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EXISTENCE OF VIABLE SOLUTIONS FOR NONCONVEX
DIFFERENTIAL INCLUSIONS

MESSAOUD BOUNKHEL, TAHAR HADDAD

Abstract. We show the existence result of viable solutions to the differential

inclusion

ẋ(t) ∈ G(x(t)) + F (t, x(t))

x(t) ∈ S on [0, T ],

where F : [0, T ] × H → H (T > 0) is a continuous set-valued mapping,

G : H → H is a Hausdorff upper semi-continuous set-valued mapping such

that G(x) ⊂ ∂g(x), where g : H → R is a regular and locally Lipschitz function
and S is a ball, compact subset in a separable Hilbert space H.

1. Introduction

Let T > 0. It is well known that the solution set of the differential inclusion

ẋ(t) ∈ G(x(t)) a.e. [0, T ]

x(0) = x0 ∈ Rd,

can be empty when the set-valued mapping G is upper semicontinuous with non-
empty nonconvex values. Bressan, Cellina and Colombo [8], proved an existence
result fo the above equation by assuming that the set-valued mapping G is included
in the subdifferential of a convex lower semicontinuous (l.s.c.) function g : Rd → R.
This result has been extended in many ways by many authors; see for example
[1, 2, 3, 4, 11, 12, 13]. The recent extension of the above equation was studied by
Bounkhel [4], in which the author proved an existence result of viable solutions in
the finite dimensional case for the differential inclusion

ẋ(t) ∈ G(x(t)) + F (t, x(t)) a.e. [0, T ]

x(t) ∈ S, on [0, T ].
(1.1)

This extension covers all the other extensions given in the finite dimensional case.
In the present paper we extend this result to the infinite dimensional setting. A
function x(·) is called a viable solution if it satisfies the differential inclusion and
x(t) ∈ S for all t ∈ [0, T ] and for some closed set S.
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2. Uniformly regular functions

Let H be a real separable Hilbert space. Let us recall the concept of regularity
that will be used in the sequel [4].

Definition 2.1 ([4]). Let f : H → R∪{+∞} be a l.s.c. function and let O ⊂ dom f
be a nonempty open subset. We will say that f is uniformly regular over O if there
exists a positive number β ≥ 0 such that for all x ∈ O and for all ξ ∈ ∂P f(x) one
has

〈ξ, x′ − x〉 ≤ f(x′)− f(x) + β‖x′ − x‖2 for all x′ ∈ O. (2.1)

Here ∂P f(x) denotes the proximal subdifferential of f at x (for its definition the
reader is refereed for instance to [6]). We will say that f is uniformly regular over
closed set S if there exists an open set O containing S such that f is uniformly
regular over O. The class of functions that are uniformly regular over sets is so
large. For more details and examples we refer the reader to [4]. The following
proposition summarizes some important properties for uniformly regular locally
Lipschitz functions over sets needed in the sequel. For the proof of these results we
refer the reader to [4, 5].

Porposition 2.2. Let f : H → R be a locally Lipschitz function and S a nonempty
closed set. If f is uniformly regular over S, then the following hold:

(i) The proximal subdifferential of f is closed over S, that is, for every xn →
x ∈ S with xn ∈ S and every ξn → ξ with ξn ∈ ∂P f(xn) one has ξ ∈ ∂P f(x)

(ii) The proximal subdifferential of f coincides with ∂Cf(x) the Clarke subdif-
ferential for any point x (see for instance [6] for the definition of ∂Cf)

(iii) The proximal subdifferential of f is upper hemicontinuous over S, that is,
the support function x 7→ 〈v, ∂P f(x)〉 is u.s.c. over S for every v ∈ H

(iv) For any absolutely continuous map x : [0, T ] → S one has
d

dt
(f ◦ x)(t) = 〈∂Cf(x(t)); ẋ(t)〉.

Now we are in position to state and prove our main result in this paper.

Theorem 2.3. Let g : H → R be a locally Lipschitz function and β-uniformly
regular over S ⊂ H. Assume that

(i) S is nonempty ball compact subset in H, that is, the set S ∩ rB is compact
for any r > 0;

(ii) G : H → H is a Hausdorff u.s.c set valued map with compact values satis-
fying G(x) ⊂ ∂Cg(x) for all x ∈ S;

(iii) F : [0, T ]×H → H is a continuous set valued map with compact values;
(iv) For any (t, x) ∈ I × S, the following tangential condition holds

lim inf
h→0

1
h

e
(
x + h [G(x) + F (t, x)] ; S

)
= 0 , (2.2)

where e(A;S) := supa∈A dS(a).
Then, for any x0 ∈ S there exists a ∈]0, T [ such that the differential inclusion (2.26)
has a viable solution on [0, a].

Proof. Let ρ > 0 such that K0 := S ∩ (x0 + ρB) is compact and g is L-Lipschitz
on x0 + ρB. Since F and G are continuous and the set I × K0 is compact, there
exists a positive scalar M such that

‖G(x)‖+ ‖F (t, x)‖ ≤ M, (2.3)
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for all (t, x) ∈ I ×K0. Since (t0, x0) ∈ I ×K0, then (by (2.2))

lim inf
h→0

1
h

e
(
x0 + h

[
G(x0) + F (t0, x0)

]
;S

)
= 0.

Put α := min{T, ρ
M+1 , 1}. Hence for every m ≥ 1 there exists 0 < ξ < α

2 such that

e
(
x0 + ξ [G(x0) + F (t0, x0)] ; S

)
<

ξ

m
. (2.4)

Let b0 ∈ G(x0) + F (t0, x0) and put

λm
0 := max

{
ξ ∈ (0,

α

2
] : ξ ≤ T − t0 and dS(x0 + ξb0) <

ξ

m

}
.

Since x0 ∈ S, we have

dS(x0 + λm
0 b0) ≤ λm

0 ‖b0‖ ≤ λm
0 M < M.

So, there exists Ψm
0 ∈ S ∩ B(x0 + λm

0 b0,M + 1) such that

‖Ψm
0 − x0 − λm

0 b0‖ = dS(x0 + λm
0 b0),

and so

‖ 1
λm

0

[Ψm
0 − x0]− b0‖ =

1
λm

0

dS(x0 + λm
0 b0) <

1
m

by (2.4) and the definition of λm
0 . Let wm

0 := Ψm
0 −x0
λm

0
and xm

1 := x0 + λm
0 wm

0 ∈ S.
Thus, we obtain

wm
0 ∈ G(x0) + F (t0, x0) +

1
m

B,

‖xm
1 − x0‖ = λm

0 ‖wm
0 ‖ < λm

0 (M +
1
m

) < λm
0 (M + 1).

(2.5)

We can choose, a priori, a < α and find λm
0 < a such that 0 < λm

0 < a < T . Then
‖xm

1 −x0‖ < ρ, that is, xm
1 ∈ (x0+ρB) and so (2.5) ensures xm

1 ∈ S∩(x0+ρB) = K0.
We reiterate this process for constructing sequences {wm

i }i, {tmi }i, {λm
i }i, and

{xm
i }i satisfying for some rank νm ≥ 1 the following assertions:

(a) 0 = tm0 , tmνm
≤ a < T with tmi =

∑i−1
k=0 λm

k for all i ∈ {1, . . . , νm};
(b) xm

i = x0 +
∑i−1

k=0 λm
k wm

k and (tmi , xm
i ) ∈ [0, T ]×K0 for all i ∈ {0, . . . , νm};

(c) wm
i ∈ G(xm

i )+F (tmi , xm
i )+ 1

mB with wm
i = Ψm

i −xm
i

λm
i

and Ψm
i ∈ S ∩B(xm

i +
λm

i bm
i ,M + 1) for all i ∈ {0, . . . , νm − 1}, where

λm
i := max{ξ ∈ (0,

α

2
] : ξ ≤ T − tmi and dS(xm

i + ξbi) <
1
m

ξ}(∀ i = 1, . . . , νm − 1).

It is easy to see that for i = 1 the assertions (a), (b), and (c) are fulfilled. Let now
i ≥ 2. Assume that (a), (b), and (c) are satisfied for any j = 1, . . . , i. If, a < tmi+1,
then we take νm = i and so the process of iterations is stopped and we get (a), (b),
and (c) satisfied with

tmνm
≤ a < tmνm+1 < T.

In the other case, i.e., tmi+1 ≤ a, we define xm
i+1 as follows

xm
i+1 := xm

i + λm
i wm

i = x0 +
i∑

k=0

λm
k wm

k
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and so

‖xm
i+1 − x0‖ ≤

i∑
k=0

λm
k ‖wm

k ‖ ≤ (M + 1)
i∑

k=0

λm
k ≤ tmi+1(M + 1) ≤ a(M + 1) < ρ,

which ensures that xm
i+1 ∈ K0. Thus the conditions (a), (b), and (c) are satisfied

for i+1. Now we have to prove that this iterative process is finite, i.e., there exists
a positive integer νm such that

tmνm
≤ a < tmνm+1.

Suppose the contrary that is,

tmi ≤ a, for all i ≥ 1.

Then the bounded increasing sequence {tmi }i converges to some t̄ such that t̄ ≤ a <
T . Hence

‖xm
i − xm

j ‖ ≤ (M + 1)|tmi − tmj | → 0 as i, j →∞.

Therefore, the sequence {xi}i is a Cauchy sequence and hence, it converges to some
x̄ ∈ K0. As (t, x) ∈ [0, T ] ×K0, by (2.2) and the Hausdorff upper semi-continuity
of G + F , there exist λ ∈ (0, T − t), and an integer i0 ≥ 1 such that for all i ≥ i0,

e
(
x + λ

[
G(x) + F (t, x)

]
;S

)
≤ λ

6m
(2.6)

e
(
G(xm

i ) + F (tmi , xm
i );G(x) + F (t, x)

)
≤ 1

12m
(2.7)

‖xm
i − x‖ ≤ λ

6m
(2.8)

t̄− tmi ≤ λ

2
. (2.9)

Therefore, for any bi ∈ G(xm
i ) + F (tmi , xm

i ), there exists (by the definition of the
distance function) an element b̄ in G(x) + F (t, x) such that

‖bi − b̄‖ ≤ d(bi, G(x) + F (t, x)) +
1

12m
.

Hence this inequality and (2.7) yield

‖bi − b̄‖ ≤ e
(
G(xm

i ) + F (tmi , xm
i );G(x) + F (t, x)

)
+

1
12m

≤ 1
6m

.

This last inequality and the relations (2.6) and (2.8) ensure

dS(xm
i + λbi) ≤ ‖xm

i − x‖+ dS(x + λb̄) + λ‖bi − b̄‖

≤ λ

6m
+ e

(
x + λ

[
G(x) + F (t, x)

]
;S

)
+

λ

6m
≤ λ

2m
.

On the other hand, by construction and by (2.9), we obtain

tmi+1 ≤ t < tmi + λ ≤ T, and hence λ > tmi+1 − tmi = λm
i .

Thus, there exists some λ > λm
i such that 0 < λ < T − t̄ ≤ T − tmi (for all i ≥ i0)

and dS(xm
i + λbi) ≤ λ

2m < λ
m . This contradicts the definition of λm

i . Therefore,
there is an integer νm ≥ 1 such that tνm ≤ a < tνm+1 and for which the assertions
(a), (b), and (c) are fulfilled.
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According to what precedes, we have (by (c))

‖Ψm
i ‖ ≤ ‖Ψm

i − (xm
i + λm

i bm
i )‖+ ‖xm

i + λm
i bm

i ‖
≤ (M + 1) + ‖x0 − (x0 − xm

i ) + λm
i bm

i ‖
≤ ‖x0‖+ ‖x0 − xm

i ‖+ λm
i ‖bm

i ‖+ (M + 1)

≤ ‖x0‖+ ρ + 2M + 1.

This implies Ψm
i ∈ K1 := S ∩B(0, R), with R := ‖x0‖+ ρ + 2M + 1. Note that the

ball-compactness of S ensures the compactness of K1.
On the other hand, it follows from the assertion (c) that

wm
i − fm

i − cm
i ∈ G(xm

i ), where cm
i ∈ 1

m
B and fm

i ∈ F (tmi , xm
i ), (2.10)

for all i ∈ {0, . . . , νm}.

Approximate Solutions. Using the sequences {xm
i }i, {tmi }i, {fm

i }i, and {cm
i }i

constructed previously to construct the step functions xm(·), fm(·), cm(·), and θm(·)
with the following properties:

(1) xm(t) = xm
i + (t− tmi )wm

i on [tmi , tmi+1] for all i ∈ {0, . . . , νm};
(2) fm(t) = fm(θm(t)) ∈ F (θm(t), xm(θm(t))) on [0, a] with

θm(t) = tmi if t ∈ [tmi , tmi+1[, for all i ∈ {0, . . . , νm}, θm(a) = a;

(3) cm(t) = cm
i ∈ 1

mB if t ∈ [tmi , tmi+1], for all i ∈ {0, . . . , νm} and

lim
m→∞

sup
t∈[0,a]

‖cm(t)‖ = 0. (2.11)

Then

‖xm(tmi+1)− xm(tmi )‖ = (tmi+1 − tmi )‖wm
i ‖ ≤ (1 + M)(tmi+1 − tmi ),

and so, for all i, j ∈ {0, . . . , νm − 1}(i > j), we have

‖xm(tmi )− xm(tmj )‖ ≤
i∑

k=j+1

‖xm(tmk )− xm(tmk−1)‖

≤ (M + 1)
i∑

k=j+1

(tmk − tmk−1) = (M + 1)|tmi − tmj |.

Also, we have by construction for a.e. t ∈ [tmi , tmi+1] and for all i ∈ {0, . . . , νm}

‖ẋm(t)‖ = ‖wm
i ‖ ≤ M + 1. (2.12)

Convergence of approximate solutions. We note that the sequence fm can
be constructed with the relative compactness property in the space of bounded
functions (see [13]). Therefore, without loss of generality we can suppose that
there is a bounded function f such that

lim
m→∞

sup
t∈[0,a]

‖fm(t)− f(t)‖ = 0 . (2.13)

Now, we prove that the approximate solutions xm(.) converge to a viable solution
of (1.1).
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It is clear by construction that {xm}m are Lipschitz continuous with constant
M + 1 and

xm(t) = xm
i + (t− tmi )wm

i = xm
i + (

t− tmi
λm

i

)(Ψm
i − xm

i ).

On the other hand, we have 0 ≤ t − tmi ≤ tmi+1 − tmi = λm
i and so 0 ≤ t−tm

i

λm
i

≤ 1,
and hence we get

(
t− tmi

λm
i

)(Ψm
i − xm

i ) ∈ co[{0} ∪ (K1 −K0)]. (2.14)

Thus,
xm(t) ∈ K := K0 + co[{0} ∪ (K1 −K0)]. (2.15)

Therefore, since the set K is compact ( because K0 and K1 are compact), then
the assumptions of the Arzela-Ascoli theorem are satisfied. Hence a subsequence of
xm my be extracted (still denoted xm) that converges to an absolutely continuous
mapping x : [0, a] → H such that

lim
m→∞

max
t∈[0,a]

‖xm(t)− x(t)‖ = 0

ẋm(.) ⇀ ẋ(.) in the weak topology of L2([0, a],H).
(2.16)

Recall now that fm converges pointwise a.e. on [0, a] to f . Then the continuity
of the set-valued mapping F and the closedness of the set F (t, x(t)) entail f(t) ∈
F (t, x(t)). Now, it remains to prove that

x(t) ∈ S;

−f(t) + x′(t) ∈ G(x(t)) a.e. on [0, a].
(2.17)

By construction we have xm
i ∈ K0 (for all i ∈ {0, . . . , νm − 1}). This ensures

dK0(x(t)) ≤ ‖xm(t)− xm
i ‖+ ‖xm(t)− x(t)‖ ≤ 1 + M

m
+ ‖xm(t)− x(t)‖

which approaches 0 as m approaches ∞. The closedness of K0 yields dK0(x(t)) = 0
and so x(t) ∈ K0 ⊂ S.

By construction, we have for a.e. t ∈ [0, a]

ẋm(t)− fm(t)− cm(t) ∈ G(xm(θm(t))) ⊂ ∂Cg(xm(θm(t))) = ∂P g(xm(θm(t))),
(2.18)

where the above equality follows from the uniform regularity of g over C and the
part (ii) in Proposition 2.2. We can thus apply Castaing techniques (see for example
[9]). The weak convergence (by (2.16)) in L2([0, a],H) of ẋm(·) to ẋ(·) and Mazur’s
Lemma entail

ẋ(t) ∈
⋂
m

co{ẋk(t) : k ≥ m}, for a.e. on [0, a].

Fix any such t and consider any ξ ∈ H. Then, the last relation above yields〈
ξ, ẋ(t)

〉
≤ inf

m
sup
k≥m

〈
ξ, ẋm(t)

〉
and hence Proposition 2.2 part (iii) and (2.18) yield

〈ξ, ẋ(t)〉 ≤ lim
m

supσ(ξ, ∂P g(xm(θm(t))) + fm(t) + cm(t))

≤ σ(ξ, ∂P g(x(t)) + f(t)) for any ξ ∈ H,
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So, the convexity and the closedness of the set ∂P g(x(t)) ensure

−f(t) + ẋ(t) ∈ ∂P g(x(t)). (2.19)

Now, since g is uniformly regular over C and x : [0, a] → C we have

d

dt
(g ◦ x)(t) = 〈∂P g(x(t)), ẋ(t)〉

= 〈−f(t) + ẋ(t), ẋ(t)〉
= ‖ẋ(t)‖2 − 〈f(t), ẋ(t)〉.

Consequently,

g(x(a))− g(x0) =
∫ a

0

‖ẋ(s)‖2ds−
∫ a

0

〈f(s), ẋ(s)〉 ds (2.20)

On the other hand, by (2.18) and Definition 2.1 we have for all i ∈ {0, . . . νm − 1}

g(xm
i+1)− g(xm

i ) ≥ 〈ẋm(t)− fm
i − cm

i , xm
i+1 − xm

i 〉 − β‖xm
i+1 − xm

i ‖2

=
〈
ẋm(t)− fm(t)− cm

i ,

∫ tm
i+1

tm
i

ẋm(s)ds
〉
− β‖xm

i+1 − xm
i ‖2

≥
∫ tm

i+1

tm
i

‖ẋm(s)‖2ds−
∫ tm

i+1

tm
i

〈ẋm(s), fm(s)〉ds

− 〈cm
i ,

∫ tm
i+1

tm
i

ẋm(s)ds〉 − β(M + 1)2(tmi+1 − tmi )2

≥
∫ tm

i+1

tm
i

‖ẋm(s)‖2ds−
∫ tm

i+1

tm
i

〈ẋm(s), fm(s)〉ds

− 〈cm
i ,

∫ tm
i+1

tm
i

ẋm(s)ds〉 − β(M + 1)2

m
(tmi+1 − tmi ).

By adding, we obtain

g(xm(tmνm
))− g(x0) ≥

∫ tm
νm

0

‖ẋm(s)‖2ds−
∫ tm

νm

0

〈fm(s), ẋm(s)〉 ds− ε1,m (2.21)

with

ε1,m =
νm−1∑
i=0

〈cm
i ,

∫ tm
i+1

tm
i

ẋm(s)ds〉+
β(M + 1)2tmνm

m

and

g(xm(a))− g((tmνm
)) ≥

∫ a

tm
νm

‖ẋm(s)‖2ds−
∫ a

tm
νm

〈ẋm(s), fm(s)〉 ds− ε2,m (2.22)

with

ε2,m = 〈cm
νm

,

∫ a

tm
νm

ẋ(s)ds〉+
β(M + 1)2(a− tmνm

)
m

.

Therefore, we get

g(xm(a))− g((x0)) ≥
∫ a

0
‖ẋm(s)‖2ds−

∫ a

0

〈fm(s), ẋm(s)〉ds− εm (2.23)
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where

εm = ε1,m + ε2,m =
νm−1∑
i=0

〈cm
i ,

∫ tm
i+1

tm
i

ẋ(s)ds〉+ 〈cm
νm

,

∫ a

tm
νm

ẋ(s)ds〉+
βa(M + 1)2

m
.

Using our construction we get

|εm| ≤
νm−1∑
i=0

‖cm
i ‖

∫ tm
i+1

tm
i

‖ẋ(s)‖ds + ‖cm
νm
‖

∫ a

tm
νm

‖ẋ(s)‖ds +
β(M + 1)2a

m

≤
νm−1∑
i=0

1
m

(tmi+1 − tmi )(M + 1) +
1
m

(a− tmνm
)(M + 1) +

β(M + 1)2a
m

=
(M + 1)

m

[ νm−1∑
i=0

(tmi+1 − tmi ) + (a− tmνm
)
]
+

β(M + 1)2a
m

=
(M + 1)a

m
+

β(M + 1)2a
m

→ 0 as m →∞.

We have also

lim
m→∞

∫ a

0

〈fm(s), ẋm(s)〉ds =
∫ a

0

〈f(s), ẋ(s)〉ds.

Taking the limit superior in (2.23) when m →∞ we obtain

g(x(a))− g(x0) ≥ lim sup
m

∫ a

0

‖ẋm(s)‖2ds−
∫ a

0

〈f(s), ẋ(s)〉ds. (2.24)

This inequality compared with (2.20) yields∫ a

0

‖ẋ(s)‖2ds ≥ lim sup
m

∫ a

0

‖ẋm(s)‖2ds,

that is,
‖ẋ‖2

L2([0,a],H) ≥ lim sup
m

‖ẋm‖2
L2([0,a],H). (2.25)

On the other hand the weak l.s.c of the norm ensures

‖ẋ‖2
L2([0,a],H) ≤ lim inf

m
‖ẋm‖2

L2([0,a],H)

Consequently, we get

‖ẋ‖L2([0,a],H) = lim
m
‖ẋm‖L2([0,a],H).

Hence there exists a subsequence of {ẋm}m
(still denoted {ẋm}m

) converges poit-
wisely a.e on [0.a] to ẋ.

Since
(xm(t), ẋm(t)− fm(t)− cm(t)) ∈ gphG, a.e. on [0.a],

and as G has a closed graph, we obtain

(x(t), ẋ(t)− f(t)) ∈ gphG a.e. on [0.a],

and so
ẋ(t) ∈ G(x(t)) + F (t, x(t)) a.e. on [0.a]

The proof is complete. �
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Remark 2.4. An inspection of the proof of Theorem 2.3 shows that the uniformity
of the constant β was needed only over the set K0 and so it was not necessary over
all the set S. Indeed, it suffices to take the uniform regularity of g locally over S,
that is, for every point x̄ ∈ S there exist β ≥ 0 and a neighborhood V of x0 such
that g is uniformly regular over S ∩ V .

We conclude the paper with two corollaries of our main result in Theorem 2.3.

Corolloray 2.5. Let K ⊂ H be a nonempty uniformly prox-regular closed subset
of a finite dimensional space H and F : [0, T ]×H → H be a continuous set-valued
mapping with compact values. Then, for any x0 ∈ K there exists a ∈]0, T [ such
that the following differential inclusion

ẋ(t) ∈ −∂CdK(x(t)) + F (t, x(t)) a.e. on [0, a]

x(0) = x0 ∈ K,

has at least one absolutely continuous solution on [0, a].

Proof. In [7, Theorem 3.4] (see also [4, theorem 4.1]) it is shown that the function
g := dK is uniformly regular over K and so it is uniformly regular over some
neighborhood V of x0 ∈ K. Thus, by Remark 2.4, we apply Theorem 2.3 with
S = H (hence the tangential condition (2.2) is satisfied), K0 := V ∩S = V , and the
set-valued mapping G := ∂CdK which satisfies the hypothesis of Theorem 2.3. �

Our second corollary concerns the following differential inclusion

ẋ(t) ∈ −NC(S;x(t)) + F (t, x(t)) a.e.

x(t) ∈ S, for all t and x(0) = x0 ∈ S.
(2.26)

This type of differential inclusion has been introduced in [10] for studying some
economic problems.

Corolloray 2.6. Let H be a separable Hilbert space. Assume that
(1) F : [0, T ]×H → H is a continuous set-valued mapping with compact values;
(2) S is a nonempty uniformly prox-regular closed subset in H;
(3) For any (t, x) ∈ I × S the tangential condition

lim inf
h↓0

h−1e
(
x + h(∂CdS(x) + F (t, x));S

)
= 0,

for any (t, x) ∈ I × S holds.
Then, for any x0 ∈ S, there exists a ∈]0, T [ such that the differential inclusion
(2.26) has at lease one absolutely continuous solution on [0, a].
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