Probability P2) and §-Huffman (Dynamic Probability
P2/Slice) with a 12.9-bit rate value.
the same bit rate value as [15]:
e J-Huffman (Update using the Sibling Property with an Exception Code).
and higher bit rate values than [15]:
e J-Huffman (Static Probability) and §-Huffman (Sibling/Static Probability)
with an 18.4-bit rate value.
e §-Huffman (Dynamic Probability P2/Slice/Reset) with a 19.0-bit rate value.
For Wikipedia (Rousei), all §-Huffman variants, with the exception of the §-
Huffman (Update using the Sibling Property with an Exception Code) variant with a
129.1-bit rate value, generate lower bit rate values than the 32.6-bit rate value by [15].
From figure 6.2 it can be noted that [15] generates a 6.6-bit rate value for
Wikipedia (State). §-Huffman variants that generate lower bit rate values than [15]:
e §-Huffman (Dynamic Probability P1/Slice/Reset) with a 6.4-bit rate value.
the same bit rate value as [15]:
e §-Huffman (Update using the Sibling Property with an Exception Code), §-
Huffman (Dynamic Probability P2), and §-Huffman (Dynamic Probability
P2/Slice).
and higher bit rate values than [15]:

e §-Huffman (Dynamic Probability P1/Slice) with a 6.8-bit rate value.
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e J-Huffman (Static Probability) and §-Huffman (Sibling/Static Probability)

with a 7.3-bit rate value.

e §-Huffman (Dynamic Probability P2/Slice/Reset) with an 8.5-bit rate value.

Overall, based on the average of the bit rate for each §-Huffman variant and [15];
&-Huffman (Sibling/Static Probability), §-Huffman (Static Probability), §-Huffman
(Dynamic Probability P2), §-Huffman (Dynamic Probability P2/Slice) have bit rate
values that are the closest to [15].

However, when taking the average bit rate of [15] and comparing them to the
entropy of the real-world data set Wikipedia, it does not outperform the §-Huffman
(Dynamic Probability P2), §-Huffman (Dynamic Probability P1/Slice), §-Huffman
(Dynamic Probability P2/Slice) and §-Huffman (Dynamic Probability P1/Slice/Reset).

The final note for real-world data evaluation is that the §-Huffman (Dynamic
Probability P1/Slice) and §-Huffman (Dynamic Probability P1/Slice/Reset) are the 6-
Huffman variants to perform favorably in the experiments for the real-world data set
Wikipedia but the 6-Huffman (Dynamic Probability P2/Slice) is the §-Huffman variant
that uses the slice method in its algorithm to perform favorably in the comparison with
[15].

Benchmark Data Silesia Evaluation

To simplify the global evaluation of the benchmark data set Silesia, files in the
Silesia data set that have the same top three §-Huffman variants are grouped together.
12. The bit rate value results for the top three §-Huffman experiments for the Silesia files

dickens, mozilla, mr, nci, ooffice, osdb, reymont, sao, and x-ray are shown in table

6.10.
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Table 6.10: 6-Huffman (Probability Assumption)

o6-Huffman (Probability Assumption)

o-Huffman (FLC)
0-Huffman (Reconstruction with an Exception Code)
d-Huffman (Dynamic Probability P2)

From table 6.10 it can be noted that the §-Huffman (FLC) is the closest to the
entropy of the Silesia files dickens, mozilla, mr, nci, ooffice, osdb, reymont, sao, and x-
ray.

13. The bit rate value results for the top three §-Huffman experiments for the Silesia file

samba are shown in table 6.11.

Table 6.11: 6-Huffman (Probability Assumption)

o-Huffman (Probability Assumption)

O-Huffman (Dynamic Probability P2/Slice/Reset)
d-Huffman (FLC)

d-Huffman (Dynamic Probability P2)

From table 6.11 it can be noted that the 6-Huffman (Dynamic Probability
P2/Slice/Reset) is the closest to the entropy of the Silesia file samba.
14. The bit rate value results for the top three §-Huffman experiments for the Silesia files

webster and xml are shown in table 6.12.

Table 6.12: 6-Huffman (Probability Assumption)

o-Huffman (Probability Assumption)

O-Huffman (Dynamic Probability P2/Slice)
o-Huffman (FLC)

0-Huffman (Reconstruction with an Exception Code)
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From table 6.12 it can be noted that the §-Huffman (Dynamic Probability
P2/Slice) is the closest to the entropy of the Silesia files webster and xml.

For comparison, figure 6.3 shows the bit rate results of all §-Huffman variants
experiments with the benchmark data set Silesia and the entropy of the data set. The data

label value for each file groups in figure 6.3 indicates the entropy value for that file.
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Overall, the best algorithms to evaluate the benchmark data set Silesia are the J-
Huffman (FLC) and the §-Huffman (Dynamic Probability P2).

The final note for benchmark data Silesia evaluation is that the §-Huffman
algorithm performs better in terms of the bit rate values if prior knowledge of the type of
data from the data source is known. However, given the results of the twelve
experiments, if the type of data and the probability distribution of the data from a data
source are unknown at the time of §-Huffman algorithm selection, the §-Huffman
(Dynamic Probability P2) would be the formula this writer would start with. The §-
Huffman (Dynamic Probability P2) does not always give the best bit rate values relative
to entropy, as can be seen from the experiments, but it, or a variant of it, such as the §-
Huffman (Dynamic Probability P2/Slice) seems to be close in performance to the best
performing §-Huffman algorithm for several files across all data sets. This makes the §-
Huffman (Dynamic Probability P2) a good algorithm if the type of data and the
probability distribution of the data from a data source are unknown at the time of -
Huffman algorithm selection. It is not the best performer across all data sources, but it is

not the worst performer across all data sources in this thesis.
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7. CONCLUSION AND FUTURE RESEARCH

This thesis explores the §-Huffman algorithm through manipulation of the
estimation of the source probability function. Additionally, it examines the practical and
theoretical compression capabilities of integer compression methods and devises methods
for efficient compression of integers regardless of their specific probability distribution
function.

Work by [15] explored the possibility of combining integer compression methods
with a new dynamic Huffman compression algorithm known as §-Huffman and [16]
explored the ability to dynamically compress data in one pass with Variable length
nibbles with Tunstall (VLNT) and Delta-Tunstall (6-T). Both of them differ from our
work which focuses on the examination of different assumptions about the estimation of
the source probability function.

Twelve assumptions, each of which is encoded via an algorithm variant, are made
about the source probability function, with the algorithms compression ratio, rather than
its computation complexity as the focus of our work.

The experiments performed use one or more of three source data sets: synthetic
data, real-world data from sorted inverted index gaps from Wikipedia, and benchmark
data from Silesia that attempts to represent realistic workload data. The entropy estimates
of these data sets and the average bit rate values of the twelve §-Huffman algorithms
offer a way to construct a comparative evolution of the performance of the §-Huffman
algorithms.

From these experiments, the §-Huffman (Dynamic Probability P1/Slice), &-

Huffman (Dynamic Probability P2/Slice), §-Huffman (Dynamic Probability
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P1/Slice/Reset), §-Huffman (FLC), and §-Huffman (Dynamic Probability P2) are
identified as the best variants of the twelve §-Huffman algorithms depending on the data
sets that are being evaluated. Finally, given the results of the twelve experiments, if the
type of data and the probability distribution of the data from a data source are unknown at
the time of §-Huffman algorithm selection, the §-Huffman ‘Dynamic Probability P2’
would be the formula this writer would start with.

Finally, we expanded the set of experiments for the §-Huffman algorithm and
plan on further research. There are various areas of the §-Huffman algorithm still to
explore and evaluate. They include areas such as the §-Huffman algorithm’s
cost/effectiveness performance in terms of its compression ratio, throughput, latency, and
energy consumption. Implementation cost of different variants is yet another area to be

evaluated.
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