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NONLINEAR PSEUDODIFFERENTIAL EQUATIONS ON A
HALF-LINE WITH LARGE INITIAL DATA

ROSA E. CARDIEL, ELENA 1. KAIKINA

ABSTRACT. We study the initial-boundary value problem for nonlinear pseu-
dodifferential equations, on a half-line,

ut + AMulu + Lu=0, (z,t) € RT xR,
w(@,0) = uo(2), = €RY,

where A > 0 and pseudodifferential operator L is defined by the inverse Laplace
transform. The aim of this paper is to prove the global existence of solutions
and to find the main term of the asymptotic representation in the case of the
large initial data.

1. INTRODUCTION

We consider the initial-boundary value problem for a general class of the non-
linear nonlocal equations, on a half-line,
ug + Mu|u+ Lu=0, (z,t) € RT x R,
U(I,O)ZUO(I), $€R+a
where A > 0, o > 0. The linear operator £ is a pseudodifferential operator defined
by the inverse Laplace transform as follows

1 100
epmcapa (ﬁ(p, t) _ u(07 t)

(1.1)

Lu =

T 2mi

) dp, (1.2)

—100

where o € (1,2) and

u(p) = /0+°° e PPu(x)dx

denotes the Laplace transform of u. We assume that the symbol K(p) = C,p® is
dissipative, i.e. (K (p)) > 0 for R(p) = 0. Here and below p* is the main branch
of the complex analytic function in the half-complex plane Rp > 0, so that 1* =
(we make a cut along the negative real axis (—o0,0)).

The initial-boundary value problem (1.1) is of great interest from the physical
point of view , since it describes many physical phenomena , such as the focusing of
laser beams , waves on water (some other applications can be found [28]) . A great
number of publications have dealt with asymptotic representations of solutions to
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the Cauchy problem for nonlinear evolution equations in the last twenty years.
While not attempting to provide a complete review of this publications, we do
list some known results [3]-[10],[12] ,[13],[15] -[18], [21], [22], [26]-[35], where there
were obtained optimal time decay estimates and asymptotic formulas of solutions
to different nonlinear local and nonlocal dissipative equations. The asymptotic
theory of the initial-boundary value problems for the nonlinear pseudodifferential
equations is relatively new and traditional questions of a general theory are far
from their conclusion . A description of the large time asymptotic behavior of
solutions for the initial-boundary value problems requires new approaches and the
reorientation of the points of view compared to the Cauchy problem.

The initial-boundary value homogeneous problems for nonlinear pseudodifferen-
tial equations were studied in the book [20]. In the present paper we continue the
study of pseudodifferential equations on a half-line, considering the case of a large
initial data .

The aim of this paper is to prove a global existence of solutions to the initial-
boundary value problem (1.1), and to find the main term of the asymptotic repre-
sentation of solutions. We will obtain the a priory optimal time decay estimates of
solutions in the usual Lebesgue spaces L” for 1 < r < co. These type of estimates
enable us to consider the critical and sub critical cases in future works.

To state our results we give some notations. The weighted Sobolev space is

HY* = {f € L™ ¢ [|fll e = (i) " (2)" fllu- < oo},
where () = V1 + z2.

We introduce the function Ag(s) € L,

. {a}
. {o} Ca Al . 71—{04} e sz {a} /OO —q g =«
Aols) = (1) 5 AL sin( T >/_mdze A | dge™t s
(1.3)

where "
Ay = (=D)tHH(=C,) "  T(1 = {apT ({a}) sinm{a}.

We prove the following theorem.

Theorem 1.1. Let o € (1,2), 0 > « ,A > 0 and real valued function ug € H;’O N

H%* N H?’O, where (v € [0,1]. Then there exists a unique real valued solution of
(1.1) such that

u(x, t) S C([O, oo); H;’O N Hggt n H?’O),
Moreover there exists a constant A such that

u(z,t) =t YU AN (ot ) + Ot ) (1.4)

as t — oo uniformly with respect to x > 0, where

+oo —+o0 ()
A:/ uody—|—/\/ dt/ |ul”udy.
0 0 0

Remark 1.2. We can guarantee that the coefficient A # 0 in the asymptotic
representation (1.4) if f0+°° uody # 0 and |u|”u is small. It can occur that A =0,
for instance, for convective equations fooo |u|udy = 0 if the initial data have zero
mean value fOJrOO ugdy = 0. In the last case formula (1.4) gives us only some time
decay estimate for the solutions.
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2. PRELIMINARIES

We introduce the function k(&) = K~1(—¢), such that Re (£) > 0 for all Re¢ >

0. We denote
+oo

G(t)o(t2) = G(z,y,t1)d(y, t2) dy,
0
where Green function G(z,y,t) is defined by

1 100
G(z,y,t) = %/ e~ K@)ttrlz—y) gy,
e , (2.1)

R A 1wy [ K (P)
* 472 /—ioo (O e y/—z‘oo p(K(p) + &) A dp.

The solution u of the problem (1.1) can be represented as follows (see [20], pp.
23-24)

t
(@, 1) = G(t)uo + / drg(t — PN () (), (2.2)
0
where N (u) = Mu|7u. We introduce complete metric space
X = {¢(z,1) € C([0,00); H}*) N C((0, 00); H%)[|¢]|x < +00, },

1 1 _ 1_ 1
[¢lx = sup(t)® (6%~ % el + £ 0, o),
>

where p € [0,1], 1 < r < oo. Let a continuous linear functional f(¢) : L1 — R is
defined as

+oo
f)= [ oty
0
Now we obtain some estimates for the Green operator G in the space X.

Lemma 2.1. The following two estimates are valid

IGollx < s + 61, (2.3
sup t%(9Go — £+ Aqat /) £(¢) o= < 0] (2.4

for allt > 0, provided that the right-hand sides are bounded.

Proof. We rewrite the Green function as
G(l‘,y,t) = Fl(x - yvt) + F2(-r7 yat)a

where
100

1
Fi(x,t) = %/ e~ K@)ttre gy, (2.5)

1 100 _ _ 100 epr(p)
Fy(z,y,t) = —/ SRy ()t — ¢ dp. 2.6
2@y t) = oo © —ico P(K(p) + ) 20
Firstly we prove the estimate

1_ 1 = 1
t5 3 (IR, )l + ¢ 510 Fi(g, )l + 6510, F (@)l ) <€ (27)

for all ¢ > 0, where p > 0 and 1 < r < oco. Changing variables p®t = z%, and
g =qt~ " we get

1 100 00 N
|Fi(q,t)| = |%/ ePe K@)t dp| < Ctil/o‘| eTe=Caz dz|.

—100 —100
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Therefore,
1,1
1Fu(q, )]l < CtmaFar,

After the change p“t = 2%, we have

Q=

LB ico o _lywnp
a’z]v,u,/ eqzefc’az dZ| SC’t a 0‘<EI">H*1*'Y,

—100

lg"Fi(q,t)| < Ct

100
10,F1(g,1)| < Ot % | zefPe™ O qz| < Ot (g) 177,

—100

where 0 < v < a. Therefore,

B 1 * (p=1—y)r
" Fita.llr <€ [t gy e
0 1 (2.8)
11
S Ct «@ «@ o@r
and
10, Fi (g, Dl < CH 3, (2.9)

Estimate (2.7) is then proved. Now we prove
1 1
sup ta T T () Ty (|| By (2, y, 1) |
>0,y>0 (2.10)
iy 1
17w et By, y,0) o + %[00 Fa (2, y,1) | 2r) < C,

whereﬂ20,7>070§u1<é(1—%—7a) and 1 <r < 0.
We have, by definition, x(q) = Cl\qﬁ. Changing variables p“t = z® and £t = q,
we obtain the estimate

_1/ 100 _ . 100 . eq—clqég
[Fa(z,y,t)] < OtV [ dee™ K(2)2 / Cdg g H(Q)m|~ (2.11)
—io0o —1i00
‘We move the contours of integration with respect to z as follows
4 ™
C; :{z:peiwl7p207ﬁ1 = 5—}—61} (2.12)
and with respect to ¢ by
, T ; 7T
Co={q=¢" ¢o€ [*57 5]} U{g=pe™Pp>1, ¢o= 5t e}, (213)
where €1, €5 > 0 are small enough. It is apparent that
e?] < Clgl™,  |K(2) +q|™" < Cle[7"g|" 7,
) 1 ) (2.14)
|€*7] < Clzz|7H2,  |em @997 ¥] < Olgeyg|

for all ¢ € Cy and 2z € Cy, where v € [0,1], v > 0, and p; > 0, up > 0. Taking into
account (2.14) we get

Fa(a, 0] < oyineamsa [ jasapeiovee [ g jgpt-ee,

— 400 —100
(2.15)
To guarantee the convergence of this integrals we need to satisfy the following
conditions

1
~ 24y > -1 (2.16)
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and ) )
a—1l—-—va—pus > —
’ (2.17)
a—[a] —va —pg < —1.
respectively. Under the condition apuy + pa < 2 — [o] there exists some v > 0 such
that the estimates (2.17) are valid. Therefore, we obtain

1—po

[Fa(p,y,t)| < O™
From (2.18) it follows that

-Hhx—uzy—alh. (2.18)

(oo}
1F2(@,y, )| < Ct—é+ﬁ+”1i7y_a”l(/ whrdg) "
0

(2.19)
< Ot atratmETy o
where 0 < 1y < é(l — %) In the same manner we obtain
@ Fy(w, y,1)| < Ct= =t i sy momn,
|893F2 (p7 Y, t)| <Ct~ 27;2 ﬂ”y_”lam_’” .
Thus we obtain
ot Fa(,y, t)l|r < Ot~ & F s bty mime (2:20)
0. Fa(,y, 1)l < Gt~ = ¥ratigymre, (2:21)

and therefore estimate (2.10) is proved. From estimates (2.7) and (2.10) we easily
get result (2.3) of Lemma 2.1. To obtain (2.4) firstly we prove the following estimate

™ 14p

O‘}Ao(xfl/a) +yrO(t™ =) (2.22)

G(z,y,t) = t~gin
e

for t — oo, where x,y > 0.
We write the representation (2.5) for the function Fy(x,t) as

Fl(x - yat) = F1($7t) + [Fl(x - y7t) - Fl(‘r7t)}
After the change of variables p®t = 2z, we easily find that

Fi(zt) = — =K ()t gy t—l/ai/ 25-K(2) g, 2.23
(@, t) 271 _/_iooe P 211 J_o ¢ : (2:23)
Using the estimate |[e 7Y — 1| < C|py|* for y > 0 and p € (—ioo,ic0) with 1 € [0,1]
we have

|Fy(x = y,t) = Fi(z,t)] < | P Cer (Y — 1) dp|

—100

L 1 [P0 I s 2.24
< Cy't am/ |dz| 2] |e"t ©#m e (2.24)

<Oyt = gro(t ).
Therefore, from (2.23), we obtain

—100

1 100
Fi(z —y,t)=t"Yo— / e K@z yyrOo(t

14p

5. (2.25)

2mi J_ o

Now we write the representation (2.6) of the function Fy(x,y,t) as

FQ(may,t) = M(:B,y,t) + R(xa yat)a (226)
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where M (z,t) = F»(x,0,t) and R = [Fa(x,y,t) — Fa(x,0,t)]. Considering that
\e’cgl/uy — 1] < CJ¢Y*y|* and changing variables &t = g and p*t = 2%, we get
‘FQ(xvy’t) - F2(1‘7O,t)|

<ord-tye [ et et [ gl S
= y”O(t_HT“).
Therefore,
Fy(z,y,t — 1) = M(z,t) + y" Ot~ "), (2.27)
where
Mty =tV L [T gk (e [ dger L 2.28
’ 4m? /—ioo /—ioo e K(z)—i—q’ (2.28)

with s = 2t~/®. Applying the Cauchy Theorem, we obtain

100 100 —1
sz 1 q 9 r(q)
/ dze”* K (z)z / dge Ko +q

100 100 -1 2.29
=27 /_ioo dze?*e K (2) —|—/_ioo dzeszK(z)z_IAdqeqlm (2.29)
= Il + 127

where I' = {z € (—ooe™,0e™™) U (0e'™, —o0e’™)}. Using

dzesz/dqeqi =0,

we get

U B oo 10 Ca(—D) e Ay
M ) =t 1/o_~ dzes? Cuoz t 1/a
(z,) omi /,m e + o 7 A,

100 —+o0 _ier
X sin (M)/ dzeszz{o‘}/ dqe_qqi
o 0

—100

where
Ay = (-1 ()~ T~ {a})T({a}) sin{a}.
From (2.25), (2.27), (2.30), we obtain (2.22) and then estimate (2.4). This
completes the proof of Lemma 2.1. O

We defined the space
W = {¢(z,1) € C((0,00); L' NLH) : [|¢]lw < o0}
where [|¢[lw = ([|¢]lLr + [[@llLocn).

Lemma 2.2. The following two estimates are valid

Jt / G(t — 7)g(r)dr]

1,1 p
L < ()= T | (0 ¢llw,

t
19 / G(t — 1)p(r)dr||L < Ot =5 +ar (1)~ (1) ¢ lw,

forallt >0, p e (0,1), r > 1 and small enough v > 0, provided that the right-hand
sides are bounded.
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Proof. Let t € [0,1]. By estimate (2.21) of Lemma 2.1, we get
2 1 > 1 1
10 Pyt Iy < O Fva [y s ormird, @)
' 0

for all ¢ > 0. Therefore, using (2.8) of Lemma 2.1 we obtain

||:v”/ G(t—71)¢

t
L 2.32
< [ ar (ol e Bl + ol M) + [ drlolae ot Bl 25
0 0
—1,1 —1l41 4 p
<O A R gy < Cllélw
for all ¢ € [0,1]. Using (2.31) and (2.9), we have
1|0 / Gt—1)¢
(2.33)

< / ar (gl 0. Filus + @]9 Fallugey)
<Ot atartglw < 75 glhw

for all t € [0,1].
We consider now the case t > 1,

t/2
o [ 66 - Morarlu < [ oo Bl + ol Rl
0

¢
+/ dr(|pllur [l FyllLs + [l ollu- [ Fy o)
/2
t/2
+ [ drol et Pl
0
¢
+ [ drlolus o Faluzu,
/2
So in view of estimates (2.20), (2.21) , (2.8) and (2.9), we attain
\m”/ G(t — T)d(r)dr||L- < Ctatrata (1) 7 ¢w. (2.34)

In the same way we estimate ||0,G¢||L- for ¢t > 1,
/2
0. / G(t — )p(r)dr|er < / dr( 8l 10 Filler + |6l |0 Fallnrre)
0

t
+ //2 dr([[ ol 10:Frller + [|¢fluee |0z FallLyry )
t

< Ot ()l
(2.35)
Then, by (2.32)-(2.35) Lemma 2.2 is proved. O
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Denote by
Z = {¢(x) € Hy" nHY N HY; ||¢]|, < +o0},
¢llz = (I[(x)* @l + [[¢llLs + [[lly),

where p € (0,1]. Now we prove local existence theorem. Note that the existence
time T" > 0 could be sufficiently small.

Theorem 2.3. Let initial data ug € Z. Then for some time interval T' > 0 there
exists a unique solution v € C([0,T]; X) to problem (1.1). Moreover the existence
time T can be chosen as follows

1 —o—1 ﬁ 1
T= ( 14— ) L o=1- .
luo |z (1 + 2C||uon) fi1 "

Proof. We apply the contraction mapping principle in a ball of a radius p > 0 in a
complete metric space X,

X1, ={0 € C(0,T]; X) : suprepo,ryllullx = llullx, < p},
where p = 5k |lugl|z. For v € X7, we define the mapping M(v) by

M() = G(t)up — /0 Gt —7)N(v(r))dr, (2.36)
where N (v(7)) = Av|7v. We first prove that
[IM©)lIxr < p,

when v € X1 ,. We have by Lemmas 2.1 and 2.2 for pu; =1 — é,

t
[M()[xz < [|Guollxr + II/0 Gt — )N (v(1))dr||x 1
< Clluollz + CT* (1 + |Jv]x, )7t (2.37)
<Lrormtprtt <y,

if T > 0 is small enough. Therefore, the mapping M transforms a ball of a radius
p > 0 into itself in the space Xr. As in the proof of (2.37), we have for w,v € Xr

[M(w) = M(v)[Ixr < H/O G(t = )N (w(r)) = N(v(7)))dr||x+

s 1
< CT" lw = vllser (1 + Jwlixr + llvllxr)” < 5llw = vllx,

since T' > 0 is small enough. Thus M is a contraction mapping in X7 ,; therefore,
there exists a unique solution v € Xy to the problem (1.1). Theorem 2.3 is proved.
|

Now we define the space X[T7,Ts] = C([11, T»]; Z) with the norm
[llxiry ) = sup [l(8)]|z.
te[Ty,Tb]

Theorem 2.4. Let the initial data ug € Z and the following a priory estimate be
valid

[ullxpo.r) < C(T)]luollz, (2.38)
provided that there exists a solution u € X[0,T) for some T > 0. Then there exists
a unique global solution u € X[0,00) to the problem (1.1).
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Proof. From Lemma 2.1, we have that G(t—T1) : Z — X[T}, T3] forany T > T7 > 0
and

1G(t = T1)0lIx(1y,15) < Cl|d]]2-

Also using Lemma 2.2 we obtain that fYtH Gt — )N (v(r))dr € X[T1,T>] for any
NS X[Tl,Tg], T2 > T1 > O, and

I Gt =7)N(w(r)) = N(v(r))dr %, 12]

T
< Cllw = vllxizy, 1) (1 + Jwllxzy, 1) + IVllx177,721)7 5

for all v,w € X[Ty,T»], where ¢ > 0. Using a priory estimates (2.38) we can
prolongate the local solution given by Theorem 2.3 for all times ¢ > 0. Indeed,
by the contrary we can suppose that there exists a maximal existence time 7" > 0
such that v € X[0,T). If we choose a new initial time T7 € [0,T) and consider the
problem (1.1) with initial data u(7}), then via a priory estimate (2.38) the norm
|lw(T1)||z is bounded uniformly with respect to Ty € [0,7"). Then the existence
time given by the local existence Theorem 2.3 is bounded from below uniformly
with respect to Ty € [0,7). Therefore if a new initial time 77 > 0 is chosen to
be sufficiently close to the maximal time 7', then by virtue of the local existence
Theorem 2.3 we can guarantee that there exists a unique solution v € X][0,T].
Now putting «(7T') as a new initial data at time T we can apply the local existence
Theorem 2.3 and prolongate the solution u(t) on some bigger time interval [0,7 +
T5]. This contradicts to the fact that T is a maximal existence time. Hence there
exists a unique solution u € X[0,00) to the problem (1.1). Theorem 2.4 is proved.

O

3. LARGE INITIAL DATA (PROOF OF THEOREM 1.1)

To prove of Theorem 1.1 we first apply the so-called energy method to estimate
the L2(R) norm: i.e. we multiply equation (1.1) by u and integrate with respect to
x € RT to get

d —+o0 —+o0
d—||u(t)||i2 + 2/\/ lu|]"tdx = —2/ uludz. (3.1)
t 0 0
By the Plancherel Theorem we have

400 1 700 _
2/ uludr = 2Re 5 u(p)Cap™(u(p) — @) dp
0

T J—ico p
1 10 a7 U(O) 2
=Re(VP— Cop®lu(p) — —=1|*dp
T J oo
1o 1y u(0
~Rew@VP~ [ Cop () — “2) ap).
T J—ico p
By the Cauchy Theorem using the analyticity of @(p) and K(p) = Cqp® in the

right-half complex plane we attain

ve [ o - ap
= LrespoCapr™ @) - "Dy + [ cop @) - “yap —o.

2 D —ioo D
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Thus from dissipative condition Re K (p) > 0 for Rep = 0 we get
+oo o]
1 . 0
2/ uludr = fVP/ Re K (ip)|u(ip) — @de > 0.
0 ™ —00 p

Also since A > 0 we have N
)\/ lu|"tdz > 0.
0

Therefore, from equation (3.1) we obtain

d
S llulz <0. (3.2)
Hence integrating with respect to time we see that
sup [|lu(t)|lLz < [luollL2- (3-3)
>0
Now we prove that
sup [|ug (t)|[L2 < [luoe|L2- (3-4)
>0

We differentiate (1.1) with respect to the space variable, multiply equation (1.1) by
u, and integrate with respect to x € R, to get

d +oo +oo
— |z () ||72 + 20)\/ lul”Hul2de = —2/ Ug Oy Lud. (3.5)
Since
e 1 > _ 0
2/ UgOx Ludr = fVP/ Re K (ip) |p|?|u(ip) — M|2dp >0
0 ™ —oo 1D
and

“+o0
U)\/ lul” " |u2dx > 0
0

integrating (3.5) with respect to time we easily get (3.4).

Note that time decay estimates (3.3) and (3.4) are not optimal. To get an optimal
time decay estimates we need to show that the L' - norm of the solution does not
grow with time. Using the idea of papers [2], [5] we multiply equation (1.1) by
S =signu = ‘“7' and integrate with respect to x over R™ to get

/ u(z, 8)S(x, t)dx + N (u)(z,t)S(z, t)de = — S(x,t)Lude, (3.6)
R+ R+

R+
where M (u) = Au|”u. We have

0 d
/]R+ ug(z,t)S(z, t)de = /]R+ a|u(w,t)|dw = £||u(t)HL1,
N W) (@, 8)S(@, t)dz = )\/ u|7dz > 0.
R+ R+
Representing the operator Lu via the Riesz potential (see [29]) let us show that

S(x,t)Ludz > 0. (3.7)
R+

By [1], we have

1 100 771p 1
14 Id — l/.
R (S

2mi
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Thus for « € (1,2), we get
Lu = —C’@m/ (z —y)' " *0yu(y) dy,C > 0.
0

Denote S(z,t) = sign(u(z,t)) and represent u(x,t) = S(z,t)|u(z,t)|. We make a
regularization

K'(z) = 02zt~ forx>¢
¢ 0, for0<z<e,

such that K/(z) <0 and K/ (z) > 0 for all z > 0. We can easily see that

am/ (x—y)' " uy(y, ) dy = lim c%/ Ke(z — y)uy(y,t) dy.
0 e 0

(To justify our calculation we note that the linear operator £ in equation (1.1) is
strongly dissipative, therefore by smoothing effect the solution obtain regularity
u € CYH(R') (see Theorem 2.3 and [28])).We have

[ @S0, [ Koo - 9)o,ut0 dy
R+ 0

— [ @S0, [ dyke(e - 5)S(.00, u(v.)

R 0
= KE(O)/ dxS? (x, )0 |u(z,t)]
R+
400
[ dudylutat)] [ deS(. 0800, K- - ).
R+ y
Then via the identity S(y,t)S(xz,t) =1 — £(S(z,t) — S(y.1))?,
[ tnste.. [ K- p)outs. 0
R+ 0

—+oo
K0 [ S 0o lute 0]+ [ dipyfutn] [ ded K —y)
Y

R+
+oo
=5 [, ot /y Ax(S(w,t) = S(y,1)*0.Ko(a — y).

Since

+oo
| dvbstutw ol [ dud.Ko - ) = ~K0) [ dydyfutu. )
R+ y R+
we obtain

de(x,t)@I/ K.(x —y)oyu(y,t)dy
B . 0 (3.8)

+oo
=5 [ dvoututool [ (5.0 - S 020K )
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Integrating by parts, we have

+oo
[ dvdstutu o] [ da(Stant) = S.0)20.K.(a - )
R+ y
—+o0
— _Ju(0, )| /0 do(S (1) — S(0,1)20, K. (x)

+oo
[ dututwol [ ek - (S0 - S0,
R y
Therefore, from (3.8) using 9, K. (z) < 0, we gain

[ das@no. [ Ko~ w)d,utuit)dy
Rt 0

1 +o00
<y [ dlulw 0] [ deK? (e p)(S(t) - S(w.0)?
R+ y
and therefore since 92K (z) > 0 for all z > 0 we get

/ sz(x,t)a@/ K. (x —y)0yu(y,t)dy < 0.
R+ 0
Hence we have

S(x,t)Ludx
R+

> -t dle(l/J)I/ de K (x —y)(S(z,t) — S(y,1))* > 0.
2 e—0 R+ R+

Thus (3.7) is true and from (3.6) we find <% |ju(t)||l: < 0. From this inequality, we
see that the norm ||u(t)||r: is bounded for all ¢ > 0.

We now prove that the norm ||u,(t)||Lz — 0 as t — co. Taking ¢ € (0,1) by the
Plancherel theorem,

teo 1 ° u(0)
/ Uz Op Ludx = fVP/ Re K (ip) |p|*|u(ip, t) — —=|*dp
0 ™ —00 p

> / Re Cop® [, (p, ) dp
Ip|>0

> Co®||us(t)[}2 — Co**?® sup [u(p,t)|?
[p|<e

= Cp™ 2u(0)] sup [a(p, t)| — Co™*|u(0)[* (3.9)

Ipl<e
> Co®llu(t)|F2 — Co*lul®)lis
= Co"Ju(®) | ullLe — Co®H ullf
> Co®[lu(t)|F2 — Colul®)lis
— Co™?ju(t) [ fullZa ualls — Co* ullgallus e,

where we have used that

luz ()l < Cllu®)llee us (#)|z2-
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Since the norms ||u(t)||y1, ||u(t)||Lz and ||uz(¢)||L2 are bounded, choosing o(t) =
C~Y(1 +t)~* we obtain

d
We substitute ||us(¢)[|2. =

Ol <~ + ) uaOlF2 + CA+ )75

1h(t)(1+t)~2, then for h(t) we have
W) <Cl+t) =,

hence integration with respect to time yields h(t) < C(1+ t)Q_%. Therefore we get
the time decay estimate

e (B)l|2 < C(148)71/ ),
and therefore
[ue () [[Loe < Cllu@)l|ge lua(B)llg. < C(1+1)7 7.
We substitute this estimate in (3.9) to obtain

d — —1-L1r__1
%llux(t)\l?ﬁ < -1+ 1) Hua (DL + CA+ T T2

Again after the change |lu(t)||f. = $h(t)(1 4 t)~2 we get
Jus (t)ll < C(1+ )" 23,
We can repeat this consideration to get the optimal time decay estimate
lus (0)llLs < C(L+ )= (3.10)

for all ¢ > 0.
We now prove that the norm ||u(t)||pz — 0 as t — oo. Taking ¢ € (0,1) by the
Plancherel theorem we get

“+ o0
/ wLludz
0
1 i00 o u(0) =
=-VP Re K ) — —2)ad
- L Re (ip)(u(ip, ) D ) dp
> [ ReCopfap )P dp - u(0) [ ReCopidp
‘p‘ZQ —100

> 0 u(®)llFz — " sup [a(p, t)]* — |u(0)|e® sup [@(p,t)] — 0 u(0)[?
[pl<e lpl<e

> 0% lu®)lf> — o Hu®)IEs — [u(0)lo®[ul®)llL: — 0~ |u(0)]*.
Since the norms ||u(t)||Lt, ||u(t)||L2 are bounded and due to (3.10)
1 1 _ 3
[u(O)] < Ju@®)|lLe < Cllu@)fallus (DL < CA+1)7 =,
choosing o(t) = C~Y/*(1 +t)~/ we obtain
d
@i < =0+ u@)llE: + ¢+ £t
We substitute ||u(t)||Z. = h(t)(1+¢)~2, then for h(t) we have

B (t) < C(1+1t) "2,
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hence integration with respect to time yields
h(t) < C(1+t)> 2.
Therefore, we have the time decay estimates
lu(t) e < O+ )75,
[u(0)| < C(1 +t) e 5a.
We can repeat this consideration to get
d
%HU
Therefore, we obtain the optimal estimate
lu(®)llLs < C(1L+ )= (3.11)

for all ¢ > 0. Also from (3.10) and (3.11) we get the optimal time decay of the
L (R™")-norm of the solutions

lu(t)[[L= < C(L+8)~1 (3.12)

D2 < —A+ )" u®)2 + C(1L+1)"1 =5,

for all ¢t > 0.
Now we can estimate the norm L°# (RT). By the integral formula (2.2) we
have

[u() ][ < JluollLr [G(E) Lo + luolluee [G ()Lt

t
e / ()7 s Gt — 7)o

t
+ C/O ()7 poe s |G(E = 7)||Lrdr

Hence using Lemmas 2.1 and 2.2,

() [ o
1—p t 1—p t
<o o / lu(m)[§m (t — 1) S dr 4 C / () e () e

< C<t>_l% + C/Ol |w(7) || oo (7)™ & dr.

Hence for the function h(t) = supg<,<; [|[u(7)[|Le.x, we get the inequality

h(t) < O~ 4 C/0t<7>_3h(7)dr

and since ¢ > o by the Gronwall’s lemma it follows that
[u(t)||Loen < CE) " ¥t > 0. (3.13)
From a priory estimates, due to Theorem 2.4 there exists a unique solution
u(x,t) € C([0,00); Hy* N HZ* N HYY)
to the problem (1.1), such that

lu@®Le < CE fu@®) e < CH™F and [u(t)]lyz < O, (3.14)
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By Lemma 2.2 we have
sup o (G — ¢ Aot~/ [(6) L < Ol
where p € [0,1]. Substituting this formula into (2.2) we obtain
u(z,t) = t‘l/O‘AAO(t%) + R(z, 1), (3.15)

a

where by (3.14),

+oo —+oo (')
A:/ uody—|—/ dT/ N(u)dy < oo,
0 0 0

and

we.ty =0 ) ([ v [ ar [ yawa)

0
oo 2p 14+p oo
+/ e O0(t—7)" " )dr N (u) dy
0 0
=o(t").

Thus the asymptotic (1.4) is valid. Theorem 1.1 is then proved.
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