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GLOBAL WELL-POSEDNESS FOR THE RADIAL DEFOCUSING
CUBIC WAVE EQUATION ON R?® AND FOR ROUGH DATA

TRISTAN ROY

ABSTRACT. We prove global well-posedness for the radial defocusing cubic
wave equation

Opu — Au = —ud
u(0,2) = uo(2)
Oru(0,x) = ui(x)

with data (ug,u1) € H® x H~1 1 > s > 7/10. The proof relies upon a
Morawetz-Strauss-type inequality that allows us to control the growth of an
almost conserved quantity.

1. INTRODUCTION
We shall study the defocusing cubic wave equation on R?
Opu — Au = —u?
w(0, ) = up(x) (1.1)
Opu(0, ) = uy(x)
We shall focus on the strong solutions of the defocusing cubic wave equation on some

interval [0, T i.e real-valued maps (u, ,u) € C([0,T], H*(R?))xC([0, T], H*~1(R?))
that satisfy for ¢ € [0, T the following integral equation

u(t) = cos(tD)ug + D~ sin(tD)u; — /Ot D~ Ysin((t — t')D)u3(t') dt’ (1.2)

with (ug,u1) lying in H® x H*~'. Here H® is the usual inhomogeneous Sobolev
space; i.e., H® is the completion of the Schwartz space S(R?) with respect to the
norm

[fllzs == (L + D) fll 2rs) (1.3)
where D is the operator defined by
DJ(&) = I/ (©) (14)
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and f denotes the Fourier transform

f©) = [ f@ye=Sda (15)
Here H® x H*™! is the product space of H* and H*~! endowed with the standard
norm [|(f, 9)|[ s xma=1 = [ fllme + gl -1

It is known [11] that is locally well-posed in H*(R3) x H*~1(R®) for s > 1.
Moreover if s > % the time of local existence only depends on the norm of the initial
data || (uo, u1)|| s xms—1-

Now we turn our attention to the global well-posedness theory of (L.1)). In view
of the above local well-posedness theory and standard limiting arguments it suffices
to establish an a priori bound of the form

(D) s + 10T [ re-2 < Cs, (Juolls lual) e scrzs—1, T) (1.6)

for all times 0 < T < oo and all smooth-in-time Schwartz-in-space solutions
(u, Opu) = [0,T] x R® — R, where the right-hand side is a finite quantity depend-
ing only on s, ||ug||ms, ||u1]|gs-1 and T. Therefore in the sequel we shall restrict
attention to such smooth solutions.

The defocusing cubic wave equation enjoys the following energy conserva-
tion law

E(u(t)) :== %As(atu)2(m,t) dx—i—% . |Du(z, t)|* do + E/RS ut(z,t)de  (1.7)

Combining this conservation law to the local well-posedness theory we immediately
have global well-posedness for and for s = 1.

In this paper we are interested in studying global well-posedness for and
for data below the energy norm, i.e s < 1. It is conjectured that is globally
well-posed in H*(R3) x H*"*(R?) for all s > 1. The global existence for the
defocusing cubic wave equation has been the subject of several papers. Let us some
mention some results for data lying in a slightly different space than H® x H*7 ! i.e
H* x H~'. Here H* is the usual homogeneous Sobolev space i.e the completion

of Schwartz functions S(R3) with respect to the norm

1 llrs = 11D fllL2ms) (1.8)

Kenig, Ponce and Vega [9] were the first to prove that is globally well-
posed for 1 > s > %. They used the Fourier truncation method discovered by
Bourgain [2]. Gallagher and Planchon [7] proposed a different method to prove
global well-posedness for 1 > s > % Bahouri and Jean-Yves Chemin [I] proved
global-wellposedness for and for s = % by using a non linear interpolation
method and logarithmic estimates from Klainermann and Tataru [10]. We shall
consider global well-posedness for the radial defocusing cubic wave equation i.e
global existence for the initial value problem with radial data. The main

result of this paper is the following one

Theorem 1.1. The radial defocusing cubic wave equation is globally well-posed in
H® x H*7! for1> s> %. Moreover if T large then

16s—10+

(T 17 + 10eu(T) 3o < Clluoll e, lluallge—1)T 10557 (1.9)
for % > 5> 1—70 and
_2s
(T3 + 10cu(T)13o-1 < Cllluollme, lua || gra-)TZ1F (1.10)
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for 1> s> 2. Here C(|luol| -,
and ||upl|gs—1-

|u1||grs—1) is a constant only depending on ||uol| g+

We set some notation that appear throughout the paper. Given A, B positive
number A < B means that there exists a universal constant K such that A < KB.
We say that K is the constant determined by the relation A < B if Ky is the
smallest K such that A < KB is true. We write A ~ B when A < B and B < A.
A < B denotes A < KB for some universal constant K < ﬁ . We also use the
notations A+ = A+ ¢, A— = A — € for some universal constant 0 < ¢ < 1. Let V
denote the gradient operator. If J is an interval then |J] is its size. If F is a set

then card(F) is its cardinal. Let I be the following multiplier

T1(€) = m(&)f(€) (1.11)
where m(§) := n(%), 7 is a smooth, radial, nonincreasing in |£| such that
1, §l<1
= 1.12
"o {Q)“, € >2 (112

and N > 1 is a dyadic number playing the role of a parameter to be chosen. We
shall abuse the notation and write m(|¢]) for m(€), thus for instance m(N) = 1.

We recall some basic results regarding the defocusing cubic wave equation. Let
A € R and uy denote the following function

1 t«z

t,2) = ~u(~, =

us(t,x) = su(s, %)

If w satisfies (L.1) with data (ug,u1) then wuy also satisfies ((1.1) but with data

(tuo(%), szu1(%)). If u satisfies the radial defocusing cubic wave equation then u
is radial.

Now we recall some standard estimates that we use later in this paper.

(1.13)

Proposition 1.2 (Strichartz estimates in 3 dimensions [8, [I1]). Let m € [0,1]. If
u s a strong solution to the IVP problem

Opu—Au=F
u(0,x) = f(z) € H™ (1.14)
(0, ) = g(x) € H™ !
then for 0 < 7 < oo we have
lullLg o,y + 1wl o, my + 10l go,7,m-1)
S W e + gl grm—s + 1 23 g0,y 7
under two assumptions

e (q,r) lie in the set W of wave-admissible points; i.e.,

<

} (1.15)

S|
N

W= {(g,r) : (g,r) € (2,0] x [Zoo),é—i—

e (q,7) lie in the dual set W' of W; i.e.,

1 1 1 1
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e (q,7,q,7) satisfy the dimensional analysis conditions

1 3 3

I 1.17
q+r 5~ (1.17)
1 3 3

4t _9_Y_g. 1.18
i 58 (1.18)

We also have the well-known estimate
Proposition 1.3 (Radial Sobolev inequality). If u: R® — C is radial and smooth,
then

fua)] < 1elin (1.19)
2]

The Hardy-type inequality is proved in [3].

Proposition 1.4 (Hardy-type inequality). If 1 < p < 3 and u : R® — C is smooth,

then
u

3
— e < o——|DfllLr 1.20
Il < 5211011 (1.20)
Some variables appear frequently in this paper. We define them now.
We say that (g, r) is a m-wave admissible pair if 0 < m < 1 and (g, r) satisfy the
two following conditions
e (¢,r)EW
° % —+ % = % -m
Let J = [a,b] be an interval included in [0, 00). Let
Zm,s(J) = SUP(HkaIUHL;I(J)L; + [|D™" 10wl e )Ly ) (1.21)
q,T

where the sup is taken over m-wave admissible (g, r), and let

Z(J):= sup Zps(J) (1.22)
me[0,1)
Let
Ri(J) = / W((W(t,x) 1At ) dadt (1.23)
and o
Ro(J) = [ fpo P2 (T (¢, ) — Tud (¢, @) dadt (1.24)
If J = [0, 7] we shall abuse the notation and write
Z(t):=Z(J)
R(r) := R(J)

Some estimates that we establish throughout the paper require a Paley-Littlewood
decomposition. We set it up now. Let ¢(§) be a real, radial, nonincreasing function
that is equal to 1 on the unit ball {¢ € R3 : [¢] < 1} and that that is supported on
{€ e R?: |¢] < 2}. Let ¢ denote the function

P(£) == d(§) — (26) (1.25)

If M € 27 is a dyadic number we define the Paley-Littlewood operators in the
Fourier domain by

€

Perr}(€) = 6(37) ()
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Parf () = (37 F(€)

Porif(€) = f(&) — Pearf(6)

Since Yy /e0z d)(%) = 1 we have

f=> Puf (1.26)

Me2z

We conclude this introduction by giving the main ideas of the proof of theo-
rem and explaining how the paper is organized. Following the proof of the
global well-posedness for s = 1 we try to compare for every T > 0 the relevant
quantity [|(w(T), Opu(T))|| s x grs—1 to the supremum of the energy conservation law
supyeo,r) £(u(t)). Unfortunately this strategy does not work if s < 1 since the en-
ergy can be infinite. We get around this difficulty by using the I-method designed
by Colliander, Keel, Staffilani, H.Takaoka and Tao [5] and successfully applied to
prove global well-posedness for semilinear Schrédinger equations and for rough data.
The idea consists of introducing the following smoothed energy

1 1 1
BE(Tu(t)) == 5/]1@3 10, Tu(z, )| do + §/RB \DIu(z, )2 do + Z/]Rg Tu(w, )[4 da

We prove in section [3| that |[(u(T),du(T))||3. yo—1 and the supremum of the
smoothed energy on [0, 7] are comparable. Therefore we try to estimate the qun-
tity sup,e(o,r) £(Iu(t)) in order to give an upper bound of || (u(T"), Opu(T))| s s prs -1 -
For convenience we place the mollified energy at time zero into [0, %] by choosing
the right scaling factor A. This operation shows that we are reduced to estimate
supyepo,ar) E({ua(t)). In section {4 we prove that we can locally control a vari-
able namely Z(J) provided that the interval J satisfies some constraints that give
some information about its size. sup,c; E(Iux(t)) is estimated by the fundamen-
tal theorem of calculus. The upper bound depends on the parameter N and the
controlled quantity Z(J). This estimate is established in section [5} Now we can
iterate: the process generates a sequence of intervals (J;) that cover the whole
interval [0, AT] and satisfy the same constraints as J. We should be able to es-
timate sup;cpo A7) E({ux(t)) provided that we can control the number of intervals
J;. This requires the establishment of a long time estimate, the so-called almost
Morawetz-Strauss inequality. This estimate is proved in section [6] It depends on
some remainder integrals that are estimated in section[7] Combining this inequality

to the radial Sobolev inequality (1.19) we can give an upper bound of the cardinal
of (J;). The proof of theorem is given in section

2. PROOF OF GLOBAL WELL-POSEDNESS FOR 1 > s > 7/10

In this section we prove the global existence of (1.1]) for 1 > s > 7/10. Our proof
relies on some intermediate results that we prove in later sections. More precisely
we shall show the following results.

Proposition 2.1 (H*® norms and mollified energy estimates). Let T' > 0. Then
[a(T) 77+ + 10T Fer S MluolFye + (T + 1)ts[up E(Iu(t))  (2.1)
€10,

for every u.
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Proposition 2.2 (Local boundedness). Let J = [a,b] be an interval included in
[0,00). Assume that E(Iu(a)) < 2 and that u satisfies (L.1). There exist C1, Cy
small and positive constants such that if J satisfies

C

||IU||L?(J)L§ < |J|1%, (22)
A-s

|J| < CoN<—2 (2.3)

then Z(J) < 1.

Proposition 2.3 (Almost conservation law). Let J = [a, b] be an interval included
in [0,00). Assume that u satisfies (L.1). Then

|sup B(Tu(t)) ~ B(lu(@))] £ 7=

(2.4)

Proposition 2.4 (Almost Morawetz-Strauss inequality). Let T > 0. Assume that
u satisfies (1.1). Then

/T |[Tul* (t, ) <
o /Rgx|dxdt2(E(Iu(0))+E(Iu(T)))N|R1(T)|+|R2(T)|. (2.5)

Proposition 2.5 (Estimate of integrals). Let J be an interval included in [0, 00).
Then if i = 1,2 we have

(2.6)

For the remainder of this section we show how propositions and
imply Theorem [1.1

Let T > 0 and N = N(T) > 1 be a parameter to be chosen later. There are
three steps to prove Theorem [T1]

(1) Scaling. Let A > 1 to be chosen later. Then by Plancherel theorem

e N2(1—s) e
IDISOE S [ PO+ /WN P ey R (0. O e

S N un (0)]17, (2.7)
S N2 g 2,

< N2y
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N2(1 s)

oLl 5 [ jan(0.0Pde + / N Gun (0, ¢
gl<2N |

|€|>2N €
< N2 0pux (0) | e

SN ([ . 0F der [P0 0,07 )

[€]1>1
1 — —2s s—1)|—~
SN (5 [ P ae N [ P mEeP de)
A Jjgl<a €1
S NZAZN=28 gy |3,
2.8)
By homogeneous Sobolev embedding,
[Tux(0)[|7
S [ et Tn 0.0
RS
<[ rermo.oras [ et w0
~ Ux 9 (U5
l€|<2N l€]>2N |€[2(1=9) (2.9)
1 _
[l de s NN [ e b P e
AZ Jjg|<aNa |€[>2N X
max N%*%)\%’%,l 3 _9g\1-92s
< T o+ NE2A 2
Hence
[ Tux(0)[134 < N2E=DN728 g 4. (2.10)

By [2.7), (2.8) and (2.10]) we see that there exists Co = Co(||uo| g,
that if A satisfies

||| grs—1) such

2(1—s)

A= CyN =1 (2.11)

then

E(Iuy(0) < (2.12)

[N

(2) Boundedness of the mollified energy. Let Fr denote the set

Fr={T"€[0,T]: sup E(Iux(t)) <1and
te[0,AT"]

1
[ TuxllLs o arpyze < (16C2)s + 1}
with Cs being the constant determined by < in (1.19) and A satisfying (2.11]). We
claim that Frp is the whole set [0,T] for N = N(T') > 1 to be chosen later. Indeed
e Fr # () since 0 € Fr by (2.12).

e [7p is closed by continuity and by the dominated convergence theorem
e Fr is open. Let T" € Fp. By continuity there exists > 0 such that for
every 77 € (T' — 6,7’ + 6) N [0, T] we have

sup E(Tux(t)) < 2, (2.13)
te[0,\T"]

1
[HuxllLeoarre < (16C5)% +2. (2.14)
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We are interested in generating a partition {J;} of [0, AT"] such that and
are satisfied for all J;. We describe now the algorithm.

Description of the algorithm. Let L be the present list of intervals. Let L be the sum
of the lengths of the intervals making up £. Let n be the number of the last interval
of L. Initially there is no interval and we start from the time ¢ = 0. Therefore £
is empty and we assign the value 0 to L and n. Then as long as L < AT’ do the
following

(1) consider fr.(7) = [[Tux|lzs(z,4+r)rs — %7 7 > 0 with C defined in 1)

(2) since fr, is continuous, does not decrease and fr(7) —» —coasT — 0,7 >0
there are two options
e f1 is always negative on [0, \T” — L]: in this case if (2.3]) is satisfied
1—s
by [L, AT’] then let J,, := [L,\T"]. If not let J,, := [L, L + CoN*"%].

e f1, has one and only one root on [0, \T” — L]: in this case let 79 be this
root. If (2.3)) is satisfied by [L, L + 7] then let J,, := [L, L + 7). If not
1—s

let J,, :=[L, L+ CyN %],
(3) assign the value L + |J,,| to L.
(4) assign the value n + 1 to the variable n
(5) insert .J,, into £ so that £ = (Jj)je(1,....n}
When we apply this algorithm it is not difficult to see that

d1=s
o [[Tuxllzs(s,yLe = i or |Jj| = CoN*~3 for every j € {1,...,card(L) — 1}

1513
o J;NJ, =10 for every (j,k) € {1,...,card(L)}? such that j # k

. U;ir? (£) J; is a left-closed interval with left endpoint 0 and included in

[0, \T"]. Moreover U;irf(c) J;j = [0, \T"] if the process is finite.

Let
Cy
L1 =1{Jj,J; € L, |Tulzs(s,)6 = 7|J-|l H (2.15)
7 3
Lo={J;,J; € L,|J;| =CoN* 3} (2.16)

We have (J;) eq1,....card(c) -1} C £1 U L2. We claim that card(L;) < oo, i =1,2. If
not let us consider the mq, mo first elements of £q, Lo respectively. Then

1—s

miCaN ™% < AT’ (2.17)
By Hoélder inequality and by (2.14]) we have

mo

my = Y || P

Jj=1

ma g i mo )
<Q_ ) QDY (2.18)
j=1 ‘ J‘ j=1
< HullZg o ey (AT)?/*
< (TR

Letting my and mgy go to infinity in (2.17) and (2.18) we have a contradiction.
Therefore card(£) < oo and U;irf(ﬁ) J; = [0,A\T"]. Moreover by l| 1’
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(2.18]), we have
AT

card(L) S (\T)2/3 4 o 4 1S N5 T2/3 1 T4 1 (2.19)
Nz

Now by [2.12), [2-13), [2.19), proposition andwe get, after iterating,

Nﬁs 723 LT 41

sup E(Tux(t = 2.20
o (Tua(t)) — 2 Nis (2.20)
and
AT’ |IU)\ ,
le L ddt - 2 E(ITux(AT")) + E(Iux(0)))
RS
2 card(L;)
SN R (2:21)
i=1 j=1
_NEETY 4T 41
N le
By (1.19), (2.13), (2.21) and the inequality (1 + )5 <14z, z >0
4(1—
L NEETB T4
[ Tuxll Lo o aryyre — (16C3)5 < Ni- (2.22)

Let C', C” be the constant determined by < in (2.20), (2.22) respectively. Since
5> 1—70 we can always choose for every T > 0 a N = N(T) > 1 such that

4(1—s)
max (C/,C")N &=3 T%/3 1
<= 2.2
o =5 (223)
max (C',C"T 1
—_— < = 2.24
T L (2.21)
max (C',C") 1
_ = < .
le <z (2.25)

By (2-20), (2.22), (2-23), (2. 24[) and we have sup,cjo \p) E(Lux(t)) <1 and
[ Luxll s o rryLe < (16C2)s + 1. Hence FT = [0,T] with N = N(T) satisfying

[2.23), (2.24) and ([2.25).

(3) Conclusion. Following the I-method described in [5]

sup E(Tu(t)) =X sup E((Tu)x(t)) S A sup E(lux(t)) S A (2.26)
te[0,T] te[0,\T te[0,\T

Combining ([2.26)) and proposition we have global well-posedness.
Now let 7' be large. If 2 > s > & then let N such that

0.9 max (C',C")N w=12/3
F < NIz < (2.27)

Notice that (2.24]) and ([2.25) are also satisfied. We plug (2.27) into (2.26) and we
apply proposition to get l) Ifl1>s> % then let N such that

0.9  max(C',C"T 1

—_— < — < - 2.28

6 — Ni- ~6 (228)
Notice that (2.23) and (2.25) are also satisfied. We plug (2.28)) into (2.26]) and we
apply proposition to get (1.10)).

=
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3. PROOF OF THE H® NORMS AND MOLLIFIED ENERGY ESTIMATES

In this section we are interested in proving proposition By Plancherel theo-
rem

() By S POy + [
1<|¢[<2N

m%m@fwﬁ+/' €2 (T, )2 de
[£|>2N

But

/ W%WZOF%S/ € (T, ) de
1<[¢|<2N |€|<2N

< /RS |DIu(T,x)|” dx
S E(Tu(T))

(3.1)

*la 2 2@ - 2
/|£|>2N E1a(T o)l dfg/ €l REG) [a(T, §)|" dg

|§1>2N

3.2
5/ |DIu(T, )| dx (3:2)
R3

S E(Iu(T))

and by the fundamental theorem of calculus and Minkowski inequality

T
[P<1w(T) || s S | P<yuol|ar +/ [1P<10pu(t)| m- dt
0

S lluollms +T sup |0 Tu(t)] 22
te[0,T]

which implies that

I P<iu(T)|[%e S lluollzre + T sup E(Tu(t)) (3.4)
t€[0,T]
We also have
10cu(T) |1 3o—1 S E(Tu(T)) (3.5)

Combining , , and we get .

4. PROOF OF THE LOCAL BOUNDEDNESS ESTIMATE

We are interested in proving proposition in this section. In what follows we
also assume that J = [0, 7]: the reader can check after reading the proof that the
other cases can be reduced to that one.

Before starting the proof let us state the following lemma.

Lemma 4.1 (Strichartz estimates with derivative). Let m € [0,1] and 0 < 7 < 0.
If u satisfies the IVP problem

Ou=F
u(t=0)=f (4.1)

then we have the m-Strichartz estimate with derivative

lullze oz + 19D~ ullpaqornie S 1l + Nollims + 1 g ompue (42)
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for (¢g,7) €W, (q,7) € W and (q,7,q,7) satisfying the gap condition
1 3 3 1 3

4 = _m=—4+_9 4.3
q—i—r 5~ ™M q+f (4.3)

We postpone the proof of lemma to subsection Assuming that is true
we now show how lemma implies proposition [2.2]
Multiplying the m-Strichartz estimate with derivative (4.2) by D'~ we get

Zin,s(1) S IDTuol 2 + [Tusllz2 + 1D " IF || 131019y

(4.4)
<1+ D mIF||Lq

([o,7) L7~

The remainder of proof is divided into three steps.

First Step. First we assume that m < s. Notice that the point (1 -, 6) is s-wave
admissible. In this case we get from the fractional Leibnitz rule the Hélder in time
and the Holder in space inequalities

Zmo(T) S 1+ | D1 (wuw))| e
Li([o,r LI~
<1+ D' | [l Z2 0,77y e

Lo, hLd > o

2
<1 st ( 3| P. T ] 2 P )
S+ Zn,s(T) (73 | P<null oo, ryze + 77 2| >N“HL1 (opre/  (4.5)

1 1D SIUHL1 °([0,7)Ls \ 2

S+ Zna() (P52l 0,y + 7 )
1 ZS’S T 2
1t Zi o) (Pl o s + 7 2D

Assume m = s T hen if we apply a continuity argument to (4.5) we get, from the
inequalities ([2.2) and .,
Zss(1) S 1 (4.6)

Now assume m < s. Then if we apply a continuity argument to (4.5) and the
inequalities (2.2]) and (4.6]) we get
Zms(T) S 1 (4.7)

Second Step. We assume m > s. By (4.5)), (4.6), (4.7)), (2.2) and (2.3) we have

w4 Z,.(7)

_ 1
||D1 rl(uuu)HL%([O,‘r])Lf’%” S_, Zr,s(T)(7'3 HIuHL?([Oﬂ'])L(; + N1 s )2 5 1
(4.8)
for r < s. The inequality
D'V I (uuu < | D' I (wuu i 4.9
DI SID I (49)

follows from the application of Sobolev homogeneous embedding. We get from

@4). G and E9)

Zm.s(T) <1+ || DV I (wun
A SLH D )]

<1+ ||DY" T (uuw)| o <1
Lo )LE >

(4.10)
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4.1. Proof of lemma By decomposition it suffices to prove that uj(t) =

eFDf ud(t) = eil; g and (¢ fo Lsin ((t — ¢')D)F dt’ satisfy |D
We have dyuj(t) = :I:zDei”Df and 8tul = +et*Pg. We know from the
Strichartz estimates that

1D 0 || oo, mzn S 1€ fllzs qo.myzr S 1N gm (4.11)

and
D~ atuz ”Lq([O )Ly = HeinDD 9||L" ([o,7)L < 1D~ 9||Hm S lgllgm-1 (4.12)
We also have

D 0, (t) = /t cos ((t —t")D)F(t') dt’ (4.13)
0

and by the Strichartz estimates

t
| D™ Orun g o,y < | / D1 IR | 1y o,z
0

t
+ / D P B | oy D

< ||F||Lq (fo,7])L%

Inequality (4.2)) follows from (4.11] , and (4.14).

5. PROOF OF ALMOST CONSERVATION LAW

Now we prove proposition In what follows we also assume that J = [0, 7]:
the reader can check after reading the proof that the other cases can be reduced to
that one.

Let 79 € J. It suffices to prove

E(Tu(r)) = E(ru(o))] < 20 6.1

In what follows we also assume that 79 = 7: the reader can check after reading the

proof that the other cases can be reduced to this one.
The Plancherel formula and the fundamental theorem of calculus yield

E(Iu(r)) — E(Iu(0))
= / ' / 11, €3, €0)D Tu(t, &) Tult, &) Tult, &) Tu(t, £4) déadEsdEadt
E1+-+€4=0

with
m(&z + &3 + &)

" e m{E)m(Es) (5:2)

N(52,§3yf4) =
It is left to prove that
| (6, €0, €00 Tult, €0) Tult, &) Tult, &) Tult, €1) déadgadey di]
E1+-+€4=0

4
_ Z4r)

(5.3)
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We perform a Paley-Littlewood decomposition to prove (5.3)). Let u; = Py,u with
ie{l,...,4} and let

X = ‘/ / M(§27£37§4)m(t7§1)n\2(t,62)
0 JE&i+-+84=0 (54)

x Tug (1, &) Tus (1, €4) déad€adadt)
There are different cases resulting from this Paley-Littlewood analysis and we de-
scribe now the strategy to estimate (5.3]). We suggest that the reader at first ignores
the second and third steps of the description and the NV ji appearing in the study

of these cases to solve the summation issue.
Description of the strategy

(1). We follow [6] to estimate X. First we recall the following Coifman-Meyer
theorem [4], p179 for a class of multilinear operators

Theorem 5.1 (Coifman Meyer multiplier theorem). Consider an infinitely differ-
entiable symbol o : R™" — C so that for all « € N there ewists c(a) such that for
all € = (&1,...,&) € R7F

c(a)

|a?‘7(5)| < W

(5.5)
Let A, be the multilinear operator

Ao(fio s fi)(@) =/R o, G a6 dé - d
(5.6)
Assume that g; € (1,00), j € {1,...,k} are such that % = q% 4+t qik < 1. Then
there is a constant C = C(gj,n,k,c(a)) so that for all Schwarz class functions

fioooos fa
A6 (f1s s fi)llLagny < Cllf1llLa@ny - - - | frll Lar mny (5.7)

Then we proceed as follows. We seek a pointwise bound on the symbol

|11(€2,&3,84)| < B(Na, N3, Ny) (5.8)
We factor B = B(Na, N3, N4) out of the right side of (5.4) and we are left to
evaluate

B[ [ A @0 Tualt) Tuste)60) T 60 d

We notice that the multiplier % satisfy the bound (5.5) and by the Plancherel
theorem, Holder inequality, theorem [5.1] and Bernstein inequalities we have
X S Bll0eTuall pos o rpyzar M uzll ez o, mypez - - M wall a0, 7y £

S BN NG~ NS0 D T Tu || o o,y £ (59)
x || DY Tug|| g2 o, rpy a2 - - 1D Tua| o 0,y 20 .

< BN Ny»==t NPT Z4 ()
with (p;, q;) such that p; € [1,00] and g; € (1,00) for j = {1,...,4}, ¥j_, ;- =1,

ijl q% =1, (pj;, gj) mj-wave admissible for some m}s such that 0 <m; < 1 and
1 4 1
pj aj

= 1. In other words (pj,q;) = (2, =2—).

L) — .
mj’ 1—m;
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(2). The series must be summable. Therefore in some cases we might create N,;t
for some k's by considering slight variations (pr+, qk:t) [1,00] x (1,00) of (p, k)
i + qkli = % For instance if we
create slight variations (p2+,g2—), (pa—,qa+) of (p2,q2), (p4,qa) respectively we
have

||[U2HL§)2+L227 5 N;Ngnq_l||D1*(m27)I’U/2||L52+L;}‘2* ( )
‘ ! 5.10
HI“4||L§4-L24+ < Neru—l||D1—<m4+)IU4HLf4_LZ4+

and (5.9) becomes
X < BNy NfN™Ny=—t N 28 () (5.11)
(3). When we deal with low frequencies, i.e N < 1 for some k € {1,...,4} we

might consider generating N, by creating a variation (2+,00—) of (2,00). Such a
task cannot be directly performed since we unfortunately have

1wl 2+ g € N ID' =0 Ty 4 oo S Ny Z(7) (5.12)

But we can indirectly create N ,j by appropriately using Holder in time inequality.

Indeed if € > 0, ¢ > 0 and ¢’ > 0 are such that § = % — %” we get from Bernstein
inequalities, Holder in time inequality and Sobolev homogeneous embedding

Uk < N D Iuk
e L (ot Y E L HLl “ (0, LS
5 N7
7 ([0, LE
< NE 5T D+ Ty, || (5.13)
L7 (0A)LE
5 N;//fe

%
T (o)L
< N7 T 4 (r)

We would like ¢ > ¢’. A quick computation show that it suffices that ¢ > 3e.
Letting ¢’ = 5e we get

([Tl S Nt Z(r) (5.14)

1 2
Ly (([0,7])) L
Now if we choose € > 0 so small that |7]|?¢ < 2 we eventually get

||]uk||Lf+(([0,-r]))L;°’ < NJZ(T) (5.15)

For the remainder of the paper we say that we directly create IV, ki if we directly use
Bernstein inequality like in or and we say that we indirectly create IV;] -+
if we also use Holder in tlme 1nequahty to get - This completes the general
description of the strategy.

Let us get back to the proof. By symmetry we may assume that No > N3 > Ny.
There are several cases.

Case 1: N > N; > Ns. In this case X = 0 since pu = 0.
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Case 2: N3 2 N > Ns. In this case we have

Vm(E)llés + &l
e, ) 5 Tl Tl o

We also get N1 ~ Ny from the convolution constraint &; + - -+ 4+ &4 = 0. We assume
that Ny > 1. By (5.16) and by the Bernstein inequalities we have

(5.16)

N3
X3 *||3tIU1||L6 (o, vzl g o,z [Husll Ly o,mrz [ uall 2+ 0,1y 3o~
N3 _ _
<N+N4 7N13N2 2/3 2/3||8D (3 +)IU1HL’3 (0,7 L2+

x || D75 Tug | Lg(go,r1y 23 |1 D'~ Tus || oo,y 2z |1 D' Tuall 2+ o gy o
N N4’
after directly creating N1+ and N, . If Ny < 1 the proof is similar except that we

- N+
indirectly create N; to get X < %Z 4(7). This makes the summation possible.
We get (5.3) after summation.

Z4(r)

Case 3: N3 2 N > Ny. In this case we have

|:U’(£27 e 754)' S
There are two subcases:

Case 3.a: N; ~ Ny. We assume that Ny > 1. By (5.17) we have

I\
X3 Ni-s ||81t[u1||L6 (07])L3+HIU2HLG([O ) L3||Iu3||L6 [OT)L3||IU4||L2+(07])L°°*

1—s

m(&1)
m(&2)m(&3)m(&s)

(5.17)

_ N —2/3 —2 3
SNIND NP Ny AN, DG 3 T | po- (0,79 13+
x || D=3 Tua | 1o 10,7113 | D 7§IU3||L§>([0,T])L3||D17(17)IU4||L§+({O,T])L;°*
N N,
S ]%1_4 Z4(7)

after directly creating N; and N, . If Ny < 1 the proof is similar except that we
indirectly create N,". We get (5 after summation.

Case 3.b: N; < Ns. In this case by the convolution constraint & + -+ &, =0
we have Ny ~ N3. There are two subcases

Case 3.b.1: N; < N. We assume that Ny > 1 and Ny > 1. By (5.17) we have

2(1—s)
Xs m [0eTuall 5= (0,7 L2+ w2l Ly 0,7y p2 Husll L (0,71 22

X Ml 2+ po,ry 2=
N2(1 s)

+
N N4 N2(1 s)

- - (1
NN, 2/3]\73 2/3||atD (3+)]u1||L§_([07T])L3+

_1 —(1—
X |DY= % Tua| 1o 0,77y z2 1 D'~ Tus|| g [ D'~ ) Tugll g2+ o,y 12~

Ny Ny Ny
N 2
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after directly creating N;~ and N, . If N; < 1 and Ny < 1 the proof is similar
except that we indirectly create N; and we substitute N~ for N;". The proof for
the other cases [[]is a slight variant to that for the case Ny > 1, Ny > 1 and that
for the case N1 < 1, Ny < 1. Details are left to the reader. We get after
summation.

Case 3.b.2: N; > N. We assume that Ny > 1. By (5.17) we have

N22(1*5)
S W||3tlul||L$*([o;])Li+||IU2HL§([0,T])L§||IU3||L§([0,T])L3
1
x| uall L2+ o,ry 2o
N2(175) L 9/3.,-2/3 (1
S NN N PN 10D G Tun | o g0, 1+

x || D'=5 Tuy I£s o, ze 1D 3 Tus|| £o (0. 1 ||D17(17)Iu4”Lf'*'([O,T])L;O_

N Ny
S 2tz

after directly creatmg N and N . If Ny < 1 the proof is similar except that we
indirectly create N, 4+ We get (5 after summation.

Case 4: Ny 2 N. There are two subcases.

Case 4.a: N1 ~ Ny. By (5.17) we have

Nl le s
S Nl—s N1- ~is 0 unll Lo, mypa lwall a+ (o ) o= L usll Lo o, 7y 2
X | uall o= o7y par
Nl eNl K} 1] 1 1
< Ny Nf =N T lllat “2 g o,y

4 s s L
Nl-s N1- N2N

x| DY Tus | s+ 1oy o= 1D 2 Tus| 3 o,rpy2a |1 D50 T 1310,y 28

after directly creating N5 and Nz' . We get (5.3) after summation.
Case 4.b: N; < N,. In this case we have Ny ~ N3. There are two subcases

Case 4.b.1: N; 2 N. By (5.17) we have

2(1 s) Nl s Nl-s
Xz N2(1 5) N1- SNl 3H8tful||L4 ([0,7]) L4||IU2HL4 oT])L4||IU3||L4([oT])L4

X [[TuallLacjo, 7y L1

N;UT NI N a1 ,
~ N22(lfs) Néifs N11—3N2 Iy FNl 10:D 21u1\|L§([o,T])L§
2 3

_1 _1
X || D' 2 Tug|| £a((o,r7y 24 | D* 21U3||L3([0,71)Lg||D1 2 Tual| L4 (jo,7)) L2

HeNi>1,Ny<lorNi <1, Ny>1
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< N2
We get (5.3)) after summation.

Z%(r)

Case 4.b.2: Ny < N. We assume that N; > 1. We have

N2(1 5) Nl s
S vea=sy yims l0eduillnaqomyea liTuzllpaqomyea T usl Lego,my e

X | Tusl (0,74

NN a1 , ,

e M 18D Tug | 1 0y 2 D% Tuia | 1 0.1y 1

S Ne2i=e Nis o Ko7 LA H(0.r)Ls
' N Ni NP

_1 1—1
X | D72 Tug|| 3 jo,ryy L4 1D~ 2 Tual| L o,7)) 23

N;{ Ny
S Lzl

If N1 < 1 the proof is similar except that we create N1+ instead of Ny . We get
(5.3) after summation.

6. PROOF OF ALMOST MORAWETZ-STRAUSS INEQUALITY
We prove proposition in this section. The proof is divided into two steps

First Step: Morawetz-Strauss inequality. We recall the proof of this inequal-
ity in [12], I3]. We have the identity

z.Vu U
il - A 3
Ol fap) (e = 20
1
= 8t(| |(Jc Vu + u)opu) + div [| | ( - 5(8tu)2 — (x.Vu)Vu (6.1)
2 2 4
1 2 u 14 1 s (2.Vu) u
+ 51Vl — v aap” 1" o)) + Vel =T ) o

and since u satisfies (1.1 we have, after integration,

T T 4
4
27r/ u2(t,0)dt+/ / u ’m)d:cdt
0 o Jrs 2lz|

Vu(T,z).x  w(T,z)

= Rs( ] + |x7| VOuu(T, x)dx
Vu(0,z).x  u(0,z)
_|_/Ra( ] + 2] )0:u(0, z)dx

a|2 lb|?

Now we apply the basic inequality |ab| < £~ to the right hand side of the

integral and we get

Vu(T,z).x w(T,z) )
//Rs 2|x| d dt < 2/11@( 2] + 2] )2 + (Opu)*(T, z)dx

wg [T OD s G0,

|| ||

(6.2)
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We also notice that
Vuzr u )2 ~ (Vua)? u? u?

— +div(—sz) < |Vul> + dlv( x) (6.3)
( \ml ] ]2 ]2 |z[?
We substitute into . We get the Morawetz-Strauss’s inequality
/ /R R 2 b dt < 2B(u(T)) + Bu(0))) (6.4)

Second Step. Almost Morawetz-Strauss’s inequality. We substitute u for Iu in
(6.1) and we proceed similarly. We get

I
/ / | “|| ‘” do dt — 2(E(Iu(T)) + E(Iu(0)))
R3 T
< |Ru(T) + Ro(T)]
< |Ru(T)| + [R2(T)]
7. PROOF OF THE INTEGRAL ESTIMATES

We are interested in proving proposition in this section. In what follows we
also assume that J = [0, 7]; the reader can check after reading the proof that the
other cases can be reduced to that one.

Plancherel formula yields

/ / f%ﬁ&@)vmx(t &)
E1+-+€4=0 | |

X I’U,(t7 fg)IU(t,Eg)IU(t, 54)d£2 e d§4 dt

and
= / / (€ €9, €0 L (1, €0V Tult, €0)Tu(t, €5) Talt, €0)ds .. des dt
§1+‘ '+§4 |l‘|

with p defined in . It suffices to prove

| / / (o €5, 60) 0T (1 €V Ta(t, &) Tou(t, £3) Tt £4)dEs . . €, dlt
1+ ~+£4=0 ‘ |

N Nl_
(7.1)

/\

‘/T/g ) (52,53,54)| |(t El)lu(t gg)lu(t §3)Iu(t £2)dEs ... dy dt‘

+84=0 (7.2)

We perform a Paley-Littlewood decomposition to prove (| . ) and . Let u; :=
PNiuvie{Zv"'ll}a(VIu'x) PNl(VI ;c) and(|x|) PNI(‘1|)

|] ||

X1 = ’/OT /£1+__.+€40 (&2, €3, €4)

Viuz
X (———

||

)1t €0)Tun (b, €2) T (8, €0) Tua (£, €4) e . da



EJDE-2007/166 RADIAL DEFOCUSING CUBIC WAVE EQUATION 19

and

o= [ [ 52,53,54)(‘ D)
x Tun(t, &) Tun(t, &) Tua(t, €4)des . . . déy dt'

Notice that by Bernstein inequality, Holder inequality, Plancherel theorem and

(1.20) we have

H(Vlu-x) ‘ +HVIu-x)
2| Ulze-qopezt ~ I Jaf llogeqomez
< NIV Tl e (o, L2 (7.3)
< N |IDIu| o< o,y 22
and
Iu
||(|x| HLOO_ ([0,7) L2 ~ N+H 2] ||L°° ([0,7)L2 ~ S NI DIul L= o,7)) 2 (7.4)

If pj € [1,00] and ¢; € (1,00), j € {2,...,4} such that — + Z?ZQ% =1,

(2%-1-2? 2 qi = 17 (pj,q;) -m; wave admissible for some m’. s such that 0 < m; <1

j
and —J + 5 = then we have by the methodology explained in the proof of
PrOpOblthn @
VIu :U
X1 S B(N2, N3, Nu)[|(——— ||L§’°’([O,7—])L§+
||IU2HLf2([o,T])Lg2 e HIU4||L54([0,T])L§4
and

Tu
X2 ,S B(NQ, N37 N4)||(m)l ||Lfc_([0,7'])L§+ ||Iu2||LfQ([O,T])Lg2 ‘e ||IU4HLf4([O,T])Lg4
By symmetry we can assume that Ny > N3 > N4. There are different cases

Case 1: N >> Ny > Ns. In this case X; =0 and X5 = 0 since p = 0.

Case 2: Ny 2 N >> N3. By (5.15), (510), (7:3) and (7-4) we have

Viu.x
b EH(W 2o o, 22+ U2l Lae 10,7 22
. HIU?’”L?*([O,T])L‘;"*||IU4||L$+([0,T])L;°*
N3

oAy QNJNIHDIUHLS%[O,T])L?E [ DIuz|| e (0,72

HDl @ 7)IU3||L3+([0,T])L;<>||D17(17)IU4||Lf+([o,r])Lg°*
< ]\/'77]\75r

< 2 74

and
X2 S Ny H 2| HLoc [oT])L2+||I“2||L°° ([0,7)L2

HIUSHL&([O,T])L;O* ||IU4||Lf+([o,T])Lg°*
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N
N N3N+N N3N || DTull e (0.7 22 1D Ttz 132 (0,71 22
X (1D Tug| o g0,y 1o |1 D'~ 7 Tl 2+ o, 1o
N__N
S sz4( 7)

Case 3: N3 > N >> Ny. There are two subcases

Case 3.a: Ny ~ Ny. By (5.15)), (5.17) and (7.3

Nl_ VIu :1:
X1 3 N1- SH HL;’O-([O,T])L3+”IWHL?([O,T])L?EHI“3||L$+([0,T])L:°*
||I“4HL2+<[0 LE-
Nl s
S Jio SN+N N3 N | DIu Lo (0,712 | DTual| o= (o, 22 (7.5)
X 1D Tl 2 g0,y oo 1D~ 7 Tl 2 0, -
NSNS
S22tz

—— N+

Similarly we get Xo < N"’NIJ,V“ Z4(1) after substltutlng X1, H(Vhﬁ ‘)1 ”L?"’([Om])Li*
for X, ||(%|)1||Lt°°*([0,ﬂ)Li+ respectively in .

Case 3.b: N; << N3. There are two subcases

Case 3.b.1: N; << N.

N9 Vqu
N2(1— 9)||

X1 3 ||Lf°’([07r])L§+ [Tz || L= (0.7 22 ||Iu3||Lf+([O,T])L;°’

||I“4”Lf+<[o,ﬂ>ch*

N§<1‘3> 1
< N+N2_||DIU’||L°°(OT])L2||DIUQHL°°(OT])

N2(1 s) :
x D=0 I“S“Lf*([o,ﬂ)L;o”D e o
NNy~ "N

5%24(7)

Similarly X < WZZL(T).

Case 3.b.2: N; 2 N.
N2(1 *) Vqu

N1- le s ||

~ ”Iu“HL?*([O,TDLi“
N2(1—s) 1

<2 N/ —
NNl—lel s Ny

X; S

||L3C*([O,T])Li+ ”IUQHL?([OJ])L?C [ 1us HL$+([0,T})L;°—

N3 N |IDIul Lo (0,7 £2 1D Tz | Los (0,77 22

X DO Tz g0,y 1o 1D~ 7 Tl 2 e
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—— N
Similarly Xy < Y22 Z4(7).
Case 4: Ny 2 N. There are two subcases
Case 4.a: N; ~ Ns.
Ny ~° Ny~° I
N1-=s N1-s
[ Tuall L2+ (0,713~
Nl S Ni S 1
N Nl-s N1-s N
X (DY Tug| o g0,y 1o 1D~ 7 Tt 24 0, o
< Ny
Similarly Xo < Nl Z4(7').

Vqu

X1 3 ||Lf°*([o,r])Li+ Huzll L= (0,my 2 ||IU3HL3+([0,T})L;°*

— N3 N || DIu|| o (0,7 12 | DItz | oo (0, 12

—2Z%(r)

Case 4.b: N; << Ny. There are two subcases
Case 4.b.1: N; 2 N. We have

NZA7) yl-s N1-s Vlux
XINN2(1 s) N1— le SH

D1ll o o.mpy 22+ M2l Lo 10,79y 22

X ||Iu3||L2+([o 1) L°°*||Iu4||Lf+([0,T])L3°7
_ N NN
~ N2(1-s) N1— SNl s

N N§N1||DI“||L’;“([O,TJ>L§ [ DIuz]| e (0,72

||l)1 (1- )IU3||L$+([OVT])L30||D1_(1_)Iu4“L$+([077})LT7

N-
SNiTU
Similarly Xo < Nl 2 74(7).
Case 4.b.2: N7 << N. We have
_ N N VIum
X113 N2(1-s) N1-s ” HL;X’*([O,T])Li+ HI“2||L;>°([0,T])Lg ||IU3HL§+([0,T])L:°—
||Iu4||L2+([o 7))L~
NN
N22(1 ") Nl . TEN;NIHDIUHL;’O([O,T])@HDfquLgc([o,T])Lg
1-(1— 1-(1-)
x| D 0 Tusl| 2+ 0,771 1D Tuall g2+ .7y 2~
N Ny~ 4
7Z
STy
Similarly X2 < Z4( ).

We get (7.1] and after summation.
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