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ABSTRACT 

 

PREDATOR-PREY INTERACTIONS IN THE SAN MARCOS SALAMANDER 

(EURYCEA NANA): PREDATOR GENERALIZATION AND STRESS HORMONES 

IN RESPONSE TO INTRODUCED PREDATORS 

 

by 

 

Drew Robert Davis, B.S. 
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May 2012 

 

SUPERVISING PROFESSOR: CAITLIN R. GABOR 

 Predation is a strong, influential force in most ecological communities. 

Inappropriately responding to predators typically results in the direct consumption of 

prey individuals. In addition to responding appropriately to predators in order to survive 

these encounters, prey individuals are under selection to minimize the costs associated 

with responding. These costs may reduce the overall fitness of prey individuals as time 

spent responding to predators is time not spent increasing fitness through activities such 

as foraging or reproducing. As such, prey individuals should optimize their responses in 



 
 

xii 

order to survive encounters with potential predators as well as to minimize the costs 

associated antipredator behaviors. 

 The introduction of novel predators into many environments has contributed to 

the decline in amphibian populations. Often, amphibians lack the ability to recognize 

these novel predators, and therefore, either do not respond or respond inappropriately to 

them. One such species which may be negatively affected by introduced predators is the 

San Marcos salamander (Eurycea nana). Eurycea nana is a federally threatened, fully 

aquatic salamander endemic to the headwaters of the San Marcos River. Currently, a 

diverse assemblage of native and introduced fish predators is present in the San Marcos 

River. While prior studies have helped to understand some aspects of how these 

salamanders respond to native and introduced predators, the role of predator 

generalization has yet to be explored. I found that E. nana can generalize its response to 

novel predators, as long as there are still similarities between these novel predators and 

predators which they recognize. Additionally, I have examined a stress hormone, 

corticosterone, to further characterize differences in the way E. nana responds to native 

and introduced fish predators. Differences in the way E. nana responds to native and 

introduced predators suggest that introduced predators may be causing a muted or 

diminished response. Differences in the temporal variation in risk of predation may be 

driving these differences, because introduced predators are highly abundant and may be 

frequently encountered.
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CHAPTER I 

PREDATOR-PREY INTERACTIONS 

 Predation is a dominant element of ecological communities (Curio 1976). For 

prey individuals, encounters with predators may result in injury or death. However, for 

prey populations, the effects of predators can be varied. Predators can cause local 

extirpation or global extinctions of prey species (Fritts and Rodda 1998). Predation can 

decrease prey population densities, which can decrease chances of finding mates or 

reduce genetic variation within a population (Frankham 1996). Selective predation on 

certain prey phenotypes or genotypes (Galeotti et al. 2005), sex (Norrdalh and Korpimäki 

1998), or size or age classes (Sogard 1997), can change the population structure, and 

therefore, the viability or reproductive success of the prey population (Taylor 1990; 

Banks et al. 2000). Additionally, predators have many indirect, or nonlethal, effects on 

prey individuals. The detection of predators may influence circulating stress hormone 

levels (Cockrem and Silverin 2002; Figueiredo et al. 2003; Fraker et al. 2009; Sheriff et 

al. 2009), activity times and habitat use (Taylor 1983; Holomuzki 1986; Sih et al. 1992), 

group size and vigilance (Altendorf et al. 2001; Peacor et al. 2007), clutch size and 

fecundity (Magnhagen 1990; Travers et al. 2010), and individual growth rates (Fraser and 

Gillam 1992; Nakaoka 2000). Preisser et al. (2005) suggested that the resulting indirect
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responses to predators can be as strong as direct consumption. Additionally, it is 

important to consider that the effects of predators do not necessarily cease when 

predators leave the immediate vicinity, but may persist through time lags (Sih 1992). 

 

Predator Recognition and Generalization 

 Innate and learned recognition are two primary mechanisms by which prey 

recognize predators (reviewed by Wisenden 2003). Innate recognition does not require 

prior encounters with a predator in order for prey to exhibit an antipredator response, but 

instead this response has a genetic basis. In environments characterized by a static 

predator community or high-risk predators, innate recognition of predators is expected 

(Brown and Chivers 2005). Innate predator recognition has been described in numerous 

aquatic systems including in invertebrates (Turner et al. 2006), fish (Hawkins et al. 

2008), and amphibians (Mathis et al. 2003; Epp and Gabor 2008). While prey individuals 

that exhibit innate recognition are at a selective advantage over individuals that exhibit 

learned recognition by virtue of not requiring a potentially costly encounter with a 

predator to respond appropriately, there are environments in which learned recognition 

may be advantageous for prey. For example, in communities with a dynamic predator 

community or low-threat predators, learned recognition is advantageous if prey species 

learn from encounters with novel predator species and subsequently exhibit antipredator 

responses during future encounters (Brown and Chivers 2005). Recently, the role of 

embryonic learning in amphibians has been investigated (Ferrari and Chivers 2009; 

Mathis et al. 2009), and may be important to a wide range of taxa. Strong selection exists 
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on prey to learn to recognize predators early in life, and receiving information about 

predators before being directly exposed to them would be advantageous to prey. 

 Learned predator recognition is often achieved through the association of a 

predatory stimulus with a stimulus that represents a threat. If learning through association 

is successful, subsequent exposures to the predator stimulus can elicit an antipredator 

response (Mathis and Smith 1993; Woody and Mathis 1998; Crane and Mathis 2010). For 

example, Mathis and Smith (1993) exposed fathead minnows (Pimephales promelas), to 

cues of an unfamiliar fish predator, northern pike (Esox lucius), which had either recently 

eaten conspecific or heterospecific (Xiphophorus helleri) fish. Naïve fathead minnows 

responded to chemical stimuli from northern pike that had recently consumed 

conspecifics; however, they did not respond to chemical stimuli from northern pike that 

had recently consumed heterospecifics. These same fathead minnows when later exposed 

to chemical stimuli from northern pike that had consumed heterospecifics exhibited an 

antipredator response, demonstrating the ability to learn to recognize the chemical stimuli 

of a predator regardless of their most recently consumed prey. Similarly, these methods 

have been used to condition aquatic salamanders to respond to introduced predators 

before being released as part of a head-starting program (Crane and Mathis 2010). While 

the costs and benefits of innate and learned recognition differ, both mechanisms are likely 

important in the detection of predator species by prey (Sih and Kats 1994).  

 Another important aspect of learned predator recognition is adaptive forgetting 

(Kraemer and Golding 1997). As time passes, associations between predators and risk 

may change, and therefore, no longer represent actual risk. Therefore, it would be 

predicted that prey should 'forget' prior perceived risk to avoid the costs of responding to 
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predators which no longer represent a threat. Models examining the importance of 

present versus past information have suggested that in variable environments, recent 

information should contribute more to decisions than older information (McNamara and 

Houston 1987). In experimental tests of adaptive forgetting, as predator risk increased, 

prey retain predator-related information for longer periods of time (Ferrari et al. 2010a). 

Additionally, as uncertainty about predator-related information increases, the duration 

prey use this information decreases. Thus, the ability for prey to remember predators may 

be strongly influenced by reinforcement and perceived risk (Gonzalo et al. 2009; Ferrari 

et al. 2010a). 

 It is important to recognize that innate and learned predator recognition likely fall 

at two ends of a continuum. Ferrari et al. (2007) introduced the Predator Recognition 

Continuum Hypothesis (PRCH), in which they suggested that prey species may be able to 

make generalizations about novel predator species based on similarities to known 

predator species. Prey that can generalize the recognition of a specific predator species to 

closely related but novel predators should be at an advantage over those which cannot 

generalize (Ferrari et al. 2007). The ability to generalize across predators would benefit 

prey species in the detection of new predators, provided there are similarities between the 

predator species. For example, Ferrari et al. (2007) examined the response of fathead 

minnows to a suite of predator species. Fathead minnows were initially trained to 

recognize chemical cues from predatory trout (genus Salvelinus; Salmoniformes: 

Salmonidae). After this conditioning, fathead minnows, when presented with chemical 

cues of a related predatory trout (genus Oncorhynchus; Salmoniformes: Salmonidae), 

exhibited antipredator responses but failed to respond to cues of the distantly related 
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predatory pike (Esociformes: Esocidae). Predator generalization has been documented in 

numerous taxa and systems (Griffin et al. 2001; Ferrari et al. 2007, 2008, 2009a; Ferrari 

and Chivers 2009; Mathis et al. 2009; Brown et al. 2011); however, it has only been 

demonstrated in prey species which rely on learned predator recognition. To date, no 

study on predator generalization has centered around prey that exhibit innate predator 

recognition.  

 

Detection of Predators in Aquatic Environments 

 Sensory modalities used for predator recognition in aquatic systems include 

visual, chemical, tactile, and electroreception (Roth 1987; Kats and Dill 1998; Collin and 

Whitehead 2004; Preisser et al. 2005). Many predatory fish detect potential prey through 

visual cues (Mussi et al. 2005; Meager et al. 2010). Both chemical and tactile stimuli can 

also be important in predator-prey interactions in aquatic systems that are highly turbid, 

have low light levels, or are densely vegetated (Wilkens et al. 1996; Abrahams and 

Kattenfeld 1997). Chemical cues have repeatedly been shown to be more important than 

visual cues alone in both prey and predator detection in fish (Kusch et al. 2004; Ferrari et 

al. 2006) and amphibians (Kats and Dill 1998; Woody and Mathis 1998; Sullivan et al. 

2000; Mathis 2003; Hickman et al. 2004; Ferrari et al. 2010b). Studies examining 

response to electric stimuli have been conducted with species of weakly electric fish and 

salamanders, and suggest electroreception may be more important in mediating predator-

prey interactions than what is currently known (Schlegel 1997; Collin and Whitehead 

2004). 
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For our purposes, we define three primary categories of chemical cues used by 

prey to detect predators. These chemical cues are kairomones, alarm cues, and diet cues. 

Kairomones are any signal produced by a species, which is detected by another species 

(Brown et al. 1970). Often, these chemical compounds serve as pheromones within 

conspecifics, but when detected by heterospecifics, are considered kairomones. In 

predator-prey interactions, detection of kairomones can allow predators to locate prey, or 

for prey to detect nearby predators, and as a result, the production of kairomones is 

maladaptive for the emitter and beneficial for receiving species. These cues are believed 

to be complex mixtures of metabolic wastes and hormones, and relatively little is known 

about their exact constituents in amphibians (Mathis et al. 2003). Detecting kairomones 

of predators allows prey to respond to nearby predators. Kairomones of the predatory 

eastern newt, Notophthalmus viridescens, can be detected by larval ringed salamanders, 

Ambystoma annulatum, and trigger the antipredator response of a reduction in activity 

levels (Mathis et al. 2003). By recognizing predator kairomones, prey species can 

decrease the probability of predation, thus increasing their fitness. 

 Other forms of chemical cues involved in predator-prey interactions include alarm 

cues and diet cues. Alarm cues are released by specialized skin cells of prey species upon 

predation or injury, which can alert nearby conspecifics (Wilson and Lefcort 1993) or 

heterospecifics (Mathis and Smith 1993; Schoeppner and Relyea 2009) to the threat of 

predators. Additionally, prey can detect predator diet cues, which are associated with 

recent foraging activity by the predator along with waste products of digestion. The 

combination of kairomones from a predator and alarm cues from prey has been shown to 

label unrecognized species as predators (Crowl and Covich 1990; Mathis and Smith 
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1993). The fact that prey species can respond differently to chemical cues derived from 

predators that have fed on conspecifics compared to those that have fed on other prey 

species suggests tradeoffs in responding to diet cues from heterospecific prey (Lefcourt 

and Blaustein 1995; Chivers and Mirza 2001; Sullivan et al. 2003). Both alarm and diet 

cues require a prior predation event, while the detection of predator kairomones does not 

rely on prior predation events. For example, when predators are generalists, species of 

prey relying solely on alarm or diet cues may be unable to detect them  if the predators 

have recently consumed heterospecifics. As such, prey species which detect kairomones 

of predators have the ability to recognize predators regardless of recently consumed prey 

items. 

 A number of studies of antipredator responses have focused on alarm cues 

generated by prey and diet cues generated by predators (Mathis and Smith 1993; Wilson 

and Lefcort 1993; Sullivan et al. 2003; Schoeppner and Reylea 2005), including some 

studies of how cues are shared across a suite of related prey species (Dalesman et al. 

2007). Dalesman et al. (2007) found that the response of a species of snail (Lymnaea 

stagnalis) to alarm cues produced by heterospecific snails decreased as genetic distance 

between it and heterospecific species increased. Additionally, the response of the target 

species to the alarm cues of sympatric snail species was greater compared to allopatric 

snail species suggesting an influence of intraguild members on predator avoidance 

responses. However, little research has examined the response of a single prey species to 

a suite of related predator species (Ferrari et al. 2007, 2009; Brown et al. 2011). 
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Predation Risk and Stress Hormones 

 Upon recognition of predators, many aquatic prey species form schools (Rödel 

and Linsenmair 1997), alter activity times and locations (Taylor 1983; Holomuzki 1986), 

increase use of refuge habitats (Sih et al. 1992), and reduce overall activity levels 

(Semlitsch 1987; Wildy and Blaustein 2001; Epp and Gabor 2008). These behaviors 

generally diminish the direct threat of predation, but predators can also have additional 

effects on prey individuals. These nonlethal effects are important considerations for the 

fitness of species, even though these effects may not be as obvious as direct predation. 

One such nonlethal predator effect is an increase in circulating stress hormone levels in 

prey. The presence of predators has been shown to increase circulating stress hormone 

levels in a wide variety of organisms (Wingfield et al. 1998). While important in the 

response to immediate threats, stress hormones may also be important in mediating the 

response to subsequent encounters with predators (Dachir et al. 1993; Mateo 2008). 

Stress hormones are known to enhance physiological systems associated with the 

immediate survival of the individual while suppressing those that are not (Cooper and 

Faisal 1990; von Holst 1998). Over longer periods of time, chronic elevated stress 

hormone levels can directly suppress reproduction through effects on several important 

regulatory glands and can indirectly reduce survival and reproduction through effects on 

the immune and digestive systems (Moore and Miller 1984; Sheriff et al. 2009).   

 Glucocorticoids are the main vertebrate stress hormones and, for amphibians, are 

released with stress-induced activation of the hypothalamus-pituitary-interrenal (HPI) 

axis (Sapolsky et al. 2000; Nelson 2005). Glucocorticoids can suppress activity of the 

hypothalamus-pituitary-gonadal (HPG) axis, resulting in decreased secretion of gonadal 
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hormones and decreased expression of androgen-mediated mating behavior (Adkins-

Regan 2005; Nelson 2005). Upon release, glucocorticoids trigger the metabolism of 

lipids, proteins, and carbohydrates, enhancing functions necessary for immediate survival 

of an individual (Moore and Jessop 2003). Over longer time periods and chronic 

exposure to the stressor, the above responses can result in decreased growth, delayed 

development, and immunosuppression (Greenberg and Wingfield 1987; Sapolsky et al. 

2000; Adkins-Regan 2005). One such glucocorticoid, corticosterone (CORT), is 

frequently used as a physiological index of the relative heath of individuals or 

populations (McEwen and Wingfield 2003). As a result, the CORT-Fitness hypothesis 

suggests that higher baseline levels of CORT indicate reduced relative fitness in 

individuals or populations (Bonier et al. 2009). Traditional methods of measuring 

circulating hormone concentration in aquatic vertebrates involve assaying blood plasma 

(Idler et al. 1964). However, recent methods of extracting water-borne hormones have 

been established and do not require bleeding subjects, which can be problematic in small 

subjects or species of conservation concern (Ellis et al. 2004; Scott and Ellis 2007). 

 CORT is the primary glucocorticoid in amphibians, birds, reptiles, and non-

primate mammals (Herman 1992). In amphibians, like in other vertebrates, CORT 

increases blood glucose levels, inhibits growth and reproduction, and alters behavior 

(Sapolsky et al. 2000). However, some studies show that the effects of CORT on 

reproduction in amphibians appear to be context dependent (Moore and Jessop 2003; 

Moore et al. 2005). Increased CORT has been found to suppress reproductive behaviors 

in some caudate amphibians (Taricha granulosa; Moore and Miller 1984), but not in 

others (Triturus carnifex; Zerani and Gobbetti 1993). For rough-skinned newts (Taricha 
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granulosa), when levels of CORT were increased through intraperitonial injection, the 

amount of time males spent exhibiting reproductive behaviors and engaging in courtship 

decreased significantly (Moore and Miller 1984). Benner and Woodley (2007) found that 

in the Allegheny dusky salamander, Desmognathus ochrophaeus, CORT was positively 

correlated with testosterone and that elevated CORT levels did not decrease reproductive 

activity. These differing results of the role of CORT in reproductive behaviors in 

amphibians suggest that the action varies between taxa and needs to be independently 

examined in different taxa. 

 While predators have an important influence on stress hormones in CORT -

producing animals, there has been little evaluation of this in amphibians (Sapolsky et al. 

2000; Romero 2004). Studies examining CORT in amphibians have focused on the 

effects of handling stress and isolation (Belden et al. 2010; Ricciardella et al. 2010). In a 

study examining the effects of acute stress from handling (perhaps analogous to the 

effects of predation risk), male D. ochrophaeus increased CORT levels, but only during 

the nonbreeding season (Ricciardella et al. 2010). In contrast, Fraker et al. (2009) 

examined CORT levels in Rana sylvatica tadpoles following exposure to either high- or 

low-risk predator diet cues, and found lower levels of CORT following exposure to high-

risk cues. This decrease in CORT levels is contrary to what has previously been seen in 

rodents even though the behavioral response is similar (i.e., freezing behavior) 

(Apfelbach et al. 2005). These results suggest that there may be differences in the how 

stress cues influence CORT production and inhibition across taxa. Additionally, little 

information is known about field versus laboratory levels of stress hormones in most 

species of amphibians. Houck et al. (1996) found that lab and field levels of CORT were 
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similar for Ambystoma opacum. However for A. maculatum and Hyla regilla, lower 

CORT levels were reported from wild individuals compared to laboratory animals 

(Cooperman et al. 2004; Belden et al. 2005). While the CORT response of prey species in 

response to the presence of predators may be species dependent, it may also differ 

depending on attributes of the predator. High-risk or native predators may elicit a 

different stress hormone response in prey than low-risk or introduced predators (Lima 

and Bednekoff 1999; Chivers et al. 2001). By examining CORT levels in the presence of 

potential predators, a more complete understanding of how various classes (native, 

introduced, high-risk, low-risk) of potential predators differentially influence amphibian 

prey species may be gained.  

 

Costs of Antipredator Behaviors and Risk Allocation 

 While the benefits to responding to predators are apparent when enhanced 

survival of individuals is documented, there are also costs associated with responding. 

For example, time spent avoiding predators comes at the cost of foraging or reproducing 

(Lima and Dill 1990). Moreover, prey that make overly inclusive generalizations about 

their predators or are hyper-sensitive to predator cues compared to conspecifics may 

spend a disproportionate amount of time avoiding predators instead of increasing their 

fitness through foraging or reproducing (Ferrari et al. 2007). Thus, prey species benefit 

from responding differently to high- and low-risk predators (Kats and Dill 1998). The 

ability of prey to match the intensity of their antipredator behaviors to the level of 

predator threat is known as threat-sensitive predator avoidance (Helfman 1989; Chivers 

et al. 2001).  
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 In addition to threat-sensitive predator avoidance, temporal variation in the risk of 

predation may also influence the antipredator responses seen in many prey species (Lima 

and Bednekoff 1999). Lima and Bednekoff (1999) developed the "risk allocation 

hypothesis" (RAH) which explains how temporal variation in predation pressure affects 

allocation of antipredator behavior and foraging effort across different risks of predation. 

This hypothesis states that a prey individual's response to a predator during one time 

period should be influenced by the risk experiences at other times. Therefore, 

antipredator responses to predators which are frequently encountered should be less 

intense than responses to predators which are infrequently encountered.  For predators 

that are frequently encountered, the costs of elevated levels of antipredator behavior are 

high and time when prey do not experience these predators is minimal. Therefore, prey 

should exhibit reduced antipredator behavior, and should continue to forage while these 

predators are present. Alternatively, if predators are infrequent and periods of risk of 

predation are brief, then foraging prey should exhibit heightened antipredator behavior; 

any foraging time lost can be regained during periods of low or no risk. To accurately 

assess whether temporal variation in the risk of predation may be influencing antipredator 

behaviors detailed information on encounter frequencies and likelihood of encounter 

survival for different predators is needed. Although mixed support for the RAH has been 

found, differences in methodology or failure to meet the assumptions of may account for 

studies that had results that did not match the predicted outcomes (Ferrari et al. 2009b). 

Numerous studies have indeed tested the predictions of this hypothesis and found that 

prey exhibited decreased antipredator behaviors when encounter frequencies with 
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predators were high, compared to prey whose encounter frequencies with predators were 

lower (Sih and McCarthy 2002; Brown et al. 2006; Mirza et al. 2006). 

 

Study System 

Central Texas is home to a diverse group of plethodontid (Caudata: 

Plethodontidae) salamanders in the genus Eurycea (Chippendale et al. 2000). These 

salamanders are neotenic and fully aquatic, inhabiting spring and aquifer systems found 

along and throughout the Edwards Plateau. Many of these spring sites are considered to 

be thermostable, with temperatures being relatively constant, in turn contributing to year-

round activity and reproduction (Tupa and Davis 1976). Spring species live among 

cobble substrates and feed upon a wide range of aquatic invertebrates (USFWS 2006).  

Eurycea nana is a federally threatened species restricted to the headwaters of the 

San Marcos River, Hays County, Texas (Nelson 1993). Within the headwaters, 

salamanders are confined to areas in the immediate vicinity of spring vents along the 

original river channel and immediately downstream of the Spring Lake dam. Within these 

habitats, E. nana can be found in cobble substrates and is associated with Amblystegium 

moss (Diaz 2010). The species is primarily nocturnal (USDI 1980). The presence of 

gravid females and small larvae year-round as well as highly acyclic oviposition suggest 

that E. nana breeds and reproduces throughout the year (Tupa and Davis 1976). Prior 

studies have demonstrated the use of chemical cues rather than visual cues for 

conspecific associations (Thaker et al. 2006). A captive population of E. nana is 

maintained at the San Marcos National Fish Hatchery and Technology Center, which 

includes both field collected and captive bred salamanders. 
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Epp and Gabor (2008) found that both predator-experienced (field collected) and 

predator-naïve (captive bred) E. nana show decreased activity in response to the chemical 

cues of the native fish predator (Micropterus salmoides). Since many predatory fish are 

visually oriented predators, by decreasing activity levels, risk of predation may be 

lessened (Kats et al. 1988; Skelly 1994). However, when presented with chemical cues of 

a non-native fish predator (Lepomis auritus), only predator-naïve individuals showed a 

significant decrease in activity (Epp and Gabor 2008). Since both predator-experienced 

and predator-naïve individuals responded to predators, it is likely that predator 

recognition is an innate response. The variable response to the non-native fish predator of 

predator-experienced and predator-naïve individuals raises a question regarding the basis 

of predator recognition. Predator-naïve individuals never exposed to the chemical cues of 

the non-native fish predator exhibited an antipredator response, yet predator-experienced 

individuals failed to show an antipredator response. Since there are native congeneric 

predators (Lepomis sp.) in Spring Lake and the San Marcos River, it is possible that there 

is a shared chemical cue among Lepomis, which is generalized and triggers the 

antipredator response of naïve salamanders. These results suggest both an innate and 

learned component of the response of E. nana to fish predators. Epp and Gabor (2008) 

hypothesized that the lack of response by predator-experienced salamanders to L. auritus 

may be explained by these fish being lower risk predators than the native species, M. 

salmoides, rather than the inability to recognize these predators.  

To further explore these results, Epp (2010) examined the effect that predation 

risk had on prey response. In experiments examining the response of predator-

experienced salamanders to diet cues from low-risk (fed a neutral diet) and high-risk (fed 
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adult E. nana) M. salmoides and L. auritus, it was found that the behavioral response of 

salamanders exposed to low- and high-risk diet cues from M. salmoides and low-risk diet 

cues from L. auritus did not differ from that of the blank water control. However, activity 

scores for high-risk diet cues from L. auritus were significantly different than the blank 

control as well as significantly lower than low-risk diet cues from L. auritus. Epp (2010) 

attributed the differences seen between studies to the lack of a controlled predator diet 

prior to kairomone collection or to digestive differences. Additionally, Epp (2010) tested 

the RAH in E. nana, finding no effects of encounter frequency or risk intensity on 

antipredator behaviors. 
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CHAPTER II 

PREDATOR GENERALIZATION DECREASES THE EFFECT OF INTRODUCED 

PREDATORS ON THE SAN MARCOS SALAMANDER, EURYCEA NANA
1
 

Abstract 

 The introduction of novel predators into an environment can have detrimental 

consequences on prey species, especially if prey lack the ability to respond to predators. 

One such species that may be negatively affected by introduced predators is the federally 

threatened San Marcos salamander (Eurycea nana). Previous research found that 

predator-naïve (captive-hatched) salamanders showed decreased activity in response to 

the chemical cues of both a native fish predator (Micropterus salmoides) and an 

introduced fish predator (Lepomis auritus). We tested the hypothesis that E. nana 

recognized the introduced Lepomis (and other non-native Lepomis) because they share 

chemical cues with other native congeneric Lepomis predators in the San Marcos River. 

We examined the antipredator response of predator-naïve E. nana to chemical cues from 

(1) a sympatric native sunfish (L. cyanellus; Perciformes: Centrarchidae), (2) a sympatric 

introduced sunfish (L. auritus), (3) an allopatric sunfish (L. gibbosus), (4) a sympatric 

non-native, non-centrarchid cichlid (Herichthys cyanoguttatum: Perciformes: Cichlidae), 

and (5) a blank water control to determine if individuals make generalizations about 
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novel predators within a genus and across a family. Exposure to chemical cues from all 

fish predator treatments caused a reduction in salamander activity (antipredator 

response). Additionally, there were no differences in the antipredator responses to each 

predatory fish treatment. The similar responses to all sunfish treatments may indicate that 

E. nana shows predator generalization in response to novel predators that are similar to 

recognized predators. Additionally, the antipredator response to H. cyanoguttatum 

indicates that predator generalization can occur among perciform families. 

 

Introduction 

 Declines and losses of amphibian populations are a global problem (Lawler et al. 

2006; Wake & Vrendenburg 2008) with complex local causes. Anthropogenic causes 

include diseases, predation, ultraviolet radiation, environmental toxicants, habitat 

modification and loss, and climate change (reviewed by Alford & Richards 1999; Sodhi 

et al. 2008; Wake & Vrendenburg 2008). Amphibians also are more susceptible to 

decline when they have small geographic ranges, and in such cases, multi-foci 

management is necessary for conservation. Habitat protection and studies of ecological 

conditions, such as the effects of predators, are important management issues (Kiesecker 

2003; Sodhi et al. 2008). 

Chemically-mediated predator detection is widespread in aquatic environments 

and among amphibians (Kats & Dill 1998; Mathis 2003; Ferrari et al. 2010). The use of 

chemical stimuli to detect predators can be particularly important in aquatic habitats, 

because the effects of turbidity and vegetation or low light levels can impair visual or 

tactile stimuli (Abrahams & Kattenfeld 1997). Both innate (Sih & Kats 1994; Mathis et 
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al. 2003; Epp & Gabor 2008) and learned (Woody & Mathis 1998; Ferrari et al. 2009) 

predator recognition mechanisms have been observed in amphibians. Often learned 

recognition of predators is achieved through the association of a predatory stimulus with 

a stimulus that represents a threat. Often, these threat stimuli are either alarm or diet cues. 

Alarm cues are chemical compounds released by the skin cells of prey species upon 

predation or injury, which, when detected, can alert nearby conspecifics of predatory 

threats (Wilson & Lefcort 1993; Schoeppner & Relyea 2009). Diet cues are associated 

with recent foraging of predators and are complex mixtures of both stimuli from digested 

prey items and metabolic wastes, and these cues can facilitate learned recognition of 

predators (Mathis & Smith 1993; Chivers et al. 1996). If learning is successful, 

subsequent encounters with that predator should elicit an antipredator response (Mathis & 

Smith 1993; Woody & Mathis 1998; Crane & Mathis 2010).  

While both alarm and diet cues seem to be important in achieving learned 

recognition of predators, many prey that exhibit innate predator recognition can detect 

predator kairomones. Kairomones are stimuli produced by one species that are then 

detected by another species (Brown et al. 1970). These cues are believed to be complex 

mixtures of metabolic wastes and hormones and relatively little is known about their 

exact constituents in amphibians (Mathis et al. 2003). These stimuli may serve as 

chemical signals intraspecifically (pheromones), but when detected by heterospecifics, 

are classified as kairomones. Detection of kairomones can aid in the location of 

heterospecifics, and as a result, in predator-prey interactions, the production of 

kairomones is often beneficial for the receiver and costly for the emitter. 
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It is important to realize that innate and learned recognition are two ends of a 

continuum by which prey recognize predators (reviewed by Wisenden 2003; Ferrari et al. 

2007). In addition to innate and learned recognition, prey species may also recognize 

predators through generalization (Griffin et al. 2001; Ferrari et al. 2007, 2008, 2009; 

Brown et al. 2011). Ferrari et al. (2007) introduced the Predator Recognition Continuum 

Hypothesis in which they suggest that prey species may be able to make generalizations 

about novel predator species based on similarities to recognized predators, such as native 

species. Prey that can generalize recognition of a specific predator species to closely-

related, but novel predators should have an advantage over those prey that cannot (Ferrari 

et al. 2007). As such, generalization may enhance the effective breadth of either innate or 

learned predator recognition. For example, Ferrari et al. (2007) trained fathead minnows 

(Pimephales promelas) to recognize chemical cues from lake trout (Salvelinus 

namaycush; Salmoniformes: Salmonidae). After this conditioning, fathead minnows were 

presented with the chemical cues of brook trout, rainbow trout, and northern pike. Both 

brook trout (Salvelinus fontinalis; Salmoniformes: Salmonidae) and rainbow trout 

(Oncorhynchus mykiss; Salmoniformes: Salmonidae) are closely related to lake trout, 

while northern pike (Esox lucius; Esociformes: Esocidae) are more distantly related. 

Fathead minnows responded to all trout treatments, but failed to show an antipredator 

response to cues of the northern pike indicating that prey are capable of making 

generalizations from familiar predator species to novel predators based on similarities in 

chemical cues (Ferrari et al. 2007). 

With widespread introduction of predators, it is important to study the effects of 

introduced predators on amphibians with which they have not coevolved. Studies 
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examining the effects of introduced predator species on amphibians have suggested that 

these introduced predators may be consuming individuals disproportionately more than 

native predators (Knapp & Matthews 2000; Kats & Ferrer 2003; Crane & Mathis 2010). 

However, one potential recognition mechanism that may decrease the negative effects of 

introduced predators on native prey is predator generalization. Herein, we examined 

whether predator-naïve San Marcos salamanders (Eurycea nana), were capable of 

making generalizations about novel predators.  

 Eurycea nana is a federally threatened (USDI 1980) and IUCN red-listed (IUCN 

2011), neotenic salamander endemic to the headwaters of the San Marcos River, Hays 

Co., Texas (Nelson 1993). Previous studies have illustrated the use of chemical stimuli in 

conspecific associations (Thaker et al. 2006), and, similar to other amphibians, E. nana 

decreases activity when exposed to predator stimuli (Epp & Gabor 2008). Epp and Gabor 

(2008) found that E. nana shows innate predator recognition by decreasing activity levels 

after exposure to kairomones of predatory fish. Predator-naïve individuals show 

antipredator responses to kairomones from both a native predator (largemouth bass, 

Micropterus salmoides) and an introduced predator (redbreast sunfish, Lepomis auritus), 

but not to a native non-predatory fish (largespring gambusia, Gambusia geiseri). Both 

Lepomis and Micropterus are closely related centrarchid genera (Perciformes: 

Centrarchidae), and other species of Lepomis are native to the habitat of E. nana. Thus, if 

salamanders recognize predators in either of these genera, then the response to the 

introduced L. auritus may be the result of predator generalization. We tested the 

hypothesis that E. nana recognize L. auritus due to predator generalization by examining 

the response of predator-naïve E. nana to kairomones of three species of Lepomis; (1) a 
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sympatric native sunfish (L. cyanellus), (2) a sympatric introduced sunfish (L. auritus), 

and (3) an allopatric sunfish (L. gibbosus). Additionally, because most native predatory 

fish are centrarchids (Perciformes: Centrarchidae), we also tested the response of E. nana 

to (4) a more distantly related introduced cichlid (Herichthys cyanoguttatum; 

Perciformes: Cichlidae). By including a non-centrarchid predator, we were able to 

examine if E. nana has the ability to show generalized antipredator responses to a more 

distantly related perciform predator. 

 

Materials and Methods 

Predator Species 

 The genus Lepomis (Perciformes: Centrarchidae) is a relatively speciose genus of 

predatory fish, ranging across most of North America (Warren 2009). Four species have 

native ranges that include the headwaters of the San Marcos River: L. cyanellus, L. 

gulosus, L. macrochirus, and L. microlophus. An additional species, L. auritus, was 

introduced in the early 1950's (Jurgens 1951). We used L. cyanellus as our sympatric 

native predator and L. auritus as our sympatric introduced predator. The diets of both of 

these species primarily consist of benthic macroinvertebrates and small fish (Wallace 

1984), and both species have been observed to consume Eurycea nana (Tupa & Davis 

1976; Epp & Gabor 2008). We used L. gibbosus as an allopatric non-native predator. 

Lepomis gibbosus is found in the northern and eastern portions of North America, has not 

had historic ranges in Central Texas (Scott & Crossman 1973), and is considered to be 

generalist feeder, consuming gastropods and other invertebrates (Sadzikowski & Wallace 

1976). In addition, we tested the antipredator response of E. nana to kairomones from a 
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more distantly related sympatric introduced predatory fish, the Rio Grande cichlid 

(Herichthys cyanoguttatum; Perciformes: Cichlidae). These cichlids also are considered 

generalists, consuming plants, invertebrates, and small fishes (Buchanan 1971), and were 

likely introduced to the San Marcos River by the 1930's after accidental release from the 

U. S. Fish and Wildlife Service Station in San Marcos, Texas (Brown 1953). 

Experimental Protocol 

We tested predator-naïve (captive-hatched), adult Eurycea nana (n = 75) (male SVL > 19 

mm, female SVL > 21 mm), which were available from the San Marcos National Fish 

Hatchery and Technology Center. Salamanders were maintained in flow-through 

fiberglass tanks on a 12:12 h light:dark cycle and fed blackworms (Lumbriculus 

variegatus) ad libitum. We tested salamanders individually in 9.5 l glass aquaria with 4.5 

l of well water, and covered three sides of the aquarium with black plastic to reduce 

background disturbances. We tested during peak activity times for E. nana, beginning 2 h 

after sunset and lasting for up to 4 h. We used low-level red light (25 W) during 

observations. After haphazardly selecting individuals from the housing tanks and placing 

them in the testing chamber, we allowed individuals to acclimate for at least 20 min. 

Following acclimation, we recorded the amount of time spent active for 8 min. Active 

behavior included swimming or walking, but did not include sniffing or gill movement 

that was not accompanied by other movements of the body. These data constitute the 

baseline (pre-stimulus) activity level for each subject. Following determination of 

baseline activity, we introduced 50 ml of water containing chemical stimuli from one of 

the following treatments (n = 15 salamanders/treatment): (1) a sympatric native sunfish 

(Lepomis cyanellus), (2) a sympatric introduced sunfish (L. auritus), (3) an allopatric 
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sunfish (L. gibbosus), (4) a sympatric introduced, non-centrarchid, cichlid (H. 

cyanoguttatum), or (5) only water (a blank control). Treatments were tested in random 

order and coded to control for observer bias. 

We introduced cues into the aquarium through a syringe attached to a plastic tube 

attached to the center of one side of the testing chamber at a rate of 2 ml/s. We positioned 

the end of the introduction tube approximately 2 cm below the surface of the water to 

reduce disturbance during treatment introduction. After introduction of the stimulus, we 

flushed 50 ml of well water though the introduction tube at a rate of 2 ml/s. We recorded 

the time spent active (post-stimulus) in the subsequent 8 min as an indication of prey 

responsiveness (antipredator behavior). Each individual was exposed to a single 

treatment because successive exposures without reinforcement could lead to learning the 

innocuousness of the predator cue (Hazlett 2003) or habituation. We washed all testing 

equipment with 3% hydrogen peroxide and fresh well water between each trial to remove 

any existing chemical stimuli and maintain independence between trials. 

Stimulus Acquisition 

We collected both the native and introduced sunfish (L. cyanellus and L. auritus) 

as well as the introduced cichlid (H. cyanoguttatum) from Spring Lake, Hays Co., Texas, 

USA (29° 89' N, 97° 82' W). The allopatric sunfish (L. gibbosus) was purchased from a 

private fish supplier. We only used adult fish to reduce any possible ontogenetic effects. 

Prior to the collection of chemical cues, we fed fish earthworms for at least 5 d to 

minimize the effects of prior diet. We determined the volume of each stimulus animal 

through displacement. To control for chemical cue concentrations between treatments, we 

used approximately 230 ml of water per 1 ml of stimulus animal in the collecting 
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chamber. We then placed stimulus animals into separate glass aquaria containing the 

appropriate volume of aerated dechlorinated tap water for 24 h. Before acquisition of the 

chemical cues, we removed the stimulus animals from the tanks and stirred the water. We 

mixed equal proportions of water from two adult individuals to control for individual 

effects, and froze all samples in a -20°C freezer. Control stimulus consisted of 

dechlorinated tap water that was also frozen. This method has been used successfully in 

previous studies (Mathis et al. 2003; Epp & Gabor 2008). Samples were thawed 

immediately prior to testing. 

Statistical Analysis 

Time spent moving in each of the pre- and post-stimulus trials was combined into 

a single activity index for each individual. The activity index is the difference between 

post-stimulus activity and pre-stimulus activity, such that positive values indicate 

increases in activity and negative values indicate decreases in activity in response to the 

stimulus. First, we assessed whether salamanders exhibited responses to fish cues that 

were different from the blank control by conducting Steel's test (α = 0.05), and 

afterwards, we excluded the blank water control treatment. To test the hypothesis that the 

strength of responses would diminish with increased phylogenetic distance (Ferrari et al. 

2007), we compared each predator treatment to the sympatric native sunfish treatment 

with three independent planned comparisons using one-tailed t-tests. We did not apply 

Bonferroni corrections to avoid over-inflation of Type II error (Nakagawa 2004). 

Additionally, we examined effect sizes between pairs of treatments of interest using 

Cohen’s d (Cohen 1988). After the blank water control treatment was excluded, variance 
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of the data was homogenous across the remaining treatments. Statistical analyses were 

conducted using JMP 9.0 (SAS Institute, Cary, NC, USA) software. 

 

Results 

 Using Steel's test, the activity indices for the sympatric native sunfish (P = 

0.0006), the sympatric introduced sunfish (P < 0.0015), the allopatric sunfish (P < 

0.0001), and the introduced cichlid (P = 0.0002) were significantly lower than the blank 

water control treatment (Fig. 1). Additionally, there was no difference in activity index 

between the sympatric native sunfish and the sympatric introduced sunfish (P = 0.749), 

the allopatric sunfish (P = 0.261), or the sympatric introduced cichlid (P =0.141). For 

each t-test, effect sizes fell within the small and medium classifications designated by 

Cohen (1988) which suggests high overlap between treatments (Table 1). 
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Figure 1. Activity Indices for Predator-Naïve Eurycea nana to Native, Introduced, 

and Allopatric Predators. Means (± SE) of Eurycea nana in response to stimuli 

introduced in five treatments. Letters indicate significant differences between treatments 

(α = 0.05). 

 

Table 1. P-values from Comparisons of Predators the Sympatric Native Predator.   
Numbers in parenthesis represent Cohen’s d effect size values. 

  

 L. cyanellus 

L. auritus 0.749 (0.25) 

L. gibbosus 0.261 (0.24) 

H. cyanoguttatum 0.141 (0.40) 
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Discussion 

 Predator-naïve salamanders significantly reduced activity (antipredator behavior) 

in response to the chemical cues from sympatric native, sympatric introduced, and 

allopatric sunfish treatments (Lepomis; Perciformes: Centrarchidae) when compared to 

the blank water treatment. This indicates that Eurycea nana is capable of making 

generalizations about novel predators, possibly based on similarities to recognized 

predators. To our knowledge, this is the first example of predator generalization in a prey 

species that does not require prior conditioning or learning. Similar to Epp and Gabor 

(2008), predator-naïve salamanders showed an antipredator response to the sympatric 

introduced L. auritus. Kairomones between these three Lepomis species may be similar 

due to their shared ancestry and possibly their shared natural history traits. However, 

similarity in kairomones among taxa is likely to decrease with increasing genetic 

differences due to more distantly shared ancestry or differences in natural history traits 

(Ferrari et al. 2007). Salamanders also showed an antipredator response when exposed to 

the cichlid treatment (H. cyanoguttatum; Perciformes: Cichlidae). We do not think these 

results are an outcome of salamanders generalizing all fish as potential predators because 

Epp and Gabor (2008) found that E. nana did not show an antipredator response to non-

predatory mosquitofish (Gambusia geiseri). In sum, our results indicate that E. nana 

shows predator generalization within a genus and across families of these perciform fish 

species. 

 We do not know what specific compounds trigger an antipredator response in E. 

nana because kairomones are often complex mixtures of metabolic wastes and hormones 

(Mathis et al. 2003). It is possible that a particular compound is shared among closely 

related species (Dalesman et al. 2007), and the detection of this compound is how 
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generalizations are made. Within this system, it is possible that certain kairomones 

among perciform fish are similar enough for E. nana to recognize these species as threats. 

Alternatively, salamanders may recognize chemical compounds that are similar among 

predators due to convergent similarities in their kairomones. Eurycea nana may be 

responding to cues derived from convergent similarities among large fish in general or 

among all predatory fish. 

 It is important to realize that it may be difficult to know how many and which 

predators E. nana may innately recognize. Since innate predator recognition requires a 

genetic component, it is likely that species that are innately recognized have shared a 

coevolutionary history with E. nana. Since the introductions of both L. auritus and H. 

cyanoguttatum are relatively recent, it is likely that these salamanders innately recognize 

centrarchid fish, as these are considered native fish predators. While generalization was 

seen both within Lepomis and across the examined perciform families, if non-perciform 

fish were introduced, these species may be too distantly related and, therefore, not elicit a 

generalized response from E. nana. Further investigation into the antipredator response 

for non-perciforms (e.g., Salmoniformes or Esociformes) needs to be conducted to better 

delineate limits for predator generalization. 

 Many species of amphibians are experiencing marked population declines due to 

a wide range of causes (Stuart et al. 2004), one being the introduction of novel predators 

(Knapp & Matthews 2000; reviewed by Kats & Ferrer 2003; Kiesecker 2003). Introduced 

fish predators can decrease survivorship, reduce metamorph size and rate, and alter 

habitat and foraging behaviors in amphibians (Kats & Ferrer 2003). Juvenile hellbenders, 

Cryptobranchus alleganeinsis, for example, respond strongly to chemical cues from 
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native fish predators, but only exhibited a weak response to introduced predators (Gall & 

Mathis 2009). A head-starting program has been implemented for hellbenders, and Crane 

and Mathis (2010) found that they could train individuals to recognize introduced fish 

predators as part of a captive rearing-release protocol. Eurycea nana is also being 

maintained in a captive breeding program, but unlike hellbenders, and possibly many 

other salamanders, the results from our study indicate that, for E. nana, prior conditioning 

or training does not appear necessary because these salamanders show predator 

generalizations toward two families of perciform predators. 

 Our results indicate that E. nana can generalize across two perciform families. In 

future studies, we need to examine the response of E. nana to other perciform predators 

and non-perciform fish as well as examine the effect of predator size. While the 

introduction of predators can strongly influence native prey species, our results suggest E. 

nana should be able to generalize their response to novel species of perciform fish if they 

are introduced into the San Marcos River. Additionally, should there be a need for the 

release of captive-bred salamanders, no prior associative conditioning would be needed 

for successful recognition of the current predatory community. 
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CHAPTER III 

BEHAVIORAL AND PHYSIOLOGICAL STRESS OF AN AQUATIC 

SALAMANDER, EURYCEA NANA, IN RESPONSE TO NATIVE  

AND INTRODUCED PREDATORS
2
 

Abstract 

Exposure to predatory stimuli typically results in the elevation of circulating 

glucocorticoid levels in many prey species. While associated with immediate survival, 

chronic increase in glucocorticoids may have negative effects on individuals through the 

suppression of digestive, immune, and reproductive systems. Corticosterone (CORT) is 

the main glucocorticoid in amphibians. The federally threatened San Marcos salamander, 

Eurycea nana, decreases activity in response to both native and introduced predatory fish, 

however, experience may further influence these interactions. To better understand the 

effects of introduced fish predators on this salamander, we examined both the behavioral 

and water-borne CORT response to: 1) a native predator (Micropterus salmoides), 2) an 

introduced predator (Lepomis auritus), and 3) a blank water control. Salamanders 

reduced activity (antipredator response) in response to both predator treatments, but not 

to the blank water control, and the response to the native predator was significantly 

stronger that to the introduced predator. The CORT response to both the blank water 
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control and the introduced predator did not statistically differ, and both were lower than 

the response to the native predator. These results suggest weaker responses towards 

introduced predators when compared to native predators. Highly abundant introduced 

predators may attribute to a greater allostatic load on these salamanders, and therefore, 

selection has favored individuals that have decreased stress responses.  

 

Introduction 

Predators are known to influence prey fitness either directly, through the 

consumption of individuals, or indirectly, through decreasing survival or reproduction, as 

a cost of eliciting an antipredator response. In many aquatic systems, predator recognition 

may result in prey species forming shoals (Rödel and Linsenmair 1997), increasing use of 

refugia (Sih et al. 1992), or reducing overall activity levels (Semlitsch 1987; Wildy and 

Blaustein 2001; Epp and Gabor 2008). These behaviors generally decrease the direct 

threat of predation, but predators can also have nonlethal effects on prey individuals, 

some of which may persist through time lags (Sih 1992). Nonlethal effects are important 

considerations for the fitness of species, even though they may not be as obvious as direct 

predation upon individuals. One such nonlethal effect of predators is an increase in 

circulating stress hormone levels in prey. The presence of predators influences circulating 

stress hormone levels in a wide variety of organisms (Wingfield et al. 1998). While 

important in the response to immediate threats, stress hormones also may be important in 

the response to subsequent encounters with predators and may play a role in learned 

predator recognition (Dachir et al. 1993; Mateo 2008). 
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Glucocorticoids are the main vertebrate stress hormones and, within amphibians, 

are released with stress-induced activation of the hypothalamus-pituitary-interrenal (HPI) 

axis (Cartensen et al. 1961). Glucocorticoids enhance physiological systems associated 

with the immediate survival of the individual (von Holst 1998; Sapolsky et al. 2000). 

Upon release, glucocorticoids trigger the metabolism of lipids, proteins, and 

carbohydrates, enhancing functions necessary for immediate survival of an individual 

(Moore and Jessop 2003). Over longer periods of time, chronic elevated glucocorticoid 

levels can directly suppress reproduction and decrease expression of androgen-mediated 

mating behaviors (Adkins-Regan 2005; Nelson 2005). Additionally, chronic increases in 

glucocorticoids can indirectly reduce reproduction and survival through effects on the 

immune and digestive systems (Moore and Miller 1984; Sheriff et al. 2009). Over longer 

time periods and chronic exposure to stressors, chronic elevated glucocorticoid levels can 

result in decreased growth, delayed development, and immunosuppression, which in turn 

may make individuals more susceptible to infectious diseases or predation (Greenberg 

and Wingfield 1987; Sapolsky et al. 2000; Adkins-Regan 2005). One such 

glucocorticoid, corticosterone (CORT), is frequently used as a physiological index of the 

relative heath of individuals or populations (McEwen and Wingfield 2003). As a result, 

the CORT-Fitness hypothesis suggests that higher baseline levels of CORT indicate 

reduced relative fitness in individuals or populations (Bonier et al. 2009). 

CORT is the main glucocorticoid in amphibians, birds, reptiles, and non-primate 

mammals (Herman 1992). Studies examining the effects of CORT on reproduction in 

amphibians appear to be context dependent (Moore and Jessop 2003; Moore et al. 2005). 

Increased CORT has been found to suppress reproductive behaviors in some caudates 
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(Taricha granulosa: Moore and Miller 1984), but not in others (Triturus carnifex: Zerani 

and Gobbetti 1993; Desmognathus ochrophaeus: Benner and Woodley 2007). These 

differing results of the role of CORT in reproductive behaviors in amphibians may 

suggest that the role of CORT is taxon specific. 

Activation of the HPI axis and increasing levels of CORT may be critical in 

surviving encounters with predators (Wingfield et al. 1997; Orchinik 1998) and may 

influence antipredator responses (Hossie et al. 2010). Hossie et al. (2010) found that 

CORT may be important in the behavioral and morphological response to predators, 

because Rana pipiens tadpoles exposed to a CORT receptor inhibitor showed decreased 

responses when compared to control groups. Studies examining CORT levels after 

exposure to predators have shown increased levels in birds (Travers et al. 2010) and 

mammals (Apfelbach et al. 2005), but not in amphibians. Fraker et al. (2009) examined 

CORT levels in R. sylvatica tadpoles following exposure to either low- or high-risk 

predator diet cues, and found lower levels of CORT following exposure to high-risk cues. 

This decrease in CORT levels is contrary to what has previously been seen in other 

animals, even though the behavioral response (freezing behavior) is similar. 

These differences may again suggest that the expression of CORT varies across 

taxa. While the role of CORT in response to the presence of predators may be dependent 

on prey taxa, it may also differ depending on attributes of the predator. High-risk or 

native predators may elicit a different level of stress response in prey than low-risk or a 

predator that the prey species have not coevolved with, such as an introduced predator. 

Examining changes in CORT response in the presence of potential predators will provide 
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a perspective on the physiological costs of various classes (native, introduced, high-risk, 

low-risk) of potential predators. 

 Eurycea nana, is a federally threatened and IUCN red-listed (IUCN 2011), 

neotenic salamander endemic to the headwaters of the San Marcos River, Hays Co., 

Texas (Nelson 1993). The antipredator response of predator-experienced E. nana has 

been inconsistent across experiments (Epp and Gabor 2008; Epp 2010). Epp and Gabor 

(2008) showed that predator-experienced salamanders respond to kairomones from a 

native fish predator, Micropterus salmoides, but not to an introduced fish predator, 

Lepomis auritus. However, predator-naïve salamander responded to both native and 

introduced predators, suggesting that they can recognize these introduced predators, but 

perhaps experience with predators can modify these responses. While the behavioral 

responses of E. nana to predators have been examined, we do not know if or how native 

and introduced predators are creating physiological stress in these salamanders. Herein, 

we examined both the behavioral and CORT response of San Marcos salamanders to 

chemical stimuli from three different treatments: (1) an introduced fish predator (L. 

auritus), (2) a native fish predator (M. salmoides), and (3) only water (blank control) to 

better understand how nonlethal effects of predators may be influencing this species. 

 

Materials and Methods 

Predator Species 

 To understand any differences in the way Eurycea nana responds to native and 

introduced predators, we used two centrarchid fish predators (Perciformes: 

Centrarchidae). We used Lepomis auritus as our introduced predator and Micropterus 
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salmoides as our native predator. Both predators are abundant in Spring Lake and the 

headwaters of the San Marcos River (Perkin and Bonner 2011). Lepomis auritus was 

introduced into Spring Lake and the San Marcos River in the early 1950’s, where it has 

since become established (Jurgens 1951). The diet of L. auritus within the San Marcos 

River is primarily aquatic invertebrates (Diptera, Ephemeroptera, and Trichoptera), 

suggesting that this species is a benthic feeder (Wallace 1984). Examination of the diet of 

M. salmoides suggests that it too is a generalist feeder consuming both limnetic and 

benthic prey species (Matthews et al. 1992). Both species have been observed to consume 

E. nana (Tupa and Davis 1976; Petranka 1998; Epp and Gabor 2008). 

Experimental Protocol 

 Traditional methods of measuring circulating hormone concentration in aquatic 

vertebrates involve assaying blood plasma. Here, CORT levels were measured using a 

recently developed, non-invasive process for measuring water-borne hormones (Ellis et 

al. 2004) that is advantageous for repeated sampling or when species of conservation 

concern are used. We collected adult E. nana (n=60) (male SVL > 19 mm, female SVL > 

21 mm) from the headwaters of the San Marcos River, Hays Co., Texas, USA (29° 54' 

36" N, 97° 55' 53" W) and allowed them to acclimate to laboratory conditions for a 

minimum of two weeks, where they were housed in large flow-through fiberglass tanks, 

maintained on a 12:12 h light cycle, and fed blackworms (Lumbriculus variegatus) ad 

libitum. Following established methods (Gabor and Grober 2010; Gabor et al. in prep), 

we randomly selected a salamander and placed each individual in a 250-ml glass beaker 

containing 100 ml of well water for 1 h. These data represent baseline (pre-stimulus) 

CORT levels. We then moved salamanders into 9.5-l glass aquaria containing 4.5 l of 
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well water. We covered three sides of the aquaria with black plastic to reduce background 

disturbances. We tested during peak activity times for E. nana, beginning 2 h after dark 

and lasting for up to 4 h. We used low-level red light (25 W) during observations. After 

placement in the testing chamber, individuals were acclimated for 20 min. Following 

acclimation, we recorded the amount of time individuals spent moving for 8 mi. Active 

behavior included swimming or walking, but did not include sniffing or gill movement 

that was not accompanied by other movements of the body. These data constitute the 

baseline (pre-stimulus) activity level for each individual. Following determination of 

baseline activity, we introduced 50 ml of chemical stimuli from one of the following 

treatments: (1) a sympatric introduced predator (L. auritus; n=20), (2) a sympatric native 

predator (M. salmoides; n=20), or (3) only water (control; n=20). Treatments were tested 

in random order and coded to control for observer bias. We introduced cues into the 

aquarium through a syringe attached to plastic tubing attached to the center of one side of 

the testing aquaria at a rate of 2 ml/s. The end of the introduction tube was positioned 

approximately 2 cm below the surface of the water to reduce disturbance during 

treatment introduction. After introduction of the stimulus, we recorded the activity level 

of the salamander for another 8 min as an indication of responsiveness. These data 

constitute the post-stimulus behavioral response for each individual. Immediately after 

the post-stimulus observation, we transferred the salamander into another 250-ml glass 

beaker with 100 ml of well water for 1 h. These data constitute the post-stimulus CORT 

levels. As a result, each trial yields information on both the behavioral and endocrine 

response of individual salamanders to chemical stimuli. Each individual was exposed to a 

single treatment to eliminate any effects of habituation to stimuli. We washed all 
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hormone collection equipment with 95% ethanol and all testing equipment with 3% 

hydrogen peroxide between each trial.  

Stimulus Acquisition 

 We collected both the native and introduced predators (M. salmoides and L. 

auritus) from Spring Lake, Hays Co., Texas, USA. We only used adult fish to reduce any 

possible ontogenetic effects. Prior to the collection of chemical cues, we fed fish 

earthworms for at least 5 d to minimize the effects of prior diet. We determined the 

volume of each stimulus animal through displacement. To maintain similar chemical cue 

concentrations between treatments, we used approximately 230 ml of water per 1 ml of 

stimulus animal in the collecting chamber. We then placed stimulus animals into separate 

glass aquaria containing the appropriate volume of aerated dechlorinated tap water for 24 

h. Before acquisition of the chemical cues, we removed the stimulus animals from the 

tanks and stirred the water. We mixed equal proportions of water from two adult 

individuals to control for individual effects and froze all samples in a -20°C freezer. This 

method has been used successfully in previous studies (Mathis et al. 2003; Epp and 

Gabor 2008). Samples were thawed immediately prior to testing. 

Hormone Analysis 

 Water samples containing hormones were maintained at -20°C until assays were 

performed. To extract the hormones from the water samples, C18 solid phase extraction 

(SPE) columns were used on a vacuum manifold and the hormones were eluted into test 

tubes using HPLC methyl alcohol. Eluted hormones were then placed in a 37°C water 

bath and dried using low flow nitrogen gas. Prior to assaying samples, hormones were 

resuspended in enzyme-immunoassay (EIA) buffer. We used commercially available EIA 
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kits (from Cayman Chemicals) to measure CORT levels. Samples were run in duplicate 

on 96 well plates and read by a fluorescent plate reader (BioTek Powerwave XS).  

 To validate the EIA kits for water-borne CORT, we obtained water-borne 

hormone samples from 10 adult, captive hatched salamanders (male n=5; female n=5) 

using identical procedures used during experimental trials. These samples were then 

eluted, dried, and resuspended, before being combined into a single pooled sample. Using 

this pooled sample, we assessed the parallelism of the serial dilution curve to the standard 

curve of CORT and determined the quantitative recovery of water-borne CORT by 

combining 70 μl of the pooled sample with 70 μl of the eight CORT standards as well as 

an unmanipulated control. The log-logit transformed dilution curve was constructed using 

average percent maximum binding and pg/ml concentrations for the six dilution samples 

(1:1 to 1:32). Dilution curves were parallel to the standard curve for CORT (comparison 

of slopes: t8 = 0.505, p = 0.625). The quantitative recovery of water-borne CORT was 

determined by combining the pooled sample with eight of the CORT standards as well as 

a control-pooled sample. Expected recovery concentrations were based on the known 

amount of CORT in the standards and the control-pooled sample. Minimum recovery was 

41.4% and the mean was 80%. The slope of the observed versus expected curve was 

1.06, indicating a linear relationship between observed and expected values of CORT (F 

1,8 = 1438.74, r
2 

= 0.995; p < 0.0001). 

Statistical Analysis 

 Prior to analysis, behavioral data were combined into a single activity index for 

each individual. These activity indices were calculated as the difference between post-

stimulus activity and pre-stimulus activity. Positive values indicate increases in activity 
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and negative values indicate decreases in activity in response to the stimulus. CORT 

response was determined as the ratio of post-stimulus CORT to pre-stimulus CORT, 

therefore responses greater than one indicate that CORT levels increased in response to 

the stimuli. Since the both the behavioral and hormone data met the requirements 

(normality and homoscedasticity) of parametric analyses, we performed an ANOVA 

followed by subsequent multiple comparisons (Tukey’s HSD; α = 0.05 ). 

 

Results 

 There were significant differences in the activity indices between the three 

treatments (ANOVA: F2,57 = 24.747, p < 0.0001; Figure 2). The mean activity index for 

the blank water control was significantly less than that of the introduced predator 

(Tukey’s HSD: p = 0.0002) and the native predator (p < 0.0001). Additionally, the 

activity index for the native predator was significantly lower than that of the introduced 

predator (p = 0.028). 

 Significant differences between CORT responses also were found between the 

three treatments (Analysis of Variance: F2,57 = 11.765, p < 0.0001; Figure 3). The mean 

CORT response for the native predator was significantly greater than that of both the 

introduced predator (Tukey’s HSD: p = 0.004) and the blank water treatment (p < 

0.0001). The CORT responses between the introduced predator and the blank water 

treatment did not differ (p = 0.385). 
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Figure 2. Activity Indices of Eurycea nana to Native and Introduced Predators. 

Mean activity indices (± SE) of Eurycea nana in response to three treatments. Letters in 

figure indicate groupings from Tukey’s HSD means comparisons (α = 0.05). 

 

Figure 3. CORT Response of Eurycea nana to Native and Introduced Predators. 

Mean CORT responses (± SE) of Eurycea nana in response to three treatments. Letters in 

figure indicate groupings from Tukey’s HSD means comparisons (α = 0.05). 
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Discussion 

 Predator-experienced salamanders significantly reduced activity (antipredator 

behavior) in response to chemical cues from native (Micropterus salmoides) and 

introduced (Lepomis auritus) fish predators when compared to the blank water treatment, 

and the response to native predator was a significantly stronger than the response to the 

introduced predator. The CORT response to the blank water treatment and the introduced 

predator did not differ; however, the CORT response to the native predator was 

significantly greater than response to the blank water and introduced predator. Since prey 

should efficiently respond to predators in order minimize costs of antipredator responses 

(Lima and Dill 1990), the observed differences in the way E. nana responds to predators 

may represent varying levels of perceived threat. Alternatively, differences in the way E. 

nana responds to predators may represent a lack of coevolutionary time with introduced 

predators. However, it is difficult to discern what may be driving these differences 

without further testing. 

 The differing behavioral response to the two predators and the lower CORT 

response to introduced predators may reflect temporal variation in the risk of predation 

(Lima and Bednekoff 1999). Lima and Bednekoff (1999) developed the RAH which 

states that prey foraging under temporal variation in risk of predation face problems in 

the optimal allocation of antipredator behavior across varying states of risk. For example, 

if predators are infrequent and periods of risk of predation are brief, then foraging prey 

should exhibit heightened antipredator behavior; any foraging time lost can be regained 

during periods of low or no risk. Alternatively, if predators are common and periods of 

predation risk are prolonged, prey should exhibit reduced antipredator behavior, and 
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should continue to forage during these high-risk periods. If introduced predators are more 

abundant and encountered for prolonged durations, this may explain why we observed 

muted behavioral and physiological responses to stimuli as compared to native predators. 

Both L. auritus and M. salmoides are among the most abundant fish in the San Marcos 

River and additionally, the relative abundances of both species have significantly 

increased compared to other fish species (Perkin and Bonner 2011). Muted responses to 

highly abundant predators may be further exacerbated if chemical stimuli among closely 

related species are similar. Numerous species of Lepomis exist in the headwaters of the 

San Marcos River, and salamanders are known to exhibit predator generalization (Davis 

and Gabor, in prep). Therefore, the muted responses we saw to the introduced predator 

may be attributed to the increase in abundance of L. auritus, but may also be exacerbated 

if E. nana generalize their antipredator response to all Lepomis since multiple species are 

sympatric with E. nana. 

 In contrast to our results, Epp and Gabor (2008) found that predator-experienced 

salamanders decreased activity in response to the native predator (M. salmoides), but not 

to the same introduced predator (L. auritus). Additionally, Epp (2010) found that 

predator-experienced salamanders reduced activity to an introduced predator (L. auritus), 

however, this was not significantly different from the control treatment. Epp and Gabor 

(2008) found differences in the antipredator behaviors of predator-naïve and predator-

experienced salamanders and suggested that experience may influence the responses seen 

in field-collected salamanders. Since we tested predator-experienced (field-collected) 

salamanders, it is possible that differences in experience-mediated learning exist between 

salamanders used in our study. Predators are known to vary spatially and temporally 
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across landscapes (Laundré et al. 2001) and as such, can contribute differences in 

experiences, which modify antipredator behaviors. 

 In an experimental test of the RAH in E. nana, Epp (2010) found no effects of 

encounter risk and frequency on antipredator behaviors. The RAH has been tested in 

experiments with simulated risk and field studies with variation in real predation risk 

(Hamilton and Heithaus 2001; Sih and McCarthy 2002; Van Buskirk et al. 2002; Pecor 

and Hazlett 2003; Sundell et al. 2004; Brown et al. 2006; Mirza et al. 2006; Creel et al. 

2008). These studies have shown that prey follow the RAH under some conditions, but 

not always. Differences in methodology may account for studies that had results that did 

not match the predicted outcomes of the RAH (Ferrari et al. 2009), and as such, Epp 

(2010) attributed the lack of effects on antipredator behaviors to differences in 

methodologies with studies which support the RAH. Salamanders in high frequency 

predator treatments were exposed to stimuli twice daily unlike in other studies where 

prey were exposed to predator stimulus three times daily. Additionally, one assumption 

of the RAH is that prey under high-risk of predation have reduced ability to forage (Lima 

and Bednekoff 1999). Epp (2010) was unable to limit food availability for these 

salamanders, and without this, salamanders did not have to change their behaviors to 

increase time spent foraging. However, Epp (2010) found that prior to stimulus 

introduction, salamanders in low-risk treatments were more often in shelters than 

salamanders in high-risk treatments. This suggests that salamanders exposed to high-risk 

treatments increased their foraging behaviors during safe periods (prior to introduction of 

stimulus), which follows predictions of the RAH (Lima and Bednekoff 1999). 
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 Our results indicate that native predators elicit stronger physiological responses 

over an introduced predator. CORT levels significantly increased after exposure to 

chemical stimuli from a native predator, but not an introduced predator. To date, only a 

single study has examined CORT levels of amphibians in response to predation. Fraker et 

al. (2009) found that Rana sylvatica tadpoles had significantly lower levels of CORT 

after exposure to high-risk predator diet-cues. Fraker et al. (2009) suggested that 

differences in the expression of CORT are attributed to the type of chemical cue 

influencing the HPI axis. For example, in mammals, chemical stimuli derived from 

predators triggers the increase in CORT production, while the chemical cues which were 

responsible for suppressing the HPI axis in R. sylvatica tadpoles are derived from prey 

(conspecifics) (Fraker et al. 2009). 

 Increases of CORT can negatively affect many different systems. CORT can 

increase levels of neutrophils and decreases levels of lymphocytes circulating within the 

blood stream (Gross and Siegel 1983). Davis and Milanovich (2010) found that two color 

morphs of Plethodon cinereus have differences in baseline neutrophil/lymphocyte ratios. 

These ratios can then be used to estimate CORT levels (Davis et al. 2008). Differences in 

the predation pressure between color forms of P. cinereus are known (Moreno 1989; 

Venesky and Anthony 2007) and it is this difference in predation pressure that may be 

creating the differences in CORT and neutrophil-lymphocyte ratios. Chronic increases in 

CORT may have negative fitness consequences on salamanders, especially if cumulative 

effects of CORT are increasing due to highly abundant and diverse assemblage of 

predatory fishes in the San Marcos River. If these salamanders have muted responses to 

introduced predators, it is possible that costs of responding can be mitigated (Lima and 
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Bednekoff 1999). Exploration into how CORT may decrease fitness in E. nana is needed 

to further understand if these predators are causing chronic stress in individuals. 
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