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ABSTRACT

LEARNING IMAGE SALIENCY FROM HUMAN TOUCH BEHAVIORS

by

Shaomin Fang, B.S.

Texas State University-San Marcos

August 2013

SUPERVISING PROFESSOR: YIJUAN LU

The concept of touch saliency has recently been introduced as a possible

alternative for eye tracking in usability studies. This touch saliency study shows

that image saliency maps can be generated based on human simple zoom behavior

on touch devices. However, when browsing images on touch screen, users tend to

apply a variety of touch behaviors such as pinch zoom, tap, double tap zoom, scroll,

etc., in order to look at their regions of interest on images. Several questions

naturally draw our attention: Do these different behaviors correspond to different

human attentions? Which behaviors are highly correlated with human eye fixation?

How to learn a good image saliency map from various/multiple human behaviors?

In order to address those open questions, a series of studies are designed and

xi



conducted. Two novel and comprehensive touch saliency learning approaches are

also proposed to derive good image saliency maps from a variety of human touch

behaviors by using different machine learning algorithms. The experimental results

demonstrate the validity of our study and the potential and effectiveness of the

proposed approaches.

xii



CHAPTER I

INTRODUCTION

Human perceptual systems are only able to process a subset of the visual inputs

they receive at one time. Visual attention refers to the selective concentration on

meaningful regions of a scene [Marques et al., 2006]. The map to display the

spotlights of the concentrations on an image is called image saliency map. Visual

attention allows us to select the information that is most relevant to ongoing

behaviors. In order to learn visual attention, many researchers present images as

stimulus to their subjects [Itti et al., 1998; Judd et al., 2009; Ramanathan et al.,

2010; Tsotsos and Bruce, 2006].

Visual attention learning is a thriving area of research. It has been proven

useful in a variety of applications. These applications include object detection [Oliva

et al., 2003], face detection [Goodrich and Arel, 2012], compression of multimedia

data [Yang et al., 2006], image segmentation [Hua et al., 2010], image retargeting

[Setlur et al., 2005], information retrieval [Bamidele et al., 2004], etc.

In the traditional visual attention study, the user’s eye fixation data is

required and the eye tracking device is the only equipment to collect the data. Eye

trackers use infrared cameras to record and project the pupil movements onto a

two-dimensional plane: the display screen. The projection coordinates on the screen

are then interpreted as gaze coordinates, in other words, visual attention

1



2

coordinates.

Although eye tracking has been developed for years and has very useful

applications, it is not widely popularized due to four major reasons:

1) The cost is very high. The exorbitant price tag on commercial systems has

resulted in limited use of eye-tracking technology.

2) Complicated operation, which requires non-trivial calibration, validation, and

chin-and-forehead-rest for stabilization.

3) Specialized knowledge is needed. The users have to be trained to operate it.

4) Low mobility. It is not easy to carry it everywhere due to its considerable size

and weight.

Recently, with the popularity of touch phones, touch tablets and touch

laptops, more and more people rely on touch devices for daily image or video

browsing, sharing, and surfing as these touch screen displays bring applications and

entertainment to life with our fingertips.

When using a limited size touch screen for image browsing, users tend to use

fingers to tap, pinch zoom, double tap zoom, and scroll to have a closer view of a

particular region of interest. These touch behaviors may indicate user’s interest and

attention on certain regions of the image, and perhaps capture similar information

as the eye-fixation data in the visual attention study. Many interesting questions

naturally arise:
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1) How to learn a good image saliency map from various/multiple human touch

behaviors?

2) Do different touch behaviors (tap, pinch zoom, double tap zoom, scroll etc.)

correspond to different human attentions? And how to learn such a

relationship?

3) Which behaviors are more correlated with human eye fixation?

4) Are there any algorithms that can be applied to answer these questions?

To address these questions, in this work, a series of studies are designed and

conducted, with the conventional eye-fixation based saliency data served as the

ground truth. In order to collect user’s touch behavior data, an image browsing app

is designed on Android development platform. Two novel image saliency learning

approaches are also proposed to derive a good image saliency map from a variety of

human touch behaviors. During the process of building a supervised learning model,

the weights of different human touch behaviors are learned, which indicate the

different contributions of these behaviors to the image saliency information.

Compared with eye-tracking devices, touch devices have many advantages.

They are much more popular, cheaper, and also easier to operate and carry. The

user’s finger touch behaviors data, which is referred as Touch Saliency [Xu et al.,

2012], are much easier to be recorded than eye-movements using an eye tracker.

Therefore, touch saliency can be easily obtained and it will definitely have wide

applications in various fields where eye tracking or computational visual attention
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models have been applied, such as image compression, image segmentation, image

retargeting, etc., in the near future.

The main contributions introduced in this thesis are summarized as follows:

1) We build a dataset containing 446 images with touch behavior data from 15

observers in an image browsing task on a touch screen phone.

2) A set of valuable features from the touch information related to visual

attention is proposed.

3) Visual attention from a variety of touch behaviors is quantitatively studied

and analyzed.

4) Two supervised learning methods are proposed to automatically learn the

correlation between different touch behaviors and human eye fixations.

5) The learned models derive good image saliency maps from a variety of touch

behaviors.

6) This work explicitly guides the research in touch saliency ability estimation

and opens broad research possibility for touch behavior based visual attention

learning.



CHAPTER II

BACKGROUND

In this chapter, we introduce the detailed background about the popular image

saliency map generation methods and background about the Machine Learning

methods we use for our proposed image saliency learning approaches.

2.1 Image Saliency

Visual Attention is to learn which elements of a visual scene are likely to attract the

attention of human observers. It has been proven very useful in many fields. When

people look at images, they selectively concentrate on some meaningful regions of

images which attract them. Figure 2.1 gives examples showing some human’s visual

attention on images.

Image saliency is a term which indicates human’s regions of interest on images.

Figure 2.1: Examples of visual attention on images.
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Figure 2.2: Examples of image saliency map.

An image saliency map represents the salient regions on an image. Most commonly,

the image saliency map is a gray-scale image, where the pixel values (0-255) indicate

the saliency values. The greater the value is, the more salient is, and the brighter

the pixel is. Figure 2.2 gives an example of the image saliency maps corresponding

to the original images by using eye tracking from NUSEF data set [Ramanathan

et al., 2010].

There are many different ways to generate an image saliency map depending

on the methods used to learn the image saliency. The following two sections

indroduce the most popular two types of methods used to generate the image

saliency maps.
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Figure 2.3: Examples of eye tracking.

2.1.1 Image Saliency from Eye Tracking

Eye tracking is a method used to record the gaze coordinates of a user. Eye

trackers, which have different ways of operating, are the tools used in the process.

Most commonly, an infrared light source and a camera is used in combination in

order to capture the reflection the user’s eyes.

Eye tracking technology brought about many academic and industrial

applications. In usability studies, eye movement analysis has become one of the

predominant methodologies. The basic approach is to classify eye movements into

fixations (when user focuses with little observed eye movement) and saccades (when

user makes a ballistic eye movement between fixations). This classification leads to

the interpretation of fixation time as a measure of interest, and total distance of

saccades as a measure of effort. Figure 2.3 gives an example of eye tracking [LEAD,

2010]. It shows that a user’s eye movements are tracked and recorded by an eye

tracker when he is looking at an image on screen.
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Eye tracking is used in a wide variety of fields including human-computer

interaction, cognitive science, psychology, marketing research and medical research.

Eye tracking is being used more and more for web and software usability specifically

around usage patterns, online advertising, branding, and navigation usability. These

uses of eye tracking have been highly promising for many years.

When human focus on particular region of an image with little observed eye

movement above a threshold, the region of the image is considered as their interest

or salient region. One method used to calculate the pixel value of the image saliency

map is based on how long they fix their eyes on that region. Obviously, the longer

they fix on that region, the greater pixel value is on that region.

For example, one simple and popular way [Ouerhani et al., 2003] to generate

image saliency maps from eye tracking data collected in the experiments with

human subjects is described as follows: First, only fixations with greater than a

threshold (for example: threshold =120 ms) are recorded. Second, each fixated

location gives rise to a gray-scale (values are between 0-255) patch whose activity is

gaussian distributed, the gaussian width should be approximate the size of the fovea

and the amplititude is proportional to the fixation duration. Third, the non-fixated

locations are considered as background which is represented as black with pixel

values of 0.

2.1.2 Image Saliency from Visual Content

Visual content based prediction methods for image saliency learning detect image

saliency based on image’s visual content, such as content contrast, color, texture,
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intensity, orientation information, etc. A combination of some of these information

is filtered from the original image, and then the features of each content information

are extracted. With these image visual content features, different computational

methods are used to calculate the image’s saliency value which represents where

human are interested in on the image.

Figure 2.4 [Foulsham, 2008] gives an example of a model of a popular

state-of-the-art visual content based method by [Itti et al., 1998]. The input image

is first decomposed into a set of topographic feature maps based on the color,

intensity, orientations information of the image. These feature maps are then

normalized and summed into a final input S to the saliency map:

S = 1
3(N (Ī) + N (C̄) + N (Ō)) (2.1)

Where N (Ī), N (C̄), and N (Ō) are normalized intensity, color, orientation

feature maps respectively. In our evaluation experiment for Itti model, the final

saliency map S is converted into a grayscale image.

2.2 Background of Machine Learning Methods Used for Proposed

Image Saliency Learning Methods

There are two regression machine learning methods used to learn image saliency

maps in this thesis: Linear Regression (LR) and Support Vector Regression (SVR).

They both try to learn a weight function that best fits the training data. Then

during the testing step, given a new image touch behavior data, the learned weight

function can compute the image saliency values.
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Figure 2.4: A model of visual content based method by Itti et al.
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2.2.1 Introduction of Linear Regression

Linear regression is an approach to model the linear relationship between a scalar

dependent variable H and one or more explanatory variables denoted X. A linear

regression is based on a linear discriminant function of the form:

h(x) = wTx (2.2)

Where x0=1, thus the first term w0 ∗ x0=w0, which is called bias. The vector

w is known as the weight vector. The goal is to find a function h(x) that returns

the best fit on the data. Thus the modeling algorithm is to determine the weight

vector w from the training data by using Function (2.3). Once the function h(x) is

learned, given the new data x, the estimated value of h(x) can be calculated using

the function h(x).

min
m∑

k=1

(
h(x(k))− t(k)

)2
(2.3)

2.2.2 Introduction of Support Vector Regression

The Support Vector Machine (SVM) is a state-of-the-art classification method

introduced by [Vapnik, 1997]. The SVM classifier is widely used in many fields due

to its high accuracy, ability to deal with high-dimensional data [Schölkopf et al.,

2004].

Support Vector Machine can also be used as a regression method, which is

called as Support Vector Regression (SVR), maintaining all the main features that

characterize the algorithm (maximal margin). SVR uses the same principles as the

SVM for classification, with only a few minor differences.
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Figure 2.5: A linear SVM classifier.

In order to understand the application of SVR on our touch saliency learning,

the basic background about Support Vector Machine is introduced as follows.

Suppose the data are linearly separable, then there exists a linear decision

boundary that separate two classes. An illustration is shown in Figure 2.5. The

decision boundary line wTx+ b = 0 divides the plane into two categories based on

the sign of wTx+ b.

The circled data points in Figure 2.6 are the support vectors. They are the

examples that are closest to the decision boundary. They determine the margin

with which the two classes are separated.

In many applications, the data are non-linear separable. In order to provide

better accuracy, a kernel function is used to make a non-linear classifier out of a

linear classifier. The method is to map data from the input space X to a feature

space K using a non-linear function F. The kernel can be computed without
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Figure 2.6: Support vectors of a linear SVM classifier.

explicitly computing the mapping K.

Up to now, support vector machines have been concerned with classification.

While in case of support vector regression, the solution generated is a real number.

Same as Linear Regression, Support Vector Regression also tries to find a function,

f(x), with at most ε-deviation from the target y [Smola and Schölkopf, 2004]. The

SVR with soft margin is explained here.

Given training data (Xi, ti) i = 1, 2, ..., m. Minimize

1
2 ‖w‖

2 + C
m∑

i=1
(ξi + ξ∗

i ) (2.4)

Under constraints:

ti − (w · xi)− b ≤ ε+ ξi

(w · xi) + b− ti ≤ ε+ ξ∗
i

ξi, ξ
∗
i ≥ 0, i = 1, ...,m
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The above is called as primal problems. It finds primal variables w for each

feature. The constant C is greater than 0, it is a parameter to control the amount of

the influence of the error.

Figure 2.7 [Paisitkriangkrai, 2012] gives a visual explanation of SVR. Up until

the threshold ε, the error is considered 0, after the error it becomes calculating the

tolerant to errors: error-epsilon ξ.

In most cases, the parameters can be learned more easily in its dual

information. The dual formulation also extends support vector machine to nonlinear

functions. Below is the dual problem:

max


−1

2
∑m

j=1(αi − α∗
i )(αj − α∗

j )
(
ϕ(xi), ϕ(xj)

)

−ε∑m
i=1(αi + α∗

i ) +∑m
i=1 ti(αi + α∗

i )
(2.5)

s.t.
m∑

j=1
(αi − α∗

i ) = 0; 0 ≤ αi, α
∗
i ≤ C

where (ϕ(xi), ϕ(xj)) = K(x,Xi), which is the Kernel Function.

Once the SVR is trained (by solving the dual problem), it caculates values of

αi and α∗
i , which are both 0 if xi has no contribution to the error function. Given a

new data xnew, prediction will be generated using the following formula:

f(xnew) =
l∑

i=1
(αi − α∗

i )K(xi, xnew) + b (2.6)

There are different ways to compute the value of b, one of the ways can be

found in [Gunn, 1998].

b = −1
2(w · (xr + xs)) (2.7)

where xr and xs are the support vectors.
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Figure 2.7: Support Vector Regression with soft margin loss function.



CHAPTER III

RELATED WORK

There have been different ways to learn where people look on a scene/image. The

main two widely acceptable ways are by using eye tracking and by prediction based

on the image visual content. Eye tracking is so far the most accurate method to

determine human’s visual attention on images. However, as stated in Chapter1, eye

tracking is not widely used because of its limitations. Therefore, researchers have

developed computational methods to estimate human’s visual attention based on

image’s visual content, such as color, contrast, intensity, edge orientation

information, and so on. Recently, more and more people rely on small touch devices

such as touch phones, touch tablets to browse Internet, images and watch videos.

When people interact with those devices, the touch information may explicitly show

their interests on the screen. Hence, learning visual attention based on touch

behavior becomes a hot top recently.

In the following sections, the details about these methods are introduced.

3.1 Eye Tracking Based Image Saliency

To learn the preferential visual attention given by humans to specific image content,

many researchers have collected eye fixation data on different image datasets using

eye tracking devices. Those data sets are very valuable and are used in the research

16
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as ground truth data that the fixation locations indicate human’s real attentions on

the images.

NUSEF data set [Ramanathan et al., 2010] has eye tracking fixations from a

pool of 75 subjects free-viewing 758 images, which are manually collected from

Flickr, Photo.net, Google Images and IAPS, containing semantically affective

objects or scenes such as expressive faces (human and mammal), nudes, unpleasant

concepts, and interactive actions (look, read and shoot).

MIT data set [Judd et al., 2012] has eye fixations from 300 images (223

landscape images and 77 portrait images) which are collected from Flickr Creative

Commons and personal image collections. The recorded eye tracking data is from 39

users who free-viewed these images. The longest dimension of each image is 1024

pixels and the second dimension ranged from 457 to 1024 pixels with the majority

at 768 pixels. This data set is not made public yet by the authors.

Another MIT data set [Judd et al., 2009] has eye tracking fixations from 15

viewers who free-viewed 1003 natural indoor and outdoor images. Created under

similar conditions to the above saliency benchmark data set and can be used to

train new models of saliency.

Toronto data set [Tsotsos and Bruce, 2006] contains eye fixation data from 11

subjects free-viewing 120 color images of outdoor and indoor scenes. A large portion

of images here do not contain particular regions of interest.

Jianli data set [Jian Li and He, 2011] provides human eye fixations from 19

observers on 235 color images which collected using Google as well as by consulting

the recent literature. The images in this database are 480 x 640 pixels and are
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divided into six different categories.

However, these collected data sets require eye tracking devices, which has

following disadvantages that limits its wide usage:

1) Eye tracking devices are normally expensive.

2) Operating the eye tracking devices is tedious and complicated, it requires

non-trivial calibration, validation, and chin-and-forehead-rest for stabilization.

3) The users have to be trained to operate it.

4) It has low mobility. It is hard to carry it everywhere due to its considerable

size and weight.

3.2 Visual Content Based Prediction Image Saliency

Many computational methods of saliency have been developed from a wide variety

of different approaches to detect where people are interested in images. These

methods are mainly based on image’s visual content, such as color, contrast,

intensity, edge orientation information, and so on. In order to know the performance

of the methods and have comparisons between models, researchers have built

different benchmark data sets. A brief introduction of the important and popular

computational models of saliency is given as follows:

[Itti et al., 1998] introduced a model for bottom-up selective attention based

on serially scanning a saliency map, which is computed from local feature contrasts

(In total, 42 feature maps are computed: 6 for intensity, 12 for color channel, and 24



19

for local orientation information), for salient locations in the order of decreasing

saliency. Each feature is computed by a set of linear center-surround operations

related to visual receptive fields. The feedback from higher cortical areas was used

to weight the importance of different features and such that only those with high

weights could reach higher processing levels.

The Graph Based Visual Saliency (GBVS) model [Harel et al., 2007] is a

graph-based implementation of the Itti model that by using dissimilarity and

saliency to define edge weights on graphs which are interpreted as Markov chains.

The mass-concentration on individual activation maps prior to additive combination

is performed in order to have the resulting master map informative. As the result of

concentrating activation, a few key locations are considered as salient areas.

Bruce and Tsotsos’ Attention based on Information Maximization (AIM)

[Tsotsos and Bruce, 2006] is a model for visual saliency computation built on a first

principles information theoretic formulation which is called as Attention based on

Information Maximization. It aims to maximize information sampled from a scene

and is derived from mathematical principles.

[Hou et al., 2012] proposed to calculate the saliency map using the inverse

cosine transform of the signs of the cosine transformed image, the discrete cosine

transform (DCT) image signature approach, which defines the saliency using the

inverse DCT of the signs in the cosine spectrum. The approach was evaluated on

the Toronto eye-tracking data set (Bruce and Tsotsos, 2009) to determine how well

it predicts human eye fixations. It was reported not just to be faster than other

approaches but also to outperform several established approaches.
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These computational models of image saliency have been proven useful in

many fields. However, it has several disadvantages:

1) This type of methods are based on image’s visual content information. It

predicts human’s attention without involving human subjects. Therefore, the

image saliency map is identical ro everyone, it can not be personalized.

2) The performance one some types of images is low, such as low contrast

images, high intensity images. It can not detect the human’s interests on these

types of images well.

3) The computational cost is generally high.

3.3 Touch Behavior Based Image Saliency

[Xie et al., 2005] made the first attempt to extract user attention by analyzing the

touch information on images in 2005. They learned the user attention from 10

subjects’ touch data on 26 images. Several attributes are considered in the users

attention learning including region of interest, minimal allowable spatial area of the

attention, minimal duration of the attention etc. This study demonstrates that

users attention can be easily obtained from touch behaviors. However, its

performance is not quantitatively evaluated. Therefore, its validity is unknown.

[Xu et al., 2012] introduced a new concept of touch saliency, which is to

generate image saliency maps based on human simple zoom behavior. In their data

collection, 16 participants freely viewed 440 images in NUSEF database

[Ramanathan et al., 2010] on a touch-screen mobile device. The center point of the



21

screen is treated as the fixation point and the zoom scale is used as Gaussian filter

parameters to generate the touch saliency map. This study shows that touch

saliency map and eye fixation map are highly correlated with each other in an image

browsing task.

It is observed that when users browse images, they tend to perform a variety

of touch behaviors, such as pinch zoom, scroll, tap, double tap, ans so on. However,

[Xu et al., 2012] generates saliency maps based solely on simple zoom behavior.

Meanwhile, the image pixel of center point of the screen is selected as the fixation

point, which always causes some bias in the saliency map learning. It is observed

that when the image is zoomed in, the users do not always adjust the most salient

area to the center of the screen. An example is shown in Figure 3.1 .

Figure 3.2 gives another example when user uses pinch zoom to zoom in

particular region of an image. It shows that when pinch zoom behavior is used to

browse images, the most salient area is more likely between two fingers. Meanwhile,

as the zoomed-in region is already clear on the screen, user does not necessarily

bring the most salient region to the center of the screen.
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Figure 3.1: An example of Zoom-in behavior on an image.

Figure 3.2: An example of pinch zoom-in behavior on an image.



CHAPTER IV

IMAGE SALIENCY LEARNING FROM MULTIPLE TOUCH

BEHAVIORS

In the preliminary study, it is observed that when browsing images on the limited

size touch screen, users tend to apply a variety of touch behaviors, such as tap,

pinch zoom, double tap zoom, and scroll to find a particular region of interest and

look them closer. What correlations between these different behaviors and human

attention are, whether they contribute equally to the human eye fixation, and how

to learn good image saliency maps from multiple touch behaviors have not been

explored in the existing studies. To our best knowledge, this is the first attempt

that conducts a series of studies to explore these questions.

4.1 Framework

In order to learn the relationship between different touch behaviors and the human

attentions on the images, all the touch behavior data collected from the user study

is thoroughly analyzed and five features that may indicate human’s interest and

attention on certain regions of the image are proposed.

Different from previous touch saliency generation methods, two novel learning

based approaches are proposed to generate image saliency maps from the touch

behaviors data.
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The learning framework is shown in Figure 4.1, it contains two stages: training

and testing. During the training stage, the weight of each behavior can be learned

by using machine learning methods, such as Linear Regression and Support Vector

Machine Based Regression, and the weight indicates how many contributions each

touch behavior makes to the touch saliency. In the testing stage, given collected

touch behavior data of a new image, its touch saliency map can be predicted with

the learned weights. Above all, the proposed learning based approach can

successfully explore the correlation between each touch behavior feature and human

attention. This thus leads to a good saliency map from these touch behaviors.

Figure 4.1: Touch Saliency Learning Framework.

4.2 Touch Behavior Data Collection

4.2.1 Image Browsing App Design

In order to collect user touch behavior data, an image browsing interface on a

multi-touch mobile phone is developed. The interface is designed as same as most

popular image browsers which support tap, pinch zoom, double tap zoom, scroll,
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etc. The platform is Android Development and the programming language is Java.

The device used to install and test is Samsung Galaxy S3 Android phone. It has 4.8

inch HD Super AMOLED display with 1280x720 pixels, 2GB RAM, 16GB storage.

The image browsing application displays each image for 12 seconds. A black

screen is shown for 2 seconds between any two consecutive images to avoid

interference. Every time we start the application, the images are shown in a random

order. Thus, the display orders may be different for each participant to avoid bias.

The program has ability to keep recording the touch gesture type, center pixel

coordinates of the pinch zoom, double tap coordinates, image pixel coordinates of

center point of the screen, scroll target position, tap point coordinates, and zoom

out pixel coordinates. In general, all the touch gestures and data are collected while

a user freely browses the images using this application on the Samsung Galaxy S3

Android phone.

This application is similar to the one designed in [Xu et al., 2012] in terms of

user experience. The main differences are:

1) Their application was developed in iOS development environment and they

used an iPhone which only has 320x480 resolution. The application in this

study is developed in Android development, and Samsun Galaxy S III phone

with 1280x720 resolution is used.

2) The application in this study not only record the center location of the screen

corresponding to the image pixel location after zoomed in but also collect all

the touch gesture data (Such as touch gesture type: pinch zoom in/out,
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double tap zoom in/out, scroll, tap, time, image width, image height and so

on. ) and corresponding image coordinates where each gesture performed.

4.2.2 Image Data Set

The same data set NUSEF [Ramanathan et al., 2010] used in the work [Xu et al.,

2012] is chosen in our study by considering its two unique attributes. First, this

data set contains 446 images (size is around 1024x768 pixels) and the corresponding

ground truth eye fixation data acquired from an eye-tracking device with a pool of

75 subjects. Second, the images in this dataset are everyday scenes and manually

collected from Flickr, aesthetic content from Photo.net, Google Images and

emotion-evoking IAPS, and they are representatives of various semantic concepts,

scales, orientations, and illuminations.

Figure 4.2 gives some image samples from NUSEF image dataset.

Table 4.1 summarizes the diverse categories covered in the NUSEF eye-fixation

database.

Figure 4.2: Image samples from NUSEF image dataset.
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Table 4.1: Semantic categories of images in NUSEF data set.

4.2.3 User Study

15 users (4 females, 11 males) from Computer Science Department at Texas State

University participated in our user study. Their ages are between 24 and 33

(µ = 26.6, σ = 2.75) . Before they started to browse the image, they signed the

consent forms and filled out the participation forms which record their basic

information.

Before start of the user study, each participant was told to freely browse the

image as he/she usually does when browse the image on touch screen phones. Each

user viewed all the 446 images (from NUSEF data set) on the Samsung Galaxy S3

Android phone using the application described in section 3.2.1. Each user can use

any touch behavior to move to a particular region of interest. During the image

browsing process, each image is displayed for 12 seconds. In order to avoid

interference, a black screen is shown for 2 seconds between any two consecutive

images. For every user, all images are displayed in a random order. Thus, the
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display orders may be different for each participant to avoid bias. The program

keeps recording the touch behavior type, center pixel coordinates of the pinch zoom,

double tap coordinates, pixel coordinates of center point of the screen, scroll target

position, tap point coordinates, etc.

In order to protect participants’ confidentiality, each participant was assigned

a number. Any data collected during the user study was recorded by number, not

by name.

4.3 Touch Behavior Feature Extraction

Do different touch behaviors correspond to different human attentions? Which

behaviors are highly correlated with human eye fixation? How to learn a good

image saliency map from various/multiple human behaviors? In order to find

answers to those questions, analysis for the touch data acquired from user study is

necessary. It is observed that during the user study, users use different touch

gestures to manipulate the image on the phone to have a better and closer view on

the image. In addition to the feature (the center point of the screen) published in

[Xu et al., 2012], four main touch features that may indicate human’s interest and

attention on certain regions of the image are proposed.

The total five features abstracted from the touch data are listed as follows

with the corresponding descriptions:

• Tap (T): Image pixel coordinates of the tap point.

• Pinch-zoom-in (P): Image pixel coordinates of the center point between two
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fingers after zoom in.

• Scroll (S): Image pixel coordinates of the scrolling point after zoom in.

• Double-tap-zoom-in (D): Image pixel coordinates of the double-tap point and

the zoom scales of the doubletap zoom in/out on images.

• Center (C): Image pixel coordinates of the center point of the touch screen

after zoom in.

4.4 Touch Saliency Learning

This section will explain design and implementation of the proposed Touch Saliency

Learning methods on images based on users touch behavior data. The key work is

to learn models from a training data set which contains touch behavior data. The

two major Machine Learning methods used to learn image saliency in this thesis are

supervised regression methods: Linear Regression and Support Vector Machine

based regression (SVR).

Let R = {I1, I2, I3, ..., Im} be a set of training images, then divide an Ik into a

by b grids, GIk
= {g1

Ik
, g2

Ik
, g3

Ik
, ..., gab

Ik
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touch feature vector extracted from the j-th grid. The value of these five touch
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Dj
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Ik
are calculated by counting the number of

times the corresponding behavior happens in the j-th grid of image Ik. For example,

if 10 tap points are found in the j-th grid of image Ik , its corresponding value gTj

Ik
is

10. Obvioursly, the more frequent the touch behaviors happen in one grid, the more

attentions are given to that grid by users.



30

The eye fixation maps acquired from the eye-tracking device are used as the

ground truth data, which reflect real visual attention information. The eye fixation

map is a grayscale image and each pixel’s value ranges from 0 to 255. The higher

the value is, the more salient that pixel is. Each eye fixation map is also divided

into a by b grids. More pixels in one grid has high value and indicate that grid

attarcts a lot of attention. Therefore, the target real visual attention value of the

j-th grid in image Ik: tjIk
is approximated as the average of all the pixel values in the

j-th grid. Apparently, if more pixels in one grid has high value, it indicates that grid

attarcts a lot of attention. A table of sample training data set is shown in Table 4.2.

The value for each grid is calculated by counting the number of times the

corresponding feature happens in the grid of an image.

Table 4.2: Sample of training data.
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4.4.1 Learning Image Saliency from Multiple Touch Behaviors Using

Linear Regression

In this thesis, we propose a method, touch saliency from multiple touch behaviors

by linear regression (TSMB-LR), is the simple, easy, powerful and fast way to

predict the salient value of the regions on the image.

Since different touch behaviors may contribute differently to the touch saliency

value of each grid, we propose to use linear regression method to generate the touch

saliency value for the i-th grid in image Ik in a linear function:

h(gi
Ik

)=w0+wTg
Ti
Ik

+wPg
Pi
Ik

+wSg
Si
Ik

+wDg
Di
Ik

+wCg
Ci
Ik

(4.1)

wT , wP , wS, wD and wC are the corresponding weights of the five features,

which implicitly indicate correlation between each behavior and touch saliency value

h(gi
Ik

).

The touch saliency learning problem is formulated as a linear regression

algorithm, which learns the weight of each behavior by solving the following

minimization function:

min
m∑

k=1

ab∑
i=1

(
h(gi

Ik
)− tiIk

)2
(4.2)

tiIk
is the target value. During the training stage, the weight of each behavior

can be learned by solving this minimization function, and it indicates how many

contributions each touch behavior makes to the touch saliency value. In the testing

stage, given collected touch behavior data of a new image, its touch saliency map

can be predicted with the learned weights based on Function (4.1). Above all, the

proposed learning based approach can successfully explore the correlation between
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each touch behavior feature and human attention. This thus leads to a good

saliency map from those touch behaviors.

Figure 4.3 shows an example of architecture of grid size 10x10 by using

TSMB-LR method. There are main two steps: training and testing. At the training

step, the five features are extracted from the human touch behaviors, and then the

value of each feature on each grid is counted by the times that behavior happens in

that grid. With the ground truth pixel value of each grid (average of all the pixel

values on the grid) from eye tracking saliency maps, the weight for each grid is

learned from training set (touch features data for 396 images) by using the linear

regression method. At the testing step, given a new image with human touch

behavior data, the value of each feature on each grid also counted. With the weight

for each feature learned from training step, the predicted image saliency value is

calculate by Function (4.1). At the end, all the predicted values of 100 grids are

normalized to 0-255 in order to generate the grayscale image saliency map.

4.4.2 Learning Image Saliency from Multiple Touch Behaviors Using

Support Vector Regression

The linear regression based image saliency learning approach only can learn a linear

function that represents the relationship between human touch behaviors and image

saliency. Therefore, in our study, we propose to use Touch Saliency from Multiple

touch Behaviors by Support Vector Regression (TSMB-SVR) approach to learn a

non-linear relationship between human touch behaviors and image saliency as the

TSMB-SVR can learn a kernel function to fit the data. In this work, polynomial
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Figure 4.3: Architecture of grid size 10x10 by using TSMB-LR.
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Figure 4.4: Polynomial Kernel Function for Support Vector Regression.

kernel function is used to learn the image saliency model from multiple touch

behaviors as shown in Figure 4.4.

The training data used for TSMB-SVR is the same as the one for TSMB-LR.

Both algorithms train the data to find the weight for all five touch behavior

features. TSMB-LR tries to minimize the difference between the prediction value

and the target value and meanwhile solves the weight function. TSMB-SVR finds

support vectors with the pre-set parameter epsilon and tolerance parameter so that

data fits the SVR prediction model.

Figure 4.5 [Smola and Schölkopf, 2004] gives an overview over the different

steps in the regression training stage.

In this image saliency learning study, the Sequential Minimal Optimization

(SMOreg) [Boser et al., 1992] from Weka is used. Weka is a collection of machine
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Figure 4.5: Architecture of regression machine constructed by the SVR algorithm.

learning algorithms for solving real-world machine learning and data mining

problems. It is written in Java. The algorithms can be applied directly to a dataset.

Therefore, the primary job is to optimize the parameters to have both good

accuracy and low execution time.

The touch saliency learning problem is formulated as a support ventor

regression algorithm, which learns the weight of each behavior by solving the

following minimization function:

min 1
2 ‖w‖

2 + C
m∑

i=1
(ξi + ξ∗

i ) (4.3)

Under constraints:

tiIk
− (w · gFi

Ik
)− b ≤ ε+ ξi

(w · gFi
Ik

) + b− tiIk
≤ ε+ ξ∗

i

ξi, ξ
∗
i ≥ 0, i = 1, ...,m
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where w=∑l
i=1(αi−α∗

i )xi is in the dual formulation, and gFi
Ik

is a vector of the

input features which are wT , wP , wS, wD, and wC . The prediction value of the j-th

grid in image Ik is:

h(gj
Ik

)=
l∑

i=1
(αi − α∗

i )K(xi,gFi
Ik

) + b (4.4)

As the kernel function does not calculate the mapping features explicitly, the

resulting regression model is also expressed as a linear function with weight for each

input feature.



CHAPTER V

EXPERIMENT AND RESULT

5.1 Experiment Design

In order to evaluate the touch saliency methods, the comparison of our approach

with other five state-of-the-arts on the NUSEF data set was conducted. These five

state-of-the-arts include four visual saliency map generation methods (Itti Model

(Itti) [Itti et al., 1998], Graph Based Visual Saliency (GBVS) [Harel et al., 2007],

Attention via Information Maximization (AIM) [Tsotsos and Bruce, 2006], Image

Signature model (Sign.) [Hou et al., 2012]. which derive saliency maps based on

image visual content information and one touch saliency generation approach

(center-based touch saliency map (Center) [Xu et al., 2012]).

In this thesis, different number of grids (aXb) are also tested, which range

from 10X10, 14X14, 18X18, 22X22, 26X26, 30X30, 40X40, 50X50, 60X60 to

image width X image height. When the number of grids is set as image width X

image height (WXH), every recorded pixel in the image is chosen as one grid. In

that case, the mild outliers are removed using the quartile method (lower quartile =

0th percentile, higher quartile = 75th percentile) for scrolling and tap features, since

most users tend to continiously scroll and accidentally tap the image on the screen.

The data set used for experiments is NUSEF dataset [Ramanathan et al.,

2010]. The major reason we choose it is that has eye tracking fixations from a pool

37
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of 75 subjects free-viewing 758 images, which are manually collected from Flickr,

Photo.net, Google Images and IAPS, containing semantically affective objects or

scenes such as expressive faces (human and mammal), nudes, unpleasant concepts,

and interactive actions (look, read and shoot). In our experiments, the NUSEF

dataset is divided into a training set (396 images) and a testing set (50 images).

The evaluation of our approaches, other state-of-the-arts cumputational models, and

center-based touch saliency method is only performed on the testing data set.

5.2 Evaluation Metrics

In order to evaluate the performance of our touch saliency learning from multiple

touch behaviors algorithm (TSMB), two popular saliency performance evaluation

metrics – AUC (Area under ROC Curve) and CC (Correlation Coefficient) are

ultilized in this thesis.

AUC calculates the area under the ROC curve (true positives (sensitivity) vs.

false positives (1 - specificity)). The AUC value is always between 0 and 1.0. A

value of 1 for AUC represents a perfect test. Random guessing has an area of 0.5.

Realistic classifier should have an AUC greater than 0.5. AUC is for a binary

classifier system as its discrimination threshold varies. For this evaluation, the

threshold to define a binary classifier (Salient or Non-salient) on a grid is the pixel

value 14. If the average pixel value on the grid is bigger than or equal to 14, it’s

treated as salient grid, otherwise, it’s non-salient grid. It is easy to understand that

the different thresholds would produce different results. The experiments can be

conducted to determine the best threshold in the future.
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CC is a measure of the strength of a linear association between two saliency

maps. It can range from -1 to +1. A value of +1 represents a perfect positive

correlation while a value of -1 represents a perfect negative correlation. A value of 0

indicates that there is no relationship between the saliency maps being tested.

A good saliency map should have both high AUC score (maximum value is 1)

and CC score (maximum value is 1). In our experiments, AUC and CC calculation

are programmed by using Matlab.

5.3 Experiment Results

5.3.1 Linear Regression Result

After traning the model on the collected training data using linear regression, the

weights of features wT , wP , wS, wD and wC are learned, as shown in Table 5.1,

whose average value are 28%, 10%, 20%, 10%, and 28% respectively. These learned

weights show that all the features contribute to the touch saliency, but in the

different degree. Center point of screen and the tap behavior are the most

important ones. Scrolling is the third important touch behavior. Pinch-zoom-in and

Double-tap-zoom-in make less contribution to the visual attention information. The

weights of Pinch-zoom-in and Double-tap-zoom-in are similar, which does make

sense as both behaviors are used to zoom in images.

Figure 5.1 shows the generated saliency maps of these methods.

The comparison result based on both AUC and CC is listed in Table 5.2.

From the results, it can be observed that:
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Table 5.1: The weight of each feature learned

by Linear Regression.

Table 5.2: AUC and CC comprision results for Linear Regression.



41

Figure 5.1: Saliency Maps. From left to right: a) original image, b) NUSEF

eye fixation map, c) our touch saliency map using Linear Regression (gird size:

image width x image height), d) Center saliency map, e) Itti saliency map, f)

Signature saliency map, g) AIM saliency map, h) GBVS saliency map.
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• Our touch saliency learning algorithm TSMB-Linear Regression (TSMB-LR)

outperforms the center-based touch saliency learning method (Center). The

AUC value has been improved from 0.73 to 0.80 and CC value is also close to

0.44. On average, the WxH TSMB-LR approach improved the prediction

accuracy by 7.25% over the center-based method. The major reason is that

the center-based method only considers room-in/out behavior. Actually, it is

found in our study that all the touch behaviors contribute to the human

attention. Tap and scrolling behaviors even make more contributions than

zoom does.

• The touch saliency map generated by our algorithms has better quality than

the saliency map derived by many complex and expensive visual-based

approaches. This observation is exciting. Although multiple touch behaviors

may involve noise, the generated touch saliency map still has high quality and

the touch saliency learning approach is much cheaper, faster, and more

efficient than visual-based approaches. It is surprised that our saliency map

quality is also very close to the map generated by GBVS, which is well-known

for excellent performance but high complexity and computational cost. This

observation future validates the effectiveness and efficiency of our approach.

• As the number of grids increases (the grid size decreases), the accuracy of the

learned saliency map also increases. Even if the image is roughly divided into

10x10 grids, the performance is still very good. Therefore, the users can freely

choose the best number of grids based on their applications’ need. If the
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application has high requirement on the execution time, 10x10 is a good

choice. If the accuracy is the first priority of the application, WxH should be

chosen.

5.3.2 Support Vector Regression Result

SMOreg [Boser et al., 1992] implements the support vector machine for regression.

The parameters can be learned using various algorithms. The algorithm is selected

by setting the RegOptimizer. In this study, RegSMOImproved (the most popular

algorithm) is selected to optimize the parameters. Polynomial kernel function used

in SMOreg is:

K(x, x′) = (xTx
′)d

or

K(x, x′) = (xTx
′ + 1)d

The feature space for this kernel consists of all monomials up to degree d. In

our experiments, degree d is set to 1 for all the grid sizes of images.

The SMOreg implementation globally replaces all missing values and

transforms nominal attributes into binary ones. Before learning the model, all the

attributes are normalized. The coefficients (weight factors) in the output are based

on the normalized data, not the original data.

Table 5.3 shows the weights learned from Weka using SMOreg algorithm.

Once the regression model is learned by SMOreg, the testing data is applied to

the model to calculate the prediction salient values for each grid. The prediction
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Table 5.3: The weight of each feature learned by SMOreg.

Table 5.4: AUC and CC comparison results for

Support Vector Regression

values therefore are normalized to the scale 0-255, which is the greyscale pixel

values. Based on these values, the touch saliency maps are generated using guassian

filter to make the maps smooth.

Table 5.4 shows the evaluation results for SVR. Two evaluation metrics AUC

and CC are ultilized.

From the results, it can be observed that:

• Our touch saliency learning algorithm TSMB-Support Vector Regression

(TSMB-SVR) outperforms the center-based touch saliency learning method

(Center). The CC value has been improved from 0.44 to 0.50 and AUC value

is also slightly better (from 0.73 to 0.74). On average, the WxH TSMB-SVR
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approach improved the prediction accuracy by 7.65% over the center-based

method. The major reason is that the center-based method only considers

room-in/out behavior. Actually, it is found in our study that all the touch

behaviors contribute to the human attention.

• The TSMB-SVR also outperforms most of the state-of-the-art prediction

methods. The touch saliency map generated by TSMB-SVR has better quality

than the saliency map derived by many complex and expensive visual

content-based approaches. Although multiple touch behaviors may involve

noise, the generated touch saliency map still has high quality and the touch

saliency learning approach is much cheaper, faster, and more efficient than

visual content-based approaches.

• For TSMB-SVR, it shows that different grid sizes do not make big deference

towards the results. Bigger grid sizes do not necessarily mean that the touch

saliency maps are closer to the ground truth maps acquired from eye tracking

device. Even if the image is roughly divided into 10x10 grids, the performance

is very good, and the computational cost is very low. Therefore, 10x10 is a

good choice for the TSMB-SVR method.

5.4 Complexity Ananlysis

As the grid size increases, the training samples become very large, the time taken to

build model is significantly increased. For example, in the case of Support Vector

Regression, the number of samples of 396 images is 39,600 for 10x10 grid size and it
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Figure 5.2: Time taken to build the TSMB-SVR models.

will take 1.5 hours to build the model. For 30x30 grid size, the number of samples of

396 images is 1,425,600, time taken to build the model is 223.4 hours. Figure 5.2

shows the time taken to build the model for 396 images of different grid size using

SVR. It can be seen that the trend is exponential.

However, the training is offline. Once the model is built, the time to predict

the saliency map is trivial (0.0074 second per image for grid size 10x10). Since

models are linear functions, the complexity is only O(number of grids). Firgure 5.3

shows the linear relation between the time taken to test and grid size by using SVR.

We can see that the trend is linear. Even though the grid size 30x30, it only takes

less than 0.06 seconds to predict the saliency values of an image.

On the other hand, the state-of-the-art visual content based methods are

based on contrasts of intrinsic image features such as color, texture, semantics,

context, orientation, intensity and so on [Cerf et al., 2007]. The models have to
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Figure 5.3: Time taken to test an image by using TSMB-SVR models.

extract multiple features first, and then use some algorithm to put them together to

estimate the saliency. Therefore, the computational complexity would be very

expensive comparing with our regression methods.



CHAPTER VI

CONCLUSION

Visual attention has been a highly popular research area for decades due to its wide

applications. There has been a growing interest in the mechanisms of visual

attention. Many researchers have developed different approaches to automatically

estimate the regions of interest on images by eye tracking or by image visual

content. Recently, with the popularity of the touch screen devices (such as touch

screen phone, touch pad and so on), users touch behaviors may implicitly express

the image saliency when users freely browse the images on limited size touch screen.

Therefore, how to learn the image saliency from user touch behaviors becomes a hot

topic.

In this thesis work, a quantitative and qualitative study of touch saliency

learning from a variety of human touch behaviors such as tap, double tap zoom

in/out, scroll (after zoom-in), pinch zoom in/out is conducted. It is learned that

different touch behaviors make different contributions to human visual attentions, it

is also learned that considering more touch behaviors usually leads to a better touch

saliency map.

The experimental results demonstrate the proposed touch saliency learning

approach can automatically generate a good saliency map from multiple human

touch behaviors. Therefore, our approaches will have wide application potentials

48
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where eye tracking is utilized.

In the future, further improvement of the touch saliency performance may be

done by applying different learning algorithms such as classification algorithms.

Meanwhile, we believe that conducting extensive usability study such as

personalized image saliency learning is also promising.
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