
FALL DETECTION USING FEDERATED LEARNING FOR MODEL

PERSONALIZATION AND ANOMALY DETECTION

by

Nader Maray, B.S.

A thesis submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
May 2023

Committee Members:

Anne Hee Hiong Ngu, Chair

Vangelis Metsis

Chul-Ho Lee

COPYRIGHT

by

Nader Maray

2023

DEDICATION

This project is dedicated to my advisor Dr. Anne Hee Hiong Ngu, as she has been

an inspiration to me with her hard work on the fall detection project in general, her

mentorship and guidance have been instrumental in shaping my academic journey at

Texas State University and providing me with invaluable academic experience. I will

always be grateful for all the research opportunities she has given me.

ACKNOWLEDGEMENTS

I want to express my gratitude for the exceptional learning experience that I

have received during my master’s program. I would like to thank the entire computer

science department for providing me with an outstanding academic environment,

resources, and guidance.

Special thanks to Dr. Anne Hee Hiong Ngu for every opportunity she has pre-

sented me, as well as my committee chair members Dr. Vangelis Metsis and Dr.

Chul-Ho Lee for being generous and giving me their input, time and effort for the

thesis. I would also like to thank Dr. Lu Wang for voluntarily helping me through

both my thesis and my paper with insightful input.

The master’s program has been a transformative experience for me, and I at-

tribute much of my success to the education and mentorship that I received from the

department’s faculty and staff. Throughout the program, I have had the opportunity

to learn from some of the most brilliant minds in the field, and I have been impressed

by all of the lecturer’s and researcher’s dedication to helping students achieve their

goals.

The resources provided by the department have been invaluable in helping me

succeed in my studies. The library, computer labs, and other facilities have been

well-equipped and maintained, allowing me to engage in my studies effectively.

I cannot thank the department enough for the support and guidance that I have

received during my studies. The knowledge and skills that I have gained will be

invaluable to my future career, and I will always cherish the experience of being a

part of this esteemed institution.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

I. INTRODUCTION . 1

II. RELATED WORK . 6
II.I. Personalized Federated Learning 6
II.II. Anomaly Detection . 8

III. SMARTFALL SYSTEM ARCHITECTURE 11

IV. METHODOLOGY . 14
IV.I. Dataset Collection . 14
IV.II. Experimental Settings . 17

IV.II.I. Federated Learning 17
IV.II.II. Anomaly Detection 19

IV.III. Model Training and Parameters Tuning 20
IV.III.I. Federated Learning Structure and Tuning 20
IV.III.II. Anomaly Detection Structure and Tuning 25

V. EXPERIMENTS AND RESULTS 26
V.I. Federated Learning . 27
V.II. Anomaly Detection . 33

VI. CONCLUSION AND FUTURE WORK 35

APPENDIX SECTION . 38

REFERENCES . 40

v

LIST OF TABLES

Table Page

1 Window_Size tuning for MSBAND and Meta Sensor datasets respectively 22

2 Step_Size tuning for MSBAND and Meta Sensor datasets respectively . 22

3 Smooth_Window tuning for MSBAND and Meta Sensor datasets re-
spectively . 23

4 Fall_Threshold tuning for MSBAND and Meta Sensor datasets respectively 23

5 Results For the Experiment of Anomaly Fall data 33

6 Results For the Experiment of Anomaly ADL data. 33

vi

LIST OF FIGURES

Figure Page

1 Comparison of smartwatch accelerometer data. 4

2 Architecture of SmartFall system. 11

3 The three different hardware used for data collection. 14

4 Comparison of classifier architectures. 24

5 This figure compares the results of our previous paper with the two feder-
ated experiments we conducted in this paper. 32

vii

ABSTRACT

Falls in the elderly are associated with significant morbidity and mortality.

While numerous fall detection devices incorporating AI and machine learning

algorithms have been developed, no known smartwatch-based system has been used

successfully in real-time to detect falls for elderly persons. We have developed and

deployed a SmartFall system on a commodity-based smartwatch which has been

trialled by nine elderly participants. The system, while being usable and welcomed

by the participants in our trials, has two serious limitations. The first limitation is

the inability to collect a large amount of personalized data for training. When the

fall detection model, which is trained with insufficient data, is used in the real

world, it generates a large amount of false positives. The second limitation is the

model drift problem. This means an accurate model trained using data collected

with a specific device performs sub-par when used in another device. Therefore,

building one model for each type of device/watch is not a scalable approach for

developing smartwatch-based fall detection system. To tackle those issues, we will

focus on two datasets including accelerometer data for fall detection problem from

different devices: the Microsoft watch (MSBAND), and the Meta Sensor device. We

have previously achieved good success in solving the limitations through the use of

transfer learning, however, false positives still remained as a problem, as well as

real-time model testing. To solve the remaining issues, we will try to apply two main

methods, the first method is building a federated learning framework of multiple

edge devices for multiple people, where each edge device would have its own

personalized fall detection model, as well as its own synthetically generated data

and real life data, while the second method would treat the problem as an anomaly

viii

detection problem, where the standard action would be an ADL (Activities of Daily

Life) and the anomaly would be a fall, and vice versa. Federated learning

experiments showed promising results, achieving an average F1-score of 0.94, while

the anomaly detection experiment did not achieve results better than the previous

model.

ix

I. INTRODUCTION

Falls are one of the leading causes of death and injury among the elderly

population [1]. According to the U.S. Center of Disease Control and Prevention, one

in four Americans aged 65 and older falls each year [2]. A recent CDC report also

stated that around 28% of people aged over 65 lived alone [3]. In addition, the

Agency for Healthcare Research and Quality reports that each year, somewhere

between 700,000 and 1,000,000 people in the United States fall in the hospital alone

[4]. The resultant inactivity caused by a fall in older adults often leads to social

isolation and increased illnesses associated with inactivity including infections and

deep vein thrombosis. Consequently, a large variety of wearable devices which

incorporate fall detection systems have been developed [5, 6, 7, 8]. Wearable devices

have the promise of bringing personalized health monitoring closer to the

consumers. This phenomenon is evidenced in the articles entitled "Staying

Connected is Crucial to Staying Healthy" (WSJ, June 25, 2015) and "Digital Cures

For Senior Loneliness" (WSJ, Feb 23, 2019). The popularity of using a smartwatch,

paired with a smartphone, as a viable platform for deploying digital health

applications is further supported by release of the Apple Series brand of

smartwatches [9] which has a built-in "hard fall" detection application as well as an

ECG monitoring App. Apple also added car crash detection in the most recently

version of Apple watches. An Android-Wear based commercial fall detection

application called RightMinder [10] has been released on Google Play since 2018.

One of the major sensors used in fall detection on a smartwatch is an accelerometer,

which measures the acceleration of an object. Acceleration is the change in velocity

with respect to time and velocity represents the rate at which an object changes its

position. Acceleration data is commonly used in fall detection because accelerometer

sensors are found in most smart devices, and a distinct change in acceleration

1

happens when a fall occurs. The clustered spikes in Figure 1a show a unique pattern

in the acceleration data during one second when the fall occurs, which means that

falls can be identified in acceleration data by that pattern.

Previously, we have developed a watch-based SmartFall App using Long

Short-Term Memory neural networks (LSTM), an artificial recurrent neural network

(RNN) with feedback connections, to detect falls based on the above pattern, by

training it on simulated fall data collected using a Microsoft watch (MSBAND)

[11, 12]. We have deployed this SmartFall system on a commodity-based smartwatch

which has been trialled by nine sensor participants. Each participant was recruited

under IRB 7846 at Texas State University to use the SmartFall system to collect

their ADLs (Activity of Daily Living) data by just asking them to wear the watch

for three hours per day over a seven day period. The user only needs to interact

with the watch and provide feedback when false positives are generated by the

system. Despite the system was welcomed by the participants in our trials, it still

have several limitations: 1) fall detection models trained on simulated falls and

ADLs performed by young, healthy test subjects suffer from the fact that they do

not exhibit the same movement characteristics as the elderly population. For

example, an elderly person typically has comorbidities that affect their movements

including the effects of multiple medications, poor vision, stroke, arthritis, sensory

neuropathies and neuro-degenerative diseases such as Parkinsonâs disease, all of

which may contribute to their risk of falling [13]; 2) a sudden hand or wrist

movement from some ADLs can interfere with the recognition of this pattern. For

example, Figure 1b is the signal generated from a person putting on a jacket and

has some cluster spikes which can be mistaken for a fall; 3) there is no guarantee

that accelerometer data collected from different smartwatch devices is exactly of the

same quality for fall detection since they have different hardware characteristics and

API libraries.

2

In addition, we find that a fall detection model trained with data collected

using a specific device usually does not generalize well to similar data collected

using a different device because of differences in hardware characteristics which

result in the acceleration data being sensed and recorded with varying G units,

sampling rates, and X, Y and Z orientations of the accelerometer data. For example,

Huawei watch (which we do not use in this paper) specified that data can be

collected in 32 ms, but in reality, the data is always collected in every 20 ms while

MSBAND collects data in 32 ms as specified. To tackle the aforementioned issues,

we propose to use transfer learning approach to solve the small dataset problem in

smartwatch based fall detection system. More specifically, while collecting a large

amount of ADL or fall data from the elderly population is an unrealistic task (i.e.,

the target domain), collecting a small amount of everyday movement data from the

elderly population is possible (i.e., the source domain). Therefore, the obtained

model in the source domain can be utilized and retained in the target domain. This

will enable us to create a real-world smartwatch-based fall detection model usable

by older adult where we only need to collect a small amount of data to train a

model tailored to each of them. After achieving a substantial improvement using the

aforementioned transfer learning approach in [14], we conclude that there still relies

a problem in the amount of false positive classifications, as that remains the biggest

obstacle in improving results to a near-perfect level. One glaring limitation of the

transfer learning approach is that it relies on a single global model to make

predictions for all clients or users. This approach can lead to suboptimal

performance on an individual level, as the model may not be tailored to the client’s

specific needs or characteristics.

To address this limitation, a personalized machine learning framework can be

developed, where each client has their own unique classification model. This

approach involves training a separate model for each client based on their historical

3

(a) Acceleration from a fall. (b) Acceleration from putting on a jacket.

Figure 1: Comparison of smartwatch accelerometer data.

data, preferences, and behavior. These personalized models can then be used to

make accurate predictions and recommendations for each individual client, leading

to improved performance on an individual user level.

The development of such a personalized machine learning framework requires

careful consideration of various factors such as data privacy, model scalability, and

computational resources. Nonetheless, this approach has the potential to

significantly enhance the effectiveness of machine learning applications in a wide

range of domains, by providing tailored solutions that meet the unique needs of each

individual client, hence, to solve the issue of excessive false positive classification,

while maintaining accuracies for the other types of classifications, as well as data

privacy.

we propose a fall detection framework inspired by federated learning, in which

every client has their own classification model, tailored to their data, while

maintaining a global model for all users in the server. More specifically, we use a

copy (one copy per client) of a pre-trained model as the base personalized model for

all clients in the framework, and gradually re-train each personalized model using

that client’s data, while averaging all the models’ parameters after each training

iteration into the global model on the server.

Another approach of solving the fall detection task is by considering falls as an

4

anomaly from normal day to day actions, since intuitively, a fall action rarely

happens and is an abnormality in one’s day to day life. Hence, building a model

that is very well acquainted with datasets of day to day activities of clients (which

do not involve falls) and is able to distinguish these activities, will also hopefully be

able to tell whenever abnormal, unfamiliar data is fed into it, or in this case, fall

data. Such tasks in machine learning are known as Anomaly Detection tasks.

Anomaly detection in machine learning is the process of identifying unusual

data points or patterns in a given dataset that do not conform to the expected

behavior. It is an essential aspect of many real-world applications such as fraud

detection, fault detection, intrusion detection, and health monitoring. Machine

learning algorithms use statistical models and mathematical techniques to analyze

large volumes of data and identify anomalies that may indicate potential problems

or opportunities for improvement. We will attempt to apply many of these models

in our experiments.

The success of anomaly detection in machine learning largely depends on the

quality and representativeness of the training data. It is a very challenging task

since anomalies can take various forms and can be difficult to distinguish from

normal data points. For example, in our case, the acceleration of the wrist which is

induced by a normal daily life task, such as waving one’s hand, could have a very

similar pattern to the acceleration induced by a fall, especially since wrist

acceleration alone, without the acceleration of any body part, isn’t the most

informative measure. Which is why, in our experiments, we try a multitude of data

arrangement and sequencing methods, in order to make the most out of the wrist

acceleration measure.

5

II. RELATED WORK

In this section, we review articles for both model personalization through the

use of a federated learning framework, and for anomaly detection using different

models, and explain how their findings can be of help to the fall detection task we

are trying to solve in this paper. For related work on transfer learning, we will refer

to our previous paper [14].

II.I. Personalized Federated Learning

Federated learning (FL) is a distributed machine learning paradigm where

multiple clients collaborate to train a shared model, without exchanging their data

directly. This approach is particularly useful in scenarios where the data cannot or

should not leave the clients’ devices, due to privacy or security concerns, or where

the data is geographically distributed or too large to be centralized. However, FL

faces several challenges, such as heterogeneity among clients, communication and

computation bottlenecks, and the need to reconcile conflicting updates.

Personalized federated learning (PFL) is a recent extension of FL that aims to

address the heterogeneity challenge by allowing each client to learn a personalized

model tailored to their local data and preferences, while still benefiting from the

collective knowledge of the other clients. PFL can be seen as a compromise between

the extremes of centralized learning, where all data is pooled and processed by a

single server, and decentralized learning, where each client learns independently

without coordination.

Several works have proposed and studied PFL in various settings and

applications. For instance, Yang et al. [15] proposed FedPerf, a framework that

enables PFL for mobile devices by leveraging reinforcement learning to optimize the

6

allocation of resources and the selection of models. FedPerf was shown to achieve

higher accuracy and faster convergence than non-personalized FL on several

benchmark datasets. Kairouz et al. [16] presented a comprehensive survey of PFL,

discussing its motivations, challenges, algorithms, and applications, and highlighting

open research directions. The authors also provided an empirical evaluation of

several PFL methods on real-world datasets, showing their effectiveness and

scalability.

Other works have focused on specific aspects or variations of PFL. For example,

Wu et al. [17] proposed a personalized privacy-preserving FL approach, where each

client encrypts their data using a different key and shares only a part of it with the

server, while still allowing personalized model updates. Zhang et al. [18] introduced

PFL with differential privacy, where each client adds noise to their model updates

to preserve privacy while still contributing to the collective learning. Li et al. [19]

studied the effect of different aggregation strategies on the performance and fairness

of PFL, showing that personalized federated averaging can improve both aspects

compared to non-personalized federated averaging.

Overall, the articles present a promising approach to improving the accuracy

and efficiency of federated learning algorithms by personalizing them to individual

users. It perfectly matches the structure of our project, as each user has their own

data, collected on their own edge device, which makes it easily applicable, by having

a personalized model for each client which runs on their edge devices, and

maintaining a global model in the server whose parameters are the average of all the

clients’ personalized models. This framework achieves a personalized model for each

user, while maintaining user data privacy, as expected of a federated learning

framework.

7

II.II. Anomaly Detection

Anomaly detection is an important problem in many domains, including

cybersecurity, finance, healthcare, and manufacturing. In recent years, there has

been growing interest in anomaly detection for time-based tasks, where the goal is

to identify unusual behavior or events that occur over time.

One popular approach to anomaly detection for time-based tasks is based on

time series analysis. Time series are sequences of data points that are collected at

regular intervals over time, and they can be used to model a wide range of

real-world phenomena. In this context, anomalies can be detected by identifying

patterns in the time series that deviate from normal behavior.

Several techniques have been developed for time series anomaly detection,

including statistical methods, machine learning algorithms, and deep learning

models. We are gonna be focusing on the following ones being Variational Auto

Encoders (VAE), Isolation Forests, Local Outlier Factors (LOF), One-Class Support

Vector Machines (OCSVM), and Minimum Covariance Determinant (MCD).

VAE is a type of deep learning model that can be used for unsupervised

anomaly detection in time series data. VAEs are capable of learning a probabilistic

representation of the data, and can be trained to reconstruct the input data with

minimal reconstruction error. Anomalies can then be identified by comparing the

reconstruction error to a threshold value.

Isolation Forests are another machine learning technique that can be used for

time-based anomaly detection. Isolation Forests construct decision trees to isolate

individual data points, and anomalies can be detected by measuring the path length

required to isolate a given point. The shorter the path length, the more likely the

point is an anomaly.

LOF is a local density-based outlier detection algorithm that can be used for

8

time series anomaly detection. LOF measures the degree of abnormality of a given

data point by comparing its local density to the local densities of its neighbors.

Anomalies are identified as data points with a significantly lower density than their

neighbors.

OCSVM is a type of support vector machine that is trained on only one class of

data points (i.e., normal data points). Anomalies are then identified as data points

that fall outside the decision boundary of the OCSVM. OCSVM is a powerful

technique for detecting anomalies in time-based tasks where the anomalous behavior

is different from the normal behavior.

MCD is a robust estimator of covariance that can be used for time series

anomaly detection. MCD is based on the idea of computing the covariance matrix

using only a subset of the data that is least affected by outliers. Anomalies are then

identified by computing the Mahalanobis distance between each data point and the

mean of the subset.

The article "Anomaly Detection in Time Series Sensor Data for Machine

Health Monitoring" by Lin et al. [20] proposes a machine learning-based approach

for detecting anomalies in time series sensor data from manufacturing machines.

The proposed method uses various anomaly detection models, including an

Autoencoder, and One-class support vector machine to classify data points as

normal or anomalous. The authors also evaluate the proposed methods using two

publicly available datasets and compare its performance with four other existing

methods. The results show that the proposed method outperforms the existing

methods in terms of accuracy, precision, recall, and F1-score.

"Anomaly Detection in Time Series Data: A Survey and Evaluation" by

Chandola et al. [21] - This paper provides a survey of existing methods for anomaly

detection in time-series data and evaluates their performance on several benchmark

datasets. The authors evaluate several methods, including LOF and Isolation Forest,

9

and compare their performance with other methods.

"Detecting Anomalies in Time Series Data via Minimum Covariance

Determinant Estimation" by Rousseeuw et al. [22] - This paper proposes a method

for detecting anomalies in time series data via Minimum Covariance Determinant

(MCD) estimation. The authors evaluate the proposed method on several synthetic

and real-world datasets and compare its performance with other existing methods.

Overall, there are many machine learning techniques that can be used for

detecting anomalies in time-based tasks. The articles mentioned above managed to

achieve good results using the aforementioned anomaly detection models, applying

them on time-based tasks, which matches with the settings of the task at hand

10

III. SMARTFALL SYSTEM ARCHITECTURE

We implemented a three-layered architecture which has the smartwatch on the

edge, the smartphone in the middle layer, and the cloud server in the inner most

layer. This is one of the most flexible architectures for IoT applications as discussed

in [23] and is a practical choice for our prototype. Microservice is a particular

implementation of the service-oriented architecture (SOA) that enables an

independent, flexible, and distributed ways of deployment of services on the

internet. Applications designed with microservices contain small, modular, and

independent services which communicate via well-defined APIs. As compared to the

3-layer architecture of our SmartFall, microservices are more agile, flexible, and

resilient. However, each microservice must be hosted in a container and connected

to a cloud framework. Moreover, the portability of an edge container is not proven

yet. Currently, there are no Docker-compatible containers that can run on an edge

device like an Android phone. We have explored a microservice-based architecture

called Accessor-based Cordova host for edge devices in [24].

Figure 2a gives an overview of the SmartFall fall detection system. The major

software components developed on a smartphone are (a) the Config module which

Couchbase

WearOs
Watch

Android Phone

Data Collector
Prediction
Database
Config

Automated Training

Analyze

Retrain

Validate & Upload

PHP
Tunnel

Labeled Data

Personalized Model

Raw Accelerometer Data
Labeled Data

Personalized Model
BLE Link

(a) An overview of the SmartFall system.

Yes

True Positive

Yes

False Positive

No

No

Timer Up

(b) Watch’s user interface display after a fall
is detected.

Figure 2: Architecture of SmartFall system.

11

manages the parameters, version of the deep learning model used by a particular

user, the chosen personalization training strategy, and the chosen cloud server for

data storage and re-training; (b) the Database module which manages all the data

sensed, the uploading of the collected data to the cloud, and the downloading of the

best re-trained model for a user; (c) the Data Collector module which manages the

transfer of sensed data on the smartwatch to the smartphone using different

communication protocols. Our smartwatch and smartphone currently communicate

using BLE. The smartwatch and the server communicate using HTTP. Our system

is designed to leverage multiple communication protocols; and (d) the Prediction

module, which manages different machine learning models used for fall detection.

For example, the system can be configured to run an ensemble recurrent neural

network (RNN) or a single RNN model. On the cloud, additional software

components for analysis, re-training and validation of the re-trained models are

implemented. Our system is designed to be flexible for using different

personalization strategies as and when they become available.

The smartwatch’s UI is designed to start with just the “YES” and “NO”

buttons so as to overcome the constraint of small screen space (see Figure 2b). If the

user answers "NO" to the question "DID YOU FALL?", the data is labelled as a

false positive and stored as "FP" in the Couchbase database in the cloud. If the user

answers “YES”, the subsequent screen will prompt "NEED HELP?". If the user

presses "YES" again, it implies that a true fall is detected and that the user needs

help. The collected data will be labeled and stored as “TP” and "HELP IS ON THE

WAY" screen will be displayed. If the user presses “NO”, it suggests that no help is

needed and the collected data is still labelled as “TP”. If the user did not press either

“YES” or “NO” after a specified period of time following the question "DID YOU

FALL?", an alert message will be sent out automatically to the designated caregiver.

Our system is structured such that all user-identifying data is only stored

12

locally on the phone to preserve privacy. Real-time fall prediction is performed on

the phone to reduce the latency of having to send data to the cloud for prediction.

The training/re-training of the prediction model is done offline in the cloud server.

The UI interface is designed such that there is no need to interact with the App

unless the system detects that a fall has occurred, in that case, the watch will

vibrate to alert the user that a prediction has occurred and the UI in Figure 2b will

appear. The ability to interact with the system when a false prediction is generated

allows the system to collect real-world ADL data and fine tune the fall detection

model.

The ultimate goal is for the system to detect falls accurately, i.e. not missing

any falls and not generating too many false positive prompts. Collecting data and

training a new model from scratch is labour intensive, hence, we aim to have one

model that can generalize well across different smart devices. When a new device is

added, by using a small amount of feedback data collected by the user wearing the

device for a short period of time, a new model can be trained with a transfer

learning strategy and uploaded to the device to use in real-time. The following

sections describe the transfer learning experiments we conducted to support our

vision in this SmartFall system.

13

IV. METHODOLOGY

IV.I. Dataset Collection

We first collected two datasets which can be used in the transfer learning

experiments. Those datasets are comprised of accelerometer data collected from the

Microsoft watch (MSBAND) watch, and the Meta Sensor device. MSBAND data

was collected in units of 1G on the left wrist only, while Meta Sensor data was

collected in units of 2G on both the left and right wrists. The sampling rate is 32 Hz

for MSBAND watch while Meta Sensor data is collected with the sampling rate of

50 Hz. Figure 3 shows the three different devices we used for the data collection

process.

Figure 3: The three different hardware used for data collection.

The MSBAND dataset was collected from 14 volunteers each wearing a

MSBAND watch. These 14 subjects were all of good health and were recruited to

perform a mix of simulated falls and ADLs (Activity of Daily Living). Their ages

ranged from 21-55, height ranged from 5 ft to 6.5 ft. and weight from 100 lbs to 230

lbs. Each subject was told to wear the smartwatch on his/her left wrist and perform

14

a predetermined set of ADLs consisting of: walking, sitting down, picking up an

object, and waving their hands. This initial set of ADLs were chosen based on the

fact there were common activities that involved movement of the wrists. Those data

were all labelled as "NotFall". We then asked the same subjects to perform four

types of falls onto a 12-inch-high mattress on the floor; front, back, left, and right

falls. Each subject repeated each type of fall 10 times. We implemented a data

collection service on an Android phone (Nexus 5X, 1.8 GHz, Hexa-core processors

with 2G of RAM) that paired with the MSBAND smartwatch to have a button

that, when pressed, labels data as âFallâ and otherwise âNotFallâ. Data was thus

labelled in real-time as it was collected by the researcher holding the smartphone.

This means when the user was walking towards the mattress before falling down or

getting up from each fall, those duration of data will be labelled as ’NotFall".

However, the pressing of the button can introduce errors such as the button is being

pressed too late, too early, or too long for a fall activity. To mitigate these errors, we

post-processed the collected data to ensure that data points related to the critical

phase of a fall were labeled as âFallâ. This is done by implementing an R script that

will automatically check that for each fall data file, the highest peak of acceleration,

and data points before and after that point, were always labeled as âFallâ. After

this post-processing of the collected data, we have a total of 528 falls and 6573

ADLs. The MSBAND watch was decommissioned by the vendor in May 2019. This

dataset is available at http://www.cs.txstate.edu/ hn12/data/SmartFallDataSet.zip.

Meta Sensor was developed by MBIENTLAB in San Francisco (mbientlab.com).

It is a wearable device that offers continuous sensing of motion and environment

data. It can sense gyroscope, accelerometer and magnetometer, and it provides

easy-to-use open source APIs for fast data acquisition. Data can be stored locally on

the phone or in a cloud server provided by MBIENLAB. The Meta Sensor we used

is the MetaMotionRL. The sensor has a weight of 0.2 oz and can be recharged via

15

USB port. By embedding the meta sensor in an appropriate wrist band, it can serve

as a wrist watch for easy collection of ADLs and simulated fall data. The collected

data can be exported into multiple file formats. We recruited 8 participants (3 male

and 5 female) with ages from 22 to 62 for data collection. Each participant is asked

to perform four types of fall (front, back, left and right), five time each on an air

mattress, and a prescribed list of ADLs. These are walking, waving hand, drinking

water, wearing a jacket, sitting down and picking stuff from the floor.

The Meta Sensor fall data was first programmatically labeled by a Python

script that identifies a set amount of peak magnitudes based on the amount of trials

per file and a uniform width of 35 data points (1.12 seconds) per fall. Plotting

programmatically labelled Meta Sensor data in Microsoft Excel showed that labels

were often placed around peaks caused by noise rather than actual falls and did not

capture the distinct pre-fall, fall, and post-fall activity that accompanied an actual

fall. To ensure that we have a set of accurately labelled Meta Sensor data to

experiment with, we decided to manually relabel all Meta Sensor data using Excel

plots as a basis for fall window placement. We choose fall windows with a width of

100 data points in attempt to capture both pre-fall and post-fall activities. To

minimize noise, we trimmed non-fall data in between each fall. Since an ADL

activity could last much longer than a fall, we label the non-fall data in ADL files to

the smallest multiple of 100 data points per trial that could capture the entire

activity being performed. The collected Meta Sensor data has 202 falls and 492

ADL samples, and is available at

http://www.cs.txstate.edu/hn12/data/Meta_sensor_7030.zip.

16

IV.II. Experimental Settings

IV.II.I. Federated Learning

Federated learning is a machine learning approach that allows multiple devices

to collaborate on the training of a shared model, without sharing the raw data that

they hold. This is achieved by training the global model on the local data of each

device, and then sending only the model updates back to a central server, which

aggregates them to improve the global model. In our case, since we want to focus on

model personalization, we maintain a copy of the best performing model for each

user on that user’s edge device, and use that model instead of the shared global

model for training on the local data of that user, meaning that not only do we

maintain a shared global model which is updated by the local data of all users, but

for each user we maintain their own personalized model on the edge device. For ease

of understanding, we select one of our experiments to explain how the federated

learning strategy works in this study.

As mentioned before, in our Meta Sensor dataset, we have the data of 8

different people. For the sake of our experiment, each person’s data will be split into

what we call 4 data cycles. Each persons Fall and ADL data will be split evenly into

those 4 cycles without any data intersection between cycles. Each person will have

their own personalized model, which initially is a base model trained on the

entireity of the MSBAND dataset, as well as a 9th global model. We then would

iterate 4 times (as many times as there are data cycles) where on the i’th cycle, for

each user, we would test the performance of that user’s personalized model against

the global model on that user’s i’th data cycle, and whichever model performs

better will be set as the new personalized model for that user, and it will be trained

on the i’th data cycle of that user. After going through all 8 users in the i’th cycle,

re-setting each user’s personalized model, and training it on that user’s i’th data

17

cycle, we would average the parameters of all 8 personalized models, weighted by

their F1-scores, into the new global model, and go on to the next iteration.

The full federated learning process is described in algorithm 1. In the algorithm,

we have the base model (trained on the MSBAND dataset), the users’ data, and the

number of federated learning iterations as inputs. We start off by organizing the

data into cycles for each person and initializing all the personalized models for each

user, as well as the global model, to have the same parameters as the base model.

We then start iterating through the federated learning process, for each iteration,

comparing each personalized model’s performance to that of the global model on

the iteration’s data cycle, and updating the personlized model to be the one of the

two which performed better, and then training that model on the data cycle, and

eventually, after doing that to all the personalized models, we update the global

model to be the weighted average of all the personalized models, and move on to the

next iteration. All our experiments are conducted on a Dell Precision 7820 Tower,

256 GB RAM and one GeForce GTX 1080 GPU using TensorFlow.

18

Algorithm 1 Our Federated Learning Structure

Input: Base_Model , Data of multiple users Fed_Data , Number of federated

learning cycles Num_cycles

For Each User, Organize Their Data From Fed_Data Into Num_Iterations Cycles

For Each User i , Initialize The Personalized User_i_Model to Base_Model

Initialize Global_Model to Base_Model

START LOOP, Iterating Num_Iterations Times, For Each Iteration Do:

For Each User, Compare F1-Score of Personalized Model to Global Model On Cur-

rent User Cycle Data, And Update Peronalized Model To Be The Better Performing

Model, Then Train Model On Current User Cycle Data

Update Global Model to be The Weighted Average of All Personalized Models

END LOOP

IV.II.II. Anomaly Detection

Anomaly detection is a machine learning technique used to identify

observations or data points that differ significantly from the norm or expected

behavior. The goal is to identify rare events or patterns that deviate from the

typical or normal behavior of a system or process, which could indicate potential

problems, fraud, or other anomalous activity. As mentioned before, this relates to

our problem in that the norm or expected behaviour is what we call ADL (Activities

of Daily Life) actions, and the anomaly is the Fall action.

For our experiments, we will have a variety of anomaly detection models. In

each experiment, we will be exposing the anomaly detection model to only one type

of data as its training phase, either the ADL or the Fall data. Whichever type of

19

data the model gets exposed to will be considered as the "norm" or "expected

behaviour", and the other type of data will be the anomaly. After the training

phase, we will use an unseen dataset (test set), containing both ADL and Fall data,

to evaluate the model’s F1-score. This implies that we have 2 experiments per

model, in one of them, Falls are considered an anomaly, and in the other, ADL

actions are considered an anomaly. Another experiment we’ll be showing is similar

to what’s described above but a model gets trained on only a specific set of ADL

data, such as training strictly on data from waving hand, and then testing on both

waving hand and fall data.

IV.III. Model Training and Parameters Tuning

IV.III.I. Federated Learning Structure and Tuning

As mentioned before, we used a simple LSTM neural network structure for our

model, as not only does that fit the time-series task well, but it is also a viable

option for real-time classification that operates on the edge device without having

the need to communicate to the cloud. Our classifier had many different

hyperparameters, as well as different options for layer structuring, all of which

needed extensive tuning in order to find which permutation of these

hyperparameters and structures gives the best result. The main hyperparameters for

our classifier are:

• Window_Size: The number of consecutive data entries that will be fed to

the LSTM classifier at once. For example, if the window size is 35 (meaning

the length of a single input block is 35 time-consecutive data entries), then the

classifier will be fed a tensor of the shape 35x3 (since we have 3 coordinates

for acceleration for each entry) to give a single classification for. This snapshot

of a particular window size represents one sample of time series data as shown

20

in Figure 1a.

• Step_Size: The difference between two consecutive data blocks (each block

comprised of Window_Size data entries). For example, say we have 37 data

entries, with a Window_Size of 35 and a Step_Size of 1, then, we would

have 3 different data blocks, them being [1, 35], [2, 36] and [3, 37], which

means we have an overlap of 34 entries between each 2 consecutive data

entries. If Step_Size was 2, then we would have 2 different data blocks, them

being [1, 35] and [3, 37] (the middle block would be skipped since our step is

2), with an overlap of 33 entries between each 2 consecutive entries

(Window_Size - Step_Size is the general number of overlapping entries).

• Smooth_Window: The way we have our model make a final prediction is by

predicting over the last Smooth_Window data blocks, and then average

(take the median of) the predictions and use that average as the final fall

probability. The motivation behind the smooth window is to take into account

a wider scope of predictions, better covering pre-fall and post-fall data points.

This will also ensure that we do not miss any clustered spikes related to fall

and we do not just take a single spike as a fall prediction.

• Fall Threshold: After having the averaged fall probability from the most

recent smooth window, if its value is greater than Fall Threshold, then we

classify the window as a fall, otherwise we classify it as a non-fall.

As mentioned above, the hyperparameter tuning process needed an extensive

amount of experimentation, and for each hyperparameter we tried a multitude of

different numbers from lower to higher values. In this part of the sub-section, we

will be describing the experimentation process for each hyperparameter and

mentioning what the optimal value is with the reasoning behind it. The

hyperparameter turning process was validated on the MSBAND and Meta Sensor

21

datasets, for each dataset separately, by splitting that dataset into a training set,

which consisted of 70% of the data, and a test/validation set, which consisted of

30% of the data. For each choice of hyperparameters, we would train our classifier

on the training set, and then calculate the F1 score of the trained model on the

test set. In the results tables, we show the scores of 5 different values as the other

values’ results were similar to the value closest to them in the table.

• Window_Size: We tried a multitude of different values, and found that the

optimal value is the same as the number of data entries sensed within 1 second

(the duration of a fall), meaning that the optimal value for the MSBAND

model was 32, as the MSBand is at 32 Hz, and the optimal value for the Meta

Sensor model was 50, as the Meta Sensor is at 50 Hz. This seemed to be the

sweet-spot that captures enough data for an accurate classification, any value

below that gave a worse classification accuracy, and any value beyond that did

not increase the classification accuracy by a noticeable amount.

Table 1: Window_Size tuning for MSBAND and Meta Sensor datasets respectively

Value 15 20 32 40 50

F1-Score 0.8 0.85 0.93 0.91 0.92

Value 30 40 50 60 70

F1-Score 0.75 0.76 0.81 0.81 0.8

• Step_Size: Out of all the values, a step of 1 seemed to perform the best,

which indicates that high overlap and small increments between the

consecutive data blocks is important for a good performance, as all the higher

values gave worse results.

Table 2: Step_Size tuning for MSBAND and Meta Sensor datasets respectively

Value 1 3 5 7 9

F1-Score 0.93 0.9 0.87 0.88 0.86

Value 1 3 5 7 9

F1-Score 0.81 0.77 0.79 0.75 0.73

22

• Smooth_Window: As explained before, we want to capture the notion of

both pre-fall and post-fall occurrence in order to help us better classify falls

and have less false positives, and exactly matching that intuition, a broader

smooth window of about 2 seconds of sensed data entries (64 for MSBand and

100 for Meta Sensor) out-performed both shorter and longer smooth windows.

Table 3: Smooth_Window tuning for MSBAND and Meta Sensor datasets respectively

Value 20 40 64 80 100

F1-Score 0.83 0.89 0.93 0.86 0.87

Value 20 60 100 130 160

F1-Score 0.69 0.75 0.81 0.75 0.78

• Fall_Threshold: Different values in increments of 10% were tried, starting

from 10% and ending at 90%, and the fall threshold of 40% performed the

best as it had the best balance of accurate true-positive classification while

avoiding as many false-positives as possible. This value wasn’t picked solely

through experimentation, but also by looking at the prediction probability of

the classifier over the test set, we can see that for the fall data, the classifier

predicts values above 40%, and for non-fall data, it predicts values below 40%.

Table 4: Fall_Threshold tuning for MSBAND and Meta Sensor datasets respectively

Value 0.1 0.3 0.4 0.7 0.9

F1-Score 0.68 0.85 0.93 0.81 0.67

Value 0.1 0.3 0.4 0.7 0.9

F1-Score 0.6 0.76 0.81 0.73 0.65

As we have mentioned, not only did we tune the hyperparameters of the

network, we also tried several structures for the network itself, mainly following the

LSTM layer, as a part of our model tuning. Previous work’s benchmark model is

illustrated in Figure 4a.

As we can see, the model consisted of an LSTM layer, followed by a dense

layer, batch normalization and ended off with another dense layer. It worked well as

23

(a) Overview of the old classifier’s
architecture. (b) Overview of an improved LSTM classifier.

Figure 4: Comparison of classifier architectures.

is, however, through examining the training accuracy during the training process,

the accuracy value seemed to plateau earlier than desired, which is what led to

experimenting with the network structure by adding more, but not too many,

additional dense layers, up to a point where it wouldn’t impact the classification

time, and enough to be able to overcome the training accuracy plateau as well as

achieve better test accuracy. And indeed, after thorough experimentation, a more

optimal structure was achieved, one that had more parameters (from 13,601 to

16,351 parameters), hence more potential for knowledge gain, while maintaining

relatively quick classification speed. The new structure simply had 2 additional

layers, a batch normalization layer followed by a dense layer. The structure of the

new model can be seen in Figure 4b. It is worth noting a few things that are

consistent between our model and the previous work’s model:

• All layers are fully connected, using drop-out/convolution layers made the

performance of the model slightly worse, hence we do not use any of those

layers.

• The activation function of the dense layers is Relu, and the last layer uses

Sigmoid which is commonly used for binary classification.

24

• The default Keras Library’s Binary Cross-Entropy loss function as well as the

default Adam optimizer were used as the loss function and optimizer of the

network, as those two worked well in our older version of classifier.

• The number of neurons in the LSTM layer, as well as the output dimensions

of the Dense layers were always set to the number of data entries sensed in one

second, similarly to Window_Size, as that generally gave the best result.

IV.III.II. Anomaly Detection Structure and Tuning

As for Anomaly Detection, we used 4 anomaly detection methods being:

• sklearn: Variational Auto Encoder, Local Outlier Factor, Isolation Forest, One

Class SVM

• pyod: Minimum Covariance Determinant

The hyperparameters’ optimal values did not make a big difference in the result,

hence we ended up using the default value for most of the hyperparameters of the 4

models. For that reason, we will not be elaborating on hyperparameters tuning

process in the paper.

25

V. EXPERIMENTS AND RESULTS

In this section, we present our experimental results on federated learning for

personalization, as well as our results on anomaly detection. The datasets we use for

the experiments are the MSBAND and Meta Sensor datasets, as well as

synthetically generated data off of the Meta Sensor dataset. In our federated

learning experiments, we always start off by building a model from scratch on the

full MSBAND dataset, and then, we use that as a base model for our federated

learning part of the experiment, meaning that, for each of the 8 subjects involved in

the Meta Sensor dataset, we create their own personalized model, and use a copy of

the trained model as a base for that subject’s personalized model, and we also use

the same base model for the base global model, and proceed with the experiment

from there.

In our anomaly detection experiments, we used a basic train/test split for

evaluation. For each experiment, we noted one type of data (Fall or ADL) as the

anomaly, and trained the anomaly detection models on the normal data, and then

tested the model on a test dataset comprised of both normal and anomaly data,

meaning that per model, we conducted two experiments overrall, one where fall data

is perceived as an anomaly, and the other is where ADL data is perceived as an

anomaly. The reason why we did not use anomaly detection for personalization is

because we wanted to achieve good preliminary results using basic evaluation

methods first, as we did with deep learning, which we unfortunately weren’t able to

achieve.

26

V.I. Federated Learning

For our federated learning experiments, we tried a multitude of different

experiments, all of which operated according to the algorithm we described in

section IV.II.I., and have a goal of building a personalized model per subject (8

total subjects + the global model) of the Meta Sensor data. For all experiments,

including our benchmark score from [14], as mentioned above, we used a model

trained on the full MSBAND dataset as our base model for all 9 models. All of our

models used the optimal hyperparameter choices and the optimal network structure

described in the section IV.III. and figure 4b.

For evaluation, which we conducted on the Meta Sensor dataset, we split each

subject’s data into 4 parts, each part containing and equal amount of fall and ADL

data. We then would run our federated learning framework for 4 cycles using the 4

data sections we created. As described in algorithm 1, each federated learning cycle,

we compare the performance of each personalized model with the global model, and

set the personalized model to be whichever one of the two performed better on the

current cycle’s data, we then train that model on the current cycle’s data (the same

data it was tested on), and average out all the personalized model to create a new

global model, and move on to the next cycle. Our main evaluation metric will be the

average F1-score of all 8 subject’s personalized models on the 4th and final

federated learning cycle, as that is the cycle in which the models have trained on the

most amount of data (around 70% of the data), hence being at their most

"personalized" stage, while there remains unseen data to test on. The reason we

chose 4 federated learning cycles mainly comes from the size of our dataset, as it

isn’t big enough to be split into many more cycles, since we would have too little

data in each cycle, making 4 the highest number of cycles we can use while

maintaining a reasonable amount of Fall and ADL data in each cycle. And anything

27

less than 4 cycles would be too little as we want the process of personalization and

averaging the models to happen a sufficient amount of times to be effective.

Before we present the experiments, it is worth noting that we tried 2 additional

experiments, one involved multitask learning for personalization where the data

subjects would be considered as seperate tasks, and the other involved model

clustering based on height and weight where subjects would be clustered into the

same group based on similarities in height and weight, and each group would be

considered as a task with its own model "personalized" to the entire group. Neither

of the experiments managed to produce results than the baseline benchmark (F1

scores of 0.85 and 0.82 respectively), which is why we did not include them.

Detailed below are the several experiments and their comparisons:

1. Federated Learning Starting From MSBAND Model: In this

experiment, We trained a model on the full MSBAND dataset and used it as a

base to perform the evaluation experiment using federated learning on the

Meta Sensor dataset, which is described in the beginning of the current

section. The PR Curve and Predictions are presented in Figure 5 under the

titles starting with "FL No Synthetic".

2. Federated Learning Starting From MSBAND Model + Synthetic

Data: In this experiment, We trained a model on the full MSBAND dataset,

and then, for each subject in the Meta Sensor dataset, we generated synthetic

data which consisted of both fall and non-fall data using Gretel AI (Gretel.ai),

which uses a GAN for time series data generation [25], where for each subject,

we used their personal data from the Meta Sensor dataset as the input for the

generative model. We then would train a personalized model for each subject

using the subject’s synthetic data, and use that model as a base to perform

the evaluation experiment using federated learning on the Meta Sensor

dataset, which is described in the beginning of the current section. The PR

28

Curve and Predictions are presented in Figure 5 under the titles starting with

"FL Synthetic".

Figure 5 contains the results of the two mentioned federated learning

experiments, as well the transfer learning evaluation results from our previous paper

as a benchmark. There is one row per experiment for all 4 experiments. In each row,

on the left, there is the ROC Curve plot, with the F1-Score on the top right corner

of the plot, and the AUC mentioned in the title above, and on the right, there is the

prediction probabilities plot, with the x axis being the time (number of entry), the y

axis being the prediction threshold, the blue data representing the falls (at threshold

1.0), and the red data representing the prediction probabilities, meaning that

whenever the red line crosses the 0.4 threshold (fall prediction threshold on the y

axis), the data entry is predicted as a fall, and otherwise it is predicted as a non-fall.

In our previous paper, we split the Meta Sensor data into a 70% training

dataset, which contained the same data used in the first 3 cycles of our federated

learning data, and a 30% test dataset, which contained the data from the 4th

remaining federated learning cycle of all the subjects combined.

The first row of plots in figure 5, whose titles start with "Non TL", presents the

evaluation results of building a model from scratch using the 70% training dataset,

and evaluating it on the 30% test dataset. As we can see, it achieved an F1 score of

0.81 with an AUC of 0.81 as well. If we look into the prediction probability plot, we

can see that fall prediction was for the most part successful, however, there were

quite a few false positive predictions, with the red line going over the 0.4 threshold

mark several times along the x axis where there were no falls, which was the main

thing holding the model back.

The second row of plots in figure 5, whose titles start with "TL", presents the

evaluation results of building a model using the full MSBAND dataset, and

transferring it as a base model to train on the 70% training dataset, and evaluating

29

it on the 30% test dataset. As we can see, it achieved quite an improvement

comparing to the previous experiment, with an F1-score of 0.93 and an AUC of

0.85. If we look into the prediction probability plot, we can see that fall prediction

was for the most part successful, and the false positive classification decreased

significantly in comparison with the previous experiment, with just a few false

positive classifications remaining.

The third row of plots in figure 5, whose titles start with "FL No Synthetic",

presents the evaluation results of the first federated learning experiment of this

paper. The plots are taken from a random subject’s evaluation on the 4th data cycle,

while the F1 score is the weighted-averaged F1 score of the 4th data cycle of all the

subjects. As we can see, we managed to achieve a slight improvement with the

F1-Score reaching an average of 0.94, as well as a slight AUC improvement of 0.88.

If we look into the prediction probability plot, we can see that there were no false

positive classifications, and fall prediction was for the most part successful, however,

we can see that in a few places, it got dangerously close to the prediction threshold.

This was a pattern that we observed not just in the subject’s presented prediction

plot, but also other subject’s plots as well. The classifier was not very aggressive in

fall prediction probability values, which suggests that while we reduced the number

of false positives, we may have sacrificed our low rate of false negatives, which could

be the reason why the F1 score isn’t much higher than the previous experiment.

The fourth row of plots in figure 5, whose titles start with "FL Synthetic",

presents the evaluation results of the second federated learning experiment of this

paper. The plots are taken from the same subject’s data as above on the 4th data

cycle, while the F1 score is the weighted-averaged F1 score of the 4th data cycle of

all the subjects. As we can see, Both the F1-Score and AUC were near complete,

both being at around 0.98, and the same applies for the prediction probability plot,

with the red line being near-perfect. As good as the results are, they look almost too

30

good to be true in a sense, which very likely suggests that the synthetic data that

we generated may just be really similar, if not a copy of the real data, which made

the personalized models overfit the data before testing on it.

Overall, if we compare the results of our federated learning experiments to the

previous benchmarks, the first thing we can see is the weighted-average F1 scores of

the federated learning experiments are higher than the F1 scores of the TL

benchmark. It is worth noting that this an important measure, as the test dataset of

the TL benchmark is comprised of the data of all the subjects in the 4th federated

learning cycle, which means that we managed to out-perform the previous

benchmark after combining the personalized models’ prediction results. That can

mainly be attributed to the decrease in false positive classifications that were

achieved by the new federated learning models. However, that decrease came at

another cost which is a rise in false negative classifications, as in the third

experiment we observed that the model was less aggressive hence made more false

negative classifications, which is the only obstacle in its way of achieving a

near-complete classification model.

31

Non TL PR Curve AUC 0.81 Non TL Prediction Probabilities

TL PR Curve AUC 0.85 TL Prediction Probabilities

FL No Synthetic PR Curve AUC 0.88 FL No Synthetic Prediction Probabilities

FL Synthetic PR Curve AUC 0.98 FL Synthetic Prediction Probabilities

Figure 5: This figure compares the results of our previous paper with the two federated
experiments we conducted in this paper.

32

V.II. Anomaly Detection

As previously described, we conducted two experiments per anomaly detection

model using only the MSBAND dataset. In one experiment, falls were considered as

anomalies, and in the other, ADLs were considered as anomalies. For both

experiments, we used 70% of the non-anomaly data as training data, and tested

on the rest of the dataset (including the anomaly data). Presented in the following

tables are the results of the experiments:

Table 5: Results For the Experiment of Anomaly Fall data

TP TN FP FN F1-Score

VAE 0 86001 0 5025 0

Isolation Forest 2535 76645 9356 2490 0.3

Local Outlier Factor 4390 3410 82591 635 0.1

MCD 0 86001 0 5025 0

One Class SVM 4212 1596 84405 813 0.1

Table 6: Results For the Experiment of Anomaly ADL data.

TP TN FP FN F1-Score

VAE 86001 0 5025 0 0

Isolation Forest 4772 150 85851 253 0.1

Local Outlier Factor 1821 50402 35599 3204 0.1

MCD 75 85780 221 4950 0

One Class SVM 4714 1384 84617 311 0.1

As we can see, no method managed to achieve any significant results

whatsoever. All of the algorithms had an excess of false positive predictions or an

excess of false negative predictions, and the best F1-Score result we managed to

33

reach was 0.3, achieved by the Isolation Forest algorithm in the first experiment. All

other F1-scores were equal to or below 0.1.

Our main speculation as to why the results are this bad comes from the

similarity of non-fall data wrist acceleration to the fall data wrist aceeleration, up to

the point where it isn’t distinguishable using the anomaly detection techniques that

we tried.

Another reason for that could be our hyperparameters choice, as even though

we tried a multitude of different hyperparameters per anomaly detection model, we

may have still not made the right choice when it comes to both the model

hyperparameters, as well as the data hyperparameters (Window Size, Smooth

Window, etc...).

One final speculation we had was that there is a specific type of ADL data

which is too similar to fall data which is causing the confusion between ADL and

fall data. It is worth mentioning that we tried using data from only one ADL task

along with the rest of the falls data for anomaly detection, in an attempt to uncover

an ADL action whose data acceleration pattern may be hard to distinguish from a

fall for the anomaly detection algorithms, to no avail (all different ADL actions gave

bad results).

34

VI. CONCLUSION AND FUTURE WORK

We presented an approach for fall detection based only on the acceleration data

coming from an off-the-shelf wearable edge-device on the wrist of the subject. Fall

detection using acceleration data coming strictly from a wearable on the wrist is

challenging for the reason that there is a lot of room for false positives, as many

activities of daily living (ADL) produce acceleration spikes similar to those of a fall.

We collected and presented 2 different types of wearable wrist accelerometers, i.e.,

the MSBAND smartwatch and the Meta Sensor device. Each device has its own

hardware specifications, hence making acceleration datasets produced from these 2

devices differ in many aspects, such as sampling frequency, acceleration unit, axis

orientation, etc. Not only are the differences in data between devices a problem, but

also, fall data in general is very scarce, as it is very time consuming to collect,

leaving us with small datasets across different hardware accelerometers.

In order to overcome the problems detailed above and build a model that is

robust to dataset size as well as changes in hardware specifications, we used part of

our transfer learning methodology from our previous paper [14], where we would

train a base model from scratch using one device’s dataset, and then used the

trained model as a basis for model personalization on a different device’s dataset.

Specifically, to solve the target dataset’s task, we would not start training from

scratch on the target dataset, but we would use a model which has already been

trained on a source dataset of a similar (but not identical) feature space to the

target data set, and then, building a federated learning framework for model

personalization, in which each personalized model, as well as the global model,

would utilize the trained model, and have its weights adapt and personalize to the

target dataset’s subjects, We would have effectively transferred the source dataset’s

knowledge to the personalized models of the target dataset. And to further add

35

knowledge to the base models, prior to conducting any evaluation, we generated

synthetic data of the target dataset’s subjects, and trained each personalized model

on the synthetic data, having it effectively pre-adapt to the subjects’ data prior to

training on any real data.

Indeed, we found out through our experiments, that building personalized

models using transfer learning, synthetic data, and federated learning produces

better results than our previous benchmark of only using transfer learning, which

outperforms training a model from scratch, as the former model out-performed the

two latter in the experiments we conducted in the paper. This is encouraging as we

can improve the fall detection by adding more senors in a scalable way. There is no

need to re-collect a new set of dataset with all the existing sensors and re-train

everything from scratch when a new sensor is added. We just need to collect a small

amount of data using the new sensor, optionally generate synthetic data to aid in

building a better base model, leverage a pretrained model with transfer learning to

generalize to the newly sensed data, and finally, add the new model to the

personalized federated learning framework. Not only does this achieve very good

personalization results, it also autoamatically inherits all the pros of federated

learning, such as data privacy. We also experimented with building anomaly

detection models using many different anomaly detection algorithms, however, we

were not able to achieve any significant results due to the inability of the models of

distinguishing between fall and ADL data.

Even though were not able to achieve good results using either model clustering

or multitask learning, we still believe that these two approaches have potential, as

model clustering still can be improved with better, more detailed user specific data

in which better and more accurate clusters can be created, such as exact height and

weight, gender, arm length, etc, and multitask learning offers an approach of

parameter sharing in which all models have preliminary shared layers, which could

36

have advantages over global model averaging. Also, even though we managed to

achieve good results, we managed to do so on a small dataset, and it would still be

interesting to see our framework’s performance on bigger datasets with a bigger

variety of users.

One immediate direction for future work is the further use of data augmentation

method, for further solving the small training dataset problem. Data augmentation

method is a process of artificially increasing the amount of data by generating new

data points from existing data that does not require substantial training data,

including Synthetic Minority Oversampling Technique (SMOTE) [26], Transformers

[27], Auto-Encoder [28], Generative Adversarial Network (GAN) [29], and even

though our synthetic data usage was successful, it resulted in our model over-fitting,

which might indicate that the generated data is basically a copy of the real data.

Finally, we also intend to explore other models, for further improving the

accuracy performance of fall detection. Currently, there are many time-series

prediction models, such as neural ODEs [30], CT-RNN [31], Phased LSTM[32] and

Transformer [33].

37

APPENDIX SECTION

APPENDIX A: Technologies

• Python 3

• TensorFlow 2.4.1

• Plotly

• Pandas

• Numpy

• Scikit-Learn

• Pyod

• Platform: linux-64

APPENDIX B: Setup

1. Install Python libraries in Technologies (using either Pip or Anaconda)

2. Download MSBAND

http://www.cs.txstate.edu/ hn12/data/SmartFallDataSet.zip and Meta

Sensor Datasets (available in the git branch of Spring 2023 linked in section C)

3. Build the model architecture described in figure 4b using Tensorflow

sequential and the optimal hyperparameters detailed in section IV.III.

4. Sequence the data into blocks as per Window_Size in IV.III.

5. Run Algorithm 1

38

APPENDIX C: Other Information

• miniconda donwload on linux:

– wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-

x86_64.sh

– bash Miniconda3-latest-Linux-x86_64.sh

– rm Miniconda3-latest-Linux-x86_64.sh

• Code will be available on the Smartfall Services Spring 2023 branch on TXST

github, with full data and full instructions on how to run the project

https://git.txstate.edu/hn12/Automated_Smartfall_Service/tree/Spring-2023

• For GPU development and model training, Texas State University provides its

students with access to the Venus and Ganymede remote servers. The Venus

machine is equipped with a NVIDIA GeForce GTX 1080, as of May 2022, and

can only be accessed through the Texas State public servers (Zeus and Eros).

For ease of development, we recommend working on an up-to-date version of

Visual Studio Code, which allows for editing remote files through SSH targets.

39

REFERENCES

[1] “Falls are the leading cause of death in older americans.”
https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html.
Accessed: 2019-6-17.

[2] “Facts about falls.” https://www.cdc.gov/falls/facts.html. Accessed: 2019-6-17.

[3] “2017 profile of older americans.” https://acl.gov/sites/default/files/Aging and
Disability in America/2017OlderAmericansProfile.pdf. Accessed: 2019-9-7.

[4] “preventing falls in hospitals.”
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html.
Accessed:2919-11-18.

[5] C. Tacconi, S. Mellone, and L. Chiari, “smartphone-based applications for
investigating falls and mobility,” in 2011 5th International Conference on
Pervasive Computing Technologies for Healthcare (PervasiveHealth) and
Workshops, pp. 258–261, May 2011.

[6] L. Chen, R. Li, H. Zhang, L. Tian, and N. Chen, “Intelligent fall detection
method based on accelerometer data from a wrist-worn smart watch,”
Measurement, vol. 140, pp. 215 – 226, 2019.

[7] “Medical Life Alert Systems.” http://www.lifealert.com.

[8] “Mobilehelp smart.” https://www.mobilehelp.com/pages/smart. Accessed:
2019-11-18.

[9] “apple watch series 4.” http://www.apple.com/apple-watch-series-4/activity/.
Accessed: 2019-04-18.

[10] “rightminder - fall detection for android smartwatches and android phones.”
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/.
Accessed: 2022-12-14.

[11] T. R. Mauldin, A. H. Ngu, V. Metsis, and M. E. Canby, “ensemble deep
learning on wearables using small datasets,” ACM Trans. Comput. Healthcare,
vol. 2, Dec. 2021.

[12] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. Ngu, and C. C. Rivera,
“smartfall: A smartwatch-based fall detection system using deep learning,”
Sensors, vol. 18, no. 10, 2018.

[13] N. Seraji-Bzorgzad, H. Paulson, and J. Heidebrink, “neurologic examination in
the elderly,” Handbook of clinical neurology, vol. 167, pp. 73–88, 2019.

[14] N. Maray, A. H. Ngu, J. Ni, M. Debnath, and L. Wang, “transfer learning on
small datasets for improved fall detection,” Sensors, vol. 23, no. 3, 2023.

40

[15] K. Yang, W. Yang, T. Zhang, Z. Li, Q. Liu, and M. Hua, “personalized
federated learning for mobile devices: a reinforcement learning approach,” in
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2369–2379, 2020.

[16] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, J. Cao, G. Diamos, P. Emma, et al., “advances and open
problems in federated learning,” Foundations and Trends in Machine Learning,
vol. 14, no. 3, pp. 239–390, 2021.

[17] Y. Wu, J. Liu, J. Zhang, and J. Zhou, “personalized privacy-preserving
federated learning with non-iid data,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 2173–2186, 2021.

[18] Y. Zhang, S. Cao, Z. Liu, Z. Wu, J. Wang, and H. Xiong, “personalized
federated learning with differential privacy,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
pp. 1313–1322, 2022.

[19] Y. Li, Z. Liu, Q. Liu, W. Cao, and J. Guo, “aggregation strategies in
personalized federated learning,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 3, pp. 844–858, 2021.

[20] J. C.-W. Lin, E. J. Keogh, L. Wei, and S. Lonardi, “anomaly detection in time
series sensor data for machine health monitoring,” IEEE transactions on
knowledge and data engineering, vol. 22, no. 4, pp. 507–518, 2010.

[21] V. Chandola, A. Banerjee, and V. Kumar, “anomaly detection in time series
data: A survey and evaluation,” Data mining and knowledge discovery, vol. 29,
no. 1, pp. 18–61, 2015.

[22] P. J. Rousseeuw, M. Hubert, and K. Van Driessen, “detecting anomalies in time
series data via minimum covariance determinant estimation,” Journal of
Machine Learning Research, vol. 19, no. 94, pp. 1–31, 2018.

[23] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “iot
middleware: A survey on issues and enabling technologies,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 1–20, 2016.

[24] A. H. H. Ngu, J. S. Eyitayo, G. Yang, C. Campbell, Q. Z. Sheng, and J. Ni, “an
iot edge computing framework using cordova accessor host,” IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 671–683, 2022.

[25] X. Li, V. Metsis, H. Wang, and A. Ngu, TTS-GAN: A Transformer-Based
Time-Series Generative Adversarial Network., vol. 13263 LNAI of Lecture Notes
in Computer Science. Texas State University: Springer Science and Business
Media Deutschland GmbH, 2022.

41

[26] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[27] V. Kumar, A. Choudhary, and E. Cho, “data augmentation using pre-trained
transformer models,” arXiv preprint arXiv:2003.02245, 2020.

[28] I. Kuroyanagi, T. Hayashi, Y. Adachi, T. Yoshimura, K. Takeda, and T. Toda,
“anomalous sound detection with ensemble of autoencoder and binary
classification approaches,” tech. rep., DCASE2021 Challenge, Tech. Rep, 2021.

[29] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi, “bagan: Data
augmentation with balancing gan,” arXiv preprint arXiv:1803.09655, 2018.

[30] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “neural controlled differential
equations for irregular time series,” Advances in Neural Information Processing
Systems, vol. 33, pp. 6696–6707, 2020.

[31] R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “liquid time-constant
networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 7657–7666, 2021.

[32] Y. Liu, C. Gong, L. Yang, and Y. Chen, “dstp-rnn: A dual-stage two-phase
attention-based recurrent neural network for long-term and multivariate time
series prediction,” Expert Systems with Applications, vol. 143, p. 113082, 2020.

[33] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “enhancing
the locality and breaking the memory bottleneck of transformer on time series
forecasting,” Advances in neural information processing systems, vol. 32, 2019.

42

