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EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO
HIGHER-ORDER MIXED DIFFERENCE EQUATIONS

QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, ZHENGUO ZHANG

Abstract. In this paper, we consider the higher order neutral nonlinear dif-

ference equation

∆m(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = 0,

∆m(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = g(n),

∆m(x(n) + p(n)x(τ(n))) +

lX
i=1

bi(n)x(σi(n)) = 0.

We obtain sufficient conditions for the existence of non-oscillatory solutions.

1. Introduction

Consider the difference equations

∆m(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = 0, (1.1)

∆m(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n)))− f2(n, x(σ2(n))) = g(n), (1.2)

∆m(x(n) + p(n)x(τ(n))) +
l∑

i=1

bi(n)x(σi(n)) = 0, (1.3)

for n ≥ n0, where τ(n), σi(n) are sequences of positive integers with τ(n) ≤ n,
limn→∞ τ(n) = ∞, limn→∞ σi(n) = ∞, i = 1, 2, . . . , l. Also where p(n), g(n), bj(n),
j = 1, 2, . . . , l are sequences of real numbers, fi(n, x), i = 1, 2 are continuous and
nondecreasing for x, f1(n, x)f2(n, x) > 0. There exists b 6= 0 such that

∞∑
s=n

(s− n)(m−1)|fi(s, b)| <∞, i = 1, 2, (1.4)

∞∑
s=n

(s− n)(m−1)|g(s)| <∞, (1.5)

∞∑
s=n

(s− n)(m−1)|bj(s)| <∞. (1.6)
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Recently, there has been an increasing interest in the study of existence and
oscillation of solutions to differential and difference equations. The papers [2, 5,
8, 9] discussed the existence of non-oscillatory solutions of differential equations.
The papers [6, 7] discussed the oscillation of difference equations. But there are
relatively few which guarantee the existence of non-oscillatory solutions of difference
equations, see [3, 4].

This paper is motivated by the recent paper [10], where the authors gave sufficient
conditions for the existence of non-oscillatory solutions of some first-order neutral
delay differential equations. The purpose of this paper is to present some new
criteria for the existence of non-oscillatory solution of (1.1)-(1.3).

A solution of (1.1) ((1.2) (1.3)) is said to be oscillatory if it has arbitrarily large
zeros; otherwise it is said to be non-oscillatory.

2. Main Results

To obtain our main results, we need the following lemma.

Lemma 2.1 ([1]). Let K be a closed bounded and convex subset of l∞, the Banach
space consisting of all bounded real sequences. Suppose Γ is a continuous map such
that Γ(K) ⊂ K, and suppose further that Γ(K) is uniformly Cauchy. Then Γ has
a fixed point in K.

In the sequel, without loss of generality, we assume that fi(n, x) > 0, i = 1, 2
and (1.4) holds for b > 0.

Theorem 2.2. Assume that 0 ≤ p(n) ≤ p < 1, (1.4) holds, then (1.1) has a
bounded non-oscillatory solution which is bounded away from zero.

Proof. Choose N > n0, such that

N0 := min{ inf
n≥N

{τ(n)}, inf
n≥N

{σ1(n)}, inf
n≥N

{σ2(n)}} ≥ n0.

Let BC be the collection of bounded real sequence in Banach space l∞ and ‖x(n)‖ =
supn≥N |x(n)|. Define a set Ω ⊂ BC as follows:

Ω = {x(n) ∈ BC, 0 < M1 ≤ x(n) ≤M2 < b, n ≥ n0},

where M1 < (1− p)M2. Then Ω is a closed bounded and convex subset of BC. Set
c = min{M2 − α, α− pM2 −M1}, where pM2 +M1 < α < M2. From (1.4), we get
that there exists N1 > N , such that for n > N1,

∞∑
s=n

(s− n+ 1)(m−1)

(m− 1)!
fi(s, b) ≤ c, i = 1, 2.

Define two maps Γ1 and Γ2 on Ω as follows:

(Γ1x)(n) =

{
α− p(n)x(τ(n)), n ≥ N1,

(Γ1x)(N1), N0 ≤ n ≤ N1

(Γ2x)(n) =


(−1)m−1

(m−1)!

∑∞
s=n(s− n+ 1)(m−1)

×[f1(s, x(σ1(s)))− f2(s, x(σ1(s)))], n ≥ N1

(Γ2x)(N1), N0 ≤ n ≤ N1
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For any x, y ∈ Ω, we have

(Γ1x)(n) + (Γ2y)(n) ≤ α+ c ≤M2,

(Γ1x)(n) + (Γ2y)(n) ≥ α− pM2 − c ≥M1.

That is Γ1x + Γ2y ∈ Ω. Since 0 ≤ p(n) ≤ p < 1, it is easy to check that Γ1 is a
contraction mapping.

Now we show that Γ2 is continuous. For any ε > 0, we can choose n2 > N1, such
that

∞∑
s=n2

(s− n0 + 1)(m−1)

(m− 1)!
fi(s, b) < ε, i = 1, 2.

Let {xk(n)} be a sequence in Ω, such that limk→∞ ‖xk−x‖ = 0. Since Ω is a closed
set, we get that x ∈ Ω and

|(Γ2xk)(n)− (Γ2x)(n)|

≤
∣∣ n2−1∑

s=n

(s− n+ 1)(m−1)

(m− 1)!
(f1(s, xk(σ1(s)))− f1(s, x(σ1(s))))

∣∣
+ |

n2−1∑
s=n

(s− n+ 1)(m−1)

(m− 1)!
(f2(s, xk(σ2(s)))− f2(s, x(σ2(s))))|+ 4ε.

Since fi is continuous for x, we get that limk→∞ ‖Γ2xk − Γ2x‖ = 0. We also know
that Γ2 is uniformly bounded and for for all ε > 0, there exists N2 such that for
m1 > m2 ≥ N2 and for all x(n) ∈ Ω,

|Γ2x(m1)− Γ2x(m2)|

≤
m1−1∑
s=m2

(s− n0 + 1)(m−1)

(m− 1)!
|f1(s, x(σ1(s)))− f2(s, x(σ2(s)))| ≤ ε.

From the discrete Krasnoselskii’s fixed point theorem, there exists x ∈ Ω, such that
x = Γx, i.e.

x(n) = α− p(n)x(τ(n))

+ (−1)m−1
∞∑

s=n

(s− n+ 1)(m−1)

(m− 1)!

(
f1(s, x(σ1(s)))− f2(s, x(σ2(s)))

)
.

Note that x(n) is a bounded non-oscillatory solution of (1.1) which is bounded
away from zero. �

Theorem 2.3. Assume that 1 < p1 ≤ p(n) ≤ p2, (1.4) holds, τ(n) is strictly
increasing, then (1.1) has a bounded non-oscillatory solution which is bounded away
from zero.

Proof. We choose N1 > n0, such that

N0 = min{τ(N1), inf
n≥N1

{σ1(n)}, inf
n≥N1

{σ2(n)}} ≥ n0.

Let BC be the collection of bounded real sequences in the Banach space l∞ and
‖x(n)‖ = supn≥N1

|x(n)|. Define a set X ⊂ BC as follows:

X =
{
x(n) ∈ BC : ∆x(n) ≤ 0, 0 < M1 ≤ x(n) ≤ p1M1 < b for n ≥ N1

x(n) = x(N1) for N0 ≤ n ≤ N1

}
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Then X is a closed bounded and convex subset of BC.
Let c = min{α −M1, p1M1 − α}, where M1 < α < p1M1. We choose N ≥ N1,

such that for n ≥ N ,
∞∑

s=n

(s− n+ 1)(m−1)

(m− 1)!
fi(s, b) ≤ c.

For x ∈ X, define

ψ(n) =

{∑∞
i=1

(−1)i−1x(τ−i(n))
Hi(τ−i(n)) , n ≥ N

ψ(N), N0 ≤ n ≤ N

where τ0(n) = n, τ i(n) = τ(τ i−1(n)), τ−i(n) = τ−1(τ−(i−1)(n)), H0(n) = 1,
Hi(n) =

∏i−1
j=0 p(τ

j(n)), i = 1, 2, . . . . From M1 ≤ x(n) ≤ p1M1, we know 0 <

ψ(n) ≤ p1M1, n ≥ N .
Define a mapping Γ on X as follows

Γx(n) =


α+ (−1)m−1

∑∞
s=n

(s−n+1)(m−1)

(m−1)!

×[f1(s, ψ(σ1(s)))− f2(s, ψ(σ2(s)))], n ≥ N

Γx(N), N0 ≤ n ≤ N

Note that Γ satisfies the following three conditions:

(a) Γ(X) ⊆ X. In fact, for any x ∈ X, Γx(n) ≥ α− c ≥M1, Γx(n) ≤ α+ c ≤
p1M1.

(b) Γ is continuous. Let {xk(n)} be a sequence in X, such that limk→∞ ‖xk −
x‖ = 0. Since X is a closed set, we know x ∈ X. For any ε > 0, we can
choose n2 > N , such that

∞∑
s=n2

(s− n0 + 1)(m−1)

(m− 1)!
fi(s, b) < ε, i = 1, 2.

|Γxk(n)− Γx(n)|

≤
n2−1∑
s=n

(s− n+ 1)(m−1)

(m− 1)!

2∑
i=1

|fi(s, ψk(σi(s)))− fi(s, ψ(σi(s)))|+ 4ε.

So limk→∞ ‖Γxk − Γx‖ = 0.
(c) ΓX is uniformly Cauchy. For all ε > 0, there exists n3 such that for

m1 > m2 ≥ n3 and for all x(n) ∈ X,

|Γx(m1)− Γx(m2)|

≤
m1−1∑
s=m2

(s− n0 + 1)(m−1)

(m− 1)!
|f1(s, ψ(σ1(s)))− f2(s, ψ(σ2(s)))| ≤ ε.

This shows that ΓX is uniformly Cauchy.

From Lemma 2.1, there exists x ∈ X, such that x = Γx, i.e.

x(n) = α+ (−1)m−1
∞∑

s=n

(s− n+ 1)(m−1)

(m− 1)!
[f1(s, ψ(σ1(s)))− f2(s, ψ(σ2(s)))],
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for n ≥ N . Since ψ(n) + p(n)ψ(τ(n)) = x(n), we obtain

ψ(n) + p(n)ψ(τ(n))

= α+ (−1)m−1
∞∑

s=n

(s− n+ 1)(m−1)

(m− 1)!
[f1(s, ψ(σ1(s)))− f2(s, ψ(σ2(s)))].

So ψ(n) satisfies (1.1) for n ≥ N , and p1−1
p1p2

x(τ−1(n)) ≤ ψ(n) ≤ x(n). �

Theorem 2.4. Assume that −1 < p ≤ p(n) ≤ 0, and (1.4) holds. Then (1.1) has
a bounded non-oscillatory solution which is bounded away from zero.

Proof. Let BC be the set of bounded real sequence in the Banach space l∞ and
‖x(n)‖ = supn≥n0

|x(n)|. We choose M1,M2, α such that 0 < M1 < α < (1+p)M2.
Define Ω = {x ∈ BC,M1 ≤ x(n) ≤ M2, n ≥ n0}. Let c = min{α −M1,M2 − α},
from (1.4) we get that there exists N such that for n ≥ N ,

1
(m− 1)!

∞∑
s=n

(s− n0 + 1)(m−1)fi(s, b) ≤ c, i = 1, 2.

For x ∈ Ω, define:

ϕ(n) =

{∑kn−1
i=0 (−1)ip

(i)
n x(τ (i)

n ) + (−1)knp
(kn)
n

xN

1+pN
, n ≥ N

xN

1+pN
, n0 ≤ n ≤ N

where we take kn such that n0 ≤ τ
(kn)
n ≤ N , τ (0)

n = n, τ (1)
n = τn, τ (2)

n =
ττn

, . . . , τ
(k)
n = τ

τ
(k−1)
n

, p(0)
n = 1, p(1)

n = pn, . . . , p
(s)
n = pnpτn

. . . p
τ
(s−1)
n

. It is easy
to prove that x(n) = ϕ(n) + p(n)ϕ(τ(n)), n ≥ N and M1 ≤ x(n) ≤ ϕ(n) ≤ M2

1+p .
Define a mapping Γ on Ω as follows:

Γx(n) =


α+

∑∞
s=n

(−1)m−1(s−n+1)(m−1)

(m−1)!

×[f1(s, x(σ1(s)))− f2(s, x(σ2(s)))], n ≥ N

Γx(N), N0 ≤ n ≤ N

For any x ∈ Ω, M1 ≤ α − c ≤ Γx(n) ≤ α + c ≤ M2, we get ΓΩ ⊆ Ω. Similar to
the proof of Theorem 2.2, we can obtain Γ is continuous and uniformly Cauchy. So
there exists x ∈ Ω such that x = Γx. The proof is complete. �

Theorem 2.5. Assume that p1 ≤ p(n) ≤ p2 < −1, and (1.4) holds. Then (1.1)
has a bounded non-oscillatory solution which is bounded away from zero.

Proof. We choose positive constants M1,M2, α such that −p1M1 < α < (−p2 −
1)M2. Let Ω = {x ∈ BC,M1 ≤ x(n) ≤ M2, n ≥ n0}, c = min{ (α+M1p1)p2

p1
, (−p2 −

1)M2 − α}. Choosing N sufficiently large such that for n ≥ N ,

1
(m− 1)!

∞∑
s=n

(s− n+ 1)(m−1)fi(s, b) ≤ c, i = 1, 2.
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Define two maps Γ1, Γ2 on Ω as follows:

Γ1x(n) =

{
− α

p(τ−1(n)) −
x(τ−1(n))
p(τ−1(n)) , n ≥ N

Γ1x(N), n0 ≤ n ≤ N

Γ2x(n) =


∑∞

s=τ−1(n)
(−1)m−1(s−τ−1(n)+1)(m−1)

(m−1)!p(τ−1(n))

×[f1(s, x(σ1(s)))− f2(s, x(σ2(s)))], n ≥ N

Γ2x(N), N0 ≤ n ≤ N

For each x, y ∈ Ω,

Γ1x(n) + Γ2y(n) ≥ −α
p1

+
c

p2
≥M1, Γ1x(n) + Γ2y(n) ≤ −α

p2
− M2

p2
− c

p2
≤M2.

So that Γ1x(n)+Γ2y(n) ∈ Ω. Since p1 ≤ p(n) ≤ p2 ≤ −1, we get Γ1 is a contraction
mapping. We also can prove that Γ2 is uniformly bounded and continuous. Further
we know Γ2 is uniformly Cauchy. So by discrete Krasnoselskii’s fixed point theorem,
there exists x ∈ Ω such that Γ1x+ Γ2x = x. i.e.

x(n) = − α

p(τ−1(n))
− x(τ−1(n))
p(τ−1(n))

+
(−1)m−1

(m− 1)!p(τ−1(n))

×
∞∑

s=τ−1(n)

(s− τ−1(n) + 1)(m−1)[f1(s, x(σ1(s)))− f2(s, x(σ2(s)))].

The proof is complete. �

Theorem 2.6. Assume that p(n) satisfies the conditions in one of Theorems 2.2–
2.5, and (1.4), (1.5) hold. Then (1.2) has a bounded non-oscillatory solution which
is bounded away from zero.

Proof. Set g+(n) = max{g(n), 0}, g−(n) = max{−g(n), 0}. Then g(n) = g+(n) −
g−(n). Also (1.2) can be written as

∆m(x(n)+p(n)x(τ(n)))+ [f1(n, x(σ1(n)))+g−(n)]− [f2(n, x(σ2(n)))+g+(n)] = 0.

Let F1(n, x(σ1(n))) = f1(n, x(σ1(n))) + g−(n), F2(n, x(σ2(n))) = f2(n, x(σ2(n))) +
g+(n). Similar to the proof of Theorems 2.2–2.5, we obtain the conclusion. �

Theorem 2.7. Assume that p(n) satisfies the conditions in one of the Theorems
2.2–2.5, and (1.6) holds. Then (1.3) has a bounded non-oscillatory solution which
is bounded away from zero.

Proof. We prove only the case 0 ≤ p(n) ≤ p < 1. Let BC be the set of bounded
real sequence in the Banach space l∞ and ‖x(n)‖ = supn≥n0

|x(n)|. We choose
M1,M2, α such that pM2+M1 < α < M2. Define Ω = {x ∈ BC,M1 ≤ x(n) ≤M2},
c = min{α−pM2−M1

lM2
, M2−α

lM2
}. N is sufficiently large such that for n ≥ N

1
(m− 1)!

∞∑
s=n

(s− n+ 1)(m−1)|bi(s)| ≤ c, i = 1, 2, . . . , l.
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Define two maps Γ1, Γ2 on Ω as follows

Γ1x(n) =

{
α− p(n)x(τ(n)), n ≥ N

Γx1(N), n0 ≤ n ≤ N,

Γ2x(n) =

{
(−1)m−1

∑∞
s=n

(s−n+1)(m−1)

(m−1)!

∑l
i=1 bi(s)x(σi(s)), n ≥ N

Γ2x(N), n0 ≤ n ≤ N

For each x, y ∈ Ω, Γ1x(n) + Γ2y(n) ≥ α − pM2 − lM2c ≥ M1, Γ1x(n) + Γ2y(n) ≤
α+ lM2c ≤M2, that is Γ1x(n)+Γ2y(n) ∈ Ω. Γ1 is a contraction mapping and Γ2 is
continuous and uniformly Cauchy. So there exists x ∈ Ω such that Γ1x+ Γ2x = x.
The proof is complete. �
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