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EXISTENCE OF VIABLE SOLUTIONS FOR NONCONVEX
DIFFERENTIAL INCLUSIONS

MESSAOUD BOUNKHEL, TAHAR HADDAD

ABSTRACT. We show the existence result of viable solutions to the differential
inclusion
i(t) € G(z(t)) + F(t,2(t))
z(t) €S on [0,T],
where F' : [0,T] x H — H (T > 0) is a continuous set-valued mapping,
G : H — H is a Hausdorff upper semi-continuous set-valued mapping such

that G(z) C 9g(x), where g : H — R is a regular and locally Lipschitz function
and S is a ball, compact subset in a separable Hilbert space H.

1. INTRODUCTION
Let T > 0. It is well known that the solution set of the differential inclusion
z(t) € G(x(t)) ae. [0,7T)
z(0) = xp € RY,

can be empty when the set-valued mapping G is upper semicontinuous with non-
empty nonconvex values. Bressan, Cellina and Colombo [§], proved an existence
result fo the above equation by assuming that the set-valued mapping G is included
in the subdifferential of a convex lower semicontinuous (l.s.c.) function g : R? — R.
This result has been extended in many ways by many authors; see for example
[T, 2, Bl 4], 11, 12| 13]. The recent extension of the above equation was studied by
Bounkhel [4], in which the author proved an existence result of viable solutions in
the finite dimensional case for the differential inclusion

z(t) € G(z(t)) + F(t,z(t)) ae. [0,T]

z(t) e S, on[0,T]. (1.1)

This extension covers all the other extensions given in the finite dimensional case.
In the present paper we extend this result to the infinite dimensional setting. A
function z(-) is called a viable solution if it satisfies the differential inclusion and
x(t) € S for all t € [0,T] and for some closed set S.
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2. UNIFORMLY REGULAR FUNCTIONS

Let H be a real separable Hilbert space. Let us recall the concept of regularity
that will be used in the sequel [4].

Definition 2.1 ([4]). Let f : H — RU{4o0} be al.s.c. function and let O C dom f
be a nonempty open subset. We will say that f is uniformly regular over O if there
exists a positive number 3 > 0 such that for all x € O and for all £ € 97 f(x) one
has

(€2 —x) < f(z') = f(x) + B||lz" —z||* for all 2’ € O. (2.1)

Here 9% f(x) denotes the proximal subdifferential of f at z (for its definition the
reader is refereed for instance to [6]). We will say that f is uniformly regular over
closed set S if there exists an open set O containing S such that f is uniformly
regular over O. The class of functions that are uniformly regular over sets is so
large. For more details and examples we refer the reader to [4]. The following
proposition summarizes some important properties for uniformly regular locally
Lipschitz functions over sets needed in the sequel. For the proof of these results we
refer the reader to [4] [].

Porposition 2.2. Let f : H — R be a locally Lipschitz function and S a nonempty
closed set. If f is uniformly reqular over S, then the following hold:
(i) The proximal subdifferential of f is closed over S, that is, for every x, —
x € S withz, € S and every &, — € with &, € 9F f(x,,) one has & € OF f(x)
(ii) The prozimal subdifferential of f coincides with O f(x) the Clarke subdif-
ferential for any point x (see for instance [6] for the definition of 0€ f)
(iii) The proximal subdifferential of f is upper hemicontinuous over S, that is,
the support function x — (v,0F f(x)) is u.s.c. over S for everyv € H
(iv) For any absolutely continuous map x : [0,T] — S one has

d .
s (foa)(t) = (0 f(a(t)); (1))
Now we are in position to state and prove our main result in this paper.
Theorem 2.3. Let g : H — R be a locally Lipschitz function and (-uniformly
reqular over S C H. Assume that

(i) S is nonempty ball compact subset in H, that is, the set S NrB is compact
for any r > 0;
(i) G : H — H is a Hausdorff u.s.c set valued map with compact values satis-
fying G(x) C 9%g(x) for all x € S;
(iii) F:[0,T) x H— H is a continuous set valued map with compact values;
(iv) For any (t,x) € I x S, the following tangential condition holds

N
hzn_}gf Ee(x + h[G(z) + F(t,z)];S) =0, (2.2)

where e(A; S) 1= sup,c 4 ds(a).
Then, for any xg € S there exists a €]0,T[ such that the differential inclusion
has a viable solution on [0,a.
Proof. Let p > 0 such that Ky := SN (xg 4+ pB) is compact and g is L-Lipschitz
on g + pB. Since F and G are continuous and the set I x K is compact, there
exists a positive scalar M such that

|G @)+ [ F ()| < M, (2.3)
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for all (¢t,x) € I x K. Since (tg,z0) € I x Ky, then (by (2.2))
lim inf Ee(xo + h[G(zo) + F(to, z0)]; S) =0.

h—0

Put o := min{T 1}. Hence for every m > 1 there exists 0 < { < § such that

e(0 +€(G(a0) + Flto,20)): ) < % (2.4)

7M+17

Let by € G(z0) + F(to, o) and put
Ag' :=max {¢ € (0, %] 1€ <T —tp and dg(zg + Ebg) < %}
Since o € S, we have
ds(zo + AJ'bo) < MY |boll < A'M < M.
So, there exists Uf* € SN B(xg + A\j*bo, M + 1) such that
IWG" — 20 — Ag*boll = ds (w0 + AG'bo),

and so
1 1
||*[‘I’m wo] — bol = Fds(xo + Ag'bo) < —
0
by 1) and the definition of \J'. Let wf" := %67‘% and 27" := xo + \J'wi* € S.

Thus, we obtain

1
w6” S G(.’,Eo) —+ F(to,xo) —+ 7B7

m 2.5)
1 (2.
127" = woll = Ag"[[wg® [l < Ag"(M + —) < AG"(M +1).

We can choose, a priori, a < o and find A\J* < a such that 0 < A\J* < a <T. Then
|z —=xo|| < p, that is, " € (zo+pB) and so ensures 21" € SN(zo+pB) = K.
We reiterate this process for constructing sequences {w(™};, {t7"}i, {A"}i, and
{z"}; satistying for some rank v, > 1 the following assertions:

(a) 0=t t" <a<T with /" =3, A\ for all i € {1,...,v};

(b) z* —xo—&—zll)\mwk and(l, ) € [OT}XKOforallze{O JUm

(c) w* € G(z*)+ F(t", 2") + L B with w} “PA and\Iﬂ”GSﬂ]B%(x +
A M+ 1) for all i € {0,..., v, — 1}, where'

A™ = max{¢ € (0, %] €< T —t™ and dg(al + &b;) < Eg}(w =1, v, — 1)

It is easy to see that for i = 1 the assertions (a), (b), and (c) are fulfilled. Let now
i > 2. Assume that (a), (b), and (c) are satisfied for any j =1,...,4. If, a <]},
then we take v,,, =7 and so the process of iterations is stopped and we get (a), (b),
and (c) satisfied with

ty, <a<ty . <T.

In the other case, i.e., t} | < a, we define xj}, as follows

7
iy =)t N Wt =z + E Apwy!
k=0
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and so

[z —xoll < D Alwi [l < (M +1) p A <t (M +1) <a(M+1) <p,
k=0 k=0
which ensures that 27}, € Ky. Thus the conditions (a), (b), and (c) are satisfied
for i+ 1. Now we have to prove that this iterative process is finite, i.e., there exists
a positive integer v, such that

S a <
Suppose the contrary that is,
t* <a, foralli>1.

Then the bounded increasing sequence {¢*}; converges to some ¢ such that t < a <
T. Hence

g — a7l < (M A+ 1) = 7] =0 asi,j — oo,
Therefore, the sequence {xz;}; is a Cauchy sequence and hence, it converges to some
T € Ko. As (1,T) € [0,T] x Ky, by and the Hausdorff upper semi-continuity
of G+ F, there exist A € (0,7 —t), and an integer ig > 1 such that for all i > i,

_ _ - _ A
e(ac +A[G@) + F(,7)] ;S) <= (2.6)
_ 1
m mo.my. (F 7)) < — )
e(Gap) + Pt 21"): G() + F(E.3)) < 1 (2.7)
A
m_zl < — 2.8
ot 7 < 2 (2.9
_ A
t—th < Z. 2.
<) (29)
Therefore, for any b; € G(xf") + F/(t*,z]"), there exists (by the definition of the
distance function) an element b in G(Z) + F'(¢,T) such that
_ _ 1
[b; — bl < d(bi, G(T) + F(t,7)) + Tom:
Hence this inequality and (2.7) yield
_ _ 1 1
- < m moemy- (7 T — < —.
b =Bl < e(Glai) + Pt 2} G@) + FET)) + 5 < o

This last inequality and the relations (2.6)) and (2.8]) ensure

ds (@i + Ab;) < |27 = || + ds(T + Ab) + Al|b; — ||
A . A A
<> ez 7) + F(I,7)] ; ) A< 2
<om —|—e(m+/\ [G(T)+ F(t,7)];5) + o = om
On the other hand, by construction and by (2.9)), we obtain
ti, <t <t + A< T, and hence X > t{} | —ti" = A\J".

Thus, there exists some A > A such that 0 < A\ < T —t < T — ¢ (for all i > i)
and dg(z" 4+ Ab;) < 7= < 2. This contradicts the definition of A". Therefore,
there is an integer v, > 1 such that ¢, , < a <t,,_,+1 and for which the assertions

(a), (b), and (c) are fulfilled.
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According to what precedes, we have (by (c))
< [N = (23 + A0+ 7™ + A0
S (M +1) + [lwo — (w0 — 23") + Ab}"|
< ol + [lwo — i [| + A7 (10" | + (M + 1)
< l@ol| +p +2M + 1.
This implies ¥ € K := SNB(0, R), with R := ||zo|| + p+ 2M + 1. Note that the

ball-compactness of S ensures the compactness of K;.
On the other hand, it follows from the assertion (c) that

1
wi® — f"— " € G(z"), where ¢ € —B and f" € F(t]",x"), (2.10)
m
foralli € {0,...,um}.

Approximate Solutions. Using the sequences {zI"};, {t/"}i, {f7"}i, and {"};
constructed previously to construct the step functions @, (+), fm(+), ¢m(+), and 6,,(+)
with the following properties:

(1) xm(t) = a4+ (t — t7")wi® on [t;*, t71,] for all i € {0,..., v };

(2) fm(t) = fm(Om(t)) € F(Om(t), 2 (0m (t))) on [0, a] with

ty =t if t € [t7", ¢}, forallie{0,...,vm}, Omla) =a;

m

(
(3) em(t) =cm e LBift e [t 7], for all i € {0,...,v,} and
lim sup |len(t)] =0. (2.11)

M= ¢e0,a
Then

[€m (1) = 2m @) = (50 — 6w < (L+ M)(¢5, - 6),

and so, for all 4,5 € {0,...,vm,m — 1}(i > j), we have

7
2 (67 = 2m @ <D Nem(tE) = ()]
k=j+1
;

S(MA+1) Y (0 —ty) = (M + )" — 7.

k=j+1
Also, we have by construction for a.e. ¢ € [tj*,#]},] and for all i € {0,..., v}
lm(®)l = "] < M +1. (2.12)

Convergence of approximate solutions. We note that the sequence f,, can
be constructed with the relative compactness property in the space of bounded
functions (see [I3]). Therefore, without loss of generality we can suppose that
there is a bounded function f such that

lim sup ||fm(t) — £(£)] = 0. (2.13)

M= te10.a]

Now, we prove that the approximate solutions z,,(.) converge to a viable solution

of .
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It is clear by construction that {x,,}, are Lipschitz continuous with constant
M +1 and
t—tm

om(t) = 27" + (=t )wi" = 27" + (=) (0" = 27).
On the other hand, we have 0 <t — " < tiy —t7" = A" and so 0 < t;f,‘n <1,
and hence we get '
()W = 27") € ol {0} U (K — Ko)]. (2.14)
Thus,
T (t) € K := Ko+ @0o[{0} U (K; — Kj)). (2.15)

Therefore, since the set K is compact ( because Ky and K; are compact), then
the assumptions of the Arzela-Ascoli theorem are satisfied. Hence a subsequence of
Zn, my be extracted (still denoted x,,) that converges to an absolutely continuous
mapping « : [0,a] — H such that

lim max ||z, (t) —x(#)||=0
m—rectel0,al (2.16)

@ () = @(.) in the weak topology of L*([0,a], H).
Recall now that f,, converges pointwise a.e. on [0,a] to f. Then the continuity

of the set-valued mapping F and the closedness of the set F(¢,z(t)) entail f(t) €
F(t,z(t)). Now, it remains to prove that

z(t) € S;
—f(t)+2'(t) € G(z(t)) ae. on [0,a].
By construction we have z* € Ky (for all i € {0,...,v,, — 1}). This ensures
1+ M

(2.17)

dio (2(1)) < [lwm () — || + lzm (t) — z(B)]] < +l|zm (8) = 2(0)]]

which approaches 0 as m approaches co. The closedness of K yields dg, (z(t)) =0
and so z(t) € Ko C S.
By construction, we have for a.e. t € [0, d]

Fm(t) = fm(t) = em(t) € G(@m(Om (1)) C O%g(xm (O (1)) = O g(2m (Om (1)),
(2.18)
where the above equality follows from the uniform regularity of g over C and the
part (i) in Proposition We can thus apply Castaing techniques (see for example
[9]). The weak convergence (by (2.16))) in L2([0, a], H) of iy, (+) to i@(-) and Mazur’s

Lemma entail

i(t) € n@{xk(t) : k>m}, forae. on [0,a].
Fix any such ¢t and consider any & € H. Then, the last relation above yields
(& (1)) < inf sup (& @m (1))
m k>m

and hence Proposition part (iii) and yield
(€, 4(1)) < limsup o(€,07g(@m (O (1)) + fin (8) + cm (1))
< 06,07 g(x(t)) + (1) for any € € T,
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So, the convexity and the closedness of the set 9¥g(z(t)) ensure
—f(t) +i(t) € 97 g(a(1)).
Now, since g is uniformly regular over C' and z : [0,a] — C we have

g ox)(t) = (0P gla(t)). i(t)

dt )
= (=f(t) + (1), 2(1))
= l&@®)I* = (f(t), &(1)).

Consequently,

o(ea)) - g(an) = | i) Pds — [ (7). () ds

a
0

(2.19)

(2.20)

On the other hand, by (2.18)) and Definition [2.1 we have for all i € {0,...v,, — 1}

g(@i11) — (@) = (Fm(t) = £ = " ity — a") = Bllafyy — o

e

i

= () — funlt) — ", / b (5)ds) — Bl — a2

m

> / " e (o)2ds - /jl@m(s),fm(s»ds

m
i i

m
k3

e / T d(s)ds) — B(M + 12(Em, — )2

T i
> [ fanoas - L o) meas

m
i

¢ Mo 102
@ [ i(s)ds) — P I m

m m

By adding, we obtain

m m
Vm

G(Em(t)) — glzo) > / " () |2ds — / Fon(5), o (5)) s — €1.m

with

sl M + 1)
E1m = Z <cim,/ i (s)ds) + BM +1)°t7,
i=0 2 m
and
g(Em(@) — g((E7 ) > / 1 (3)]2ds — / (o (), fon(5)) ds — €2.m
tm tm
with
a M 1 2 _tm
S / i(s)ds) + P )m(a ).
tTYI

Therefore, we get

9(@m(a)) = g((x0)) = %}a ||3'3m(8)||2ds—/0 (fm(5); &m(s))ds — em

(2.21)

(2.22)

(2.23)
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where
Vm—1 t;",j»l a ﬁa(M—i— 1)2
Em = E1.m + E2,m = Z (czm,/ x(s)ds) + <c,’,”,/ &(s)ds) + ———.
i=0 t" i m
Using our construction we get
= i ‘ B(M +1)%a
nl < 3 Pl [ Naollds + B [ o) as + X
i=0 i o
Vm—1
oL 1 1 B(M +1)2%a
< —(tn, =t (M +1 —(a—t7" Y (M +1 _—
< ; —(H — )M+ )+ —(a =t (M +1) +
Vm—1
(M 4+1) B(M +1)%a
- T[ ZZZ; (i —t;n)—i—(a—tgfn)] +T

M+1 M +1)2
:( +)a+ﬂ( +)aﬂ0 as m — oo.
m m

‘We have also
lim

) (s = [ (7069, (5.
Taking the limit superior in (2.23)) when m — oo we obtain

ole@)) = gla) = timsup [ () Pds [ (o) alNds. (221)

This inequality compared with (2.20)) yields

[ ) 12as = timsup [ i 5) s,
0 m 0
that is,

141172 ([0.a).2) = lim;up 1m 172 0,0, 1) (2.25)
On the other hand the weak [.s.c of the norm ensures

14012 (0,00, 1) < lim inf 14 1Z.2 (0,01, 1)
Consequently, we get

1211 2 (0,a), 1) = T |2 | L2 (0.0, 1) -

Hence there exists a subsequence of {#,,}, (still denoted {Z,,}, ) converges poit-
wisely a.e on [0.a] to %.

Since
(@m (1), &m(t) = fin(t) — cm(t)) € gphG,  a.e. on [0.a],
and as G has a closed graph, we obtain
(x(t),z(t) — f(t)) € gphG a.e. on [0.a],
and so
x(t) € G(x(t)) + F(t,z(t)) a.e. on [0.q]
The proof is complete. |
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Remark 2.4. An inspection of the proof of Theorem [2.3|shows that the uniformity
of the constant 3 was needed only over the set Ky and so it was not necessary over
all the set S. Indeed, it suffices to take the uniform regularity of g locally over S,
that is, for every point € S there exist § > 0 and a neighborhood V' of zy such
that g is uniformly regular over SN V.

We conclude the paper with two corollaries of our main result in Theorem [2.3

Corolloray 2.5. Let K C H be a nonempty uniformly proz-reqular closed subset
of a finite dimensional space H and F : [0,T] x H — H be a continuous set-valued
mapping with compact values. Then, for any xo € K there exists a €]0,T[ such
that the following differential inclusion

i(t) € —0%dg(x(t)) + F(t,x(t)) a.e. on [0,a]
z(0) =z € K,
has at least one absolutely continuous solution on [0, a).

Proof. In [7, Theorem 3.4] (see also [4, theorem 4.1]) it is shown that the function
g := dy is uniformly regular over K and so it is uniformly regular over some
neighborhood V' of g € K. Thus, by Remark we apply Theorem with
S = H (hence the tangential condition is satisfied), Ko := VNS =V, and the
set-valued mapping G := 0%dx which satisfies the hypothesis of Theorem O

Our second corollary concerns the following differential inclusion
i(t) € —NY(S;x(t)) + F(t,z(t)) ae.

(2.26)
z(t) €S, foralltand z(0) =z € S.

This type of differential inclusion has been introduced in [10] for studying some
economic problems.

Corolloray 2.6. Let H be a separable Hilbert space. Assume that

(1) F:[0,T)xH — H is a continuous set-valued mapping with compact values;
(2) S is a nonempty uniformly prox-reqular closed subset in H;
(3) For any (t,x) € I x S the tangential condition

. —1 C . —
hr}rllﬁ)nfh e(z+n(8%ds(z) + F(t,2)); S) =0,

for any (t,z) € I x S holds.

Then, for any xo € S, there exists a €]0,T[ such that the differential inclusion
(2.26]) has at lease one absolutely continuous solution on [0,al.

Acknowledgement. The authors would like to thank the anonymous referee for
his careful reading of the paper and for his pertinent suggestions and remarks.
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