ZERO FORCING IN GRAPHS AND DIGRAPHS

by

Esther D. Conrad, B.S.

A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of

Master of Science
with a Major in Applied Mathematics
May 2018

Committee Members:

Daniela Ferrero, Chair

Roberto Barrera
Jian Shen

COPYRIGHT

by
Esther D. Conrad
2018

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Abstract

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author's express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Esther D. Conrad, refuse permission to copy in excess of the "Fair Use" exemption without my written permission.

ACKNOWLEDGMENTS

Thanks to my advisor, Dr. Daniela Ferrero, for encouraging me to do mathematics from the day she met me, and for always believing in my mathematical abilities and for pushing me to continue through life's barriers.

Her patience, guidance, and advice have been a big motivation throughout my mathematical career thus far.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
LIST OF FIGURES vi
CHAPTER
I. INTRODUCTION 1
Graphs 1
Digraphs. 5
II. ZERO FORCING 9
Zero Forcing in Graphs 9
Zero Forcing in Digraphs 14
III. SIERPIŃSKI GRAPHS 18
Zero Forcing in Sierpiński graphs 21
IV. CIRCULANT DIGRAPHS 30
Zero Forcing in Circulant Digraphs 32
REFERENCES 42

LIST OF FIGURES

Figure

Page

1 The diagram of a graph. 1
$2 \quad H$ is an induced subgraph of G. 2
3 (a) A connected graph and (b) a disconnected graph. 3
4 (a) G, (b) $G /\{u, v\}$, (c) $(G /\{u, v\}) /\{u, y\}$, (d) $((G /\{u, v\}) /\{u, y\}) /\{u, x\}$. 3
5 (a) The graph G and (b) the adjacency matrix of G. 4
6 The complete graphs $K_{1}, K_{2}, K_{3}, K_{4}$, and K_{5}. 4
$7 \quad$ The graphs P_{1}, P_{2}, P_{3}, and P_{4}. 5
$8 \quad$ The graphs C_{3}, C_{4}, and C_{5}. 5
9 The diagram of a digraph. 6
$10 \quad H$ is induced sub-digraph of D. 7
11 (a) A weakly connected digraph, (b) a strongly connected digraph, and (c) a disconnected digraph.
12 (a) A digraph D and (b) the matrix $\mathcal{A}(D)$. 8
13 The digraphs $\vec{P}_{1}, \vec{P}_{2}, \vec{P}_{3}$, and \vec{P}_{4}. 8
14 The digraphs \vec{C}_{3}, \vec{C}_{4}, and \vec{C}_{5}. 8
15 (a) A graph G and (b) a matrix in $\mathcal{S}(G)$. 9
16 The zero forcing process. 11
17 The color changing rule. 11
1827 Labeling of the induced copies of K_{4} in $S(4,3)$.21
28 Minimum zero forcing set of $S(4,4)$. 29
29 Labeled $D C_{8}(\{2,3\}\rangle$. 30
$30 \quad$ Lattice of $D C_{n}\langle\{s, t\}\rangle$. 31
$31 \quad$ Labeled $D C_{10}\langle\{2,6\}\rangle$. 33
$32 \quad$ Labeled $D C_{10}\langle\{2,5\}\rangle$. 33
33 $T(\{0, s, \ldots, k s\})$ in $D C_{n}\langle\{s, t\}\rangle$. 36
34
Two representations of $T(\{0,4,8\})$ in $D C_{28}\{\{4,7\}\rangle$. 36
35 Partitioning a path P. 39
Triangles $T\left(S^{\prime}\right), T\left(T^{\prime}\right), T\left(T^{a}\left(T^{\prime}\right)\right)$, and $T\left(T^{a}\left(S^{\prime}\right)\right)$ 40

I. INTRODUCTION

Graphs

A graph is a pair $G=(V, E)$, where $V=V(G)$ is a non-empty set of objects called vertices (the singular is vertex). The set $E=E(G)$ is a collection of 2-element subsets of V called edges. The number of vertices in V is the order of G. The number of edges in E is the size of G. A graph of order 1 is called trivial. A graph of size 0 is called empty.

We often represent a graph G with a diagram, and refer to the diagram itself as G. The vertices are represented with circles or points, and the edges are represented with lines joining vertices.

Example 1. Here is the diagram of a graph G with
$V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and
$E(G)=\left\{\left\{v_{1}, v_{5}\right\},\left\{v_{1}, v_{6}\right\},\left\{v_{2}, v_{6}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}\right\}$.
The order of G is 6 , and the size of G is 9 .

Figure 1: The diagram of a graph.

We say two vertices u and v of a graph G are neighbors if $\{u, v\}$ is an edge of G. The set of all neighbors of a vertex v is called the neighborhood of v and is denoted $N(v)$. The set $N[v]=N(v) \cup\{v\}$ is called the closed neighborhood of v.

If S is a set of vertices of G, the set of all of the neighbors of each vertex in S is called the neighborhood of S, and is denoted $N(S)$. The set $N[S]=N(S) \cup S$ is the closed neighborhood of S. The degree of a vertex v is the number of neighbors of v and is denoted $\operatorname{deg}(v)$. Hence, $\operatorname{deg}(v)=|N(v)|$. The minimum degree among all vertices of G is denoted $\delta(G)$. The maximum degree among all the vertices of G is $\Delta(G)$.

Example 2. In the graph of Example 1, $N\left(v_{4}\right)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}, \operatorname{deg}\left(v_{4}\right)=4$, $\Delta(G)=4$, and $\delta(G)=2$.

Two graphs G and H are isomorphic, if there exists a bijective function $f: V(G) \rightarrow V(H)$, such that $\{u, v\}$ is an edge of G if and only if $\{f(u), f(v)\}$ is an edge of H.

A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
For a non-empty subset S of $V(G)$, the subgraph $G[S]$ of G induced by S has S as its vertex set. Two vertices u and v are neighbors in $G[S]$ if and only if u and v are neighbors in G. A subgraph H of a graph G is called an induced subgraph if there is a non-empty subset S of $V(G)$ such that $H=G[S]$.

(a) G

(b) H

Figure 2: H is an induced subgraph of G.

For two vertices u and v of a graph G, a $u-v$ path is a sequence of distinct vertices of G such that consecutive vertices are neighbors. For a positive integer n,
a $u-v$ path of length n can be expressed as $u=v_{1}, v_{2}, \ldots, v_{n}=v$, where $\left\{v_{i}, v_{i+1}\right\}$ is an edge of G for each $i=1,2, \ldots, n-1$. A cycle is a $u-u$ path. We say that a graph is connected if for any two distinct vertices u and v, there exists a $u-v$ path. If a graph is not connected, then it is disconnected. In that case, a maximal connected subgraph is a component of G. In Figure 3, the connected graph is a component of the disconnected graph.

(a)

(b)

Figure 3: (a) A connected graph and (b) a disconnected graph.

In a graph G, the contraction of an edge $\{u, v\}$ is the replacement of u and v with a single vertex such that edges incident to the new vertex are the edges other than $\{u, v\}$ that were incident with u or v. The resulting graph $G /\{u, v\}$ has one less edge than G. In Figure 4 we obtain different graphs when contracting the edge $\{u, v\}$, then $\{u, y\}$, followed by the edge $\{u, x\}$.

Figure 4: (a) G, (b) $G /\{u, v\}$, (c) $(G /\{u, v\}) /\{u, y\}$, (d) $((G /\{u, v\}) /\{u, y\}) /\{u, x\}$.

Let $G=(V, E)$ be a graph of order n with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency
matrix of G, denoted $\mathcal{A}(G)$, is the $n \times n$ matrix $\mathcal{A}(\mathcal{G})=\left[a_{i j}\right]$ where $a_{i j}=1$ if $\left\{v_{i}, v_{j}\right\}$ is an edge of G and $a_{i j}=0$ otherwise. Note that the entries of the diagonal of the adjacency matrix are 0 . Figure 5 shows an example of a graph and its adjacency matrix.

(a)

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

(b)

Figure 5: (a) The graph G and (b) the adjacency matrix of G.

The rank of a matrix $M=\left[a_{i j}\right]$ is the number of linearly independent columns of M, denoted $\operatorname{rank}(M)$. The null space of M is the set of all vectors \mathbf{x} such that $M \mathbf{x}=\mathbf{0}$. The nullity of M is the dimension of its null space, denoted $\operatorname{null}(M)$. For a positive integer n, if M has n columns, the rank-nullity theorem gives that $\operatorname{rank}(M)+\operatorname{null}(M)=n$. A matrix $M=\left[a_{i j}\right]$ is symmetric if and only if $a_{i j}=a_{j i}$. Note that the adjacency matrix of a graph is symmetric.

Families of Graphs

For an integer $n \geq 1$, the complete graph of order n, denoted K_{n}, is a graph in which every two distinct vertices are neighbors. Figure 6 shows the complete graphs of order $1,2,3,4$, and 5 .

Figure 6: The complete graphs $K_{1}, K_{2}, K_{3}, K_{4}$, and K_{5}.

For an integer $n \geq 1$, the path of order n, denoted P_{n} is a graph whose vertices can be labeled $v_{1}, v_{2}, \ldots, v_{n}$ and whose edges are $\left\{v_{i}, v_{i+1}\right\}$ for each $i=1,2, \ldots, n-1$. Figure 7 shows the paths of order $1,2,3$, and 4 .

Figure 7: The graphs P_{1}, P_{2}, P_{3}, and P_{4}.

For an integer $n \geq 3$, the cycle of order n, denoted C_{n} is a graph whose vertices can be labeled $v_{1}, v_{2}, \ldots, v_{n}$ and whose edges are $\left\{v_{1}, v_{n}\right\}$ and $\left\{v_{i}, v_{i+1}\right\}$ for each $i=1,2, \ldots, n-1$. Figure 8 shows the cycles of order 3,4 , and 5 .

Figure 8: The graphs C_{3}, C_{4}, and C_{5}.

Digraphs

A digraph is a pair $D=(V, A)$, where $V=V(D)$ is a non-empty set of objects called vertices. The set $A=A(D)$ is a collection of ordered pairs of elements of V called arcs. An arc of the form (u, u) is called a loop. A loopless digraph is a digraph without loops. The number of vertices in V is the order of D. The number of arcs in A is the size of D. A digraph of order 1 is called trivial. A digraph of size 0 is called empty.

Example 3. A digraph D with $V(D)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $A(D)=\left\{\left(v_{5}, v_{1}\right),\left(v_{6}, v_{1}\right),\left(v_{2}, v_{6}\right),\left(v_{4}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right),\left(v_{4}, v_{6}\right),\left(v_{6}, v_{4}\right),\left(v_{5}, v_{6}\right)\right\}$. The order of D is 6 , and the size of D is 10 .

Figure 9: The diagram of a digraph.

Let $D=(V, A)$ be a digraph. A vertex u is an out-neighbor of a vertex v if (v, u) is an arc of D. The out-neighborhood of v, denoted $N^{+}(v)$, is the set of all out-neighbors of v. A vertex u is an in-neighbor of a vertex v if (u, v) is an arc of D. The in-neighborhood of v, denoted $N^{-}(v)$, is the set of all in-neighbors of v. The out-degree of a vertex v, denoted $\mathrm{d}^{+}(v)$, is the number of out-neighbors of v. The in-degree of a vertex v, denoted $\mathrm{d}^{-}(v)$, is the number of in-neighbors of v. The degree of v, denoted $\operatorname{deg}(v)$, is the sum of $\mathrm{d}^{+}(v)$ and $\mathrm{d}^{-}(v)$.

Example 4. In Figure 9, we see that $\mathrm{d}^{+}\left(v_{5}\right)=2$ and $\mathrm{d}^{-}\left(v_{5}\right)=1$.

Two digraphs D and H are isomorphic, if there exists a bijective function $f: V(D) \rightarrow V(H)$, such that (u, v) is an arc of D if and only if $(f(u), f(v))$ is an arc of H.

A digraph H is a sub-digraph of a digraph D if $V(H) \subseteq V(D)$ and $A(H) \subseteq A(D)$. For a non-empty subset S of $V(D)$, the sub-digraph $D[S]$ of D induced by S has S as its vertex set. For two vertices u and v in $S,(u, v)$ is an arc of $D[S]$ if and only if (u, v) is an arc of D. A sub-digraph H of a digraph D is called an induced sub-digraph if there is a non-empty subset S of $V(D)$ such that $H=D[S]$.

Figure 10: H is induced sub-digraph of D.

The graph G is the underlying graph of a digraph D if $V(G)=V(D)$ and $\{u, v\}$ is an edge of G if and only if (u, v) or (v, u), or (u, v) and (v, u) are arcs of D. A digraph is weakly connected if the underlying graph is connected. If a digraph is not weakly connected, then it is disconnected. In that case, a maximal weakly connected sub-digraph of D is a weak component of D.

For any two vertices u and v of a digraph D, a $u-v$ path is a finite sequence $u=v_{1}, v_{2}, \ldots, v_{n}=v$ of distinct vertices of D such that $\left(v_{i}, v_{i+1}\right)$ is an arc of D for each $i=1,2, \ldots, n-1$. A cycle is a $u-u$ path. We say that a digraph is strongly connected if for any two distinct vertices u and v, there exists a $u-v$ path, then a maximal strongly connected sub-digraph of D is a strong component of D. Figure 11 shows examples of connectivities in digraphs.

(a)

(b)

(c)

Figure 11: (a) A weakly connected digraph, (b) a strongly connected digraph, and (c) a disconnected digraph.

Let $D=(V, A)$ be a digraph of order n with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of D, denoted $\mathcal{A}(D)$, is the $n \times n$ matrix $\mathcal{A}(D)=\left[a_{i j}\right]$ defined
by $a_{i j}=1$ if $\left(v_{i}, v_{j}\right)$ is an arc of D and $a_{i j}=0$ otherwise. Note that the entries of the diagonal of the adjacency matrix of a loopless digraph are 0 . As opposed to graphs, the adjacency matrix of a digraph need not be symmetric. See Figure 12 for an example of a digraph and its adjacency matrix.

(a)

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

(b)

Figure 12: (a) A digraph D and (b) the matrix $\mathcal{A}(D)$.

Families of Digraphs

For an integer $n \geq 1$, the directed path of order n, denoted \vec{P}_{n} is a graph whose vertices can be labeled $v_{1}, v_{2}, \ldots, v_{n}$ and whose arcs are $\left(v_{i}, v_{i+1}\right)$ for each $i=1,2, \ldots, n-1$. Figure 13 shows the directed paths of order $1,2,3$, and 4 .

Figure 13: The digraphs $\vec{P}_{1}, \vec{P}_{2}, \vec{P}_{3}$, and \vec{P}_{4}.

For an integer $n \geq 3$, the directed cycle of order n, denoted \vec{C}_{n} is a digraph whose vertices can be labeled $v_{1}, v_{2}, \ldots, v_{n}$ and whose arcs are $\left(v_{n}, v_{1}\right)$ and $\left(v_{i}, v_{i+1}\right)$ for each $i=1,2, \ldots, n-1$. Figure 14 shows the directed cycles of order 3, 4, and 5 .

Figure 14: The digraphs \vec{C}_{3}, \vec{C}_{4}, and \vec{C}_{5}.

II. ZERO FORCING

Zero Forcing in Graphs

For a positive integer n, let \mathcal{M}_{n} denote the set of all $n \times n$ real matrices. Let $G=(V, E)$ be a graph of order n, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The set of matrices described by G is the set $\mathcal{S}(G)$ defined as

$$
\mathcal{S}(G)=\left\{X=\left[a_{i j}\right] \in \mathcal{M}_{n}: a_{i j}=a_{j i} \text { and } a_{i j} \neq 0 \Leftrightarrow\{i, j\} \in E(G)\right\} .
$$

The difference between a matrix $M \in \mathcal{S}(G)$ and the adjacency matrix $\mathcal{A}(G)$ of G is that $\mathcal{A}(G)$ is a symmetric $0-1$ matrix with zeros on the diagonal, while M is a real symmetric matrix that may have nonzero entries on the diagonal.

(a)

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 6 & 9 \\
0 & 3 & 5 & 8 & 0 & 4 \\
0 & 5 & 4 & 4 & 0 & 0 \\
0 & 8 & 4 & 5 & 9 & 8 \\
6 & 0 & 0 & 9 & 0 & 9 \\
9 & 4 & 0 & 8 & 9 & 0
\end{array}\right)
$$

(b)

Figure 15: (a) A graph G and (b) a matrix in $\mathcal{S}(G)$.

The maximum nullity of G is $\mathrm{M}(G)=\max \{\operatorname{null}(X): X \in \mathcal{S}(G)\}$.
The minimum rank of G is the $\operatorname{mr}(G)=\min \{\operatorname{rank}(X): X \in \mathcal{S}(G)\}$; clearly $\mathrm{M}(G)+\operatorname{mr}(G)=|V(G)|$. Zero forcing was introduced in linear algebra as a process to obtain an upper bound for $\mathrm{M}(G)$ [2].

In order to define zero forcing, we first define a sequence of sets of vertices in
a given graph.
Let $G=(V, E)$ be a graph. Given an arbitrary non-empty set of vertices $S \subseteq V$, for every non-negative integer i, we define $B^{i}(S)$ by the following rules.

1. $B^{0}(S)=S$.
2. If $i \geq 0$, then

$$
B^{i+1}(S)=B^{i}(S) \cup\left\{v \in V \backslash B^{i}(S): \exists u \in B^{i}(S), N(u) \backslash B^{i}(S)=\{v\}\right\}
$$

In terms of coloring, the set S can be referred to as the initial set of blue vertices. If a blue vertex has exactly one white neighbor, then we color that neighbor blue. This is equivalent to rule 2 and is often referred to as the color changing rule. For each non-negative integer i, the set $B^{i}(S)$ is the set of blue vertices at the $i^{\text {th }}$ iteration of the color changing rule. Note that the color changing rule is applied to every vertex of G at each iteration.

We say that S is a zero forcing set of G if there exists a non-negative integer m such that $B^{m}(S)=V(G)$. A minimum zero forcing set of G is a zero forcing set of minimum cardinality. The cardinality of a zero forcing set is the zero forcing number of G and is denoted as $\mathrm{Z}(G)$. The zero forcing problem consists of finding $\mathrm{Z}(G)$ for a given graph G and a zero forcing set S such that $|S|=\mathrm{Z}(G)$.

Let S be a zero forcing set. If $u \in B^{i}(S)$ and $N(u) \backslash B^{i}(S)=\{v\}$ for some integer i, we say that u forces v. If there exists an integer m such that for all integers $i \geq m, B^{m}(S)=B^{i}(S)$, then $B^{m}(S)$ is called the derived set, which we denote as $B(S)$.

Example 5. In Figure 16 we show, from left to right, the effect on an initial blue/white coloring of each application of the color changing rule. In this example, the initial set of blue vertices is a zero forcing set of the graph depicted.

Figure 16: The zero forcing process.

Note that if a graph is not connected, then the zero forcing problem must be studied independently in each component.

Observe that zero forcing in a given graph G, models the process of forcing zeros in a null vector of any matrix X in $\mathcal{S}(G)$.

Example 6. In Figure 15, a zero forcing set of G is $\left\{v_{1}, v_{5}\right\}$. The color changing rule proceeds as follows:

Figure 17: The color changing rule.

The following is the system of equations from the matrix described by G in
Figure 15.
(1) $v_{1}+6 v_{5}+9 v_{6}=0$
(2) $3 v_{2}+5 v_{3}+8 v_{4}+4 v_{6}=0$
(3) $5 v_{2}+4 v_{3}+4 v_{4}=0$
(4) $8 v_{2}+4 v_{3}+5 v_{4}+9 v_{5}+8 v_{6}=0$
(5) $6 v_{1}+9 v_{4}+9 v_{6}=0$
(6) $9 v_{1}+4 v_{2}+8 v_{4}+9 v_{5}=0$

Let i be a non-negative integer. Suppose
$B^{i}(S)=\left\{v_{k}: v_{k}=0\right.$ at the $i^{\text {th }}$ step of solving the above system of equations $\}$.

$$
S=B^{0}(S)=\left\{v_{1}, v_{5}\right\}
$$

(1) $v_{1}+6 v_{5}+9 v_{6}=0 \Rightarrow 9 v_{6}=0 \Rightarrow v_{6}=0$
$B^{1}(S)=\left\{v_{1}, v_{5}, v_{6}\right\}$
(5) $6 v_{1}+9 v_{4}+9 v_{6}=0 \Rightarrow 9 v_{4}=0 \Rightarrow v_{4}=0$
$B^{2}(S)=\left\{v_{1}, v_{5}, v_{6}, v_{4}\right\}$
(6) $9 v_{1}+4 v_{2}+8 v_{4}+9 v_{5}=0 \Rightarrow 4 v_{2}=0 \Rightarrow v_{2}=0$
$B^{3}(S)=\left\{v_{1}, v_{5}, v_{6}, v_{4}, v_{2}\right\}$
(2) $3 v_{2}+5 v_{3}+8 v_{4}+4 v_{6}=0 \Rightarrow 5 v_{3}=0 \Rightarrow v_{3}=0$
$B^{4}(S)=\left\{v_{1}, v_{5}, v_{6}, v_{4}, v_{2}, v_{3}\right\}$

This observation leads to the result from [2]:
Theorem 7. [2, Proposition 2.4] Let $G=(V, E)$ be a graph and let $S \subseteq V$ be a zero forcing set. Then $M(G) \leq|S|$, and thus $M(G) \leq \mathrm{Z}(G)$.

Example 8. Figure 18 depicts a graph G and a matrix in $\mathcal{S}(G)$. Notice here that the nullity of the matrix is 0 , whereas the zero forcing number of G is 6 .

(a)

$$
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(b)

Figure 18: (a) A graph G and (b) a matrix in $\mathcal{S}(G)$.

Example 9. Figure 19 depicts a graph G and a matrix in $\mathcal{S}(G)$. Notice here that the nullity of the matrix is 4 , and the zero forcing number is 4 as well.

(a)
$\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$
(b)

Figure 19: (a) A graph G and (b) a matrix in $\mathcal{S}(G)$.

A computational approach to zero forcing is not feasible since the decision problem associated with the zero forcing problem is NP-complete [1]. As a consequence, one approach to the zero forcing problem consists of finding minimum zero forcing sets in particularly interesting families of graphs, or finding techniques to find or approximate the zero forcing number of graphs with specific properties. The American Institute of Mathematics maintains a catalog of graph families for which the zero forcing number has been determined [20]. The catalog also contains information on parameters related to zero forcing and references to the papers in which the results were obtained.

The concept of zero forcing was independently introduced by physicists studying control of quantum systems under the name of graph infection [6]. In addition, zero forcing is involved in the monitoring process of electrical power networks [4], and in fast-mixed graphs searching methods [19].

Zero Forcing in Digraphs

The definition of zero forcing is extended to loopless digraphs by replacing the neighborhood with the out-neighborhood.

Let $D=(V, A)$ be a loopless digraph. For any $S \subseteq V$ and any non-negative integer i, we define $B^{i}(S)$ by the following rules:

1. $B^{0}(S)=S$.
2. If $i \geq 0$, then

$$
B^{i+1}(S)=B^{i}(S) \cup\left\{v \in V \backslash B^{i}(S): \exists u \in B^{i}(S), N^{+}(u) \backslash B^{i}(S)=\{v\}\right\} .
$$

In terms of coloring, the set S can be referred to as the initial set of blue vertices. If a blue vertex has exactly one white neighbor, then we color that neighbor blue. This is equivalent to rule 2 and is referred to as the color changing rule. For each non-negative integer i, the set $B^{i}(S)$ is the set of blue vertices at the $i^{\text {th }}$ iteration of the color changing rule. Note that the color changing rule is applied to every vertex of D at each iteration.

We say that S is a zero forcing set of D if there exists a non-negative integer m such that $B^{m}(S)=V(D)$. A minimum zero forcing set of D is a zero forcing set of minimum cardinality. The cardinality of a zero forcing set is the zero forcing number of D and is denoted as $\mathrm{Z}(D)$. The zero forcing problem consists of finding $\mathrm{Z}(D)$ for a given digraph D, and a zero forcing set S such that $|S|=\mathrm{Z}(D)$. If the vertices of a path P in D form a zero forcing set, then P is called a zero forcing path of D.

Let S be a zero forcing set. If $u \in B^{i}(S)$ and $N^{+}(u) \backslash B^{i}(S)=\{v\}$ for some integer i, we say that u forces v. If there exists an integer m, such that for all integers $i \geq m, B^{m}(S)=B^{i}(S)$, then $B^{m}(S)$ is called the derived set and we will
denote it as $B(S)$.

Example 10. In Figure 20 we show, from left to right, the effect on an initial blue/white coloring of each application of the color changing rule. In this example, the initial set of blue vertices is a zero forcing set of the digraph depicted.

Figure 20: The zero forcing process in a digraph.

Example 11. In Figure 21 we show, from left to right, the effect on an initial blue/white coloring of each application of the color changing rule. In this example, the initial set of blue vertices is not a zero forcing set of the digraph depicted.

Figure 21: Failed zero forcing of Example 11 .

Note that if a digraph is not weakly connected, then the zero forcing problem must be studied independently in each weak component.

For a positive integer n, let \mathcal{M}_{n} denote the set of all $n \times n$ real matrices.
Let $D=(V, A)$ be a loopless digraph of order n, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The set
of matrices described by D is the set $\mathcal{S}(D)$ defined as

$$
\mathcal{S}(D)=\left\{X=\left[a_{i j}\right] \in \mathcal{M}_{n}: \text { for } i \neq j, a_{i j} \neq 0 \Leftrightarrow(i, j) \in A(D)\right\} .
$$

The difference between a matrix $M \in \mathcal{S}(D)$ and the adjacency matrix $\mathcal{A}(D)$ of D is that $\mathcal{A}(D)$ is a $0-1$ matrix with zeros on the diagonal, while M is a real matrix that may have nonzero entries on the diagonal. In a digraph, the matrices described by a digraph need not be symmetric. See Figure 22 for an example of a matrix described by a digraph.

(a)

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 \\
0 & 8 & 3 & 7 & 0 & 0 \\
0 & 1 & 0 & 0 & 3 & 10 \\
4 & 0 & 0 & 0 & 4 & 1 \\
2 & 0 & 0 & 2 & 0 & 0
\end{array}\right)
$$

(b)

Figure 22: (a) A digraph D and (b) a matrix in $\mathcal{S}(D)$.

The maximum nullity of D is $\mathrm{M}(D)=\max \{\operatorname{null}(X): X \in \mathcal{S}(D)\}$. The minimum rank of D is the $\operatorname{mr}(D)=\min \{\operatorname{rank}(X): X \in \mathcal{S}(D)\}$, clearly

$$
\mathrm{M}(D)+\operatorname{mr}(D)=|V(D)| .
$$

As in the undirected case, zero forcing in a digraph D models the process to force zeros in a null vector of any matrix X in $\mathcal{S}(D)$, implying $M(D) \leq \mathrm{Z}(D)$ extending the result in Theorem 7 to digraphs [14].

Example 12. Figure 23 depicts a digraph D and a matrix in $\mathcal{S}(D)$. Notice here that the nullity of the matrix is 0 , whereas the zero forcing number of D is 3 .

(a)

$$
\left(\begin{array}{cccccccc}
0 & 0 & 5 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 9 & 8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 6 & 2 \\
10 & 0 & 0 & 0 & 0 & 0 & 0 & 9 \\
10 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(b)

Figure 23: (a) A digraph D and (b) a matrix in $\mathcal{S}(D)$.

Example 13. In Figure 24 the nullity of the adjacency matrix D is 4 . Note that the zero forcing number of D is 4 as well.

(a)

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(b)

Figure 24: (a) A digraph D and (b) the matrix $\mathcal{A}(D)$.

Let D be a digraph. The extension of the min-max relationship of Theorem 7 to digraphs 14 provides the nice property that if we find a matrix in $\mathcal{S}(D)$ and a zero forcing set S of D such that $|S|=\operatorname{null}(D)$, then $M(D)=\mathrm{Z}(D)$.

Unfortunately, such a matrix does not always exist. If one does exist, many times finding such a matrix is not a simple task. For example, Figure 23 shows a digraph and a matrix described by it, where the nullity of the matrix and the zero forcing number of the digraph are different.

III. SIERPIŃSKI GRAPHS

The Sierpiński graph family was introduced in [16]. An excellent survey of results in Sierpiński graphs can be found in [13, Chapter 4].

For integers $n \geq 3$, and $p \geq 1$, the Sierpiński graph, denoted $S(n, p)$, is defined by the following recursive process:

1. $S(n, 1)$ is isomorphic to K_{n}.

$$
\text { Label } V(S(n, 1))=\{0,1, \ldots, n-1\} .
$$

2. $S(n, p+1)$ is constructed by copying $S(n, p) n$ times and adding exactly one edge between each pair of copies following a rule we explain next.

$$
\text { Label } V(S(n, p+1))=\bigcup_{i=0}^{n-1} i V(S(n, p)) \text {. }
$$

3. For all integers k, such that $1 \leq k \leq p-1$, add to $E(S(n, p))$ all the p-tuples $i=\left(i_{p}, \ldots, i_{1}\right)$ and $j=\left(j_{p}, \ldots, j_{1}\right)$ such that $i_{p}=j_{k}$, and $j_{p}=i_{k}$.

Note that at each iteration, we are adding a leftmost coordinate. Each vertex of $S(n, p)$ is a p-tuple of integers from $\{0,1, \ldots, n-1\}$. See Figure 25 for examples of Sierpiński graphs when $n=3$.

Figure 25: The graphs $S(3,1), S(3,2)$, and $S(3,3)$.

Formally, we may define the Sierpiński graphs as follows:
Given two integers n and p with $n \geq 3$ and $p \geq 1$, the Sierpiński graph $S(n, p)$ [16] has as vertices all p-tuples of the integers $\{0,1, \ldots, n-1\}$ denoted as $\left(s_{p}, \ldots, s_{1}\right)$. Two vertices $\left(s_{p}, \ldots, s_{1}\right)$ and $\left(t_{p}, \ldots, t_{1}\right)$ are neighbors in $S(n, p)$ if and only if there exists an integer $r, 0 \leq r \leq p-1$, such that
i) $s_{i}=t_{i}$ for every $i, r+1 \leq i \leq p$,
ii) $s_{r} \neq t_{r}$,
iii) $s_{i}=t_{r}$ and $t_{i}=s_{r}$ for every $i, 1 \leq i \leq r-1$.

For integers $n \geq 3$, and $p \geq 1$, the order of $S(n, p)$ is n^{p}. The graph $S(n, p)$ has n vertices of degree $n-1$ and $n^{p}-n$ vertices of degree n. The vertices of degree $n-1$ are called extreme vertices. If the vertex $\left(s_{p}, \ldots, s_{1}\right)$ is an extreme vertex of $S(n, p)$, then $s_{i}=s_{i+1}$ for every $i=1, \ldots, p-1$.

For $p \geq 2, S(n, p)$ has n^{i} induced copies of $S(n, p-i)$ for every $i=1,2, \ldots, p-1$. In particular there are n^{p-1} induced copies of $S(n, 1)$ and n induced copies of $S(n, p-1)$.

The p-tuples representing the vertices of each of those copies coincide in the i leftmost digits s_{p}, \ldots, s_{p-i}. If s is an i-tuple of integers in $\{0,1, \ldots, n-1\}$, let $s S(n, p-i)$ denote the subgraph of $S(n, p)$ induced by the vertices whose leftmost i digits coincide with s. Thus, $s S(n, p-i)$ is isomorphic to $S(n, p-i)$. In particular, $t S(n, p-1)$ denotes the subgraph induced in $S(n, p)$ by all the vertices whose leftmost digit is t, for every integer $t=0,1, \ldots, n-1$. Figure 26 depicts the subgraphs of a Sierpiński graph.

Figure 26: Subgraphs of $S(3,4)$ and their labelings.

Let n and p be integers such that $n \geq 3$, and $p \geq 2$. Let $G=S(n, p)$.
We define the border of an induced subgraph $t S(n, p-1)$ in $S(n, p)$, denoted $b(t S(n, p-1))$, as the set containing the vertices of $t S(n, p-1)$ with neighbors outside $t S(n, p-1)$. Symbolically,

$$
b(t S(n, p-1))=\{v \in V(t S(n, p-1)): N(v) \backslash V(t S(n, p-1)) \neq \varnothing\} .
$$

By definition of a Sierpiński graph, for each vertex $v \in b(t S(n, p-1)$, we have $|N(v) \backslash V(t S(n, p-1))|=1$. Moreover, if $N(v) \backslash V(t S(n, p-1))=\{w\}$, then $w \in$ $b\left(t^{\prime} S(n, p-1)\right)$, for some integer t^{\prime}, such that $0 \leq t^{\prime} \leq n-1$ and $t \neq t^{\prime}$.

For each subgraph $t S(n, p-1)$ let us also define the interior of an induced subgraph $t S(n, p-1)$ as the set

$$
\operatorname{int}(t S(n, p-1))=V(t S(n, p-1)) \backslash b(t S(n, p-1))
$$

It is important to observe that $n-1$ of the n extreme vertices of $S(n, p-1)$
correspond to $b(t S(n, p-1))$, for every $t=0, \ldots, n-1$. See Figure 27 as an example of the labeling of $S(n, 1)$ subgraphs.

Figure 27: Labeling of the induced copies of K_{4} in $S(4,3)$.

Observation 14. Let $S(n, p)$ be a Sierpinski graph, note that there are n^{p-1} induced subgraphs in $S(n, p)$ that are isomorphic to K_{n}. We can define a total ordering $<$ to the set of K_{n} subgraphs in $S(n, p)$. For the $p-1$ tuples $i=\left(i_{p-1}, i_{p-2}, \ldots, i_{1}\right)$ and $j=\left(j_{p-1}, j_{p-2}, \ldots, j_{1}\right)$, we will say that $i K_{n}<j K_{n}$ if for some integer k, and all r such that $p-1 \leq r \leq k$, then $i_{r}=j_{r}$ and $i_{k-1}<j_{k-1}$.

Zero Forcing in Sierpiński graphs

We now begin to study the zero forcing number of the Sierpiński graphs. When studying zero forcing of these graphs, it is natural to examine the rank of the matrices described by $S(n, p)$. Unfortunately, as seen in Figure 23 , the nullity of the matrix is 0 , whereas, the zero forcing number is 6 . The off-diagonal entries that connect each level of $S(n, p)$ provide linearly independent vectors in the
matrix. Thus, we take a different approach and study the zero forcing number of the Sierpiński graphs using the color changing process associated with zero forcing.

By definition, $S(n, 1)=K_{n}$. Since $\mathrm{Z}\left(K_{n}\right)=n-1$, then $\mathrm{Z}(S(n, 1))=n-1$.
From this point forward, we assume $p \geq 2$.
We begin by examining the Sierpiński graph when $p=2$.
Lemma 15. For an integer $n \geq 3, \mathrm{Z}(S(n, 2))=\frac{n(n-1)}{2}$.
Proof. We shall first show that $\mathrm{Z}(S(n, 2)) \geq \frac{n(n-1)}{2}$.
Let i and j be non-negative integers such that $i, j \leq n-1$ and $i \neq j$. Let S be a set of blue vertices such that $S \cap V(i S(n, 1))=\varnothing$ and $S \cap V(j S(n, 1))=\varnothing$. Note that for each k, such that $S \cap V(k S(n, 1)) \neq \varnothing, S$ can at most force $N[V(k S(n, 1))]$.

Let X be a zero forcing set of $S(n, p)$. For some integer $j \leq n-3$, if the vertices in $\cup_{p=0}^{j} V\left(i_{p} S(n, 1)\right)$ are forced, and X has no vertices from any other copy of $S(n, 1)$. Then each vertex of $i_{p} S(n, 1)$ has no white neighbors. Also, for $k \neq i_{p}$, each vertex $\left(k, i_{p}\right)$ has $n-j$ white neighbors. So, in order for X to be a zero forcing set, X must contain at least $n-j-1$ more vertices that are neighbors of some $\left(k, i_{p}\right)$.

We have that X must contain vertices from $n-1$ copies of $S(n, 1)$. Furthermore, for each $i S(n, 1)$, where $i \leq n-2$, the zero forcing set X must contain $n-(i+1)$ vertices. Therefore,

$$
|X| \geq \sum_{i=0}^{n-2} n-(i+1)=\sum_{i=1}^{n-1} n-i=\frac{n(n-1)}{2} .
$$

To complete the proof, we construct a zero forcing set X, such that
$|X|=n-2$. This construction is as follows:

$$
\begin{aligned}
& \text { For } 0 \leq i \leq n-2 \text {, define } X_{i}=\{(i, i),(i, i+1), \ldots,(i, n-2)\} \text {. } \\
& \text { Let } X=\bigcup_{i=0}^{n-2} X_{i} \text {. }
\end{aligned}
$$

Note that for each i, j, such that $i \neq j$, we have $X_{i} \cap X_{j}=\varnothing$. Therefore, we have $|X|$ to be the following:

$$
|X|=\sum_{i=0}^{n-2}\left|X_{i}\right|=\sum_{i=0}^{n-2} n-(i+1)=\frac{n(n-1)}{2}
$$

Next, we show that X is indeed a zero forcing set of $S(n, 2)$. Notice that X_{0} forces $0 S(n, 1)$, and the vertex $(0,1)$ forces $(1,0)$. Then $X_{1} \cup\{(1,0)\}$ forces $1 S(n, 1)$. We continue this process until $(n-2) S(n, 1)$ is forced. At that point, each vertex in $i S(n, 1)$, for $0 \leq i \leq n-2$, forces a vertex in $(n-1) S(n, 1)$. Finally, every vertex in $(n-1) S(n, 1)$ has $(n-1, n-1)$ as its only white neighbor. Thus, $S(n, 2)$ is forced.

Theorem 16. For any positive integers $n \geq 3$ and $p \geq 2$,

$$
\mathrm{Z}(S(n, p))=\mathrm{Z}(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2}
$$

Proof. We begin by showing that

$$
\mathrm{Z}(S(n, p)) \geq \mathrm{Z}(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2}
$$

Let X be a zero forcing set of $S(n, p)$, and let ω be a $(p-2)$-tuple. We claim the
following:

$$
|X \cap \operatorname{int}(w S(n, 2))| \geq \frac{(n-2)(n-1)}{2}
$$

Let $W=X \cap \operatorname{int}(w S(n, 2))$, and let us suppose that every extreme vertex of $\omega S(n, 2)$ is blue.

Let i, j, and k be different non-negative integers such that $i, j, k \leq n-1$. Let S be a set of blue vertices in the interior of $\omega S(n, 2)$, such that the following are true:

$$
\begin{aligned}
& |S \cap V(\omega i(S n, 1))|=1, \\
& |S \cap V(\omega j(S n, 1))|=1, \text { and } \\
& |S \cap V(\omega k(S n, 1))|=1 .
\end{aligned}
$$

Note that for each r such that $|S \cap V(w r S(n, 1))|>1, S$ can at most force $N[V(w r S(n, 1))]$.

For some integer $j \leq n-4$, if the vertices in $\bigcup_{p=0}^{j} V\left(\omega i_{p} S(n, 1)\right)$ are forced, and W has no other vertices from any other copy of $S(n, 1)$ in $w S(n, 2)$, then each vertex of $\omega i_{p} S(n, 1)$ has no white neighbors. Furthermore, for $r \neq i_{p}$, each vertex $\omega\left(r, i_{p}\right)$ has $n-j-1$ white neighbors. Hence, in order for X to be a zero forcing set, W must contain at least $n-j-2$ more vertices that are neighbors of some $\omega\left(r, i_{p}\right)$.

We have that W must contain vertices from $n-2$ copies of $S(n, 1)$ in $w S(n, 2)$ and that for each $w i S(n, 1)$, such that $i \leq n-3, W$ must contain $n-(i+2)$ vertices. Therefore,

$$
|W| \geq \sum_{i=0}^{n-3} n-(i+2)=\frac{(n-1)(n-2)}{2} .
$$

Which proves our claim that

$$
|X \cap \operatorname{int}(w S(n, 2))| \geq \frac{(n-2)(n-1)}{2}
$$

There are n^{p-2} copies of $S(n, 2)$ in $S(n, p)$, this means that X contains $\frac{(n-1)(n-2)}{2}$ vertices in the interior of each copy of $S(n, 2)$.

Now, we assumed that the extreme vertices of each copy of $S(n, 2)$ were blue. Thus, by contracting the edges of each copy of $S(n, 1)$ to the extreme vertices in $S(n, 2)$ (see Figure 4), the contracted graph is now isomorphic to $S(n, p-1)$.

Finding a zero forcing set for $S(n, p-1)$ would be equivalent to finding a zero forcing set that forces the extreme vertices of each copy of $S(n, 2)$ in $S(n, p)$. Thus, we have that

$$
\mathrm{Z}(S(n, p)) \geq \mathrm{Z}(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2}
$$

To complete the proof, we construct a zero forcing set X^{p} such that

$$
\left|X^{p}\right|=\mathrm{Z}(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2} .
$$

We will define X^{p} recursively for each $S(n, p)$:

$$
\begin{aligned}
& \text { If } p=1, \quad X^{1}=\{0,1, \ldots, n-2\} . \\
& \text { If } X^{p-1}=\left\{x_{1}, \ldots, x_{s}\right\}, \text { define } X_{i}^{p}=\left\{i x_{i+1}, \ldots, i x_{s}\right\} . \\
& \text { Let } X^{p}=\bigcup_{i=0}^{n-1} X_{i}^{p} .
\end{aligned}
$$

Next, we prove by induction on p that X^{p} is a minimum zero forcing set of
$S(n, p)$. Now, X^{1} is a minimum zero forcing set for $S(n, 1)$, and by Lemma 15 ,

$$
\begin{aligned}
\left|X^{2}\right| & =\frac{n(n-1)}{2} \\
& =n-1+\frac{(n-2)(n-1)}{2} \\
& =\mathrm{Z}(S(n, 1))+\frac{(n-2)(n-1)}{2} .
\end{aligned}
$$

Suppose then, that X^{p-1} is a zero forcing set of $S(n, p-1)$, such that

$$
\begin{equation*}
\left|X^{p-1}\right|=\mathrm{Z}(S(n, p-2))+\frac{n^{p-3}(n-2)(n-1)}{2} . \tag{1}
\end{equation*}
$$

Then, $\left|X^{p-1}\right|=\mathrm{Z}(S(n, p-1))$.
By definition, $\left|X^{p}\right|=\sum_{i=0}^{n-1}\left|X_{i}^{p}\right|$, and since $\left|X_{i}^{p}\right|=\left|X^{p-1}\right|-i$, then

$$
\begin{equation*}
\left|X^{p}\right|=\sum_{i=0}^{n-1}\left|X^{p-1}\right|-i=n\left|X^{p-1}\right|-\frac{n(n-1)}{2} . \tag{2}
\end{equation*}
$$

By substituting $\left|X^{p-1}\right|$ with (1), we have

$$
\begin{aligned}
\left|X^{p}\right| & =n \mathrm{Z}(S(n, p-2))+n \frac{n^{p-3}(n-2)(n-1)}{2}-\frac{n(n-1)}{2} \\
& =n\left|X^{p-2}\right|-\frac{n(n-1)}{2}+\frac{n^{p-2}(n-2)(n-1)}{2} .
\end{aligned}
$$

By substituting $n\left|X^{p-2}\right|-\frac{n(n-1)}{2}$ with $\left|X^{p-1}\right|$, we arrive at

$$
\begin{aligned}
\left|X^{p}\right| & =\left|X^{p-1}\right|+\frac{n^{p-2}(n-2)(n-1)}{2} \\
& =Z(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2} .
\end{aligned}
$$

Note that there are exactly n^{p-1} induced subgraphs in $S(n, p)$ isomorphic to K_{n}. Since

$$
\{(0,0, \ldots, 0),(0,0, \ldots, 0,1), \ldots,(0,0, \ldots, 0, n-2)\} \subset X^{p}
$$

then, $(0,0, \ldots, 0,0)$ has exactly one white neighbor, namely $(0, \ldots, 0, n-1)$, and so $(0, \ldots, 0) K_{n}$ and its neighbor K_{n} 's have one blue vertex forced from $(0, \ldots, 0) K_{n}$. That is to say that every vertex in

$$
\{(0,0, \ldots, 1,0),(0,0, \ldots, 2,0), \ldots,(0,0, \ldots, n-1,0)\}
$$

is forced. Since,

$$
\{(0,0, \ldots, 0,1,1), \ldots,(0,0, \ldots, 0,1, n-2)\} \subseteq X^{p}
$$

then the vertices

$$
(0,0, \ldots, 1,0),(0,0, \ldots, 0,1,1), \ldots,(0,0, \ldots, 0,1, n-2)
$$

are blue. At this point, $(0,0, \ldots, 1,0)$ has only one white neighbor, namely $(0,0, \ldots, 1, n-1)$. Thus, the vertices of $(0, \ldots, 0,1) K_{n}$ are forced.

Suppose that if $j=\left(j_{p-1}, j_{p-2}, \ldots, j_{1}\right)$ is a $p-1$-tuple, and that for all $p-1$-tuples i, such that $i K_{n}<j K_{n}$, the vertices of $i K_{n}$ are forced.

Now, $V\left(j K_{n}\right)=\{j 0, j 1, \ldots, j(n-1)\}$, and the neighboring K_{n} of $j K_{n}$ are
$\left(j_{p-1}, j_{p-2}, \ldots, 0\right) K_{n},\left(j_{p-1}, j_{p-2}, \ldots, 1\right) K_{n}, \ldots,\left(j_{p-1}, j_{p-2}, \ldots, j_{1}-1\right) K_{n}$,
$\left(j_{p-1}, j_{p-2}, \ldots, j_{1}+1\right) K_{n}, \ldots,\left(j_{p-1}, j_{p-2}, \ldots, n-1\right) K_{n}$.

However, the vertices, $j j_{1}, j\left(j_{1}+1\right), \ldots, j(n-2)$ are in X^{p}. Also, the vertices $j 0, j 2, \ldots, j\left(j_{1}-1\right)$ are forced by all the neighboring $i K_{n}$ of $j K_{n}$ such that $i K_{n}<j K_{n}$. Therefore, $j 0$ forces $j(n-1)$ and every vertex of $j K_{n}$ is forced. Hence we have shown by induction that all the vertices in each K_{n} subgraph have been forced. We conclude that X^{p} is a zero forcing set of $S(n, p)$ and that

$$
\mathrm{Z}(S(n, p))=Z(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2}
$$

Corollary 17. Let $n \geq 3$ and $p \geq 2$ be integers, then

$$
\mathrm{Z}(S(n, p))=n \mathrm{Z}(S(n, p-1))-\frac{n(n-1)}{2}=\frac{n^{p}-2 n^{p-1}+n}{2} .
$$

Proof. In the proof of Theorem 16 (see (2)), we showed that X^{p} is a minimum zero forcing set and that,

$$
X^{p}=n \mathrm{Z}(S(n, p-1))-\frac{n(n-1)}{2} .
$$

So, we only need to prove the following:

$$
Z(S(n, p))=\frac{n^{p}-2 n^{p-1}+n}{2}
$$

We will prove the claim by induction on p. By Theorem 16 ,

$$
\begin{equation*}
\mathrm{Z}(S(n, p))=\mathrm{Z}(S(n, p-1))+\frac{n^{p-2}(n-2)(n-1)}{2} \tag{3}
\end{equation*}
$$

and Theorem 15 provides the base case,

$$
\mathrm{Z}(S(n, 2))=\frac{n(n-1)}{2}=\frac{n^{2}-2 n^{2-1}+n}{2} .
$$

Let us suppose that,

$$
\begin{equation*}
\mathrm{Z}(S(n, p-1))=\frac{n^{p-1}-2 n^{p-2}+n}{2} \tag{4}
\end{equation*}
$$

Then, by substituting (4) into (3), we arrive at

$$
\mathrm{Z}(S(n, p))=\frac{n^{p}-2 n^{p-1}+n}{2} .
$$

See Figure 28 for an example of a minimum zero forcing set for $S(4,4)$.

Figure 28: Minimum zero forcing set of $S(4,4)$.

IV. CIRCULANT DIGRAPHS

Definition 18. [11] Let n be an integer, such that $n \geq 3$, and let J denote a non-empty set such that $J \subseteq\{0,1, \ldots, n-1\}$. The circulant digraph $D=D C_{n}\langle J\rangle$ has vertices $V(D)=\{0,1, \ldots, n-1\}$ and $\operatorname{arcs} A(D)=\{(u, v): v=u+j(\bmod n) \forall j \in J\}$. We call J the jump set, and each element in J is a jump.

Observation 19. For any vertex v in a circulant digraph with jump set J, $d^{+}(v)=d^{-}(v)=|J|$.

Observation 20. For two vertices u and v of a circulant digraph of order n with jump set $J=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$, the existence of $a u-v$ path implies that there exists a sequence of non-negative integers $\left\{\alpha_{i}\right\}_{i=1}^{k}$ such that,

$$
v=u+\alpha_{1} j_{1}, \alpha_{2} j_{2}, \ldots, \alpha_{k} j_{k}(\bmod n)
$$

Figure 29 depicts a circulant digraph of order 8 with jump set $\{2,3\}$

Figure 29: Labeled $D C_{8}(\{2,3\}\rangle$.

We may draw a circulant digraph with 2 jumps as a lattice. When drawing a circulant digraph as a lattice, we will have repeated vertices. This representation allows one to observe the neighbors next to each other. See Figure 30 for an example.

Figure 30: Lattice of $D C_{n}\langle\{s, t\}\rangle$.

These digraphs are called circulant because of their relation to circulant matrices. Indeed, the definition of the circulant digraph is motivated by the circulant matrix itself. Using the definition from [10], a circulant matrix of order n is a square matrix of the form:

$$
X=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \ldots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & \ldots & c_{n-3} & c_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
c_{1} & c_{2} & \ldots & c_{n-1} & c_{0}
\end{array}\right) .
$$

The elements of each row of X are identical to those of the previous row, but are shifted one position to the right and wrapped around. Thus, we can characterize a circulant matrix by the first row.

Let $D=D C_{n}\langle J\rangle$. The adjacency matrix of D is a $0-1$ circulant matrix $X=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where $c_{i}=1$ if i is in J. If $X=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where $c_{i} \neq 0$ if and only if i is in J, then $X \in \mathcal{S}(D)$.

Zero Forcing in Circulant Digraphs

In order to study zero forcing in circulant digraphs, it is natural to investigate results obtained for the rank of a circulant matrix, since there is a large amount of research in the subject. As noted earlier, circulant matrices can be described with a finite sequence; thus we can also describe a circulant matrix with a polynomial.

Definition 21. For an integer $n \geq 3$, consider the circulant matrix $X=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$. The associated polynomial of $X=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is

$$
f(x)=\sum_{i=0}^{n-1} c_{i} x^{i} .
$$

The following result gives a relationship between the rank of a circulant matrix X and the associated polynomial of X.

Theorem 22. [15, Proposition 1.1] For any integer $n \geq 3$, the rank of a circulant matrix X of order n is $n-d$, where d is the degree of the greatest common divisor of $1-x^{n}$ and the associated polynomial of X.

Example 23. Let $D=D C_{20}\{\{7,3\}\rangle$ be a circulant digraph. Then $p(x)=x^{3}-x^{7}$ is the associated polyinomial of a circulant matrix from $\mathcal{S}(D)$ is. However, $\mathrm{Z}(D)=6$ and $\operatorname{gcd}\left(p(x), 1-x^{20}\right)=x^{4}-1$, which means that the nullity is 4 .

While testing examples by using Theorem 22, many times we were close to the zero forcing number of the circulant digraph like in Example 23. We arrived at the conjecture that the maximum nullity of a strongly connected circulant digraph D with 2 jumps is $M(D)=\mathrm{Z}(D)-1$. However, we have yet to provide a proof. So, we pursue the zero forcing problem via exploration of the coloring changing rule.

We begin our study of zero forcing in circulant digraphs by examining when these digraphs are weakly connected.

Example 24. Consider the circulant digraph $D=D C_{10}\langle\{2,6\}\rangle$. Note that there does not exist a path between an even vertex and an odd vertex. Indeed, D has two strongly connected components.

Figure 31: Labeled $D C_{10}\langle\{2,6\}\rangle$.

Example 25. Consider the circulant digraph $D^{\prime}=D C_{10}\langle\{2,5\}\rangle$. Note that every vertex can be represented as a linear combination of 2 and 5 in \mathbb{Z}_{n}. Therefore, there exists a path between every two vertices, implying that the circulant digraph is strongly connected.

Figure 32: Labeled $D C_{10}\langle\{2,5\}\rangle$.

This is direct consequence of the following theorems:

Theorem 26. [18, Corollary 1] Let $D=D C_{n}\left\langle\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\right\rangle$ be a circulant digraph. Then D is strongly connected if and only if $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}, n\right)=1$.

Theorem 27. [5, Proposition 1] Let $G=C_{n}\left\langle\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\right\rangle$ be a circulant graph. Then G is connected if and only if $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}, n\right)=1$.

From Theorem 26 and Theorem 27 we immediately obtain the following result.

Corollary 28. There does not exist a circulant digraph that is weakly connected but not strongly connected.

Huang and Chang proved the following [7:
Theorem 29. [7, Corollary 4] Let $n \geq 3$ and $D=D C_{n}\left\langle\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\right\rangle$ be a circulant digraph. If $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}, n\right)=d>1$, then the components of D are isomorphic to $D C_{\frac{n}{d}}\left\langle\left\{\frac{a_{1}}{d}, \frac{a_{2}}{d}, \ldots, \frac{a_{k}}{d}\right\}\right\rangle$.

Clearly, for a circulant digraph D as described in Theorem 29, D has d strongly connected components that are isomorphic to circulants themselves. Thus, we have the following observation:

Observation 30. Let D be a circulant digraph as described in Theorem 29. Let $D^{\prime}=D C_{\frac{n}{d}}\left\{\left\{\frac{a_{1}}{d}, \frac{a_{2}}{d}, \ldots, \frac{a_{k}}{d}\right\}\right\rangle$ be a component of D. Then $Z(D)=d Z\left(D^{\prime}\right)$.

Having established that a circulant digraph is disconnected or strongly connected, we shall simply use the term connected. At this point it is only necessary to consider connected digraphs. We begin by considering a connected circulant digraph with only one jump.

Proposition 31. Let $D=D C_{n}\langle\{s\}\rangle$ be a connected circulant digraph, then $Z(D)=1$.

Proof. Clearly D is isomorphic to the directed cycle C_{n}. Since $\mathrm{Z}\left(C_{n}\right)=1$, then $Z(D)=1$.

For the rest of the thesis, we consider the zero forcing problem on connected circulant digraphs with 2 jumps. We assume all arithmetic is done in \mathbb{Z}_{n}.

Lemma 32. Let $D=D C_{n}\{\{s, t\}\rangle$ be a connected circulant digraph. The set $S=\{0, s, \ldots, n s\}$ is a zero forcing set of D.

Proof. Note that for each vertex v of D, we have $\mathrm{d}^{+}(v)=2$. For each integer $i=0,1, \ldots, n$, let $S+i t=\{i t, i t+s, \ldots, i t+n s\}$. The induced subgraph $D[S+i t]$ is a cycle, and for each vertex x in S, the out-neighbor of x, which is $x+s$ is in S. Therefore, the second out-neighbor of x, which is $x+t$ is in $B^{1}(S)$.

Inductively, for each $i=0,1, \ldots, n$, we have that $S+i t \subseteq B^{i}(S)$. Therefore, for every non-negative integers $i, j \leq n$, it $+j s$ is in $B(S)$. This is sufficient to conclude that $B(S)=V(D)$ and S is a zero forcing set.

Next, we introduce some notation and definitions.

Definition 33. Let $D=D C_{n}\langle\{s, t\}\rangle$ be a connected circulant digraph. Let $k \leq n$ be an integer and $S=\{0, s, \ldots, k s\}$ be a set of vertices of D. For all non-negative integers, $i \leq k$, denote $T^{i}(S)$ and $T(S)$ as

$$
\begin{gathered}
T^{i}(S)=\{i t, i t+s, \ldots, i t+(k-i) s\} \\
T(S)=\bigcup_{i=0}^{k} T^{i}(S)=\{i t+j s: i \leq k, j \leq k-i\} .
\end{gathered}
$$

We call $T(S)$ the triangle generated by S.

Figure 33 depicts a triangle of $D C_{n}\langle\{s, t\}\rangle$ when the circulant is drawn as a lattice.

Figure 33: $T(\{0, s, \ldots, k s\})$ in $D C_{n}\langle\{s, t\}\rangle$.

The circulant digraph is commonly depicted as a circle as in Figure 34 (a). However, visualizing the graph as a grid or as a lattice as in (b) allows one to recognize why we use the term triangle.

Figure 34: Two representations of $T(\{0,4,8\})$ in $D C_{28}\langle\{4,7\}\rangle$.

Let $D=D C_{n}\langle\{s, t\}\rangle$ be a connected circulant digraph. Let $k<n$ be an
integer, and $S=\{0, s, \ldots, k s\}$ be a subset of vertices of D. We make the following observations:

Observation 34. If it $+j s$ is in $T(S)$, then $j \leq k-i$ and $i \leq k-j$.
Observation 35. For each integer $i \geq 0$, the vertices in $T^{i}(S)$ form a (it) $-(i t+(k-i) s) p a t h$.

Observation 36. If $S^{\prime} \subseteq B(S)$, then $B\left(S^{\prime}\right) \subseteq B(S)$.

$$
\text { If } S \subseteq S^{\prime}, \text { then } B(S) \subseteq B\left(S^{\prime}\right)
$$

$$
\text { If } S \subseteq S^{\prime} \subseteq B(S) \text {, then } B(S)=B\left(S^{\prime}\right)
$$

Observation 37. If $T=\{0, t, \ldots, k t\}$, then $T(T)=T(S)$.

Observation 38. Let v be a vertex in $B(S)$. Since $d^{+}(v)=2$, we have that $v+s$ is in $B(S)$ if and only if $v+t$ is in $B(S)$.

We will use the notion of the triangle to prove our main theorem:

Theorem 39. Let $D=D C_{n}\langle\{s, t\}\rangle$ be a connected circulant digraph. Let k be the smallest positive integer that satisfies one of the following conditions:

$$
\begin{array}{ll}
k s+t=i t & k s+s=i t \\
k s+s=i s & k t+t=i s .
\end{array}
$$

Then $S=\{0, s, \ldots, k s\}$, is a minimum zero forcing set of D.

Proof. To prove this theorem, we will prove a sequence of claims:
Claim: For all integers $i \geq 0, T^{i}(S) \subseteq B^{i}(S)$ for some integer $i \geq 0$.
We will prove this claim by induction on i.
As a base case, $T^{0}(S)=S=B^{0}(S)$. We assume that $T^{i}(S) \subseteq B^{i}(S)$.

For each vertex $x \neq i t+(k-i) s$ in $T^{i}(S), x+s$ is in $T^{i}(S)$ and thus in $B^{i}(S)$. Therefore $x+t$ is in $B^{i+1}(S)$. Thus, $T^{i+1}(S) \subseteq B^{i+1}(S)$. So, we have shown that $T(S) \subseteq B(S)$.

Claim: Suppose k is the smallest integer such that $N^{+}(k s) \cap T(S) \neq \varnothing$. Then $(k+1) s=i t$ or $k s+t=i t$.

Suppose that $(k+1) s$ is in $T(S)$, then $(k+1) s=i t+j s$ for $0 \leq i \leq k$ and $0 \leq j \leq k-i$. By way of contradiction, suppose $j \geq 1$. Let $S^{\prime}=\{0, s, \ldots,(k-j) s\}$. We have

$$
(k-j+1) s=i t+j s-j s=i t .
$$

Since $i t \leq k-j$, then $(k-j+1) s$ is in $T\left(S^{\prime}\right)$. Thus,

$$
N^{+}((k-j) s) \cap T\left(S^{\prime}\right) \neq \varnothing .
$$

This contradicts our assumption that k is the smallest integer where this happens.
Thus, $(k+1) s=i t$.
A similar contradiction occurs if $k s+t$ is in $T(S)$.

Claim: S is a zero forcing set of D.
Without loss of generality, let us suppose that $k s+t=i t$. Let r be a non-negative integer such that $r \leq n-k$. We will prove by induction on r that

$$
S^{r}=\{0, s, \ldots,(k+r) s\} \subseteq B(S) .
$$

As a base case, $S^{0}=B^{0}(S)$. So, we suppose that $S^{r-1} \subseteq B(S)$ for some integer $r \geq 1$. We have that

$$
(k+r-1) s+t=i t+(r-1) s
$$

Since $0 \leq k-i$, then

$$
r-1 \leq k+r-1-i .
$$

Thus, $(k+r-1) s+t$ is in $T\left(S^{r}\right)$. Therefore, $(k+r) s$ is in $B\left(S^{r-1}\right)$. Since $S \subseteq S^{r-1} \subseteq B(S)$, then $B\left(S^{r-1}\right)=B(S)$. So, we have that $(k+r) s$ is in $B(S)$ for all integers r. By Lemma 32, S is a zero forcing set of D which proves the claim.

For any two vertices u and v, let P be the vertices of a $u-v$ path in D. Then we may label the vertices of D accordingly, such that $u=0$.

Claim: Let $P=0, p_{1}, p_{2}, \ldots, p_{k}$ be a path in D, then $P \subseteq T(S)$.
Let $\left\{p_{j_{z}}\right\}$ be a subsequence of P such that if $j_{z-1} \leq i \leq j_{z}$, then

$$
p_{i}=(z-1) t+(i-z+1) s \text { and } p_{j_{z}}=z t+\left(j_{z}-z\right) s .
$$

Note that each $p_{j_{z}}$ represents each step down of the path. See Figure 35.

Figure 35: Partitioning a path P.

Since $i<j_{z} \leq k$ and $z \leq k$, then $i-z+1 \leq k-(z-1)$ and $j_{z} \leq k-z$. Therefore, p_{i} is in $T(S)$ and $p_{j_{z}}$ is in $T(S)$ proving the claim.

Up to this point, we have shown that for any path P of length $k+1$, $|B(P)| \leq|B(S)|=|V(D)|$. Next, we show that S is a minimum zero forcing path.

Claim: A path of length k is not a zero forcing set.
Let $S^{\prime}=\{0, s, \ldots,(k-1) s\}$ and $T^{\prime}=\{0, t, \ldots,(k-1) t\}$. Note that for each i,

$$
N^{+}(i t+(k-i) s) \cap T\left(T^{i}\left(S^{\prime}\right)\right)=\varnothing \text { and } N^{+}(i s+(k-i) t) \cap T\left(T^{i}\left(T^{\prime}\right)\right)=\varnothing .
$$

However, we will investigate if $N^{+}(i t+(k-i) s) \cap T\left(S^{\prime}\right) \neq \varnothing$ elsewhere.

Figure 36: Triangles $T\left(S^{\prime}\right), T\left(T^{\prime}\right), T\left(T^{a}\left(T^{\prime}\right)\right)$, and $T\left(T^{a}\left(S^{\prime}\right)\right)$

Suppose that for a non-negative integer a, such that $a \leq k$, at $+(k-a+1) s=$ $r t+q s$ for $0 \leq r<a$ and $0 \leq q<k-a$. In this case,

$$
\begin{aligned}
& a t+(k-a+1) s-r t-q s=0 \\
& (a-r) t+(k-a+1-q) s=0
\end{aligned}
$$

Notice that,

$$
0<k-(q+a) \leq k-a<k-a+r .
$$

So, we have

$$
k+1-(q+a) \leq k-a+r .
$$

This means that $(a-r) t+(k-a+1-q) s$ is in $T(S)$. Since $a-r>0$ and $(k-a+1-q)>0$, then

$$
a t+(k-a+1) s-r t-q s \neq 0 .
$$

Thus, it must be that $a t+(k-a+1) s$ is not in $T\left(S^{\prime}\right)$.
A similar contradiction occurs if we suppose that $(a+1) t+(k-a) s$ is in $T\left(S^{\prime}\right)$. Therefore, $B\left(S^{\prime}\right)=T\left(S^{\prime}\right)$, and $B\left(S^{\prime}\right) \neq V(D)$, concluding that S^{\prime} is not a zero forcing path.

Up to this point, we have shown that S is a minimum zero forcing path. We will next show that for any set of vertices R where R is not a path, if $|R|<|S|$, then R is not a zero forcing set. This would mean that S is a minimum zero forcing set. This would complete the proof.

Claim: Let P_{1} and P_{2} be paths such that $\left|P_{1}\right|+\left|P_{2}\right|=k$, then $B\left(P_{1} \cup P_{2}\right) \neq V(D)$.
We may suppose that

$$
P_{1}=\left\{0, s, \ldots, k_{1} s\right\} \text { and } P_{2}=\left\{i t+j s, i t+(j+1) s, \ldots, i t+\left(j+k_{2}\right) s\right\} .
$$

Let $S^{\prime}=\{0, s, \ldots,(k-1) s\}$. Note that none of S^{\prime}, P_{1}, and P_{2} are zero forcing sets of D. Also,

$$
T\left(S^{\prime}\right) \geq\left|T\left(P_{1}\right)\right|+\left|T\left(P_{2}\right)\right|
$$

So, for $P_{1} \cup P_{2}$ to force beyond $T\left(P_{1}\right) \cup T\left(P_{2}\right)$, then $N^{+}\left(T\left(P_{1}\right)\right) \cap T\left(P_{2}\right) \neq \varnothing$. Well, the longest paths in $T\left(P_{1}\right)$ and $T\left(P_{2}\right)$ have lengths $\left|P_{1}\right|$ and $\left|P_{2}\right|$ respectively. So, the longest path in $N^{+}\left(T\left(P_{1}\right)\right) \cup T\left(P_{2}\right)$ has length $\left|P_{1}\right|+\left|P_{2}\right|=k$. Thus,

$$
B\left(P_{1} \cup P_{2}\right) \subseteq B\left(S^{\prime}\right) \neq V(D)
$$

Therefore, S is a minimum zero forcing set of D.

REFERENCES

[1] A. Aazami, Hardness results and approximation algorithms for some problems on graphs, Ph.D. thesis, University of Waterloo (2008), https://uwspace.uwaterloo.ca/handle/10012/4147?show=full.
[2] AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, and A. Wangsness), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008), 1628-1648.
[3] K. F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevska, and B. Wissman, Zero forcing and power domination for graph products, Australas. J. Combin. 70 (2018), 221-235.
[4] A. Berman, S. Friedland, L. Hogben, U. G. Rothblum, and B. Shader, An upper bound for the minimum rank of a graph, Linear Algebra Appl. 429 (2008), 1629-1638.
[5] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984), 487-499.
[6] D. Burgarth and V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99 (2007), 100501.
[7] A. Chang and Q. Huang, Circulant digraphs determined by their spectra, Discrete Math. 240 (2001), 261-270.
[8] G. Chartrand, L. Lesniak, and P. Zhang, Graphs \& Digraphs, Textbooks in Mathematics, Vol 39, CRC Press, Boca Raton, Florida, 2016.
[9] K. B. Chilakamarri, N. Dean, C. X. Kang, and E. Yi, Iteration Index of a Zero Forcing Set in a Graph, Bull. Inst. Combin. Appl. 64 (2018), 57-72.
[10] P. J. Davis, Circulant Matrices, American Mathematical Soc., Providence, Rhode Island, 2012.
[11] B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combin. Theory 9 (1970), 297-307.
[12] S. Gravier, M. Kovs̆e, and A. Parreau, Generalized Sierpiński graphs, EuroComb'11, Budapest, 2011. http://www.renyi.hu/conferences/ec11/posters/parreau.pdf.
[13] A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi-myths and maths, Springer Basel, New York-London, 2013.
[14] L. Hogben, Minimum rank problems, Linear Algebra Appl. 432 (2010), 1961-1974.
[15] A. W. Ingleton, The rank of circulant matrices, J. Lond. Math. Soc. 1 (1956), 445-460.
[16] S. Klavžar and U. Milutinović, Graphs $S(n, k)$ and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47 (1997), 95-104.
[17] S. A. Meyer, Zero forcing sets and bipartite circulants, Linear Algebra Appl. 436 (2012), 888-900.
[18] E. A. Van Doorn, Connectivity of circulant digraphs, J. Graph Theory 10 (1986), 9-14.
[19] B. Yang, Fast-mixed searching and related problems on graphs, Theoret. Comput. Sci. 507 (2013), 100-113.
[20] AIM Minimum rank graph catalog, admin.aimath.org/structuredlists_testing/graph-invariants/
minimumrankoffamilies/\#/prodcomps

