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CHAPTER I 

INTRODUCTION 

On June 18, 2002, a small wildfire began in east central Arizona that rapidly 

expanded from 600 acres on the morning of June 19th to over 50,000 acres by late 

afternoon the same day (Wilmes 2002). The Rodeo-Chediski fire had begun. By July 

7th, the fire had burned over 467,000 acres and destroyed over 470 human-built structures 

(Wilmes 2002; Zeiroth and Siderits 2003). The impact of this fire had wide-ranging 

effects on both the natural and human environment. Some burned areas within the 

Rodeo-Chediski fire boundary could require decades to recover. 

The effects that wildfires have on the landscape can be substantial, and our ability 

to assess the impact of wildfires on the natural environment is currently limited. 

Although wildfire occurs naturally in manr plant communities, human intervention has 

substantially altered the natural fire regime of many ecosystems. Since the early 1900's, 

fire suppression was the typical response to wildfires when equipment and manpower 

was available (Graham, McCaffrey, and Jain 2004). This policy of fire suppression 

allowed large quantities of fuel to accumulate in areas where regular wildfires would 

normally bum off excess material in the forest understory (Patterson and Yool 1998). 

Wildfires that now occur in areas where high accumulations of fuels exist bum much 

larger areas than in the past, and the severity of these wildfires are often much higher 
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than fires in the past as well. Scientists and forest managers have more recently realized 

the faults in this fire suppression policy and are now enacting new policies to allow some 

wildfires to burn out as would occur naturally. 

Although fire suppression policies are changing due to a deeper understanding of 

the importance of wildfire in fire-dependent ecosystems, many forested areas are still 

prone to extremely severe fire events due to past fire suppression policies. Severe 

wildfires often consume most or all of the vegetation present, and forest recovery time 

from severe wildfires is often measured in decades or even centuries (Wright 2004). The 

removal of vegetation due to fire also makes soil highly prone to erosion (Miller and 

Y ool 2002). Wildfires can potentially threaten property and lives after the fire due to 

potential landsliding resulting from the removal of vegetation on steep slopes (National 

Interagency Fire Center 2004). Legleiter et al. (2003) conducted research that showed 

that runoff increased as a result of wildfires in Yellowstone National Park, thus burned 

catchments may be more susceptible to flash flooding during storm events. 

Due to the recent trend toward larger, more severe wildfires, it is critical to further 

our understanding regarding wildfire behavior, particularly in terms of wildfire burn 

severity. Improving our ability to assess the impact of fire on the landscape requires a 

multidisciplinary approach. Geographers are trained to utilize a variety of unique 

disciplines to analyze phenomena across space, thus they are uniquely suited to 

investigate this problem. Currently, Burned Area Emergency Response (BAER) teams 

assess the post-fire impact of wildfires on the landscape, particularly regarding the impact 

of soil erosion and the effects of vegetation removal on watersheds within the burned area 

(Graham et al. 2003). It is critical to assess burned areas as soon after a fire event as 



possible to mitigate the adverse effects of fire. Remote sensing is a useful tool to assess 

burn severity patterns within the burned area. My study employed recently developed 

remote sensing techniques to validate their effectiveness in assessing burn severity of 

three large fire events that occurred in the western United States during the 2002 fire 

season. 
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Although remote sensing is a useful tool to analyze the impact of past fires on the 

landscape, the development of methods to model wildfire burn severity for past fires as 

well as potential fire events may improve our understanding of wildfire behavior. 

Researchers commonly develop models in order to simplify the real world to gain 

knowledge regarding a variety of Earth processes. "A model is an abstraction of an 

object, system, or process that permits knowledge to be gained about reality by 

conducting experiments on the model" (Clarke 2003, 1). Ecological processes, such as 

wildfire, are inherently spatial, thus spatial simulation models are a highly useful tool to 

model these processes (Moreno, Ablan, and Tonella 2002). My study incorporates 

topographic, weather, and fuel data to model wildfire behavior, particularly in terms of 

wildfire burn severity, using cellular automata. Comparison of remote sensing analysis 

with cellular automata modeling show the strengths and weaknesses of each approach in 

regard to fire severity assessment. 

Significance of Study 

Improving our abilitr to assess the impact of wildfire on the landscape is of great 

importance to researchers in a variety of fields because severe burns often have long

lasting adverse effects on the natural environment. As mentioned previously, Burned 

Area Emergency Response (BAER) teams are designed to arrive at fire location and 



assess the burned area to identify sites that require treatments to mitigate the negative 

effects of severe wildfire (Graham et al. 2003). BAER teams are required to assess burn 

severity and submit their recommendations regarding post-fire rehabilitation to forest 

managers within eight days of fire containment. This creates intense time pressure for 

these teams, particularly when fire events are large. Due to the trend of large, 

increasingly severe wildfire, it is apparent that research into efficient fire severity 

assessment techniques is necessary. A number of remote sensing techniques have come 

about in the past few years that are improving our ability to assess wildfire ourn severity. 

A portion of my study will utilize the differenced Normalized Burn Ratio ( dNBR) at 

three large western US wildfires during the 2002 fire season to determine the 

effectiveness of the dNBR algorithm. 
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Although the dNBR algorithm has the potential to improve forest managers' 

ability to assess burn severity after a fire event has occurred, I developed a cellular 

automata (CA) based fire behavior modeling tool to assess potential burn severity as well. 

This tool could provid~ burn severity risk information to BAER teams both prior to and 

during fire events. The ability of the model to produce a burn severity risk map either 

prior to, during, or immediately after a fire allows BAER teams to identify areas of high 

burn severity risk. This would improve the efficiency of these fire effect mitigation 

teams. Additionally, forest managers could utilize this simulation model to identify areas 
I 

possessing high fire severity risk prior to any fire event. This information would allow 

forest managers to apply appropriate fuel treatments to reduce excess fuels that tend to 

lead to severe wildfire (Graham, McCaffrey, and Jain 2004). I maintain that a 



combination of remote sensing and fire behavior modeling techniques will improve our 

ability to assess wildfire burn severity patterns across the landscape. 
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CHAPTER II 

LITERATURE REVIEW 

Remote Sensing Analysis of the Impact of Wildfire on the Landscape 

It is readily apparent that severe wildfire events have the potential to inflict 

extensive dam.age upon natural ecosystems, but the current body of knowledge regarding 

the application of remote sensing to burn severity analysis is still quite limited. My study 

will expand the body of knowledge concerning the application of space-based remote 

sensing platforms to the analysis of fire burn severity by applying an algorithm to pre

burn and post-bum Landsat images. The existing literature regarding wildfire burn 

severity analysis informs my proposed study. I will discuss a number of these past 

studies in the following section to underscore the importance of the existing body of 

knowledge on my proposed research. 

Trends in Wildfire Burn Severity Analysis via Remote Sensing 

Research into the application of satellite-based remote sensors to fire burn 

severity analysis began within the past twenty years, and the most thorough research into 

this field occurred primarily during the last decade. Prior to the advent of high spatial 

resol1;1tion satellite-based remote sensors, investigators used other methods to attempt to 

produce burn severity maps. Until about thirty years ago, the primary tools used to create 
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wildfire burn severity maps were aerial photographs, and they are still used for this 

purpose today (Miller and Yool 2002; Riano et al. 2003; Zhang, Wooster, et al. 2003). 

Landsat imagery has advantages over aerial photography in some instances. Miller and 

Y ool (2002) found that their Landsat fire severity map had a minimum mapping unit of 

30 meters, but similar burn severity analyses conducted using aerial photographs resulted 

in maps with a 20 hectare minimum mapping unit. In this instance, Landsat images 

produced a much more accurate burn severity map than analyses using aerial 

photographs. 

The advent of satellite-based remote sensing platforms allowed researchers to 

address the issue of wildfire management from new perspectives. Researchers began to 

use thermal infrared (IR) detection systems to determine the temperature and 

approximate area of active fires (Fraser, Li, and Cihlar 2000; Giglio and Justice 2003; 

Giglio and Kendall 2001; Justice et al. 2002; Oertel et al. 2003; Wooster, Zhukov, and 

Oertel 2003; Zhang, Van Genderen, et al. 2003). Most of the space-based sensors used to 

conduct such studies have relatively low spatial resolutions of approximately 1 kilometer 

in the infrared bands used for fire detection. The Advanced Very High Resolution 

Radiometer (A VHRR) and Moderate Resolution Imaging Spectro-radiometer (MODIS) 

are two examples of relatively low resolution space-based remote sensors that are 

commonly used for active fire detection (Fraser, Li, and Cihlar 2000; Giglio and Justice 

2003; Justice et al. 2002; Wooster, Zhukov, and Oertel 2003). 

Although these sensors provide data that is of little value at large scales, Dozier 

developed a breakthrough technique in 1981 to extract sub-pixel fire temperature and 

area (Dozier 1981, Giglio and Kendall 2001; Giglio and Justice 2003). Although the 
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Dozier method of sub-pixel fire extraction permitted major improvements in the analysis 

' 
of active fires, it did not allow researchers to determine the direct effects of fires on the 

landscape. Researchers could make general assumptions regarding the impact that an 

active fire would have on the vegetation present, but these assessment techniques did not 

allow for quantitative studies on the impact of fire on the landscape below because no 

direct assessment of the changes in electromagnetic reflectance of vegetation was 

conducted (Fraser, Li, and Cihlar 2000). 

In order to study the impact of wildfire on the landscape, researchers devised 

multi-temporal algorithms to analyze pre-burn and post-bum changes in IR reflectance to 

analyze characteristics of fire burn scars. Researchers employed low-resolution satellite 

sensor platforms such as the A VHRR and SPOT vegetation (VGT) to accomplish these 

studies (Brivio et al. 2003; De Moura and Galvao 2003; Fraser, Fernandes, and Latifovic 

2003; Fraser, Li, and Cihlar 2000; Maselli et al. 2003; Zhang, Wooster, et al. 2003). 

Because these research projects involved the use of low-resolution (1 kilometer cell size) 

sensor platforms, they were capable of detecting fire scars and estimating burned area 

resulting from wildfires, but they were incapable of classifying areas of burn severity. 

The field of wildfire burn assessment changed dramatically with the launch of the 

Landsat family of remote sensing satellites. The Landsat Thematic Mapper (TM) and 

Landsat Enhanced Thematic Mapper (ETM) provided access to high spatial resolution 

remote sensing imagery that was previously unavailable. Many past studies used 

relatively high spatial resolution Landsat data to validate burn scar detection models that 

employed other moderate spatial resolution remote sensors, such as the A VHRR or SPOT 



VGT (Brivio et al. 2003; Zhang, Wooster, et al. 2003). Most scientists accept Landsat 

images as a highly reliable data source for burn scar analysis. 
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The applications of Landsat imagery for wildfire burn severity analysis are 

numerous. The primary method used to extract fire burn scar information from remotely 

sensed data is based on multi-temporal analysis of pre-burn and post-bum images of the 

burned area. This trend in the field of burn severity analysis began well over a decade 

ago and continues today. "Change detection algorithms provide for quantification of the 

pattern and extent of fire effects" (Miller and Yool 2002, 483). Although the same 

general methods are in use today to conduct multi-temporal analyses of fire burn scars, 

the higher spatial resolution of Landsat data allows researchers to classify changes in IR 

reflectance into categories of burn severity (Miller and Yool 2002). Prior to the launch of 

the Landsat TM and ETM satellites, burn severity analysis using space-based remote 

sensor platforms was difficult due to the poor spatial resolution of existing sensors such 

as the A VHRR and SPOT VGT. As my study will employ Landsat imagery to classify 

IR surface reflectance values into areas of unburned, low, moderate, and high burn 

severity, I will focus on the relevant literature that has a bearing on my study in the 

following section. 

Relevant Work in the Field of Study 

Much of the existing literature that I will discuss in this section pertains to the 

methods used to extract classes of burn severity from Landsat images. Researchers have 

employed a number of algorithms to remotely sensed data to assess burn severity. One of 

the most commonly used algorithms to assess the impact of fire burn scars from Landsat 

imagery is the Normalized Difference Vegetation Index (NOVI) (Key and Benson 1999; 



Miller and Y ool 2002). The NOVI algorithm uses both the red and near IR portions of 

the electromagnetic spectrum to detect temporal changes in reflectance in vegetation to 

detect burn scars because healthy vegetation is highly reflective in the red and near IR 

bands (De Moura and Galvao 2003; Fraser, Li, and Cihlar 2000; Maselli et al. 2003; 

Zhang, Wooster, et al. 2003). 

NOVI = (Band 4 - Band 3) / (Band 4 + Band 3) 

Although many researchers conducted studies using NOVI as the primary 

algorithm to analyze multi-temporal changes in IR reflectance, other researchers 

employed alternative methods to assess the impact of fire on the landscape. Patterson 

and Y ool (1998) conducted a study comparing principal components analysis (PCA) and 

Kauth-Thomas (KT) transforms and concluded that the KT transform technique is 

superior to PCA in extracting wildfire burn severity data. In a more recent study, Miller 

and Yool (2002) discussed the strengths and weaknesses of KT, PCA, and NOVI 

algorithms and concluded that each of these algorithms falls short of a recently developed 

algorithm termed the Normalized Burn Ratio (NBR). The NBR is similar in design to 

NOVI in that it compares two wavelengths to analyze reflectance values of vegetation, 

but it replaces the red band of the spectrum with a mid-IR band (Key and Benson 1999; 

Miller and Y ool 2002). 

NBR = (Band 4 - Band 7) / (Band 4 + Band 7) 

"Mid-infrared bands are sensitive to moisture content of soil and vegetation ... and 

also penetrate thin clouds and smoke better than visible bands" (Miller and Y ool 2002, 

482). Although NOVI, KT transform, and PCA are all useful methods to extract burn 

severity data, Miller and Y ool (2002) provide compelling evidence that the NBR is the 
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most effective algorithm that is currently available to extract burn severity data from 

Landsat images. For this reason, my study will employ burn severity analysis techniques 

used by Miller and Y ool (2002). 

Wildfire Behavior Modeling 

Research into the field of wildfi,re behavior modeling over the past three decades 

produced a variety of general approaches to fire modeling. A number of software 

packages exist that operate based on a particular approach to fire behavior modeling. I 

will discuss each of the general fire prediction modeling approaches as well as some of 

the more popular fire modeling software packages that have been developed using the 

various approaches to model wildfire. 

Approaches to Wildfire Behavior Modeling 

In order to develop models capable of quantifying wildfire spread and fire 

intensity, it is necessary to develop an understanding of the physics of wildfire behavior. 

Two seminal works provided the necessary foundation for wildfire behavior modeling to 

become a useful tool for forest managers. Rothermel (1972) developed mathematical 

equations to predict fire behavior such as fire intensity and rate of spread. A number of 

input parameters are necessary to execute the Rothermel model, and many of these input 

variables are difficult to obtain without detailed field studies. 

A second breakthrough study permitted wildfire behavior modeling with much 

fewer input fuel variables. Anderson (1982) devised a widely accepted method to 
( 

simplify fuel descriptions for the Rothermel model of wildfire behavior prediction. 
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Anderson organizes forest fuels into 13 fire behavior fuel models and provides detailed 

descriptions of each of these fuel models (Anderson 1982). Researchers interested in 

wildfire modeling easily adapted the Rothermel (1972) fire behavior model to incorporate 

the fire behavior fuel models described in Anderson (1982). 

BEHAVE, one of the more popular fire behavior modeling programs, came into 

use by fire management officials in 1984 and is still in use today (Andrews and Bevins 

1999). This computer software package is based on fire behavior equations developed by 

Rothermel (1972) and incorporates the 13 fire behavior fuel models (Anderson 1982). 

The BEHAVE fire modeling program outputs predicted rate of spread as well as fire 

intensity at the flaming portion of the fire front, and recent revisions to the BEHAVE 

program now allow additional output variables to be measured, such as crown fire spread 

and tree mortality (Albright and Meisner 1999; Andrews and Bevins 1999). Although 

BEHAVE provides valuable data to decision makers, it is severely limited due to the fact 

that the output of the model is inherently non-spatial (Andrews and Bevins 1999; 

Weinstein et al. 2004). Most forests are characterized by heterogeneous fuel distributions 

(Koutsias and Karteris 2003; Miller et al. 2003; Miller and Yool 2002; Riano et al. 2003; 

Scott and Jones 1994). For this reason, the BEHAVE model is handicapped due to its 

inability to model fire behavior across space (Andrews and Bevins 1999; Weinstein et al. 

2004). 

F ARSITE is another software package based on equations from the Rothermel 

(1972) model, but is superior to BEHAVE because it assesses wildfire behavior across 

space and time (Albright and Meisner 1999; Finney and Andrews 1999). FARSITE 

incorporates elliptical wave propagation techniques into the fire spread algorithm, which 



is based on the Huygens' Principle (Albright and Meisner 1999; Weinstein et al. 2004). 

The Huygens' Principle states that a number of small fires at the fire front burn in 

elliptical patterns based on the assumption that fuel type, slope, wind speed, and fuel 

moisture are all homogeneous within each ellipse (Albright and Meisner 1999). 

13 

F ARSITE calculates fire spread and total burned area by drawing a boundary 

encompassing all burned ellipses at each time step (Albright and Meisner 1999). It is 

apparent that fuel type, slope, wind speed, and fuel moisture will not be uniform within 

each of the small ellipses created by the F ARSITE program, but this program does 

provide valuable information to decision makers regarding potential wildfire behavior. 

FlamMap, another software package that acts as an extension to F ARSITE, also assesses 

wildfire behavior patterns over space, but it does not incorporate a temporal component, 

as does F ARSITE. FlamMap is useful for visualization of fire behavior patterns in 2D as 

well as "2.5D," but is more limited than F ARSITE due to the lack of a temporal 

component. 

The use of artificial neural networks (ANNs) to assess wildfire behavior is a 

unique approach that allows the computer to learn the rules regarding the effect of 

various input variables such as fuel loading and slope on the output fire behavior patterns. 

"Artificial neural networks acquire knowledge by learning from examples and store that 

knowledge as synaptic weights in connections (networks) between processing nodes" 

(McCormick, Brandner, and Allen 1999, 2). Neural network models are often thought of 

as a "black box" because data is input into the model and output comes out of the model 

without knowing the rules used by the model to derive the output. Neural network 

algorithms have the ability to assess wildfire behavior at multiple spatial scales 
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(McCormick, Brandner, and Allen 1999). Although neural networks have the potential to 

improve wildfire behavior modeling, it appears that much work in this field remains to be 

completed. McCormick, Brandner, and Allen (1999) discuss the advantages of ANN in 

the field of wildfire behavior modeling in their paper, but do not attempt to operationalize 

the ANN model described. 

The different approaches toward wildfire modeling discussed to this point have 

both strengths and weaknesses. Cellular automata (CA) modeling is another technique 

that presents a unique perspective on wildfire behavior modeling. Two-dimensional 

cellular automata models allow researchers to simulate the spatial pattern of fire over 

time (Moreno, Ablan, and Tonella 2002), thus they are ideal for wildfire behavior -

modeling. The remainder of this paper discusses the progress of cellular automata in the 

field of wildfire behavior modeling. 

History of Cellular Automata Modeling 

The concept of cellular automata was developed by von Neumann and Ulam in 

the 1940's and 1950's (Brown et al. 2004; Bryan 2000; Liang, Liu, and Eck 2001; 

Ungerer 2000). Although additional progress in the field of CA continued in the 1950's 

and 1960's, it existed in relative obscurity until 1970, when John Conway's "Game of 

Life" was introduced (Liang, Liu, and Eck 2001; Ungerer 2000). The release of"Life" 

reinvigorated the field of cellular automata modeling, and the value of cellular automata 

in the field of wildfire behavior modeling became apparent. 

Complex ecological processes have often been investigated globally using 

differential equations, but cellular automata models allow researchers to model complex 
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spatial-temporal processes such as wildfire using a simple set of transition rules that 

relate the current state of the processing (i,J) cell and its neighbors to the future state of 

the (i,j) cell (Bandini and Pavesi 2004; Brown et al. 2004; Wu 2000). Cellular automata 

are discrete in that each grid cell is an entity unto itself, but the state of each cell is 

dependent on the state of its neighbors. Change in cell values occur simultaneously at 

discrete time steps. "Cellular automata are a locally-adaptive, globally evolving n 

dimensional array of cells which are capable of modeling self-organizing behavior in 

systems" (Bryan 2000, 1 ). Because CA simulation models often exhibit self-organizing 

behavior, researchers can represent complex spatial-temporal processes such as wildfire 

by considering local interactions of individual cells and their neighbors. 

Recent Trends in Wildfire Modeling via Cellular Automata 

Researchers have used a number of techniques to apply cellular automata to 

wildfire behavior modeling. Certainly, researchers can apply CA to the field of wildfire 

behavior modeling in a number of ways. While this paper focuses on applications of 

cellular automata modeling as a tool to predict behavior of individual fires, researchers 

apply CA to model broad-scale wildfire behavior over long time periods in order to 

assess trends of increasing fire severity as well as impacts of wildfire on global climate 

change (Lenihan et al. 1997). The MCFIRE fire severity model incorporates coarse-scale 

data (10 km pixel size) to predict overall potential for severe wildfire events over 

extended time periods, such as over 100 years (Lenihan et al. 1997). Although models 

such as this are useful for modeling small-scale events to assess overall impact on global 

climate, these models are of little or no use when assessing fire behavior at larger scales 



for individual fire events. Scale is an important consideration during the model design 

portion of any wildfire modeling study. 

Some researche~s use percolation theory in their wildfire behavior models. 
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Percolation models are relatively simple cellular automatons. Fire spread from one cell 

to another is based on the-presence of unburned fuel in neighboring cells as well as the 

probability of spread to adjacent cells (Albright and Meisner 1999; Nahmias et al. 2000). 

Applications of percolation theory to fire behavior modeling have primarily focused on 

homogeneous fuel distributions (Nahmias et al. 2000). As discussed previously, the 

spatial distribution of fuels across the landscape is rarely homogeneous (Koutsias and 

Karteris 2003; Miller et al. 2003; Miller and Yool 2002; Riano et al. 2003; Scott and 

Jones 1994). Models employing percolation theory must be precisely calibrated in order 

to determine the probability of spread from one cell to another (Albright and Meisner 

1999). This limits the ability of the model to predict fire behavior as the probability of 

spread must be determined based on the unique characteristics of each study site. 
\ 

Wildfire behavior models based on percolation theory must be recalibrated if applied in a 

physical setting other than,which they were created (Albright and Meisner 1999; 

McCormick, Brandner, and Allen 1999; Nahmias et al. 2000). 

Liu and Chou (1997) constructed a model to predict wildfire growth using cellular 

autQmata methodology. This model uses all cells in a 3x3 neighborhood to predict 

wildfire spread. The authors initially developed a "probability of fire spread" surface 

using linear regression methods. The following independent variables were considered in 

developing this probability surface: area of polygon, polygon perimeter, fire rotation , 

weight defined by vegetation, distance of polygon from buildings, distance of polygon 



from campgrounds, distance of polygon from roads, July maximum temperature, July 

maximum precipitation, spatial term of neighborhood effects (Liu and Chou 1997). A 

stepwise regression analysis of these independent variables resulted in the following 

regression equation: 
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Ul = -8.89-2.445(fire rotation weight) - 0.2110(July maximum 

temperature) + 34.14(spatial term of neighborhood effects) (1) 

Determination of a fire occurrence probability value for each grid cell resulted 

from the above regression equation. The probability value for each cell was compared 

against random numbers generated for each of the cell's 8 neighbors to determine which 

cell would be ignited by the initially burning cell (Liu and Chou 1997). The authors 

employed the fire behavior equations developed by Rothermel (1972) to determine rate of 

fire spread and fireline intensity values. Although this model successfully identified 

more than 50% of the cells that burned in an actual fire that occurred in California, the 

model did not attempt to investigate additional fire characteristics beyond rate of spread 

and fireline intensity, which are included in most fire behavior models. Nevertheless, this 

model does show the power of grid automata methods in assessing wildfire growth. 

The enormous fire events of the 1988 Yellowstone National Park Fire prompted 

the construction ofEMBYR (Ecological Model for Burning the Yellowstone Region), a 

cellular automata-based computer simulation program. Similar to the CA model 

developed by Liu and Chou (1997), EMBYR is a probabilistic model in that fire spreads 

from one cell to its 8 neighboring cells based on the impact of fuel type, fuel moisture, 

wind speed, and wind direction on fire spread probability (Hargrove et al. 2000). 
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EMBYR incorporates the effects of firebrands, which are glowing embers carried 

downwind that can ignite unburned areas far from the fire front (Hargrove et al. 2000). 

Spot fires produced from firebrands often play a large role in fire behavior patterns, thus 

this is an important variable to consider (Rothermel 1972). Because EMBYR is a 

probabilistic model, it is useful to run the simulation model multiple times to generate an 

average pattern of fire spread. 

Cellular automata models based on diffusion limited aggregation (DLA) model a 

variety of phenomena, such as urban growth. This process is based on the theory that 

growth of a phenomena occurs onto existing areas already possessing the phenomena in 

question. DLA processes were used as the basis of a cellular automaton to model 

wildfire as well (Clarke, Brass, and Riggan 1994). In this model, fire moves outward 

from a burning cell into the surrounding 8 cells. A random number is generated to 

determine which direction the fire will move, although weights are assigned to cells 

based on wind direction, wind magnitude, slope, aspect, and fuel loading (Clarke, Brass, 

and Riggan 1994). A burning cell will continue to propagate fire to its neighboring cells 

until no unburned fuel is available in the neighboring cells. 

The authors of this article point out the critical importance of calibrating any 

cellular automata using an actual fire event for reference in the calibration process. 

Calibration of the CA model and analysis of the results of the simulation showed that 

pixels determined by the CA model to have greater than 50% odds of burning matched 

actual burned pixels 82.5% of the time (Clarke, Brass, and Riggan 1994). Although this 

model produced encouraging results, there are a number of limitations. Fuel loading 

values for each grid cell were obtained by assessment of red band reflectance of 
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vegetation, which is not an ideal method to assess fuel loading characteristics (Clarke, 

Brass, and Riggan 1994). The authors assigned wind speed and wind direction constant 

values. It is clear that these variables are not constant, but it is apparent that we must 

simplify the complexity of the vast number of variables in order to create a feasible 

model (Clarke 2003; Weinstein et al. 2004). 

Formulating transition rules for the cellular automaton model is a primary 

consideration in the model design process. Because CA models are based on local 

interactions to model overall fire behavior, local rules must attempt to represent potential 

fire behavior as accurately as possible, while maintaining a sufficient degree of simplicity 

to permit the modeler to create a feasible model. Using a 3x3 cell neighborhood, 

Karafyllidis and Thanailakis (1997) developed the following formula to determine the 

state of cell (i, j) based on the current state of the (i, j) cell and its 8 neighbors: 

S,J (t+ 1) =S ij (t) + (S i-1,J(t) + S i,j-l(t) + S i,J+l(t) + S i+l,j(tJ) + 

0.83(S i-1,j-l(t) + s ,-1,j+l(t) + s i+l,J-l(t) + s i+l,j+l(tJ) (2) 

S,J (t + 1) represents the value of cell (i , j) at next time step (t + 1) equals the current state 

of cell (i, j) plus the current state of all neighboring cells. A value of "0" represents an 

unburned cell, and a value of" 1" represents a completely burned cell. The value of S,J (t + 

1) can range from 0 to 1, but cannot exceed 1. It is possible for the result of the above 

equation to exceed a value of 1, but the number is rounded down to 1 in these 

circumstances (Karafyllidis and Thanailakis ~ 997). 

The authors modified the general local rule described above by assigning 

weights for all cells in the neighborhood for wind speed and direction as well as slope. 

The authors discussed the effects of fuel type on fire spread rate, but did not incorporate 
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this significant variable in their model. This article reinforces the importance of creating 

valid local transition rules for any CA-based wildfire modeling experiment, but 

limitations of the model in terms of the effects of the spatial distribution of heterogeneous 

fuels across the landscape limits the ability of this cellular automaton to model wildfire 

behavior with any degree of accuracy. 

The limitations of the model proposed by Karafyllidis and Thanailakis (1997) 

generated further interest in the research community in regard to wildfire behavior 

modeling. Berjak and Hearne (2002) incorporated fire behavior equations developed by 

Rothermel (1972) into the cellular automaton developed by Karafyllidis and Thanailakis 

(1997) in an attempt to improve this CA model. Improvements in incorporating 

heterogeneous fuel distributions across the landscape were made possible by utilizing the 

13 fire fuel models to include fuel loading, fuel moisture, and fuel bed depth into the CA 

model (Anderson 1982). This modification to the original cellular automaton enabled the 

model to determine if fuels from the burning (i, j) cell produced sufficient heat to ignite 

fuels in the neighboring cells (Berjak and Hearne 2002). This factor is a key 

consideration in landscapes characterized by spatially heterogeneous fuel distributions. 

The incorporation of the Anderson (1982) fuel models into the cellular automaton 

did affect rate of fire spread when researchers conducted simulations using heterogeneous 

fuel distributions. Fuel moisture did not affect the shape of the fire fronts in the 

improved CA model, but fuel moisture did have an impact on the ability of fine fuels to 

burn more coarse fuels that possessed higher moisture contents (Berjak and Hearne 

2002). Comparison of the results of actual fire events to the results of the wildfire 

behavior simulation confirm that the modifications to the original CA model developed 



by Karafyllidis and Thanailakis (1997) clearly improved the predictive power of the 

model (Berjak and Hearne 2002). 

Future Directions in Wildfire Behavior Modeling via Cellular Automata 
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It is apparent that recent research into wildfire behavior modeling via cellular 

automata simulations resulted in improvements in modeling techniques. Nevertheless, a 

number of future research opportunities exist in this field. The majority of attempts to 

predict wildfire behavior via cellular automata simulation have focused on predicting rate 

of fire spread, shape of fire patterns on the landscape, and calculating total area burned by 

wildfire. Each of the studies discussed are limited in their ability to predict wildfire 

behavior patterns. This is largely due to the extraordinarily complex nature of fire itself. 

Although it is necessary to simplify the complex process of wildfire in order to create a 

feasible spatial-temporal simulation model, additional considerations will undoubtedly 

improve the effectiveness of cellular automata simulations to model a: wide range of fire 

characteristics. 

One variable that wildfire behavior models overlook is the effect of burning cells 

behind the flaming front. Areas with high quantities of large diameter fuels (> 3 inches 

in diameter) such as logging slash continue to bum long after the fire front passes. Fuels 

such as this may continue to bum for days after the fire ignited them, and these extended 

fire residence times often lead to the liberation of organic compounds from the soil and 

increased soil hydrophobicity (Graham, McCaffrey, and Jain 2004). These changes in 

soil properties often result in severe soil erosion, which affects vegetation re-growth, 

watershed flash flood potential, and may result in landsliding (Legleiter et al. 2003; 

Miller and Y ool 2002). 
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Incorporating residence time of burning fuels behind the fire front into the cellular 

automaton would be the first important step toward effectively modeling wildfire burn 

severity on an individual fire basis, which is a dimension of wildfire behavior modeling 

that has not been addressed in the literature to date. Mitigating the adverse effects of 

severe wildfire on the landscape is the primary concern of Burned Area Emergency 

Response (BAER) teams in the United States. Currently, BAER teams use pre-fire and 

post-fire remotely sensed imagery in concert with ground truth data to assess wildfire 

burn severity, but a CA based wildfire burn severity prediction model would allow BAER 

teams to identify areas that will likely require post-fire rehabilitation before the fire burns 

the areas in question (Graham, McCaffrey, and Jain 2004). 

The incorporation of a burn severity component into CA based fire behavior 

models would be highly useful to fire managers as well. Clarke et al. (1994) point out 

that running simulations based on probabilistic cellular automata models multiple times 

allows for the calculation of fire risk. This same principle would allow forest managers 

to use a CA based wildfire burn severity model to estimate burn severity risk within 

forested areas. It is well known that fuel treatments, such as removal of excess fuels in 

the forest understory by means of prescribed fire or mechanical thinning, has an effect on 

fire propagation as well as fire severity (Graham, Mccaffrey, and Jain 2004; Graham et 

al. 2003). Of the number of variables that affect wildfire burn severity, it is apparent that 

only fuels can be modified by humans to reduce risk of severe wildfire (Koutsias and 

Karteris 2003; Graham, McCaffrey, and Jain 2004). For this reason, it is critical to 

incorporate variables that assess the effect of fuels on wildfire burn severity in any fire 

burn severity model. 



CHAPTER III 

STUDY AREAS 

Three large wildfire events in the western United States were included in this 

study. Each of these three wildfires took place during the 2002 fire season, in which a 

large number of particularly large, severe wildfires occurred. All three study sites 

possess vegetation characteristic of fire-dependent ecosystems that characterize the 

western United States. A combination of vegetation, weather, and topographic conditions 

interacted to produce the dramatic fire events observed at each of these sites. 

Hayman Fire 

The Hayman wildfire occurred on June 8, 2002 and rapidly grew to over 60,000 

acres by the end of June 9, 2002 largely due to a combination of high wind conditions, 

prolonged drought, high fuel loadings, and topography. The fire died out on June 28, but 

burned approximately 138,000 acres of forest in the region before it was fully contained 

(Graham et al. 2003). This event was the single largest wildfire in recorded history in 

Colorado (Graham et al. 2003). The Hayman fire was located approximately 50 miles 

south-southwest of Denver, Colorado and approximately 30 miles northwest of Colorado 

Springs, Colorado (Figure 1 ). 
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Figure 1: Location of Hayman fire study area 

Ponderosa pine and Douglas-fir dominate the Hayman fire study area, although 

aspen and blue spruce are found throughout the area as well (Graham et al 2003). Slope 

aspect has a substantial impact on the amount of forest fuel available in the study area. 

Douglas fir was the predominant vegetation type on north-facing slopes while ponderosa 

pine was commonly found on south-facing slopes (Graham et al 2003). Terrain varies 

throughout the study area, ranging from more gentle slopes on the eastern side of the fire 

to rugged, steep terrain in the western and northern portions of the study area (Graham et 

al. 2003). Climate also played a major role in the Hayman fire. Forest fuel moisture was 

extremely low at the time of the fire due to drought conditions at the time of the fire 

(Graham et al. 2003). Fire weather varied from day-to-day, but large portions of the 

study area burned quickly on days with wind gusts as high as 51 miles per hour (Graham 

et al. 2003). 
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Missionary Ridge Fire 

· The Missionary Ridge fire ignited on June 9 2002 and rapidly burned through 

extremely dry forest fuels, eventually burning over of 70,000 acres in Southwestern 

Colorado (USDA Forest Service 2002). This Missionary Ridge fire was located 

approximately 10 miles northeast of Durango, Colorado (Figure 2). ,A mixture of 

deciduous trees (Gambel oak and aspen) and conifers (Douglas fir, lodgepole pine, 

ponderosa pine, Rocky Mountain juniper, Engleman spruce) characterizes the study area 

(USDA Forest Service 2002). Assessing burn severity in study sites possessing 

heterogeneous spatial distribution of forest fuels effectively demonstrates the 

effectiveness of the burn severity assessment algorithm. 

As was the case in the Hayman fire, the vegetation present at the Missionary 

Ridge fire study area was extremely dry as a result of drought conditions. High fuel 

loads possessing little moisture allowed this fire to advance rapidly and burn certain 

portions of the study area severely (USDA Forest Service 2002). The terrain of the study 

area influenced the fuel loadings present at the study site, which in tum affected potential 

burn severity (Kushla and Ripple 1997; Patterson and Y ool 1998). 
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Figure 2: Location of Missionary Ridge fire study area 

Rodeo-Chediski Fire 

The Rodeo-Chediski fire was the largest wildfire in Arizona's recorded history 

(Wilmes et al. 2002). The fire was located approximately 100 miles northeast of 

Phoenix, Arizona (Figure 3). It began on June 18, 2002 and consumed approximately 

467,000 acres of fuel by the time it was contained on July 7, 2002 (Wilmes et al. 2002). 

The fuels present prior to the fire event vary spatially, but the dominant plant species 

were conifers such as Ponderosa pine along with mixed Gambel oak, Manzanita, 

Ceanothus, and Mountain Mahogany (Wilmes et al. 2002). Drought conditions 

magnified the severity of the fire as well. Applying the differenced NBR algorithm to 

this study site will test the proposed bum severity assessment method in a vegetation 

regime unique to this study site. 
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CHAPTER IV 

THEORETICAL FRAMEWORK 

My study employed remote sensing and geospatial modeling to analyze burn 

severity of large western US wildfires. As the spatial distribution of forest fuels is 

integral to developing a thorough understanding of wildfire behavior, particularly in 

terms of wildfire burn severity, it is necessary to understand how the existing forest 

structure developed into its state prior to the fire events studied. Plant succession theory, 

also known as vegetation dynamics theory, underpins my investigation. Plant succession 

theory describes forests as dynamic systems that seek equilibrium in a given 

environment. 

Currently, the ability to predict wildfire behavior is limited. "When vegetation is 

distributed uniformly and continuously, fire will travel uninterrupted, but heterogeneity in 

forest canopy cover causes fires to spread along preferential paths" (Riano et al. 2003, 

177). Plant succession theory explains why unique species coexist in ecosystems and 

provides insight into the pattern of vegetation recovery after a fire. Wildfires play an 

important role in plant succession. Fire affects plant growth and encourages competition 

of various plant species (Rieske 2002). I will discuss vegetation dynamics theory further 

as a framework for my study. Autogenic plant succession produced the vegetation 

regime that existed in the study areas prior to the fire event over an extended period of 

time. This form of plant succession is the result of the gradual rise of a plant community 
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from bare soil or from an abandoned field (Glen-Lewin, Peet, and Veblen 1992; Strahler 

and Strahler 2003). Damage caused by wildfires upsets the process of autogenic 

succession. An understanding of plant succession as it relates to both pre-fire and post

fire conditions is necessary to analyze wildfire burn severity as well as post-fire recovery. 

Plant Succession: Pre-burn 

Succession theory dictates the distribution of vegetation across space, and the 

spatial distribution of vegetation types has a substantial impact on fire behavior (Graham, 

McCaffrey, and Jain 2004; Miller et al. 2003; Riano et al. 2003). A number of factors 

influence vegetation dynamics in most ecosystems. Topography plays a major role in 

plant succession. "Different topographical patterns create different patterns of climatic 

conditions at multiple scales, which predetermine vegetation succession and dynamics" 

(K.outsias and Karteris 2003, 3096). Miller et al. (2003) concur that topography 

influences forest fuel distributions. Slope aspect often influences vegetation patterns. 

For example, forest fuels often vary from a north-facing slope to a south-facing slope 

because of differences in the amount of insolation received, precipitation levels, and wind 

effects (K.outsias and Karteris 2003; Miller et al. 2003). Slope also has an impact on the 

type of vegetation that will exist in a particular location. Certain vegetation types are 

well suited to steep slopes, but other plants have root systems that do not adapt well to 

these areas. It is apparent that topography may have a substantial impact on plant 

succession. Knowledge of the impact of topography on vegetation dynamics will allow 

for a more thorough understanding of wildfire behavior at the study site. 
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A number of additional factors that interact with topography also affect 

succession. Climate acts as a dominant factor in shaping the vegetative regime in all 

ecosystems (Scott and Jones 1994). Precipitation levels, wind direction and speed, 

humidity, and seasonality all affect the types of ground cover present. To a degree, 

topography causes variations in climate. Another variable that affects vegetation 

dynamics is availability of light. Plants must compete for light to survive and grow, and 

light is not uniformly available to all vegetation (Perry, Neuhauser, and Galatowitsch 

2003). Topography influences light availability, particularly in terms of aspect. Plant 

succession theory provides valuable insight into the spatial distribution of vegetation and 

permits a more thorough analysis of the proposed burn severity model. 

Plant Succession: Post-burn 

An understanding of the autogenic successional regime is important to explain the 

existing plant community prior to a wildfire, but assessment of recovery after the fire 

event is also grounded in vegetation dynamics theory. The effects of a wildfire can be 

beneficial in some circumstances and devastating to a plant community in others. Wright 

(2004) compared a relatively low temperature fire in Shenandoah National Park to a 

devastating fire at Los Alamos, New Mexico. He noted that the low temperature fire in 

Shenandoah National Park allowed for the removal oflarge amounts ofunderstory fuels. 

Plant succession quickly replaced damaged foliage to produce a healthy forest. The 

wildfire that burned Los Alamos, on the other hand, was a higher temperature fire due to 

climatic conditions and vegetation types present. The intense heat altered soil properties 

and impeded the progress of succession (Wright 2004). Past research in the field of 
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vegetation dynamics allows scientists to conclude that removal of undergrowth during the 

low temperature Shenandoah fire will allow fresh growth to compete for resources such 

as light and soil nutrients, whereas primary succession will need to occur in the bare soils 

resulting from the severe Los Alamos fire (Shugart 1984). 

Investigations should also consider the effects of fire :frequency on vegetation 

recovery. Ecosystems that are subject to :frequent fires typically exhibit plant species that 

are well adapted to fire and can recover much more quickly than plant communities that 

are rarely affected by fire events. Franklin et al. (2001) performed computer simulations 

to evaluate vegetation dynamics in both frequent and infrequent fire regimes. 

Simulations determined that infrequent fire regimes resulted in a landscape composed of 

long-lived species that were much more vulnerable to prolonged wildfire damage than 

plant communities that often experience wildfire events (Franklin et al. 2001 ). 

Vegetation dynamics theory provides the necessary framework to analyze burn severity 

by providing a context for the pre-fire distribution of vegetation and supplies a model for 

assessment of post-fire vegetation recovery as well. 



CHAPTERV 

WORKING HYPOTHESES 

The Relationship between Landscape Characteristics and Burn Seventy 

One of the primary goals ofmy research project is to determine the relationship 

between landscape characteristics and fire severity. A deeper understanding of these 

relationships could provide fire managers with a new tool to analyze the impact of 

wildfire on the natural environment. I believe that there is a relationship between 

landscape characteristics and wildfire burn severity. To test this hypothesis, I will divide 

this statement into two working hypotheses. One hypothesis addresses the possible 

relationship between forest fuel characteristics and burn severity, and the other addresses 

the influence of terrain characteristics on burn severity. 

Hypothesis 1 Is there a relationship between forest fuel characteristics and 

wildfire burn severity? It is well known that wildfires spread and move due to the spatial 

distribution of fuels (Koutsias and Karteris 2003; Miller and Yool 2002; Riano et al. 

2003; Scott and Jones 1994). "A spatial description ofwildland fuels is essential to 

assessing fire hazard and risk across a landscape" (Miller et al. 2003, 239). While most 

existing literature addresses how fire movement is affected by vegetation, my study will 

attempt to establish if there is a relationship between fuel characteristics such as fuel 

loading and fuel particle size with burn severity at my study site in addition to simulating 

the propagation of fire across the landscape. A number of variables, such as fuel 
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distribution, wind direction, fuel moisture, and topography, affect fire spread and burn 

severity. Because many variables influence fire behavior, it is likely that a number of 

these variables work together to produce the observed effects of wildfire on the 

landscape. The ability of cellular automata to incorporate a number of unique variables 

into the spatial-temporal model will allow me to gain insight into the effects of forest fuel 

characteristics on overall burn severity patterns. 

Hypothesis 2: My second working hypothesis that addresses the impact of the 

landscape on fire severity concerns the role of terrain in altering fire behavior. Is there a 

relationship between terrain and wildfire burn severity? A number of terrain 

characteristics potentially influence burn severity. Slope and aspect have the potential to 

impact fire behavior (Koutsias and Karteris 2003; Kushla and Ripple 1997; Miller et al. 

2003; Patterson and Yool 1998). I analyzed these terrain characteristics to ascertain how 

they affected the burn severity model. 

It is critical to note that the possibility of committing a Type I error in this section 

of the analysis is of great concern due to the relationship between certain terrain 

characteristics and other factors that could affect the results. For example, it is known 

that there is an established relationship between vegetation type and terrain 

characteristics such as aspect, slope, and elevation (Koutsias and Karteris 2003; Miller et 

al. 2003; Patterson and Yool 1998). Any existing relationship between vegetation type 

and fire severity could cause me to conclude that terrain influences burn severity because 

terrain and vegetation variables are interrelated, to a degree. Due to the complex nature 

of wildfire behavior, it is difficult in many circumstances to separate the impact of such 



interrelated variables on fire behavior. Nevertheless, it is useful to investigate these 

relationships. 

Impact of Fire Residence Time on Burn Severity 
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The second major goal of my proposed research was to address the impact of fires 

burning behind the fire front on wildfire burn severity. It appears that no existing 

wildfire behavior model accounts for the fact that large diameter fuels continue to burn 

for extended periods after the flaming fire front passes. As fires continue burning behind 

the fire front, additional heat is transferred into the soil, which often liberates organic 

compounds from the soil and tends to lead to soil hydrophobicity (Graham, Mccaffrey, 

and Jain 2004). These changes in soil properties are characteristics associated with areas 

defined as high bum severity on BAER maps. 

Hypothesis 3: Is there a relationship between fire residence time and fire burn 

severity? My CA based wildfire behavior model produced a general estimate of fire 

residence time based on fuel characteristics for each grid cell. Using the resulting 

estimate of fire residence time for each grid cell, a general estimate of total heat produced 
I 

in each burning cell prior to fire extinction became possible. Classification of total 

energy release per burning cell permits a comparison of the resulting output surface from 
I 

the model to existing BAER burn severity maps. Comparison of these maps assisted in 

the determination if any relationship exists between fire residence time and wildfire burn 

severity. 



CHAPTER VI 

DATA: REMOTE SENSING ASSESSMENT OF WILDFIRE BURN 
SEVERITY 

The multi-temporal differencing algorithm that I employed to assess wildfire bum 

severity at each ofmy study sites requires both pre-fire and post fire Landsat images to 

assess changes in vegetation reflectance. Due to seasonal changes in vegetation 

reflectance, it is critical to obtain Landsat images acquired during the same season as the 

post-bum imagery (Fraser, Fernandes, and Latifovic 2003; Fraser, Li, and Cihlar 2000; 

Key and Benson 1999; Zhang, Wooster, et al. 2003). Multi-temporal analyses based on 

imagery acquired during different times of the year are subject to error due to these 

seasonal changes in vegetation reflectance. Pre-fire imagery acquired during prior years 

does not adversely affect the change detection algorithm as long as seasonality of the pre

fire and post-fire images is uniform (Key and Benson 1999; Miller and Yool 2002). I 

acquired all Landsat imagery from a USGS website devoted to disseminating data 

regarding their recent wildfire bum severity mapping projects (National Park Service and 

USGS 2004). The Landsat 5 Thematic Mapper (TM) satellite acquired all imagery used 

for this study. 

Hayman Fire Data 

Both the pre-fire and post-fire imagery for the Hayman fire were pre-processed 

TIFF format images. These images were orthorectified and projected to UTM Zone 13, 
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NAD 1927 datum. The two bands of interest in this layer, band 4 and band 7, were 

separated into separate layers using the "subset" function ofERDAS Imagine. This 

permitted me to plug each of the data layers into the differenced normalized burn ratio 

(dNBR) algorithm described previously. Landsat bands 4 and 7 both have spatial 

resolutions of 30 meters and 8-bit radiometric resolutions. I also used the pre-burn and 

post-bum Landsat images for general reference. The true-color pre-burn Landsat image 

was draped over elevation data for the study site for visualization purposes. I acquired 

30-meter elevation data for the study site from the USGS Seamless Data Distribution 

system at http://seamless.usgs.gov/. 

The date of acquisition for the pre-fire image was May 12, 2001, one year prior to 

the Hayman fire but less than one month prior to the fire event in terms of seasonality. 

This image reflects vegetation conditions that are relatively similar to the conditions 

present on the date of fire ignition. There is some cloud cover in the image, but the 

majority of the cloud cover lies to the northwest of the fire boundary. A few small clouds 

lie within the fire boundary. Variations in reflectance due to cloud cover and cloud 

shadows will have minimal impact on the dNBR algorithm. 
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Figure 4: True-color pre-bum Landsat TM image of Hayman fire study area 

Figure 5: False-color post-fire Landsat TM image of Hayman fire study area 
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Metadata for the post-fire image shows that the date of acquisition was July 2, 2002, 

which is less than one week after the end of the Hayman fire event. It is apparent that 

smoke effects are minimal to nonexistent at the time of image acquisition. Again, there is 

some cloud cover in this image, but the few clouds in the image are outside the fire 

boundary. Cloud cover in the post-fire image is not an issue. 

Missionary Ridge Data 

Both the pre-fire and post-fire imagery for the Missionary Ridge fire were pre

processed TIFF format images. These images were orthorectified and projected to UTM 

Zone 13, NAD 1927 datum. I utilized the "subset" function ofERDAS Imagine to 

separate band 4 and band 7 into separate files for later use in the dNBR algorithm. All 

Landsat TM data used for this portion of the study has a spatial resolution of 30 meters 

and 8-bit radiometric resolution. False color pre-bum and post-bum Landsat images 

served as a general reference. A false color pre-bum Landsat image was draped over 

elevation data for the study site for visualization purposes. I acquired the elevation data 

mentioned above from the USGS Seamless Data Distribution system at 

htt_p://seamless.usgs.gov/. The date of acquisition for the pre-fire Landsat image was 

June 11, 2001, which is one year prior to the fire event. As this image captured 

vegetation during the same season as the date of fire ignition, the impact of vegetation 

change from the pre-fire image to the time of the fire event is minimized. Cloud cover in 

the pre-fire image is nonexistent, thus there is no concern of cloud cover affecting results 

due to the pre-fire image. 
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Figure 6: False-color pre-fire Landsat TM image of Missionary Ridge study area 

Figure 7: False-color post-bum Landsat TM image of Missionary Ridge study site 
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The post-fire Landsat TM image is dated June 30, 2002. The bulk of fire activity 

ended prior to this time, but thin smoke is still visible in this image due to small spot fires 

that were still burning at the time of image acquisition. Luckily, "mid-infrared bands 

penetrate thin clouds and smoke better than visible bands" (Miller and Y ool 2002, 482). 

As the dNBR utilizes NIR and mid-IR bands, much of the smoke effects are minimized. 

Cloud cover in the post-bum image will have some impact on the results of the analysis 

due to a couple of small clouds and their shadows just left of center (Figure 7). Due to 

the limited availability of free Landsat data, this image is the best available for this study. 

Rodeo-Chediski Data 

Landsat imagery collected for the Rodeo-Chediski fire analysis are TIFF format 

images. Both images were acquired by the Landsat 5 TM satellite, were orthorectified, 

and then projected to UTM Zone 12, NAD 1927. I used the "subset" function of 

ERDAS Imagine to separate band 4 and band 7 into separate data layers for later 

incorporation in the dNBR model. Both of these bands have a spatial resolution of30 

meters and 8-bit radiometric resolution. I draped a false color infrared image of the study 

area during pre-fire conditions over a local elevation layer for visualization purposes. 

Elevation data originates from the USGS Seamless Data Distribution System via 

http://seamless.usgs.gov/. 

The date of acquisition for the pre-fire image was June 5, 2002, which was two 

weeks prior to the fire event. Vegetation reflectance values in band 4 and band 7 would 

be relatively similar to reflectance values on the date of the fire event. The pre-fire image 

is cloud-free, thus cloud cover is not a concern in the pre-fire image (Figure 8). 
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Figure 8: False-color pre-bum Landsat TM image ofRodeo-Chediski study area 

Figure 9: False-color post-fire Landsat TM image ofRodeo-Chediski study area 
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The date of acquisition of the post-fire image was July 7, 2002. This date is 

significant as it is same date that the Rodeo-Chediski was officially declared "contained." 

It does not appear that smoke effects will have an impact on the results of the analysis, as 

a review of the images shows no active fires burning at the time of image acquisition. A 

band of clouds obscures a portion of the burned area in the post-fire image. This cloud 

cover will alter the reflectance values in both bands 4 and 7, thus the dNBR values for the 

obscured area will not be accurate. I will exclude the portion of the burned area obscured 

1 by cloud cover or covered in the cloud shadow to prevent inaccuracies in the dNBR 

results. Unfortunately, by excluding a portion of the study area from analysis, 

inaccuracies in area calculations will result. 



CHAPTER VII 

DATA: WILDFIRE BEHAVIOR MODELING 

The modeling portion of my study requires more unique data types to produce a 

burn severity map than does the dNBR burn severity assessment algorithm. Forest fuel 

data are necessary to construct any fire behavior model. Classification of pre-fire 

Landsat TM images into Anderson (1982) fuel models yields a number of unique fuel 

variables such as fuel loading that I will include in the burn severity model. Ancillary 

GIS data from the US Forest Service in the form of georeferenced JPEG images will help 

inform the fuel model classification. The methods employed to classify Landsat imagery 

into Anderson (1982) fuel models will be discussed in the methodology section of the 

study. I will also discuss the various fuel types that characterize the study area in detail 

in Chapter 11. Figure 10 displays the heterogeneous distribution of fuels across the 

landscape of the Hayman fire study site. The heterogeneous distribution of forest fuels 

across the study area will affect fire propagation across the landscape (Koutsias and 

Karteris 2003; Miller and Yool 2002; Riano et al. 2003; Scott and Jones 1994). For this 

reason, it is necessary to incorporate the effects of changes in fuel type across space in 

the wildfire behavior model. 
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Figure 10: Fuel model distribution across Hayman fire study site 

The cellular automata wildfire behavior model requires variables that incorporate 

weather conditions during the fire event. The primary weather variables for any fire 

behavior model are wind speed and wind direction (Berjak and Hearne 2002; Hargrove et 

al. 2000; Karafyllidis and Thanailakis 1997). Wind speed and wind direction was 

available online from the US Forest Service at 

http://www.fs.fed.us/rm/hayman fire/text/02finney/02finney appA.html. I produced a 

generalized wind speed grid using this data in concert with daily fire weather summaries 

provided by Graham et al. (2003). Figure 11 represents wind speed in terms of bum 

probability. Areas in blue represent periods of extremely high wind speeds, thus these 

areas were assigned a higher bum probability accordingly. Wind direction is 
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incorporated into the fire behavior model dynamically using weights to influence the 

probability of the (i,j) cell to bum based on the position of burning cells in reference to 

the (i,j) cell. For example, if burning cells upwind from the (i,j) cell exist, the likelihood 

of the fire burning the (i,j) cell at time t + 1 is higher than if the burning neighbor was 

downwind of the (i,j) cell. 

HAYMAN FIRE EVENT ,.. 
Wind Speed 

t Burn Probability 

■50 

60 
■65 

■70 0 2 4 
Miles 

Figure 11: Bum probability grid based on wind speed variation over the course 
of the Hayman fire event 
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As topography has a substantial impact upon wildfire behavior, I will utilize 

topographic data to create additional grid layers for my cellular automaton model. I 

acquired Digital Elevation Models (DEMs) from the USGS Seamless Data Distribution 

System at http://seamless.usgs.gov/website/seamless/viewer.php. The DEMs used for my 

study possess 30 meter resolution. This cell size is appropriate as all other data layers 

incorporated into the model, including the Landsat TM imagery, possess 30 meter spatial 

resolution. Slope and slope aspect have an impact on wildfire behavior (Berjak and 

Hearne 2002; Clarke, Brass, and Riggan 1994; Karafyllidis and Thanailakis 1997). I will 

derive slope and aspect layers to include in the wildfire burn severity model using the 

USGS 30 meter DEM to incorporate these two topographic variables into the fire burn 

severity model. Figure 12 shows the resulting burn probability grid constructed to 

incorporate topography into the wildfire behavior model. As winds generally blew from 

the southwest over the course of the two-week period of fire activity, steep slopes that 

faced the wind were assigned a higher burn probability than lee slopes. Berjak and 

Hearne (2002) confirm that slopes facing the wind, particularly steep slopes, burn more 

quickly and more readily. 
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Figure 12: Bum probability grid based on slope and aspect of Hayman fire study 
site 
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CHAPTER VIII 

METHODOLOGY: REMOTE SENSING ANALYSIS OF WILDFIRE BERA VIOR 

The differenced Normalized Burn Ratio (dNBR) is the critical analysis method 

required to operationalize my study. I utilized the functionality ofERDAS Imagine to 

construct the dNBR model. The NBR is calculated the same way as NDVI, but different 

bands of the electromagnetic spectrum substitute for the bands that are plugged into the 

NDVI formula. The dNBR takes the pre-fire NBR reflectance values and subtracts the 

post-fire NBR reflectance values to show changes in reflectance from the pre-burn to 

post-burn image (Key and Benson 1999; Miller and Y ool 2002). As ERDAS Imagine 

does not have a predefined function available to calculate the dNBR values for each of 

my study sites, I utilized the Modeler function ofERDAS Imagine to construct a model 

to calculate dNBR values for each study area (See Appendix for dNBR model diagram). 

After construction of the dNBR model, I plugged band 4 and band 7 from both the pre

fire and post-fire images into the model and ran the dNBR algorithm for each ofmy three 

study sites. 

After running ~e dNBR algorithm for each of my study sites, I ran an 

unsupervised classification process that employs the ISODATA clustering algorithm on 

each of the resulting dNBR layers using ERDAS Imagine. After a review of existing 

burn severity assessment maps produced by BAER teams, I chose to use four classes in 

the unsupervised classification method: unburned, low, moderate, and high burn severity. 
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A four-category classification matches the burn severity assessment maps produced by 

BAER teams (Graham et al. 2002; Robichaud et al. 2003; USDA Forest Service 2002; 

Wilmes et al. 2002). I left the convergence threshold at .950, and a maximum of20 

iterations was sufficient for unsupervised classifications for each of the three dNBR 

layers as only 4 iterations maximum were necessary to reach the convergence threshold. 

I used the raster attributes function to create a pseudo-color scheme for each of the four 

classes. I assigned a dark green color to unburned pixels, yellow to low burn severity 

pixels, orange to moderate severity pixels, and red to high burn severity pixels. This 

improved visualization of the spatial variation of burn severity over grayscale images. 

I conducted supervised classifications for each of the three dNBR layers to 

determine if supervised classification methods classified burn severity more effectively 

than unsupervised classification (Miller and Y ool 2002). I utilized the "inquire cursor" to 

view dNBR values for various pixels and compared them to dNBR signature values that 

typically correlate with each of the four burn severity classes (Key and Benson 2004). 

Areas of interest (AOI) were digitized into polygons and used in the signature data file 

for the supervised classification. 

Upon completion of the unsupervised and supervised classifications, I utilized 

ESRI ArcGIS 8.3 to digitize the estimated fire perimeter using the dNBR image, post

burn band 4 image, the original false color (5, 4, 2) post-bum image, and the result of the 

supervised classification as references for digitizing the fire boundary for each study site. 

Each of these images, when viewed in concert with one another, provided highly useful 

data to discriminate the fire boundary. Figure 13 displays the four images used for 

reference during the digitizing process. 
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Figure 13: Images used to digitize fire perimeters of each fire event. Upper left: 
dNBR image; Upper right: band 4 image; Lower left: false color image; Lower 
right: image resulting from supervised classification of dNBR values 

I saved boundary coordinates in ESRI shapefiles in ArcGIS. ArcGIS easily calculated 

the area of the estimated fire boundary using the coordinates from the digitized fire 

boundary. This fire perimeter layer is highly useful for additional reasons. Once the fire 

perimeter was established for each of the study areas, I utilized the power of the Spatial 

Analyst tool within ArcGIS to convert the vector format shapefile to raster. 

Reclassification of this raster data layer permitted me to assign all pixels within the fire 

boundary a value of "1" and all pixels outside the fire boundary a value of "O." This 

produced a raster fire perimeter layer. I then used the Raster Calculator function within 

the Spatial Analyst toolbar to multiply both the unsupervised and supervised 

classifications by the fire perimeter layer, which assigned a value of "O" to all areas 
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outside the fire boundary. This effectively eliminated all data outside of the fire 

boundary. The remaining pixels of the supervised and unsupervised classification layers 

still possessed their original pixel values, as they were multiplied by "1." The clipped 

supervised and unsupervised layers contained the desired end product: classified areas of 

unburned, low, moderate, and high bum severity. 

As a visualization tool, I acquired elevation data, clipped it to the study areas via 

the application of an analysis mask, and converted it to "2.5D" in ArcScene. I then 

assigned the original pre-bum Landsat images elevation values to drape them over the 

elevation data. The clipped unsupervised and clipped supervised classification layers 

were then draped on top of the pre-fire Landsat image to display the bum severity 

patterns across the landscape. Figure 14 presents a 2.5D example of the unsupervised 

classification of dNBR values draped over a Landsat image of the Hayman study site. 

Figure 14: "2.5" dimension representation of unsupervised classification 
image draped over true-color image of Hayman study site 



CHAPTER IX' 

RESULTS: REMOTE SENSING ANALYSIS OF WILDFIRE BURN SEVERITY 

I compare the results from the multi-temporal analysis of Landsat TM imagery to 

Burned Area Emergency Response (BAER) maps, which are created via a variety of 

different remote sensing platforms and then adjusted with ground truth field data (Bobbe 

et al. 2001 ). Because BAER maps incorporate ground truth data, they lend more 

credibility to the study than remotely sensed data alone. BAER burn severity maps are 

generally accepted as fairly accurate representations of the spatial variation of wildfire 

burn severity across a landscape (Bobbe et al. 2001; Miller and Yool 2002). For this 

reason, I use BAER maps as an accuracy assessment tool for my remote sensing analysis. 

I will discuss the accuracy of the estimated fire perimeter, accuracy of the unsupervised 

classification method, accuracy of the supervised classification method, and issues that 

potentially introduce error into the results of the analysis for each study site. I assessed 

overall accuracy of my results using the Accuracy Assessment tool in ERDAS Imagine as 

well as BAER burn severity acreage data to determine how well the unsupervised and 

supervised classifications estimated total acreages of unburned, low, moderate, and high 

burn severity within the fire boundary in terms of percentage of the total burned area. 
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Hayman Burn Severity Analysis 

The primary goal of this study was to validate the effectiveness of the dNBR 

algorithm as a method to assess wildfire burn severity. Analysis of the results of the 

Hayman fire portion of this study provides useful data toward this end. Digitizing the 

Hayman fire boundary yielded an estimated area for the Hayman fire of 141,999 acres. 

Review of the BAER team burned area data shows that approximately 138,096 acres 

burned as a result of the Hayman wildfire (Graham et al. 2003). The estimated fire area 

determined in my study was 3,903 acres larger than the actual area burned, which 

represents a difference of 2.8% of the total burned area (Figure 15). 

Unsupervised classification of the dNBR result for the Hayman fire appeared to 

assign many more pixels a high burn severity value than actually occurred. General 

comparison of the BAER burn severity map with the results of the unsupervised 

classification shows that the unsupervised classification method overestimated areas of 

moderate and high burn severity and underestimated unburned and low burn severity 

classes (Figure 16). Table 1 provides a tabular view of the percentage of the burned area 

assigned to each burn severity class compared to results from the BAER team. It is 

readily apparent that the unsupervised classification heavily underestimated unburned 

area and areas of low burn severity while overestimating areas of moderate and high burn 

severity. Comparison of the results of the unsupervised classification against the BAER 

map using ERDAS Imagine Accuracy Assessment tool resulted in an overall 

classification accuracy of 50%. 



• Estimated Fire Boundary 

BAER Fire Boundary 

Figure 15: Predicted versus actual fire boundary of Hayman fire 
event 

Figure 16: Left: official fire severity map of Hayman fire; Center: unsupervised 
classification result; Right: supervised classification result 
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Supervised classification appeared to pick out classes of bum severity more 

accurately. Review of figure 16 shows that the supervised classification picked out areas 
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of unburned or low burn severity more effectively than unsupervised classification. 

Table 1 confirms the improvement in classification accuracy of the supervised 

classification. Supervised classification underestimated unburned areas by a large 

margin. Results show that supervised classification predicted total acreage of low burn 

severity with superior accuracy when compared to the unsupervised classification. Areas 

of moderate burn severity were substantially overestimated by the supervised 

classification, but total acres classified as high burn severity matched BAER estimated 

with a high degree of accuracy (Table 1 ). Accuracy assessment via ERDAS yielded an 

overall classification accuracy of 60% for the supervised classification results. 

Unburned Low Moderate Hi2h 
BAER results 15.2% 34.1% 15.9% 34.8% 

Unsupervised 0.6% 4.2% 38.3% 56.8% 

Supervised 6% 19% 42.1% 32.9% 

Table 1: Percentage of total acreage assigned to each burn severity class: Hayman fire 

Missionary Ridge Burn Severity Analysis 

Digitizing the estimated fire perimeter for the Missionary Ridge fire based on the 

dNBR, post-bum band 4, false color (5, 4, 2) post-bum Landsat image, and supervised 

classification image resulted in an estimated burn area of 64,941 acres. The official 

estimated burn area by the Missionary Ridge BAER team was 72,964 acres. Total 

burned area was estimated with 89% accuracy. The general shape of my estimated fire 

perimeter appears to agree with the shape of the BAER fire perimeter (Figure 17). 



- Estimated Fire Boundary 

~ BAER Fire Boundary 

Figure 17: Predicted versus official boundary of Missionary Ridge fire 
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As was the case with the Hayman fire analysis results, the unsupervised 

classification method underestimated unburned areas or spots characterized as low bum 

severity and overestimated areas of moderate and high bum severity (Table 2). 

Unsupervised classification underestimated percentage of unburned areas by a large 

margin, but performed relatively well on areas of low, moderate and high bum severity 

(Table 2). Comparison of the unsupervised classification results to the BAER bum 

severity map in ERDAS Imagine Accuracy Assessment tool yielded an overall 

classification accuracy of 45%. Comparison of the spatial pattern of bum severity of the 

unsupervised classification result and the BAER severity map shows that overall bum 

severity patterns match up at small scales (Figures 18 and 19). Portions of the BAER fire 

perimeter that were not included in my estimated fire boundary are characterized as 

unburned or low bum severity P,er the BAER map. This may explain a portion of the 



difference in estimated versus actual areas of unburned to low bum severity in the 

Missionary Ridge fire perimeter. 

Figure 18: Top: unsupervised classification result of dNBR analysis of 
Missionary Ridge fire; Bottom: supervised classification image 
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Preliminary Bum Severity 
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Figure 19: Official bum severity map of Missionary Ridge fire 

Unburned Low Moderate 

BAER 20.2% 19% 29.9% 

Unsupervised 1.6% 14.5% 36.6% 

Supervised 3.5% 42.9% 43.3% 
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High 

30.9% 

47.3% 

10.2% 

Table 2: Percentage of total acres assigned to each bum severity class: Missionary Ridge 
fire 

Review of figures 18 and 19 shows that the supervised classification of the dNBR 

values agrees fairly well with the BAER bum severity map in terms of smaller-scale bum 

severity patterns. Table 2 shows that the supervised classification procedure 

underestimated total acreage of unburned areas by a substantial amount but overestimated 

total area of the low and moderate bum severity classes by a large margin. It is possible 

that subtle differences in dNBR values in many areas caused unburned pixels to be 

included in the low bum severity category. The supervised classification results in Table 
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2 also show that areas of high burn severity were underestimated by a large percentage. 

It is likely that some areas assigned to the moderate burn severity class were assigned to 

the high burn severity class in the BAER findings. Determining breakpoints in dNBR 

values to create each of the four burn severity classes is clearly a concern when analyzing 

results from dNBR analyses. Comparison of the supervised classification results to the 

BAER burn severity map via ERDAS Accuracy Assessment tool show that the overall 

classification accuracy was 75%. 

Two small clouds and their shadows in the post fire image have a small impact on 

results from the dNBR analysis. As the dNBR algorithm assesses changes in reflectance 

in pre-burn to post-bum NBR images, bright clouds and their dark shadows impact the 

values in the resulting dNBR image. A review of figure 18 shows that two green 

(unburned) spots to the left of center in both the unsupervised and supervised 

classification maps are the result of the shadow of the two small clouds in the post-bum 

images. I confirmed this via overlay of the post-bum Landsat image in ArcGIS. 

Although this error does not affect a large portion of the study area, it is important to note 

the impact of error such as this causes inaccuracies in classification of burn severity. 

Rodeo-Chediski Burn Severity Analysis 

The estimated burned area for the Rodeo-Chediski fire as determined by 

digitizing the fire boundary as identified by the dNBR image was 437,293 acres. BAER 

team estimates the burned area as 467,066 acres (Wilmes et al. 2002). The estimated fire 

boundary accurately predicted the total burned acreage of the Rodeo-Chediski fire with 

93.6% accuracy. My estimated fire boundary agrees well with the BAER fire boundary 
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with the exception of a large cloud that obscures a part of the northwest portion of the 

bum scar (Figure 20). I chose to exclude this area from the fire perimeter to prevent 

classification error in the dNBR image analysis. Had I included this portion in the fire 

perimeter, accuracy would improve slightly. Nevertheless, the dNBR algorithm allowed 

me to define the Rodeo-Chediski fire boundary with a high degree of accuracy. 

~ BAER Fire Boundary 

- Estimated Fire Boundary 

Figure 20: Predicted versus actual fire perimeter of the Rodeo-Chediski fire 

Assessment in the accuracy of the unsupervised and supervised classification of 

the dNBR data is based in part on the predicted number of acres of each bum severity 

classification as compared to actual acreage of each bum severity class as determined by 

BAER teams. The Rodeo-Chediski BAER report does not list the actual number of acres 

associated with each bum severity type, but an accompanying environmental impact 

statement (EIS) includes percentage of the total burned acreage for each bum severity 

class (Zieroth and Siderits 2003). The EIS combines the unburned and low bum severity 
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classes together. Table 3 reflects the combined unburned/low bum severity class as it is 

impossible to separate the two classes without further information. 

As was the case with both the Hayman and Missionary Ridge fires, the 

unsupervised classification procedure underestimated the percentage of burned area 

assigned to the unburned/low class and overestimated the percentage of the total burned 

area assigned to the moderate and high bum severity classes (Figures 21 and 22). BAER 

team findings determined that 4 7% of the total area within the fire perimeter was 

unburned or suffered low bum severity while the remaining burned areas were almost 

evenly divided among the moderate and high bum severity classes (Table 3). The 

unsupervised classification procedure identified only 7% of the area within the fire 

perimeter as unburned or low bum severity. The unsupervised classification assigned 

approximately twice as many pixels to the high bum severity class as the BAER team 

results. Accuracy assessment of the unsupervised classification results estimated a 

classification accuracy of 55%. 

Unburned/ Low Moderate High 

BAER 47% 26% 27% 

Unsupervised 7% 37.7% 55.3% 

Supervised 28.4% 30.2% 41.5% 

Table 3: Percentage of total acres assigned to each burn severity class: Rodeo
Chediski fire 

A review of the results from the supervised classification procedure (Table 3) for 

the Rodeo-Chediski study area shows that supervised classification assigned pixels to the 

appropriate bum severity class with more success than unsupervised classification. 

Analysis of the results of the supervised classification procedure shows that areas of 
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unburned to low bum severity were underestimated, but percent burned area classified as 

moderate bum severity by the BAER teams closely matches the results of the supervised 

classification procedure. This classification method did overestimate total percent area 

assigned to the high bum severity class. The ERDAS Imagine Accuracy Assessment tool 

generated an overall classification accuracy of 70%. A review of figures 21 and 22 

shows that the bum severity map resulting from the supervised classification procedure 

agrees well with the BEAR team map. 

Figure 21: Top: Unsupervised classification image of Rodeo
Chediski fire; Bottom: Supervised classification image 
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Figure 22: Official bum severity map of Rodeo-Chediski fire event 

Two potential sources of error are of primary concern for results stemming from 

the Rodeo-Chediski fire portion of the study. Classification error is one of these two 

sources of error, and it is one present in the results for each of my study sites. Due to the 

relative nature of bum severity assessment, it is sometimes difficult to determine the 

appropriate dNBR value to assign as the breakpoint between class values. For example, a 

minor change in the breakpoint value between the moderate and high bum severity 

classes can potentially result in the misclassification of thousands of acres of forest in 

large wildfires. The second major source of error in the results for the Rodeo-Chediski 

fire is the fact that a large cloud obscured a substantial portion of the northwest section of 

the fire boundary in the post-fire image. I chose to exclude areas obscured by the cloud 

or the cloud shadow to prevent misclassification of burned pixels. This prevented 



accurate assessment of total burned area, which eliminated the possibility of assessing 

burn severity in this portion of the fire boundary. Due to the large size of the Rodeo

Chediski wildfire, the percentage of the burned area excluded from the analysis due to 

cloud cover is relatively small, as my findings resulted in a total burned area for the 

Rodeo-Chediski fire within 6.4% of the BAER team estimated. The impact of cloud 

cover in my study, though important to consider in the results of the analysis, was not 

large enough to affect the results of the dNBR analysis significantly. 
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CHAPTERX 

METHODOLOGY: WILDFIRE BEHAVIOR MODELING 

In general, the existing attempts to employ cellular automata modeling to wildfire 

behavior have been targeted to relatively small wildfires encompassing several hundred 

acres that usually burn out on the same day as fire ignition (Clarke 1994; Berjak and 

Hearne 2002). The fire event that my cellular automaton was designed for encompassed 

over 140,000 acres and burned actively for over two weeks over a landscape with 

heterogeneous fuels, rugged terrain, and dynamic weather conditions. For this reason, 

my goal was to produce a model that provided a general estimate of wildfire behavior in 

terms of fire propagation and burn severity. The CA based model can be broken into 

three phases: -~urn probability assessment, fire spread phase, and energy output/ fire 

residence time calculation phase. I will discuss each of these phases of the model in this 

chapter, beginning with the methods used to process the primary data layers needed for 

each of these phases. 

Burn Probability Grid Construction 

The first stage of the cellular automata model is the "burn probability assessment" 

phase. Construction of a "burn probability" grid is necessary for the model to determine 

which grid cells are likely to burn, and wijch cells are less likely to burn. Fuel type, 
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wind speed, slope, and terrain are all variables that have an impact on burn probability 

that are included in the burn probability grid. I included each of these variables in the 

overall burn probability grid. 
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As mentioned previously, fuel-characteristics have an impact on fire behavior 

(Berjak and Hearne 2002; Karafyllidis and Thanailakis 1997; Koutsias and Karteris 2003; 

Miller and Yool 2002; Riano et al. 2003; Scott and Jones 1994). No detailed fuel map 

existed prior to this study, thus the construction of a raster grid representing the Anderson 

(1982) fuel models was necessary. Using the pre-fire Landsat TM image and a relatively 

low resolution JPEG image of Anderson (1982) fuel models constructed by the USDA 

Forest Service for the study area as a reference, I employed ERDAS Imagine to conduct a 

supervised classification of the pre-fire Landsat image to produce a raster representing 

the spatial distribution of fire behavior fuel models across the study area. The resulting 

fuel map appears to agree well with known characteristics of the study site in that 

grassland-type fuels ( FM 1) are commonly found on southerly slopes while more dense 

stands of forest (FM 9) are common on northerly slopes (Graham et al. 2003). Other 

attempts to produce fuel grids as inputs for cellular automata models used more arbitrary 

methods, such as unsupervised classification ofred-band reflectance (Clarke 1994). 

The resulting fuel type grid was then reclassified using ArcGIS 8.3 into a burn 

probability grid based on the fuel characteristics of each Anderson (1982) fire behavior 

fuel model. Determination of burn likelihood based on fuels was accomplished by visual 

comparison of fuel type to burn likelihood using the supervised dNBR image of the 

Hayman study area. Review of the fire behavior characteristics described in Anderson 

(1982) further informed my assessment of burn probability for each fuel type. 
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Topographic variables of slope and aspect were also incorporated into the burn 

probability grid. Existing literature shows that both slope and aspect have an impact on 

fire behavior. Fire burns more quickly and more readily up increasingly steep slopes, but 

fire burns more slowly and less readily on the lee side of slopes (Karafyllidis and 

Thanailakis 1997; Berjak and Hearne 2002). As fire spreads most readily in the direction 

of wind, slope aspect must be taken into consideration as well. For this reason, I chose to 

produce one burn probability grid using a weighted combination of both slope and aspect 

variables. I constructed separate burn probability grids for slope and aspect and then 

added the two raster grids together using the raster calculator function of ArcGIS 8.3. 

The resulting layer had little value on its own, but careful evaluation of the unique values 

of each class allowed for reclassification of this layer into an overall probability grid. For 

example, an area of extreme slope (35 - 70%) was assigned a 70% burn probability value 

based solely on slope. If that area also possessed a southwesterly slope, which was the 

general trend of wind during the course of the fire event, the burn probability grid value 

would be 65%. The addition of these two integer grids would produce a value of 135. 

As I know that a value of 13 5 represented areas of steepest slope and aspect most directly 

facing the wind, these areas were assigned an overall burn probability value of 65%, 

which is the highest burn probability value possible based on topography in this model. 

Wind speed was also taken into consideration during the construction of the 

overall burn probability grid. I manually digitized a fire progression map produced 

during the Hayman fire case study that displays the fire boundary during each day of the 

fire event (Graham et al. 2003). Using wind speed data from the weather stations located' 

in the study area along with data provided by Graham et al. 2003, I was able to associate 
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wind speed data for each vector polygon in the digitized fire progression map. Figure 23 

shows a classified vector layer displaying wind speed within the Hayman fire boundary. 

Using ArcGIS 8.3, I converted the vector layer into a raster grid and reclassified the grid 

into bum probability values. 

Wind Speed 

MPH 
9 - 11 
12 - 15 

• 16 - 20 

Figure 23: Vector wind speed data for Hayman fire 

Creation of the overall bum probability grid required combining the bum 

likelihood grids created for fuels , aspect and slope, and wind speed. ArcGIS 8.3 raster 

calculator easily allowed for this operation. A weighted overlay addition operation 

allowed for a combination of fuel , topographic, and wind variables into the final bum 

probability grid. The following equation was used to produce the weighted bum 

probability grid: 
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Burn_prob = ((0.4[/uel_prob]) + (0.3[terrain_prob]) + (0.3[wind_speed]) (3) 

The fuel layer was assigned a slightly higher weight than the other two variables due to 

the fact that the literature provides more information on the effects of fuel on fire' 

propagation than the other variables, and fuel is the only variable that humans have the 

ability to control (Graham, Mccaffrey, and Jain 2004). Figure 24 displays the final burn 

probability grid input into the "burn probability assessment" stage of the wildfire 

behavior model. Note that the Cheesman reservoir, the large water body displayed in 

bright green, does show a 15% burn probability. Naturally, water will not burn! The 

model avoids burning these areas thanks to the "fire spread probability" grid discussed 

next. 
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Figure 24: Unweighted bum probability grid for Hayman study area 
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Spread Probability Grid Construction 

The primary purpose of the spread probability grid is to attempt to model the 

spread of fire over time as accurately as possible. While the "burn probability" grid 

determines if a cell is likely to burn at all, the spread probability grid is designed to 

determine the likelihood that a cell will burn at any particular time step. For example, 

grassland and shrubland fuels (fuel models 1 and 2) burn very rapidly, thus they are able 

to burn over each 30 meter grid cell very easily in one ten-minute time step. For this 

reason, it is highly likely that a fire burning these fuel types will spread to neighboring 

cells at time step t + 1. Grid cells assigned to fuel model 8 burn very slowly, thus it is 

unlikely that they will burn across an entire grid cell and propagate fire to its neighbors 

during the first burning time step. Essentially, the purpose of the spread probability grid 

is to "slow down" the progress of the fire for fuels that burn more slowly than faster 

burning fuels. 

The BEHAVE fire modeling software package is commonly used by fire 

ecologists and forest service personnel to determine fire behavior characteristics such as 

fire spread rates. This software package is based on the fire behavior equations 

developed by Richard Rothermel (1972) which are widely accepted in the fire behavior 

modeling community. Given the overall conditions of the Hayman fire site, I determined 

fire spread rates for each of the five primary fuel types that characterize the study area. 

Fire spread probabilities were assigned to each fuel type based on likelihood of fire to 

burn entirely across a burning cell and propagate fire to its neighbors at time step t + 1. 

Figure 25 displays the spread probability grid input into the cellular automata wildfire 

behavior model. Note that locations denoted in red are areas designated as having a zero 
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probability of spread. These are the only locations where fire spread is not allowed to 

occur. Bodies of water or areas classified as bare ground in the fuels layer have a spread 

probability of zero. 

Figure 25: Spread probability grid for Hayman study area 
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Figure 25 s,hows the spread probability values initially assigned to each grid cell, 

but the model dynamically adjusts the burn probability at each time step to account for 

the fact that as a cell burns over the course of multiple time steps, it is more and more 

likely to propagate fire to its neighboring cells. For example, while a burning (i,j) cell 

possessing fuel model 8 fuel type is assigned only a 40% chance of propagating fire to its 

neighboring cells at time t + 1, as the cell continues to burn at time t + 2 and t + 3, it 

becomes increasingly likely that fire will spread to its neighboring cells. The model ties 

the fuel residence time layer, which will be discussed in the next section, to the spread 

probability layer. By the time only one time step remains before the burning (i,j) cell 

runs out of fuel, the fire spread probability is multiplied by a factor of two. It is likely 

that the fire will spread before the (i,j) cell is extinguished. 

Fire Residence Time Grid Construction 

One of the goals of this cellular automata based wildfire behavior model is to 

assess wildfire burn severity. To attempt to achieve this goal based on my hypothesis 

that there is a relationship between total energy release per grid cell and burn severity, it 

is necessary to generate a rough estimate of the number of time steps a cell will burn 

prior to fire extinction. Fire residence time is the term used to describe the amount of 

time a fire burns behind the actively burning fire line. Once the flaming fire front passes 

through a vegetated area, the fire often continues to burn behind the flaming front. The 

fire residence time grid allows the cellular automaton to incorporate this variable into the 

equation. Figure 26 shows the residence time grid created for the Hayman fire site. 
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Figure 26: Estimated fire residence time grid for Hayman study site 

Using BEHAVE fire modeling software, a general estimate of the amount of heat 

released per unit area is possible given weather, fuel, and topographic conditions of the 

Hayman study area. Carlton (2003) indicates that all fuels within the Anderson (1982) 
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fire behavior fuel models are estimated to contain 8,000 BTU's of energy per pound of 

fuel. Using this value as a constant and the heat per unit area estimate for each fuel type, 

the amount of fuel consumed per square foot per time step is estimated and converted to 

tons of fuel per grid cell consumed per time step. Anderson (1982) provides the total fuel 

loading per grid cell, which includes live and dead fuels. As wildfire generally does not 

completely consume all live and larger diameter fuels, only 60% of the live and coarse 

fuels were considered available for combustion along with 100% of fine fuels such as 

pine needles and grasses. Subtraction of the number of tons of fuel consumed per time 

step from the total number of tons of fuel available per pixel provides us with an estimate 

of the number of time steps that any particular grid cell will burn. It must be noted that 

the heat per unit area value obtained from the BEHAVE software was reduced by 50% 

after the first time step to represent the fact that once the flaming front passes by, 

smoldering combustion takes place. Smoldering combustion is less intense than flaming 

combustion, thus the need for reducing the initial heat per unit area value is apparent. 

The following formula yields the fire residence time for each grid cell: 

Fuel consumption (F) = ((b * h) * 9682.56 ft2) / 2000 lbs/ton = # tons consumed 
during each time step 

b = heat per unit area obtamed from BEHAVE software (BTU / fl:2) 
(bis reduced by 50% after first time step) 

h = heat content of 1 lb of fuel (Value is constant: h = I lb I 8000 BTU) 

9682.56 ft2 = area of each grid cell 

R = fire residence time(# of time steps fire burns) 

Fire Residence Time (R) = Total Fuel Loading Per Grid Cell - Fuel 
Consumption (F) at each time step (4) 
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Model Description 

The cellular automata model incorporates the burn probability grid, spread 

probability grid, and fire residence time grid in three stages, although the outcome of the 

model at each time step is dependent on the values of these derived from each stage of 

the model. The model is probabilistic in nature, which means that the output of the 

model will vary from one simulation run to the next. In contrast, physical models have 

fixed rules that result in the same outcome after each model iteration. A strength of 

stochastic models is that averaging the results of numerous model iterations allows for 

the generation of"risk maps" (Clarke 1994). As one of the primary objectives ofmy 

model is to attempt to produce a model to predict areas at risk to severe wildfire damage, 

a probabilistic model is the appropriate choice for my study. 

I chose to employ ERDAS Imagine software to produce the wildfire behavior 

model due to its built-in ability to analyze, process, and visualize spatial data in 2D and 

3D. The ERDAS Imagine Modeler tool allowed for the construction of each of the three 

stages needed to execute my cellular automata model in spatial terms, but the Modeler 
I 

tool lacks the ability to represent change over time due to its inability to conduct iterative 

loops (Messina et al. 1999). Although the Modeler tool does not allow for looping 

procedures, it is possible to export the model into ERDAS Spatial Modeler Language 

(SML) and edit the SML script to accommodate looping procedures. This modification 

procedure allowed me to construct a cellular automata model that simulates the spread of 

wildfire at discrete time steps. 

As discussed previously, the CA based wildfire behavior model assesses the 

pattern of the burn across space and attempts to identify areas of unburned, low, 
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moderate, and high bum severity in three stages. The initial stage assesses the likelihood 

that any particular cell will bum. The second phase determines the likelihood that fire 

will spread from a burning neighbor to the (i,j) cell at time t + 1. The third stage 

determines how many time steps a burning cell will continue to bum before all available 

fuel is consumed. I will discuss how each of the three phases of the wildfire behavior 

model execute to produce the final outputs of the model. All three of these phases, taken 

together, make up the transition rules to determine if fire will propagate to neighboring 

cells. 

Burn Probability Assessment 

This initial step in the wildfire behavior model inputs the overall bum probability 

grid discussed previously and compares the values of each grid cell to a randomly 

generated number in ERDAS. If the bum probability value of the (i,j) cell is greater than 

or equal to the randomly generated number, then the (i,j) cell will bum. This assumes 

that a burning neighbor exists and the probability of spread rule discussed shortly is met 

as well. Figure 27 displays a visualization of this phase of the CA model. 
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IF burn_prob 
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THEN "burn" (i,j) cell 

Figure 27: Visual representation of bum probability assessment phase of fire model 
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Up to this point, wind direction has no bearing on fire spread. I incorporated 

wind direction into the burn probability assessment phase of the model dynamically by 

modifying the bum probability value for each grid cell based on the position and number 

of burning neighbors at each time step. As we know, fire tends to spread in the direction 

of wind (Berjak and Hearne 2002; Clarke 1994; Karafyllidis and Thanailakis 1997). A 

set of rules were created to assign weights to the bum probability value to increase bum 

probability if one or more burning neighbors were upwind from the unburned (i,j) cell. 

On the other hand, if only one burning neighbor was downwind from the unburned (i,j) 

cell, the bum probability value was actually decreased to represent the fact that fire is less 

likely to bum against the direction of wind. Adjustment of these weights over the course 

of a number of model runs was necessary to produce a simulated "fire" that propagated 

over the landscape effectively. Figure 28 shows a snapshot of how the location of the 

burning cells affect the bum probability weights of unburned cells as the fire progresses. 

Figure 28: Visualization of effects of wind direction weightings on bum probability · 
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Spread Probability Assessment 

The spread probability phase of the model operates in much the same way as the 

burn probability assessment phase, except its purpose is to "slow down" the progress of 

fire through fuels with a lower rate of spread. The spread probability grid discussed 

previously is compared to a randomly generated number produced in ERDAS. If the 

spread probability value is greater than or equal to the random number, then the fire will 

spread to the processing cell, assuming that the conditions of the burn probability 

assessment stage are met as well. To incorporate time into the spread probability phase 

of the model, I used a set of weights that modified the spread probability value to 

increase the likelihood of fire spread as the fire residence time value for that burning cell 

neared the value of zero, which indicates that all fuel in the cell has been consumed. 

Essentially, this rule states that the more time steps a cell has been burning, the more 

likely it is to be able to propagate fire to its neighboring cells. 

Fire Residence Time Phase 

The third phase of my model determines the number of time steps each burning 

cell will continue to actively burn prior to fire extinction. While a cell is actively 

burning, it can propagate fire to its neighboring cells. The fire residence time grid 

discussed previously is input into the model to determine how many time steps a fire will 

burn at any particular grid cell prior to fire extinction. Once a grid cell begins to burn, 
I 

the model subtracts one unit of fuel from the residence time grid at each time step. A cell 

will continue to burn and potentially propagate fire to its neighbors until the residence 

time grid reaches zero, at which time the fire is extinguished. 
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Burn Severity Estimation 

After running the wildfire behavior model a number of times and averaging the 

results, I was able to general estimate of which cells were more than 50% likely to burn. 

Using the equation created for the fire residence time estimation for each fuel type, I 

determined the total energy output per grid cell based on the fuel type present prior to fire 

ignition. A final line was added to the fire residence time calculation to derive the total 

amount of energy released per grid cell. Reclassification of the original fuel model layer 

based on energy release for each fuel type produced an overall energy release grid. 

Multiplication of this energy release grid with the averaged output grid produced from 

the CA model produced the final burn severity risk map for the study site. 

Fuel consumption (F) = ((b * h) * 9682.56 ft2) I 2000 lbs/ton=# tons consumed 
during each time step 

b = heat per unit area obtained from BERA VE software (BTU / ft2} 

(bis reduced by 50% after first time step) 

h = heat content of 1 lb of fuel (Value is constant: h = I lb I 8000 BTU) 

9682.56 ft2 = area of each grid cell 

R = fire residence time ( # of time steps fire burns) 

Fire Residence Time (R) = Total Fuel Loading Per Grid Cell - Fuel 
Consumption (F) at each time step 

Overall energy output per cell (e) = (R * b) * 9682.56 ft2 (5) 

Model Validation 

In order to assess the overall accuracy of the output of the cellular automata 

model, I selected 100 random grid cells within the Hayman fire study area as accuracy 
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assessment points. The Accuracy Assessment tool within ERDAS Imagine generated the 

random point locations, and I converted these X-Y values into a point shapefile in 

ArcGIS 8.3. Figure 29 displays the randomly selected points within the Hayman fire 

boundary. Running the cellular automata model a number of times and averaging the 

results produced the final output surface. Comparison of the bum severity classes 

predicted by the cellular automata model to the supervised dNBR bum severity classes 

provides valuable insight into the ability of the wildfire behavior model to accurately 

predict wildfire bum severity at the Hayman study area. 

• Accuracy Assessment Point 

Figure 29: Accuracy assessment points 



CHAPTER XI 

TOPOGRAPHY, WEATHER, AND VEGETATION CHARACTERISTICS OF THE 
HAYMAN STUDY AREA 

Due to data availability, I limited the wildfire behavior modeling portion of my 

study to the Hayman fire event discussed previously. The 2002 Hayman fire, being the 

largest wildfire event in recorded history in Colorado, generated sufficient attention to 

warrant Congressman Mark Udall of Colorado to request the US Forest Service to create 

a Hayman Fire Review Panel to conduct a thorough investigation into the causes and 

effects of the fire (Graham et al. 2003). The resulting investigation produced various 

spatial datasets that I was able to incorporate into my model of the Hayman fire. A 

number of characteristics present at the study site prior to and during the fire interacted to 

produce the resulting fire spread patterns and fire effects observed. I examine the 

topographic, vegetation, and weather conditions present at the study site in this section. 

Topography of the Hayman Fire Study Site 

As topography has a significant impact on wildfire behavior, it is necessary to 

incorporate topographic characteristics into any fire behavior model. The topography of 

the Hayman fire varies across the study area. This variation in topography may reveal 

changes in fire behavior across space. Figure 30 shows changes in elevation across the 

study site. The Kenosha and Tarryall Mountains form a portion of the western boundary 

82 
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of the Hayman fire (Graham et al. 2003). The highest elevations found in the study area 

are in this location, with elevations commonly exceeding I 0,000 feet. The lowest 

elevations are found in the north and northeastern portion of the fire perimeter following 

the direction of flow of the South Platte River, which is the primary drainage system in 

the study area. 

Figure 30: Elevation of Hayman study area 

Elevations found downstream of the Cheesman Reservior, the largest body of 

water within the fire perimeter, typically range from 6500 - 7500 feet. The southeast 
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portion of the burned area exhibits the most gentle terrain found within the study area, 

with slope values commonly below 5% in most areas not directly adjacent to streams or 

creeks. Terrain in the South Platte River drainage basin, which dominates the central 

portion of the study area, is relatively rugged. Slope commonly exceeds 25% in this 

portion of the study area. The heterogeneous terrain in the study area will likely have an 

impact on the fire behavior observed at the study site (Koutsias and Karteris 2003; 

Kushla and Ripple 1997; Miller et al. 2003; Patterson and Yool 1998). Graham et al. 

(2003) point out that there are no major topographic barriers within the fire perimeter that 

would impede the spread of fire across the landscape. 

Weather Conditions Prior/During Hayman Fire 

Drought conditions existed in Colorado throughout 2002 and the winter months of 

late 2001 (Graham et al. 2003). Due to the lack of spring precipitation and reduced 

amounts of snowmelt due to winter drought conditions, vegetation and soil was 

extremely dry at the time of fire ignition on June 8, 2002. Fuel moisture was extremely 

low in both May and June. A common measure of vegetation conditions for fire risk 

modeling is 1000-hour fuel moisture, which represents moisture levels in dead fuels 3-8 

inches in diameter. 1000-hour fuel moisture levels prior to the fire event were near 10% 

in the days prior to fire ignition, which is substantially below average 1000-hour fuel 

moisture conditions (Graham et al. 2003). Drought conditions in the months prior to the 

Hayman fire resulted in extraordinarily dry forest fuels that turned into the largest fire 

event in recorded history in Colorado. 
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Daily Weather Conditions of Hayman Fire 

The study area has a number of automated weather data collection systems that 

provide hourly weather information across the study area. Although wind direction 

varied to some degree over the course of each day, I will look at overall trends in weather 

patterns for my model. On June 8, 2002, temperature reached 85° F with relative 

humidity ranging from 6% to 92% over the course of the day (Graham et al. 2003). 

Winds were from the southwest with sustained winds of approximately 16 mph with 

gusts exceeding 30 mph at times. Ignition of the fire occurred at approximately 3:00pm 

on June 8, and the fire burned approximately 1,000 acres by the morning of June 9 

(Graham et al. 2003). 

June 9th saw the most dramatic fire spread of the Hayman fire. About 60,000 

acres burned due in large part to the extreme weather conditions present on this day. 

High temperature was 86° F and relative humidity remained below 30% for the day 

(Graham et al. 2003). Sustained southwest winds averaging 15 mph with gusts exceeding 

40 mph drove flames over large areas in short periods. This combination of low relative 

humidity and high winds aligned with the topography of the South Platte River drainage 

resulted in the remarkable progress of the wildfire across the landscape (Graham et al. 

2003). Weather conditions on June 10 were similar to June 9, although relative humidity 

was substantially higher with slightly lower average wind speed. 

June 11th through June 16 did not see the large increases in total burned area. 

Winds on each of these days generally blew from the north, and wind speeds averaged 

around 10 mph (Graham et al. 2003). Relative humidity for each of these days was much 
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higher than the extremely low humidity values noted on June 9. Weather patterns began 

to shift again on June 17. Southwest to westerly winds with an average wind speed of 8 

mph with gusts exceeding 40 mph at times characterized the study site (Graham et al. 

2003). Relative humidity on June 17 ranged from 5% to 91 %. June 18th exhibited 

similar weather conditions, although relative humidity was slightly lower than the 17th. 

Wind speeds were higher than June 17 as well. 

June 19th saw another change in weather conditions. Winds began blowing from 

the north at approximately 10 mph with gusts exceeding 25 mph (Graham et al. 2003). 

Relative humidity increased during daytime hours; exceeding 50% at most weather 

stations near the study area. One nearby weather station recorded one-third of one inch 

ofrainjust before midnight on June 19 (Graham et al. 2003). Winds once again blew 

from the southwest on June 20, with sustained winds averaging 12 mph with gusts over 

25 mph. Relative humidity was substantially higher than June 19, and minor amounts of 

rainfall were recorded at some weather stations within the study area (Graham et al. 

2003). Similar weather conditions and small amounts of precipitation occurred on June 

21. Although the Hayman fire was not officially deemed to be "contained" until July 2, 

the fire progressed very little after June 21-22. The weather conditions present on each 

day of the Hayman fire contributed to fire propagation across the study area. It is 

important to consider these weather conditions when constructing a fire behavior model 

as they have such a strong impact on model output (Berjak and Hearne 2002; Hargrove et 

al. 2000; Karafyllidis and Thanailakis 1997). 
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Vegetation in the Study Area 

As is typical of forested landscapes occurring across the Colorado Front Range, 

the Hayman study site possessed a spatial distribution of fuel types that are dependent on 

topographic characteristics that vary across the burned area. Typically, south-facing 

slopes are more xeric in nature than north-facing slopes. For this reason, south-facing 

slopes tend to possess more open stands of ponderosa pine as well as grasslands and 

shrublands (Graham et al. 2003). North-facing slopes, on the other hand, are often 

characterized by more dense stands dominated by Douglas-fir with some blue spruce and 

aspen mixed in with these other tree species (Graham et al. 2003). Elevation also affects 

the type of fuels present in the study area. Fuels in the lowest elevations (5,000 -

6,000ft) are generally grasslands and shrublands, while more dense stands of mixed 

conifer and subalpine coniferous forests are typical of elevations between 7,000 - 10,000 

feet. Figure 31 shows elevation values across the study area classified into zones of 

elevation to represent areas where vegetation type may change due to elevation. 



88 

Figure 31: Typical vegetation zones characteristic of the Colorado Front Range 

To simplify fire behavior calculations, vegetation across the study area was 

classified into Anderson (1982) fuel models discussed previously. Figure 32 exhibits the 

heterogeneous distribution of the Anderson (1982) fuel models within the Hayman fire 
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boundary. The primary fuel models that exist in the Hayman fire area are Fuel Model 

(FM) 1, FM 2, FM 8, FM 9, and FM 10. The FM 1 fuels are grassland fuels that typically 

burn very quickly given the high wind speeds during the Hayman fire event. Fuel 

loading is typically less than 1 ton per acre, which is relatively low compared to other 

fuel models present. Shrubland fuels are assigned to FM 2. Fire also propagates across 

FM 2 fuels very quickly, and fuel loadings of 4 tons per acre are common (Anderson 

1982). Open stands ofponderosa pine with grass and sporadic shrubs are generally 

classified as FM 2 fuels. Fuel model 8 is characterized by fires that move rather slowly 

due to the lack of abundant surface fuels. Fuel loadings of approximately 5 tons per acre 

are normal for FM 8, but the surface fuel layer is very thin, which prevents rapid surface 

fire spread (Anderson 1982). Fuel model 9 is commonly found on north-facing slopes 

dominated by more dense stands of vegetation such as Douglas-fir. Fuel loadings of 3.5 

tons per acre are common. Fires tend to spread faster in fire fuel behavior model 9 than 

fuel model 8 as larger quantities of surface fuels are present (Anderson 1982). Fuel 

model 10 is characterized by larger quantities of large diameter (> 3 iQ.ches) dead woody 

fuels that have collected over the years, and fire spread rates are similar to fire spread 

rates found in fuels designated as fuel model 9 (Anderson 1982). 
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Figure 32: Fuel model distribution within Hayman study area prior to fire event 
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A number of vegetation characteristics affected wildfire behavior across the study 

site. As mentioned in the weather characteristics section of this chapter, fuels across the 
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Hayman fire area were extremely dry due to drought conditions during the months prior 

to the fire event. Fuel moisture levels have a definite impact on fire spread (Berjak and 

Hearne 2002). Surface fuel bed depth affects the rate of fire spread from one fuel type to 

another (Anderson 1982). Fuel bed depths of FM 1, FM 2, and FM 10 all exceed one 

foot in depth. Each of these fuel types propagate fire across the landscape faster than FM 

8 and FM 9, although fire spread rates in FM 9 are close to the spread rate of FM 10. The 

presence of"ladder fuels" affects the likelihood of fire reaching the forest canopy, which 

causes torching of entire stands of trees in some circumstances. Fuel model 9 and fuel 

model 10 possess vegetation that often act as ladder fuels, thus torching of the forest 

overstory is most common in these fuel types (Anderson 1982). 

Fuel treatments, such as prescribed fires and mechanical thinning of trees, affect 

fire behavior by reducing the amount of fuel available to wildfires (Graham, McCaffrey, 

and Jain 2004). Few large fuel treatments existed prior to the Hayman fire, although a 

number of small fuel treatment sites existed that had little impact on fire severity 

(Graham et al. 2003). Previous wildfires in the vicinity of the Hayman fire did affect fire 

spread in some locations by reducing available fuels. A review of figure 32 above shows 

a long oval-shaped fire scar north of the fire boundary in light green. This area was 

burned during the 1996 Buffalo Creek fire and otherwise would probably have been 

assigned to FM 9 or FM 10 had the Buffalo Creek fire not occurred. Although this burn 

scar does not intersect with any portion of the Hayman fire perimeter, smaller fires inside 

the Hayman fire boundary did reduce fuel loadings, but their impact was minimal when 

considering the scale of the entire fire event. 



CHAPTER XII 

RESULTS: CELLULAR AUTOMATA WILDFIRE MODELING 

In order to model the propagation of fire across the study area as accurately as 

possible, a number of trial runs were performed using various weightings for the bum 

probability grid. As my model is stochastic in nature, a number of iterations of the model 

given the same weights for the bum probability layer are necessary to produce the overall 

bum severity risk map. Due to the number of time steps required to represent over two 

weeks of fire activity during the Hayman fire event, the model is quite computationally 

intensive. I ran two different versions of the fire behavior model, one based on the four 

neighbor von Neumann neighborhood and the same model based on the eight neighbor 

Moore neighborhood. Figure 33 displays the two neighborhoods used for each model. I 

will discuss the results of the wildfire model output using both von Neumann and Moore 

neighborhoods. I ran both versions of the model using light wind direction weights to 

modify the initial bum probability grid and again using heavier weights in an attempt to 

improve the pattern of fire spread across the study area. 

Figure 33: von Neumann and Moore neighborhoods 
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Von Neumann Neighborhood: Light Burn Probability Weightings 

The first attempt to execute the cellular automata model used the following weights to 

incorporate wind direction with the burn probability (P) grid: 

IF 1 burning upwind neighbor THEN P * 1.25 
IF 2 burning upwind neighbors THEN P * 1.50 
IF 1 burning downwind neighbor THEN P * 0.9 
IF 2 burning downwind neighbors THEN P * 1.15 
IF 3 burning neighbors THEN P * 1 50 
IF 4 burning neighbors THEN P * 1. 75 
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Although these weightings did increase bum probability values for grid cells downwind 

from burning neighbors, the resulting output from the model only burns a portion of the 

area burned during the actual fire event. Additionally, the predicted total burned area was 

83,010 acres. The official Burned Area Emergency Response (BAER) team report 

concluded that the Hayman fire burned approximately 117,000 acres, a difference of 

almost 34,000 acres (Graham et al. 2003). No further analysis was conducted on this 

result as burn probability weightings appeared to be too low to accurately represent fire 

spread. Figure 34 displays the output from this version of the model. 
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Figure 34: Output ofvon Neumann model with low wind weights 

Von Neumann Neighborhood: Higher Wind Weightings 

After reviewing the result of the output of the fire behavior model described 

previously, I increased the weights to increase the impact of wind direction on the bum 

probability grid. The following weights modified the bum probability values in this 

variation of the model: 

IF 1 burning upwind neighbor THEN P * 1.35 
IF 2 burning upwind neighbors THEN P * 1. 7 5 
IF 1 burning downwind neighbor THEN P * 0.95 
IF 2 burning downwind neighbors THEN P * 1.25 
IF 3 burning neighbors THEN P * 1. 7 5 
IF 4 burning neighbors THEN P * 1.85 

94 
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After reviewing the output from the initial run of this version of the model, it appeared 

that the revised burn probability grid weighting rules dramatically improved the 

propagation of fire across the landscape. An average often separate model runs 

produced a grid identifying the cells that are more than 50% likely to burn by the cellular 

automaton. The final output grid predicts a total burned area of 129,530 acres, which is 

10.7% larger than the 117,000 acres actually burned within the 138,000 acre Hayman fire 

perimeter (Graham et al. 2003). Figure 35 displays the cells identified as more than 50% 

likely to burn per this version of the model. It appears that the bulk of the burned area 

missed by the model is located near the western and southwestern edge of the BAER fire 

boundary. 
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Figure 35: Output ofvon Neumann model with higher wind weights 

Assessment of the randomly selected accuracy assessment points reveals that of the cells 

identified as burned by the model, 95.5% of them were also classified as burned by the 

supervised ciassification of the dNBR image of the Hayman study site. Overall, of the 

cells classified as burned in the dNBR image, the CA model identified grid cells as 

burned with 94. 7 % accuracy. 

Accuracy assessment of the bum severity output was broken down into individual 

bum severity classes to compare how well the fire severity model predicted bum severity 

patters across the landscape. Figure 36 displays the predicted bum severity output, which 

was based on classification of energy output per grid cell. 
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Figure 36: Predicted bum severity from von Neumann model with higher wind 
weights 
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A review of table 4 and figure 37 show that the model output predicted the 

percentage of total acreage assigned to each bum severity class quite well. It appears that 

the model underestimated total acreage assigned to unburned and low bum severity 
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classes but overestimated the moderate and high bum severity classes. Although this data 

is useful in assessing the effectiveness of the model output, it is critical to view this data 

from a spatial point of view. I will discuss the accuracy of the model in predicting bum 

severity at the randomly selected accuracy assessment points in the next section. 

Unburned Low Moderate 

Model Results 8.7% 24.2% 21.1% 

BAER 15.2% 34.1% 15.9% 

Table 4: Percentage of total acres assigned to each bum severity class 
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Figure 37: Graph of percentage of total acreage assigned to each bum severity 
class 

An analysis of the accuracy assessment points generated allows us to determine 

how well the model agrees with the supervised classification of dNBR values derived 

from the remote sensing portion of my study. Of the cells identified as possessing high 

bum severity per my model, 52.1 % of these cells were also identified as high bum 

severity in the supervised dNBR image. The cells assigned moderate bum severity 

values by the model matched the dNBR result with 31.8% accuracy. Of the cells 



identified as low burn severity, 36.8% of these cells were also identified as low burn 

severity in the supervised dNBR image. The model output matched the unburned 

severity class of the dNBR image 18.2% of the time. Overall accuracy assessment of 

burn severity between the von Neumann model output and the supervised classification 

of the dNBR image resulted in an accuracy of 41 %. 

Moore Neighborhood: Light Burn Probability Weightings 
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Due to computation time, I conducted five model runs and produced a grid 

identifying cells more than 50% likely to bum. It was evident that a pattern emerged 

within these five runs, thus additional runs would likely have little impact on the model 

results. I used a variant of the light wind weightings applied to the initial run of the von 

Neumann version of the CA model for the initial simulation using the Moore 

neighborhood version of the model. The following weights were applied to the burn 

probability grid of the model: 

IF 1 burning upwind neighbor THEN P * 1.20 
IF 2 burning upwind neighbors THEN P * 1.35 
IF 3 burning upwind neighbors THEN P * 1.5 
IF 1 burning downwind neighbor THEN P * 0.9 
IF 2 burning downwind neighbors THEN P * 1.0 
IF 3 burning downwind neighbors THEN P * 1 05 
IF 4 burning neighbors THEN P * 1.15 
IF 5 burning neighbors THEN P * 1.35 
IF 6 burning neighbors THEN P * 1.5 
IF 7 burning neighbors THEN P * 1.65 
IF 8 burning neighbors THEN P * 1.75 

While the lightly weighted von Neumann neighborhood model was unable to simulate the 

propagation of fire across the entire Hayman fire boundary, the Moore neighborhood 

model did allow for fire spread across the bulk of the study area using the light wind 

weights. Figure 38 displays the output from the first run of this variation of the model. 
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Figure 38: Output image of grid cells identified as burned 
by Moore neighborhood model with lower wind weightings 

Although the Moore model did closely match the general shape of the Hayman 

fire perimeter, the lower weights applied to the bum probability grid resulted in 

misclassification of large numbers of pixels as unburned. Analysis of the output cells 

that were predicted as over 50% likely to bum resulted in an estimated burned area of 

48,157 acres compared to an actual burned area of approximately 117,000 acres. It 

should be noted that looking at any one of the five runs using the lower wind weights 

produced an average burned area of approximately 109,000 acres. The process of 

averaging the five runs identifies only pixels more than 50% likely to bum, which 
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explains the lower estimated burned area using the average output. A review of the 

accuracy assessment points shows that of the cells identified as burned by the model, 

92.3% of these cells were also classified as burned in the supervised classification of the 

dNBR image. A more revealing statistic shows that of the cells identified as burned by 

the classified dNBR image, the model output correctly predicted only 41.5% of these 

cells to be burned. 

A review of table 5 and figure 39 show that the model output in this instance 

dramatically overestimated percent of total area classified as unburned and 

underestimated all other classes of bum severity. The model most closely estimated total 

percentage of the landscape classified as high bum severity. It is apparent that the 

weightings applied to the bum probability grid were too low to accurately identify burned 

versus unburned cells. 

Unburned Low Moderate High 

Model Results 65.6% 9.3% 3.5% 21.6% 

BAER 15.2% 34.1% 15.9% 34.8% 

Table 5: Percentage of total acreage assigned to each bum severity class 
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Figure 39: Percentage of total acreage assigned to each bum severity class 
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Although this variation of the CA model employing the Moore neighborhood 

failed to identify a large number of grid cells as burned, of the cells identified as burned, 

accuracy assessment was more encouraging. Of the cells identified as possessing high 

bum severity per my model, 53.8% of these cells were also identified as high bum 

severity in the supervised dNBR image. The cells assigned moderate bum severity 

values by the model matched the dNBR result with 50% accuracy. Of the cells identified 

as low bum severity, 27.3% of these cells were also identified as low bum severity in the 

supervised dNBR image. The model output matched the unburned severity class of the 

dNBR image only 4.9% of the time. Overall accuracy assessment of bum severity 

between the model output and the supervised classification of the dNBR image resulted 

in an accuracy of 21 %. Figure 40 shows the classified bum severity output based on cells 

with greater than 50% likelihood of burning. 
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Figure 40: Predicted bum severity output from Moore neighborhood version of fire 
behavior model with lower wind weightings 
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Moore Neighborhood· Higher Burn Probability Weightings 

As the weights assigned to the burn probability grid in the previous variation of 

the model were too low to identify burned versus unburned cells across the study area, I 

modified the weights to increase the impact of wind direction on the burn probability 

grid. The following weights modified the burn probability values in this variation of the 

model: 

IF 1 burmng upwind neighbor THEN P * 1 35 
IF 2 burning upwind neighbors THEN P * 1.55 
IF 3 burning upwind neighbors THEN P * 1.75 
IF 1 burning downwind neighbor THEN P * 0.95 
IF 2 burning downwind neighbors THEN P * 1.20 
IF 3 burning downwind neighbors THEN P * 1.35 
IF 4 burning neighbors THEN P * 1.50 
IF 5 burning neighbors THEN P * 1.65 
IF 6 burning neighbors THEN P * 1.75 
IF 7 burning neighbors THEN P * 1.85 
IF 8 burning neighbors THEN P * 1.95 

It appeared that the revised burn probability grid weighting rules improved the 

propagation of fire across the landscape as compared to the other Moore neighborhood 

version of the model. An average of five model runs produced a grid identifying the cells 

that are more than 50% likely to burn by the cellular automaton. The final output grid 

predicted a total burned area of 104,902 acres, which is 89.7% of the total area burned 

within the fire perimeter (Graham et al. 2003). A review of the accuracy assessment 

points shows that of the cells identified as burned by the model, 94.3% of these cells were 

also classified as burned in the supervised classification of the dNBR image. Overall, of 

the cells identified as burned by the classified dNBR image, the model correctly predicted 

74.5% of these cells to be burned. Figure 41 shows the cells predicted to be more than 

50% likely to burn by the cellular automata fire model. 



LJ Fire Perimeter 

Cells> 50¾ Burn Probability 

LJ Unburned 

- Burned 

Figure 41: Cells identified as burned by Moore neighborhood 
model with higher bum probability weightings 
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A review of table 6 and figure 42 shows that the model overestimated total 

percentage of land classified as unburned or high bum severity and underestimated areas 

of low and moderate bum severity. Comparision of figure 40 and figure 43 shows that the 

higher wind direction weightings improved the accuracy of the model output. 

Unburned Low Moderate High 

Model Results 26.1% 21.1% 9.3% 43.5% 

BAER 15.2% 34.1% 15.9% 34.8% 

Table 6: Percentage of total acreage assigned to each bum severity class 
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Figure 42: Percentage of total acreage assigned to each bum severity class 
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Analysis of the bum severity assessment points provides insight into the 

effectiveness of this variant of the model. Of the cells identified as possessing high bum 

severity per my model, 55.6% of these cells were also identified as high bum severity in 

the supervised dNBR image. The cells assigned moderate bum severity values by the 

model matched the dNBR result with 28 .6% accuracy. Of the cells identified as low bum 

severity, 27.8% of these cells were also identified as low bum severity in the supervised 

dNBR image. The model output matched the unburned severity class of the dNBR image 

only 6.7% of the time. Overall accuracy assessment of bum severity between the model 

output and the supervised classification of the dNBR image resulted in an accuracy of 

34%. Figure 43 shows the classified bum severity output based on energy release per cell 

for this version of the wildfire behavior model. 
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Figure 43: Predicted bum severity output from Moore neighborhood version of fire 
behavior model with higher wind weightings 
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CHAPTER XIII 

DISCUSSION 

Remote Sensing Portion of Study 

A review of the results of unsupervised and supervised classifications of the 

differenced Normalized Burn Ratio ( dNBR) output reveals that this algorithm does 

provide useful information at each of the three study sites. The dNBR algorithm, in 

conjunction with false color post-fire Landsat TM imagery, accurately delineated the fire 

boundary for each study site. The predicted fire perimeter agreed with the official BAER 

fire boundaries for the Missionary Ridge, Hayman, and Rodeo-Chediski fires with at least 

89% accuracy on the low end for the Missionary Ridge fire. The ability of the dNBR 

output to produce highly accurate fire perimeter estimates in a timely manner will likely 

be valuable to BAER teams, forest managers, and fire ecologists among others. 

In addition to providing accurate estimates of fire boundaries, classification of 

dNBR values using unsupervised and supervised methods yielded useful information 

regarding burn severity patterns at each of the three study sites included in my analysis. 

In each circumstance, supervised classification proved more effective than unsupervised 

classification. Figure 44 displays the improvements in accuracy using supervised versus 

unsupervised classification techniques. 
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It appears that unsupervised classification underestimated the percentage of total 

acreage assigned to unburned and low bum severity classes and overestimated percent of 

total burned area assigned to moderate and high bum severity classes. Supervised 

classification, on the other hand, varied in its ability to accurately assign pixels to the 

appropriate bum severity class. As a whole, supervised classification methods performed 

measurably better than unsupervised classification in assigning pixels to the correct bum 

severity class, as per the BAER team maps. 

Limitations of the Remote Sensing Analysis of Burn Severity 

Unsupervised classification appear to yield bum severity classification accuracy 

ranging from 45 to 55 percent, and supervised classification accuracy ranged from 60 
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percent for the Hayman fire to 75 percent for the Missionary Ridge fire. One drawback 
' 

of the study is that the BAER burn severity maps available for the accuracy assessment 

portion of the study were lower resolution JPEG images with the exception of the Rodeo

Chediski severity map that was a much higher resolution TIFF image. The JPEG image 

of the Hayman study site was by far the lowest resolution image used for the accuracy 

assessment procedure. Unfortunately, no higher resolution burn severity map was 

available for accuracy assessment. Although the JPEG image of the Hayman burn 

severity map could be resampled to match the 30 meter spatial resolution of the dNBR 

output, no improvement in the quality of the BAER map data would result from this 

procedure. Note that the lowest supervised classification accuracy for any of the three 

fire events studied was associated with the Hayman fire. It must be noted that the lower 

supervised classification accuracy for this study site may be partially due to the poor 

resolution of the data from the BAER burn severity map used as a reference in the 

accuracy assessment procedure. The result of the supervised classification procedure 

does agree well visually with the BAER burn severity map. 

A second limitation of the dNBR assessment of wildfire burn severity is the 

potential for cloud pollution in either the pre-fire or post-fire image affecting the results 

of the dNBR analysis. Figure 45 shows the impact of clouds and their shadows on the 

supervised classification output from the Missionary Ridge study site. The two large 

green areas in the inset image, identified as unburned per the supervised classification 

result, are due to the shadows cast by the two small clouds in the larger post fire image of 

figure 45. Multi-temporal analyses such as the dNBR algorithm are easily affected by 

changes in reflectance due to phenomena other than wildfire (Fraser, Fernandes, and 
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Latifovic 2003; Fraser, Li, and Cihlar 2000; Zhang, Wooster, et al. 2003). Substantial 

amounts of smoke are also visible in the post-fire image below, but infrared wavelengths 

penetrate smoke better than visible bands (Miller and Yool 2002). It does not appear that 

the smoke in the post-fire image had a substantial effect on the dNBR values. 

Figure 45: Inset image shows effects of clouds and cloud shadows on bum 
severity output from dNBR algorithm 

Availability of quality pre-fire and post-fire Landsat TM or ETM + imagery is 

another limitation of the study. As BAER teams must assess bum severity and submit 

their forest rehabilitation recommendations to forest managers within eight days of fire 

containment, they are often hard-pressed to locate a post-fire image within this short time 

window. Additionally, locating a pre-fire image during the same season as the fire event 

is crucial to prevent misclassification of pixels due to seasonal variation in vegetation 
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reflectance (Fraser, Fernandes, and Latifovic 2003; Fraser, Li, and Cihlar 2000; Key and 

Benson 1999; Miller and Yool 2002; Zhang, Wooster, et al. 2003). These issues may 

occasionally be a hindrance to BEAR teams in employing this technique to assess 

wildfire bum severity within their tight timeframes. 

A final limitation of the dNBR algorithm in this study relates to classification 

error due to "gray areas" or fuzziness in the classification thresholds for unburned, low, 

moderate, and high bum severity classes. While supervised classification may assign a 

cell to the high bum severity class, applying various classification thresholds could result 

in the cell being assigned to the moderate bum severity class. This is clearly a 

consideration for future studies employing the dNBR algorithm. 

Wildfire Behavior Modeling Portion of Study 

The results of both the von Neumann and Moore neighborhood versions of the 

wildfire behavior model constructed for this study show that a stochastic cellular 

automata model can produce useful information to decision makers such as forest 

managers and BEAR teams. Simulations using four different versions of the fire 
I 

behavior were run. Two of these four model variants used the von Neumann 

neighborhood with either lower or higher bum probability weightings, and the other two 

employed the Moore neighborhood with both lower or higher wind weightings. 

Results from each of these models showed that the lighter bum probability 

weightings were too low to produce output that accurately reflected the actual 

propagation of fire across the Hayman study area. It was apparent that the initial model 

based on the von Neumann neighborhood with the lower wind weightings was unable to 
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simulate a backing fire, which is the portion of a fire that slowly spreads in the opposite 

direction of the wind. Figure 34 reflects this problem as all fire spread follows the wind 

direction, which was primarily from southwest to northeast. Little or no fire spread 

occurred in the southern portion of the fire perimeter as the bum probability weights were 

too low to model a backing fire. The model that used the lower wind weightings with the 

Moore neighborhood did permit the spread of a backing fire, but the wind weightings 

were still insufficient to model the propagation of fire across the landscape with a high 

degree of accuracy. 

The impact of the bum probability weights is apparent when comparing the output 

of the models based on low wind weights versus higher wind weights. The von Neumann 

and Moore neighborhood models that use the higher wind weightings identify many more 

cells as burned than the models incorporating the lighter wind weights. The averaged 

output identifying cells more than 50% likely to bum for both the von Neumann and 

Moore neighborhoods predicted a total burned area that came within 11 % of the official 

area identified as burned (Graham et al. 2003). 

Time management is an important consideration when assessing the accuracy of 

dynamic models such as the wildfire behavior model presented in this study. Although 

time was not strictly managed, it was taken into consideration to attempt to represent the 

varying rates of spread exhibited by each unique fuel type. As discussed previously, the 

spread probability layer of my model attempted to manage time by assigning high 

probability of spread at time t + 1 values to fuels that bum quickly and assigning lower 

probability of spread values to slower burning fuels. The spread probability layer was 

linked to the fire residence time layer to increase the likelihood of fire spread the more 
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time steps a burning cell continues to burn. As each time step in my model was intended 

to represent 10 minutes of real-time fire activity, I estimated that the model would need to 

run for approximately 2000 time steps to propagate from the point of ignition to the time 

when the fire had spread across the entire study area. A review of figure 46 shows the 

output of the wildfire behavior model in 200 time step intervals. The model burned 

across the Hayman study site in just over 1600 time steps. This is apparent by looking at 

the progress made between time step 1600 and step 1800. Only a very small portion of 

the northernmost tip of the fire continued to burn after time step 1600. Analysis of these 

results shows that my fire behavior model predicted the fire to burn for approximately 

265 to 270 hours, or a total of about 11 days of fire activity. Graham et al. (2003) show 

that the majority of the total area burned over the course of the Hayman fire event 

occurred between June 8 and June 20, or a total of 13 days. Temporal accuracy ofmy 

model appears to be adequate considering the long duration of the fire event. Most 

existing studies that employed cellular automata to model wildfire used fire events that 

burned over a duration ofless than one day (Clarke 1993, Berjak and Hearne 2002). 

Although the model output produced a fair approximation of the total time 

required to propagate across the entire study area, the model performed somewhat poorly 

in representing the spatial accuracy of fire spread over time. For example, the actual 

Hayman fire burned over 60,000 acres by the end of June 9. The model output at time 

step 200, which equates to the second day ofreal-time fire activity, only predicted a total 

burned area of 2511 acres. It should be noted that the fire spread that occurred during the 

day of June 9th was unprecedented, resulting from a combination of extreme low 

humidity, low fuel moisture, extremely high winds exceeding 40 mph at times, and ideal 
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alignment of the winds with the topography of the South Platte River drainage (Graham 

et al. 2003). 

t = 200 t = 400 t = 600 

t = 800 t = 1000 t = 1200 

t = 1400 

Figure 46: Images show progression of fire at 200 time step intervals as predicted by 
von Neumann version of fire behavior model with higher wind weights 
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One of the primary purposes of this model was to attempt to identify areas that 

have experienced severe wildfire that are of interest to BAER teams. BAER teams, in 

assessing areas negatively affected by severe wildfire, often focus on areas assigned 

either moderate or high bum severity (Graham, McCaffrey, and Jain 2004; Graham et al. 

2003). Accuracy assessment of cells identified by my model to possess either moderate 

or high bum severity matched the supervised classification of the dNBR image with 80% 

or greater accuracy for each model variant. This fact shows that my cellular automata 

wildfire behavior model is able to provide valuable information to BAER teams and other 

decision makers either before, during, or after fire events. Figure 4 7 shows the 

improvement of the fire model to predict areas of either high or moderate bum severity, 

which are areas of primary interest to BAER teams. 
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Figure 47: Predicted bum severity output from the fire behavior models. Note 
that all three versions of the fire behavior model identified areas classified as 
either high or moderate bum severity with at least 80 percent accuracy 
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Although wildfire behavior researchers know that there is a relationship between 

fuel, weather, and topographic variables that were discussed in this study with fire 

behavior, no statistically significant relationship has been established between any of 

these fire behavior variables and fire burn severity to date. I used SPSS statistical 1 

analysis software to conduct a stepwise multiple linear regression to determine if slope, 

aspect, fuel characteristics, or wind speed are able to predict burn severity using data 

gathered from the 100 random accuracy assessment points discussed in Chapter 10. 

Slope and aspect actually showed an extremely weak negative relationship with burn 

severity and were dropped from the stepwise model. Fuel type and wind speed show a 

weak positive relationship and remained in the model. The total adjusted r2 for the model 

was 0.129. As fuel and wind variable values were assigned to each point to reflect 

increasing fuel loadings/fuel particle sizes and increasing wind magnitudes, I can 

determine that higher fuel loadings and higher wind speeds do correlate with higher burn 

severity values. Based on the F value of 8.350 that is significant at least to the 0.001 

level, I am able to accept my proposed alternate hypothesis that fuel characteristics such 

as fuel loading and fuel particle size have a positive relationship with burn severity. On 

the other hand, I must reject my alternate hypothesis that terrain characteristics, such as 

slope and aspect, show a statistically significant relationship with wildfire burn severity. 

Based on the output of the different variants of the wildfire behavior model 

constructed for this study, it is apparent that there is a relationship between fire residence 

time, which was liked to total energy output per cell in my wildfire behavior model. 

Previous studies have determined that there is no definitive link between fire intensity, 

which describes the amount of heat per square foot along the flaming fire front, and fire 
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burn severity, but fire residence time is generally not incorporated into a formula to 

produce an estimate of total energy output in these other studies (Graham, McCaffrey, 

and Jain 2004). Although no quantitative link between fire residence time/total energy 

output per grid cell can be made at this time, it is apparent that fire residence time is 

linked with wildfire burn severity to a degree. Future research is needed to further 

investigate the connection between fire residence time and wildfire burn severity. 

Limitations of Wildfire Modeling Portion of Study 

The results obtained from the cellular automata based wildfire behavior model are 

promising, yet more work needs to be done to improve the predictive capabilities of the 

model. Calibration is a critical concern for any environmental model that attempts to 

represent the dynamic movement of a phenomena across space and through time. 

Although I performed a very rudimentary calibration procedure while experimenting with 

the burn probability weightings to improve the propagation of fire across the landscape, a 

methodological approach is necessary to determine less arbitrary burn probability values 

for fuel type, wind speed, wind direction, slope, and aspect variables. Calibration of 

complex models involving a number of interrelated variables such as wildfire is not a 

simple task. Existing studies employing cellular automata techniques to model the 

propagation of wildfire have also used arbitrary weights to determine the likelihood of 

fire spread based on fuel, terrain, and weather variables (Clarke 1994, Hargrove et al. 

2000; Karafyllidis and Thanalaikis 1997). Future research is necessary to develop valid 

burn probability values and valid weights for wind direction that are necessary to 

calibrate the cellular automata model presented in my study. 
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Fuel moisture is an important variable in wildfire behavior modeling as fires burn 

more slowly and less readily as forest fuels increase (Berjak and Hearne 2002; Clarke 

1994, Hargrove et al. 2000; Karafyllidis and Thanalaikis 1997; Graham et al. 2003). I 

did not include fuel moisture in my model as fuel moistures were almost uniformly low 
' 

during the bulk of the Hayman fire event. Fuel moisture levels would likely have little 

impact on determining whfoh grid cells were likely to burn due to the record low fuel 

moistures during the fire, but it probably did have an impact on the speed at which the 

fire. propagated per my model output. The primary reason that the lack of a fuel moisture 

component in my model is a limitation is that my model, if not limited to the data 

available within the Hayman fire perimeter, would probably not have stopped "burning" 

at the fire boundary. If the fuel, weather, and topography grids were extended beyond the 

fire perimeter, the model could have predicted that the fire would consume infinite acres 
I 

of vegetated land. Unfortunately, due to the current design of the model and lack of data 

outside of the official fire perimeter, fire behavior could only be represented within the 

known fire perimeter. Inclusion of the fuel moisture component would allow for fire 

extinction when burning grid cells did not release sufficient heat to ignite neighboring 

cells possessing fuels with higher moisture content. 

Firebrands have a substantial effect on the speed of fire propagation across space 

(Anderson 1982; Clarke 1994, Graham et al. 2003; Hargrove et al. 2000). Firebrands are 

burning embers carried by the wind which can potentially ignite unburned fuels at quite a 

distance from the main fire front. Firebrands are currently not supported by my model, 

although the initial spread probabilities used for the spread probability layer were 

increased to increase probability of spread for fuel types that typically produce large 
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quantities of firebrands, such as fuel models 8, 9 and 10. Incorporating firebrands in my 

model could improve the ability of my model to represent fire propagation over time 

more accurately. 

A final limitation of the wildfire behavior model presented here is the lack of a 

fire suppression component. Due to the record size of the Hayman fire, fire managers 

initiated extensive fire suppression activities to attempt to slow down and hopefully stop 

the progress of the fire. Fire retardant drops and man-made fire breaks were the primary 

fire suppression activities that had an impact on fire progression across portions of the 

study area that can not be represented currently by my model. If detailed maps existed 

showing the locations of these fire suppression activities, the fuel layer included in my 

model could be adjusted to lower _burn probabilities in areas where fire suppression 

activities occurred. 



CHAPTER XIV 

CONCLUSIONS/ FUTURE RESEARCH OPPORTUNITIES 

It is apparent that the increasing trend of larger, more severe wildfires requires 

immediate attention to limit the negative consequences of wildfire on the landscape. 

BAER teams are mandated to assess wildfire burn severity and submit their 

recommendations regarding rehabilitation efforts needed to mitigate soil erosion, 

landslide risk, and runoff of excess debris and soil into watersheds. Due to the strict time 

pressure on these BAER teams to deliver their findings to decision makers, new 

assessment methods are necessary to assess wildfire burn severity in a time efficient 

manner. Both the differenced Normalized Burn Ratio (dNBR) and cellular automata 

wildfire behavior model presented in this study have the potential to provide valuable 

information to BAER teams quickly and with a reasonable degree of accuracy. 

Additional research into recently developed technologies could improve the 

ability to gain information about wildfire burn severity from remote sensors. 

Hyperspectral remote sensing is rapidly developing and could potentially yield more 

detailed assessments of burn severity using the large number of spectral bands available 

in new satellite sensors. LID AR (Light Detection and Ranging) shows promise in 

assessing characteristics of the forest understory (Riano et al. 2003). Assessment of 

partially burned forest stands could yield valuable information regarding burn severity 

characteristics across a study area. 
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Many of the limitations of the fire behavior modelin,g portion ofmy study are 

issues that need to be addressed in the future to improve our ability to model the 

interaction of fuel, weather, and topographic variables across space and time. Burn 

probability values need to be derived for all variables included in future fire behavior 

models. Currently, the model presented in this study as well as others presented in the 

existing literature use somewhat arbitrary burn probability values (Clarke 1994; Hargrove 

et al. 2000; Karafyllidis and Thanalaikis 1997). Improved fuel mapping methods are 

needed to improve our ability to assess more specific fuel characteristics such as the 

distribution of large particle size fuels across space. The centimeter level accuracy of 

LID AR could potentially produce a fuel map so accurate that the location of individual 

fallen logs could actually be represented in the fire behavior model, which would 

undoubtedly increase fire residence time at that point. As my study has suggested a link 

between fire residence time and burn severity, it is likely that burn severity would be 

higher where large particle size fuels are burning. Due to the difficulty of calibrating 

environmental process models, one of the most promising future research areas in the 

field of wildfire behavior modeling is in neural network modeling of wildfire. Current 

wildfire behavior models require a known set of rules to produce predictive output, but 

neural network algorithms have the ability to "learn" the rules as they go. Neural 

network algorithms are self-calibrating, in effect. McCormick, Brandner, and Allen 

(1999) discussed the application of neural network algorithms to fire modeling, but did 

not operationalize their proposed model. The potential of neural network algorithms 

toward fire modeling is encouraging. 
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Each of the two bum severity assessment methods presented have their strengths 

and weaknesses. Therefore, I propose that a these two methods, used in conjunction with 

each other, may be more useful in providing information to the fire research community 

than either method alone. The dNBR algorithm can only be applied to a study area after 

the fire event has occurred, but little time is required to implement the algorithm and 

generate bum severity maps of a fire event. The wildfire behavior modeling technique 

requires calibration and a number of data sources to implement, but much of this data can 

be produced prior to or during a fire event, thus reducing the amount of time required to 

implement the model. An additional benefit of the cellular automata based fire model is 

that it can produce bum severity risk maps prior to the occurrence of fire events. These 

risk maps could provide valuable information to decision makers regarding potential 

areas where fuel treatment activities could reduce available fuel for future wildfires, 

thereby reducing the risk of severe wildfire in the future. Ongoing research into the 

application of remote sensing techniques toward wildfire as well as fire behavior 

modeling will continue to improve our ability to assess the impact of wildfire on the 

landscape. The future of wildfire behavior assessment is bright indeed. 



APPENDICES 

ERDAS GRAPHICAL MODEL OF DIFFERENCED NORMALIZED BURN RA TIO 
( dNBR) ALGORITHM 

ERDAS SPATIAL MODELER LANGUAGE (SML) CODE/ GRAPHICAL WILDFIRE 
BEHAVIOR MODEL 
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ERDAS Spatial Modeler Language (SML) Script: von Neumann 
Neighborhood Wildfire Behavior Model 

COMMENT "Generated from graphical model: 
/home/students/schmiedeskampc/Run_l/ca_wildfire_model.gmd"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Float RASTER nl calc7 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/calc7.img"; 
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Float RASTER n3_burn_prob_mod FILE DELETE_IF_EXISTING USEALL ATHEMATIC 
FLOAT SINGLE "/home/students/schmiedeskampc/Run_l/burn_prob_mod.img"; 
Integer RASTER n8_fire_start_l FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/fire_start_l.img"; 
Integer RASTER nll residence 1 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/residence_l.img"; 
Integer RASTER n13_residence_time_minus_l FILE DELETE_IF_EXISTING 
USEALL ATHEMATIC 8 BIT UNSIGNED INTEGER 
"/home/students/schmiedeskampc/Run_l/residence_time_minus_l.img"; 
Float RASTER n14 random 2 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/random_2.img"; 
Integer RASTER nl5_ca_output 1 FILE DELETE_IF_EXISTING USEALL ATHEMATIC 
8 BIT UNSIGNED INTEGER 
"/home/students/schmiedeskampc/Run_l/ca_output_l.img"; 
Integer RASTER n16_all_value_l FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/all_value_l.img"; 
Float RASTER n17_spread_prob_3 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l/spread_prob_3.img"; 
Float RASTER n19_spread_prob_mod FILE DELETE_IF_EXISTING USEALL 
ATHEMATIC FLOAT SINGLE 
"/home/students/schmiedeskampc/Run_l/spread_prob_mod.img"; 
FLOAT MATRIX n4_Custom_Float; 
FLOAT MATRIX n5_Custom_Float; 
FLOAT MATRIX n6_Custom_Float; 
FLOAT MATRIX n7_Custom_Float; 
# 
# load matrix n4 Custom Float - -
# 
n4 Custom Float= MATRIX(3, 3: 

0, 0, o, 
1, 0, o, 
o, 0, 0); 



# 
# load matrix n5 Custom Float 
# 
n5 Custom Float= MATRIX(3, 3: 

0, 0, 0, 
0, 0, 0, 
o, 1, 0); 

# 
# load matrix n6 Custom Float 
# 
n6 Custom Float= MATRIX(3, 3: 

0, 1, 0, 
0, o, 0, 
0, 0, 0); 

# 
# load matrix n7 Custom Float 
# 
n7 Custom Float= MATRIX(3, 3: 

0, 0, 0, 
0, 0, 1, 
0, 0, 0); 

# 
# Set counter 
# 
integer i; 
i=l; 
# 
# begin loop 
# 
WHILE (i LT 2000) 
{ 

# 
nl3 residence_time_minus 1 = EITHER ($nll_residence_l -
$n16_all_value 1) IF ( $n8 fire_start 1 EQ O ) OR $nll residence 1 
OTHERWISE; 
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nl9_spread_prob_mod = EITHER $n17_spread_prob_3 IF ( 
$n13_residence_time_minus 1 EQ 6) OR (EITHER $n17_spread_prob 3 IF 
$n13_residence_time_minus_l EQ 5 ) OR (EITHER ($n17_spread_prob 3 * 
1.15) IF ( $n13_residence_time_minus_l EQ 4 ) OR (EITHER 
($n17_spread_prob_3 * 1.35) IF ( $n13_residence_time_minus_l EQ 3) OR 
(EITHER ($n17_spread_prob_3 * 1.5) IF ( $n13_residence_time_minus 1 EQ 
2) OR (EITHER ($n17_spread_prob_3 * 2) IF ( 
$n13_residence_time_minus_l EQ 1 ) OR $n17_spread_prob_3 OTHERWISE) 
OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE; 
n3_burn_prob_mod EITHER $nl_calc7 * 1.35 IF ( CONVOLVE ( 
$n8_fire_start_l, $n4_Custom_Float ) + CONVOLVE ( $n8_f1re start_l, 
$n5_Custom_Float EQ 1 ) OR (EITHER $nl_calc7 * 1.75 IF ( CONVOLVE 
$n8_fire_start_l, $n4_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n5_Custom_Float EQ O ) OR (EITHER $nl_calc7 * .95 IF ( CONVOLVE ( 
$n8_fire_start_l, $n6_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n7_Custom_Float EQ 1 ) OR (EITHER $nl_calc7 * 1.25 IF ( CONVOLVE ( 
$n8_fire_start_l, $n6_Custom_Float ) + CONVOLVE ( $n8_fire_start_l, 
$n7_Custom_Float EQ 0) OR (EITHER $nl_calc7 * 1.75 IF ( CONVOLVE ( 
$n8 fire_start 1, $n4_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n5_Custom_Float + CONVOLVE ( $n8 fire_start_l, $n6_Custom_Float) + 
CONVOLVE ( $n8 fire start 1, $n7 Custom Float) EQ 1) OR (EITHER 
$nl calc7 * 1.85 IF-( CONVOLVE ( $n8 fire start 1', $n4_Custom_Float 



+ CONVOLVE ( $n8_fire_start_l, $n5_Custom_Float) + CONVOLVE ( 
$n8_fire_start_l, $n6_Custom_Float) + CONVOLVE ( $n8_fire_start 1, 
$n7_Custom_Float) EQ O) OR $nl_calc7 OTHERWISE) OTHERWISE) 
OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE; 
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n15_ca_output_l = EITHER O IF ( $n8_fire_start_l EQ O) OR (EITHER 1 IF 
( $n8_fire_start 1 EQ 2 ) OR (EITHER ((CONVOLVE ( $n8_fire_start 1, 
$n4 Custom Float)) / 4) + ((CONVOLVE ( $n8 fire start 1, 
$n5=Custom=Float )) / 4) + ((CONVOLVE ( $n8=fire=start=l, 
$n6_Custom_Float) ) / 4) + ((CONVOLVE ( $n8_fire_start_l, 
$n7_Custom_Float )) / 4) IF (( $n3_burn_prob_mod >= $n14_random_2 
AND ($n19_spread_prob_mod >= RANDOM ( $n14_random_2 )) AND 
($n13_residence_time_minus 1 > 0)) OR 1 OTHERWISE) OTHERWISE) 
OTHERWISE; 
n8 fire start 1 
nll residence 1 
i = i + 1; 
# 
} 

# 
QUIT; 

n15_ca_output_l; 
n13 residence time minus 1; 
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ERDAS Spatial Modeler Language (SML) Script: Moore Neighborhood 
Wildfire Behavior Model 

COMMENT "Generated from graphical model: 
/home/students/schmiedeskampc/Run_S_moore/ca_wildfire model moore.gmd"; 
# 
# set cell size for the model 
# 
SET CELLSIZE MIN; 
# 
# set window for the model 
# 
SET WINDOW UNION; 
# 
# set area of interest for the model 
# 
SET AOI NONE; 
# 
# declarations 
# 
Float RASTER nl calc7 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/calc7.img"; 
Float RASTER n3_burn_prob_mod FILE DELETE_IF_EXISTING USEALL ATHEMATIC 
FLOAT SINGLE 
"/home/students/schmiedeskampc/Run_l_moore/burn_prob_mod.img"; 
Integer RASTER nB_fire_start_l FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/fire_start_l.img"; 
Integer RASTER nll_residence_l FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/residence_l.img"; 
Integer RASTER n13_residence_time_minus_l FILE DELETE_IF_EXISTING 
USEALL ATHEMATIC 8 BIT UNSIGNED INTEGER 
"/home/students/schmiedeskampc/Run_l_moore/residence_time_minus_l.img"; 
Float RASTER n14 random numbers FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/random_numbers.img"; 
Integer RASTER nlS_ca_output_moore_l FILE DELETE_IF_EXISTING USEALL 
ATHEMATIC 8 BIT UNSIGNED INTEGER 
"/home/students/schmiedeskampc/Run_l_moore/ca_output_moore_l.img"; 
Integer RASTER n16_all_value_l FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/all_value_l.img"; 
Float RASTER nl7_spread_prob_3 FILE OLD NEAREST NEIGHBOR AOI NONE 
"/home/students/schmiedeskampc/Run_l_moore/spread_prob_3.img"; 
Float RASTER n19_spread_prob_mod FILE DELETE_IF_EXISTING USEALL 
ATHEMATIC FLOAT SINGLE 
"/home/students/schmiedeskampc/Run_l_moore/spread_prob_mod.img"; 
FLOAT MATRIX n20 Custom Float; 
FLOAT MATRIX n21 Custom Float; 
FLOAT MATRIX 
FLOAT MATRIX 
FLOAT MATRIX 
FLOAT MATRIX 
FLOAT MATRIX 
FLOAT MATRIX 
# 
# load matrix 

- -
n22 Custom Float; - -
n23 Custom Float; - -
n24 Custom Float; 
n25 Custom Float; - -
n26 Custom Float; - -
n27 Custom Float; - -

n20 Custom Float 
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# 
n20 Custom Float MATRIX(3, 3: 

0, 0, 0, 
1, 0, 0, 
0, o, 0) ; 

# 
# load matrix n21 Custom Float 
# 
n21 Custom Float = MATRIX(3, 3: 

0, 0, 0, 
0, o, 0, 
1, o, 0) ; 

# 
# load matrix n22 Custom Float 
# 
n22 Custom Float = MATRIX(3, 3: 

0, 0, 0, 
o, o, o, 
0, 1, 0) ; 

# 
# load matrix n23 Custom Float 
# 
n23 Custom Float = MATRIX(3, 3: 

0, o, 0, 
o, 0, o, 
0, o, 1) ; 

# 
# load matrix n24 Custom Float 
# 
n24 Custom Float = MATRIX(3, 3: 

0, o, o, 
0, o, 1, 
0, 0, 0) ; 

# 
# load matrix n25 Custom Float 
# 
n25 Custom Float = MATRIX(3, 3: 

0, o, 1, 
0, 0, 0, 
0, 0, 0) ; 

# 
# load matrix n26 Custom Float 
# 
n26 Custom Float = MATRIX(3, 3: 

0, 1, 0, 
0, 0, o, 
0, o, 0) ; 

# 
# load matrix n27 Custom Float 
# 
n27 Custom Float = MATRIX(3, 3: 

1, o, 0, 
0, 0, o, 
o, o, 0) ; 

# 
# Set counter 
# 



integer i; 
i=l; 
# 
# begin loop 
# 
WHILE (i LT 2000) 
{ 

# 
nl3 residence_time_minus 1 = EITHER ($nll_residence_l -
$n16_all_value_l) IF ( $n8 fire_start 1 EQ O ) OR $nll_residence 1 
OTHERWISE; 
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nl9_spread_prob_mod = EITHER $nl7_spread_prob_3 IF ( 
$nl3_residence_time_minus 1 EQ 6) OR (EITHER $nl7_spread_prob 3 IF 
$nl3_residence_time_minus_l EQ 5 ) OR (EITHER ($n17_spread_prob_3 * 
1.15) IF ( $n13_residence_time_minus_l EQ 4 ) OR (EITHER 
($n17_spread_prob_3 * 1.35) IF ( $n13_residence_time_minus_l EQ 3) OR 
(EITHER ($n17_spread_prob_3 * 1.5) IF ( $n13 residence time_minus 1 EQ 
2 ) OR (EITHER ($n17_spread_prob_3 * 2) IF ( 
$n13_residence_time_minus_l EQ 1) OR $n17_spread_prob_3 OTHERWISE) 
OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE; 
n3_burn_prob_mod = EITHER ($nl_calc7 * 1.35) IF ( CONVOLVE ( 
$n8_fire_start_l, $n20_Custom_Float) + CONVOLVE ( $n8 fire_start 1, 
$n2l_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n22 Custom_Float) EQ 2 ) OR (EITHER ($nl_calc7 * 1.55) IF ( CONVOLVE 
( $n8_fire_start_l, $n20_Custom_Float) + CONVOLVE ( $n8 fire start 1 
, $n21 Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n22_Custom_Float) EQ 1) OR (EITHER ($nl_calc7 * 1.75) IF ( CONVOLVE 
( $n8_fire_start_l, $n20_Custom_Float) + CONVOLVE ( $n8 fire_start 1 
, $n21_Custom_Float ) + CONVOLVE ( $n8_fire_start_l, 
$n22_Custom_Float) EQ 0) OR (EITHER ($nl_calc7 * .95) IF ( CONVOLVE ( 
$n8_fire_start_l, $n24_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n25_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n26_Custom_Float 
) EQ 2 ) OR (EITHER ($nl_calc7 * 1.20) IF ( CONVOLVE ( 
$n8_fire_start_l, $n24_Custom_Float ) + CONVOLVE ( $n8_fire_start_l, 
$n25_Custom_Float) + CONVOLVE ( $n8 fire_start 1, $n26_Custom_Float 
) EQ 1) OR (EITHER ($nl_calc7 * 1.35) IF ( CONVOLVE ( $n8_fire_start_l 
, $n24_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n25_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n26_Custom_Float ) EQ O ) OR 
(EITHER ($nl_calc7 * 1.50) IF ( CONVOLVE ( $n8_fire start_l, 
$n20 Custom Float) + CONVOLVE ( $n8 fire start 1, $n21 Custom Float 
+ CONVOLVE ( $n8_fire_start_l, $n22=Custom_Float) + CONVOLVE ( 
$n8_fire_start_l, $n23_Custom_Float) + CONVOLVE ( $n8 fire_start 1 
, $n24_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n25_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n26_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n27_Custom_Float) EQ 4) OR (EITHER 
($nl_calc7 * 1.65) IF ( CONVOLVE ( $n8 fire start 1, $n20_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n2l_Custom_Float ) + CONVOLVE ( 
$n8_fire_start_l, $n22_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n23_Custom_Float) + CONVOLVE ( $n8 fire_start 1, $n24_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n25_Custom_Float ) + CONVOLVE ( 
$n8_fire_start_l, $n26_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n27_Custom_Float) EQ 3) OR (EITHER ($nl_calc7 * 1.75) IF ( CONVOLVE 
( $n8_fire_start_l, $n20_Custom_Float) + CONVOLVE ( $n8 fire_start 1 
, $n21_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n22_Custom_Float) + CONVOLVE ( $n8_fire_start_l , $n23_Custom_Float 
) + CONVOLVE ( $n8 fire_start_l, $n24_Custom_Float ) + CONVOLVE ( 
$n8 fire_start 1, $n25_Custom_Float) + CONVOLVE ( $n8 fire start 1, 
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$n26_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n27_Custom_Float 
) EQ 2) OR (EITHER ($nl_calc7 * 1.85) IF ( CONVOLVE ( $n8_fire_start_l 
, $n20_Custom_Float) + CONVOLVE ( $n8 fire_start 1, 
$n2l_Custom_Float) + CONVOLVE ( $n8_f1re_start_l, $n22_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n23_Custom_Float ) + CONVOLVE ( 
$n8_fire_start_l, $n24_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n25_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n26_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n27_Custom_Float) EQ 1) OR 
(EITHER ($nl_calc7 * 1.95) IF ( CONVOLVE ( $n8_fire_start_l, 
$n20_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n2l_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n22_Custom_Float ) + CONVOLVE ( 
$n8_fire_start_l, $n23_Custom_Float) + CONVOLVE ( $n8_fire_start_l, 
$n24_Custom_Float) + CONVOLVE ( $n8_fire_start_l, $n25_Custom_Float 
) + CONVOLVE ( $n8_fire_start_l, $n26_Custom_Float) + CONVOLVE ( 
$n8_fire_start_l, $n27_Custom_Float) EQ O ) OR $nl calc7 OTHERWISE) 
OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE) 
OTHERWISE) OTHERWISE) OTHERWISE) OTHERWISE; 
n15_ca_output_moore_l = EITHER 0 IF ( $n8_fire_start_l EQ 0) OR 
(EITHER 1 IF ( $n8 fire_start_l EQ 2) OR (EITHER ((CONVOLVE 
$n8_fire_start_l, $n20_Custom_Float )) / 8) + ((CONVOLVE ( 
$n8_fire_start_l, $n21_Custom_Float )) / 8) + ((CONVOLVE ( 
$n8_fire_start_l, $n22_Custom_Float) ) / 8) + ((CONVOLVE ( 
$n8_fire_start_l, $n23_Custom_Float )) / 8) + ((CONVOLVE ( 
$n8_fire_start_l, $n24_Custom_Float )) / 8) + ((CONVOLVE ( 
$n8 fire start 1, $n25 Custom Float)) / 8) + ((CONVOLVE ( 
$n8=fire=start=l, $n26=Custom=Float )) / 8) + ((CONVOLVE ( 
$n8 fire start 1, $n27 Custom Float )) / 8) IF (( $n3 burn prob mod 
>= $n14_random=numbers) AND ($n19_spread_prob_mod >= RANDOM-( 
$n14_random_numbers )) AND ($n13_residence_time_minus 1 > 0)) OR 1 
OTHERWISE) OTHERWISE) OTHERWISE; 
n8 fire start 1 
nll residence 1 
i = i + 1; 
# 
} 
# 
QUIT; 

n15_ca_output_moore_l; 
n13 residence time minus 1; 
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