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ABSTRACT 

REPRODUCTNE SEASONS AND LIFE HISTORIES OF THREE TEXAS PERCINA 

(ACTINOPTERYGII) 

By 

Clara E. Folb, B.S. 

Texas State University-San Marcos 

May2010 

SUPERVISING PROFESSOR: TIMOTHY H. BONNER 

Reproductive seasons of fishes in temperate regions are influenced by water 

temperature and, to a lesser extent, photoperiod, corresponding in theory to adaptive 

benefits of producing young during periods of adults and juvenile food availability, times 

of minimal predation of eggs and young, and availability of breeding sites. Often, 

phylogenetic constraints or inertia of reproductive timing obscure contemporary 

environmental influences on reproductive seasonality. In this study, reproductive seasons 

of three closely-related percinid fishes of central Texas were determined by 
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gonadosomatic indices (GSI), ovarian stages, and oocyte diameters to test the effects of 

water temperature, photoperiod, river discharge, and food availability on seasonal and 

aseasonal reproduction. The three percinid species inhabit different stream environments, 

ranging from highly stable spring systems to variable run-off dominated systems. 

Additional life history parameters, such as age of sexual maturity, population structure, 

and age-group growth rates, were quantified to provide basic information for 

conservation efforts. Reproductive seasons ranged from five months in the river darter 

Percina shumardi, which inhabits abiotically variable, run-off dominated reaches of the 

lower Guadalupe River, to nine months in the endemic Guadalupe darter Percina apristis, 

which generally inhabits the abiotically stable reaches of the San Marcos River. 

Regionally endemic Texas logperch Percina carbonaria, which inhabits moderately 

variable systems within Central Texas, had a reproductive season of six months. Pooled 

GSis among all three species were inversely related to water temperature (P = <0.001) 

and photoperiod (P = 0.013). Relationships were not detected between GSis and river 

discharge or adult food availability. Though reproductive seasons and habitats differed 

among the three percinids, reproduction, as measured by presences of mature ovaries, 

ceased at water temperatures near 23 °C. The start of reproductive quiescence at or near 

23°C is reported for Percina throughout their North American distribution, suggesting 

that ancestral condition influences contemporary reproductive seasons versus an 

alternative hypothesis that predicts aseasonal reproduction in abiotically stable systems is 

a derived trait (i.e., spring-adapted). 
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CHAPTERl 

REPRODUCTIVE SEASONS AND LIFE HISTORIES OF THREE TEXAS PERCINA 
(ACTINOPTERYGII) 

INTRODUCTION 

Reproductive seasons of fishes in temperate regions are influenced by water 

temperature and, to lesser extent, photoperiod. These proximate cues correspond in 

theory to adaptive benefits of producing young during periods of adults and juvenile food 

availability, times of minimal predation of eggs and young, and availability of breeding 

sites (de Vlaming 1971, Kramer 1978). Among 699 native (USA) freshwater fishes 

listed in the FISHTRAITS database, 82% of the fishes have limited reproductive seasons 

of 4 months or less, 14 % have protracted spawning seasons (5 to 8 months) and 4% have 

continuous or near continuous reproductive seasons (9-12 months) (Frimpong et al. 

2009). Among freshwater fishes with reproductive seasons from 9 to 12 months (n = 21), 

81 % occur in thermally constant environments or at lower latitudes where the proximate 

cue of water temperature is lessened or eliminated. The general trend of extended 

breeding seasons among species at lower latitudes and short seasons among species at 

higher latitude has been documented for fishes, as well as other vertebrates (Berry 1964, 

MacArthur 1964, Hubbs 1985, Gotelli and Pyron 1991). However, fishes and other 

animal groups (Brown and Shine 2006) in tropical areas often have seasonal reproduction 

independent of water temperature (Lam 1983, Winemiller 1989). As with fishes in 

temperate areas, reproductive seasons correspond to times of food availability (wet 
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seasons), periods of thermally, hydrologically, and chemically stable environments for 

young ( dry seasons), minimal interspecific competition for food among juveniles, 

competition for breeding sites (Kramer 1978), or solely or in part for the purpose of 

synchronizing reproduction to ensure sufficient numbers of reproductively active 

aggregates (Bye 1984). Exact abiotic influences sometimes are obscured because of 

phylogenetic constraints in species evolution (i.e., reproductive seasonality is constrained 

by ancestral condition; Kramer 1978). Regardless, seasonal timing of reproduction is 

common among fishes within both temperate and tropical regions. Selection of 

continuous or aseasonal reproduction is uncommon. 

Among species of Percina (Percidae ), three species occur near the southwestern 

most extent of Percina distributions (Page and Burr 1991). Texas logperch Percina 

carbonaria (subgenus Percina) is found throughout the Edwards Plateau region of central 

Texas and has a protracted reproductive season of six months (Hubbs 1985). River darter 

Percina shumardi (subgenus Imostoma) is widely distributed in eastern and central North 

America, but a disjunct population persists in the lower Guadalupe River drainage of 

south Texas (Page 1983, Hubbs et al. 2008). The reproductive season of P. shumardi 

ranges from one to two months among higher latitude drainages of North America (Cross 

1967, Thomas 1970, Scott and Crossman 1973). In Texas, P. shumardi has a four month 

reproductive season in the lower Guadalupe River (Hubbs 1985). Guadalupe darter 

Percina apristis (subgenus Hadropterus) was recently elevated as a distinct species from 

the dusky darter Percina sciera (Robins and Page 2007), and is endemic to the 

Guadalupe River drainage. Percina apristis is distributed throughout the Guadalupe 

River drainage but is most common in thermally-stable spring systems of the Edwards 
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Aquifer (Perkin and Bonner, in review). Upper San Marcos River P. apristis spawn for 

five months based on collections of reproductive individuals (Hubbs 1985). Collectively, 

these three Percina allow a unique opportunity to assess abiotic factors affecting 

reproductive seasons among tax.a sharing similar ancestry (basal condition of multiple 

spawning during the spring; Heins et al. 1992) ranging in distributions along similar 

latitudes (i.e, similar photoperiods and seasons), but inhabiting different abiotic 

environments. The lower Guadalupe River is a widely variable lowland river, with large 

fluctuations in discharge and annual water temperatures (Figure 1 ). The Pedemales River 

is moderately variable in discharge and has a temperature range similar to that in the 

lower Guadalupe River. The upper San Marcos River has relatively stable spring-fed 

discharges and water temperatures. 

Purposes of this study were to determine reproductive seasons and to assess the 

role of local influences, such as variation in food habits and water temperature and other 

abiotic factors, and regional influences such as photoperiod among three tax.a sharing 

similar ancestry (phylogenetically constrained). This study could provide insight into the 

mechanisms and adaptive consequences influencing reproductive timing, especially for 

the small number of Edwards Plateau fishes that inhabit spring outflows and exhibit 

aseasonal or continuous reproductive seasons (Etheostomafonticola, Schenck and 

Whiteside 1977; Notropis chalybaeus, J. Perkin, unpublished data). In addition, life 

history information will be described to provide greater understanding of the ecology of 

our study species, which will benefit conservation efforts of these regionally unique 

fishes. Specific objectives of this study were to quantify reproductive effort in the three 

Percina with gonodosomatic indices (GSI), ovarian status, and oocyte diameters to infer 
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reproductive season, to determine age of sexual reproduction, and sex ratios. Additional 

objectives were to determine age groups and growth rates, to describe food habits of adult 

fishes, and to test relationships among GSI, water temperature, photoperiod, and 

discharge. 

METHODS 

Fishes were collected from three rivers that originate on the Edwards Plateau of 

central Texas. Percina shumardi was taken from the lower Guadalupe River, upstream 

from Hwy 766 crossing (29°08'58" N, 97°19'01" W; October 2007 - September 2008) 

northwest of Cuero, Texas and upstream from Hwy 183 crossing (29°29'04" N, 97°26'52" 

W; February- September 2008) in Gonzales, Texas. Fish were collected from riffle and 

run habitats that were <1 m in depth, current velocities ranging from 10 to 50 cmf s, and 

with cobble and packed gravel substrates. Percina apristis was taken from the San 

Marcos River, downstream from County Road 299 crossing (29°52'08" N, 97°55'51" W; 

October 2007 - June 2007, September 2008) and from County Road 265 crossing 

(29°51 '26" N, 97°53 '49" W; July- September 2008) in San Marcos, Texas. Fish were 

taken from riffle and run habitats that were <0.5 m in depth, current velocities ranging 

from 10 to 40 cmf s, and with gravel and cobble substrates and submergent vegetation. 

Percina carbonaria was taken from the upper Pedemales River, downstream from Boos 

Lane crossing (30°13'17" N, 98°54'02" W; May 2007 -April 2008) and downstream 

from Alfred Petsch Road (30°12'34" N, 99°00'20" W; May 2007 -April 2008) 

southwest of Fredericksburg, Texas. Fish were taken from riffle and run habitats that 

were <0.5 min depth, current velocities ranging from 10 to 40 emfs, and with gravel and 

cobble substrates. 
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At each location, fish were collected by seine hauls or backpack electrofisher. Up 

to 10 individuals per month were targeted for each species among sites. Only one species 

was collected at each site and seven to twelve individuals were collected in most months. 

Individuals were anesthetized with a lethal concentration oftricaine methanesulfonate 

and fixed in 10% buffered formalin. In the laboratory, all individuals were weighed to 

the nearest 0.001 g and measured to the nearest millimeter total length. Gonads and 

digestive tracts were removed, and gonads weighed to the nearest 0.001 g. Gonads were 

used to sex individuals and ovaries were classified into one of three categories, following 

Williams and Bonner (2006). Latent describes ovaries that are small and clear, lacking 

vitellogenic oocytes. Developing ovaries are somewhat enlarged and opaque, usually 

cream or yellow in color, but lack a group of large, yellow or orange mature oocytes. 

Mature ovaries are found in reproductive females and are greatly enlarged, with the 

largest class of oocytes yellow to orange in most cases. The most developed mature 

ovaries contained a group of clear, orange eggs. Gonad and body weights were used to 

calculate gonadosomatic index (GSI; [(gonad weight/body weight)*lO0]). Size at 

maturity was estimated using the smallest individual of each species to contain mature 

ovaries. Gonadosomatic indices of sexually mature individuals were then pooled across 

sites within species to get mean monthly GSI. For each month in which females 

containing mature ovaries were collected, three individuals were chosen for measuring 

oocyte diameters to assess batch spawning. For P. carbonaria, one female for each 

month was used. The left ovary was separated, placed in a plastic dish, and teased apart 

with dissecting probes and forceps. The loose oocytes were gently swirled to distribute 

them as evenly as possible across the dish and placed under a dissecting microscope. A 
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calibrated camera attachment was used to take two diameters on each oocyte in the field 

of view, as close as possible to the largest and smallest diameters of the oocyte and 90 

degrees apart. The average of the two measurements was recorded to the nearest 0.01 

mm. After all oocytes in the field of view were measured, the dish was moved to show a 

new field of view. This procedure was repeated until 100 oocytes from each female had 

been measured. Oocyte measurements for P. carbonaria were conducted using an ocular 

micrometer. The procedure was otherwise identical to those for P. apristis and P. 

shumardi. For each individual, oocyte diameters were grouped into 0.05 mm bins and 

frequency histograms were created. Total fecundity was not measured because multiple 

batch spawners produce and spawn a series of clutches throughout the season and 

counting the oocytes in a given female does not provide an accurate picture of total eggs 

produced in one season. 

Stomach contents were analyzed for all collected individuals. Each stomach was 

dissected from the esophagus to the first loop of intestine. Stomach contents were 

removed and placed in a plastic dish under a dissecting microscope. Food items were 

identified to the lowest practical taxon, usually family-level for aquatic insect tax.a. The 

wet weight of each food type was taken to the nearest 0.001g. Weights were pooled 

across sites to determine the percent composition of each food item, both overall and 

seasonally. Seasonal differences in diet composition were tested with Analysis of 

similarity (ANOSIM) in Primer 5 (version 5.2.9). Seasons were defined as Winter being 

December-February, Spring being March-May, Summer being June-August, and Fall 

being September-November. 
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To quantify population structure, length frequency histograms were constructed 

from total length data. Chi-square analysis was used to determine if sex ratio differed 

significantly from 1: 1. Pearson product-moment correlation was used to assess similarity 

between trends in male and female GSI. Age groups were determined using the Fisheries 

Stock Assessment Tools II software (FiSAT II, version 1.2.2). Percina shumardi and 

Percina carbonaria were conducive to assessment because of total length distinctions 

within each population. However, P. apristis lacked distinct total length distributions and 

therefore I was unable to confidently identify modal size distributions within the 

population. Aging by otoliths was attempted but failed due to lack of distinct bands that 

denote age. Instead, I report a scatter plot of total lengths by month for Percina apristis. 

RESULTS 

Population Structure 

A total of 117 Percina shumardi and 132 Percina apristis were taken between 

October 2007 and September 2008, and a total of 187 Percina carbonaria were taken 

between May 2007 and April 2008. Number of age groups among species ranged from 

three to four. Percina shumardi population consisted of three age groups (Figure 2). 

Age-0 P. shumardi were first detected in May 2008 and reached a maximum length of 48 

mm TL. Age-1 P. shumardi were collected year round and ranged in length between 50 

and 64 mm TL. Age-2 P. shumardi were collected through June and reached a maximum 

length of 72 mm TL. Total lengths of Percina apristis were not modally distributed 

(Figure 2). The smallest fish, likely age 0, was 37 mm TL and captured in September. 

The largest fish, likely age 2 or age 3, was 100 mm TL and captured in January. Percina 
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carbonaria population consisted of four age groups (Figure 2). Age-0 P. carbonaria 

were first detected in June 2007 and reached a maximum length of71 mm 1L. Age-1 P. 

carbonaria were collected year round and ranged in length from 74 to 98 mm 1L. Age-2 

P. carbonaria were collected year round and ranged in length from 99 to 121 mm 1L. 

Age-3 P. carbonaria were collected from September 2007 to March 2008 and reached a 

maximum length of 138 mm TL. 

Food habits 

Stomach contents consisted primarily of aquatic insects among the three species. 

Percina shumardi consumed aquatic insects from 14 families and 5 orders. The most 

common food item of P. shumardi was ephemeropterans (mean percent biomass across 

seasons= 52%), followed by dipterans (27%), and trichopterans (18%) (Figure 5; 

Appendix 1 ). Non-insect contents were fish eggs, plant material, and sand, representing 

<0.4% of stomach content weight. Food items consumed differed seasonally (R = 0.179; 

P < 0.001), due to greater consumption of dipterans during the winter (69%) compared to 

spring (20% ), summer (8% ), and fall (11 % ). 

Percina apristis consumed aquatic insects from 20 families and 6 orders. The 

most common food item of P. apristis was ephemeropterans (63%), followed by 

trichopterans (15%) and odonates (9%) (Appendix 2). Non-insect contents were fish 

eggs, plant material, and sand, representing <0.3% of stomach content weight. Food 

items consumed differed seasonally (R = 0.07; P < 0.01), due to greater consumption of 

ephemeropterans during the winter (76%) and fall (79%) compared to spring (47%) and 



summer (51 %) and to greater consumption oftrichopterans during the spring (23%) and 

summer (19%) compared to winter (7%) and fall (10%). 

9 

Percina carbonaria consumed aquatic insects from 20 families and 9 orders. The 

most·common food item of P. carbonaria was ephemeropterans (46%), followed by 

dipterans (35%) and trichopterans (11 %) (Appendix 3). Non-insect contents were fish 

eggs, detritus, nematodes, and leeches, representing <0.5% of stomach content weight. 

Food items consumed differed seasonally (R = 0.16; P < 0.01), due to greater 

consumption of dipterans during the Winter (69%) compared to Fall (30%) and Spring 

(4%) and lesser consumption oftrichopterans during the Winter (1 %) compared to Fall 

(11%) and Spring (26%). 

Reproductive Characters 

Male to female ratios varied among species. The ratio of male to female Percina 

shumardi was not different from 1: 1 (X2 = 0.692, P = 0.406). The ratio of male to female 

P. apristis was 1 .4: 1 and differed from 1: 1 (X2 = 4.36, P = 0.037). The ratio of male to 

female P. carbonaria was 0.7:1 and differed from 1:1 (X2 = 8.2, P = 0.004). 

Spawning seasons ranged from five to nine months among the three species. 

Mean monthly GSis for female P. shumardi were elevated (>4.7%) and mature ovaries 

were present for five months (December 2007 through April 2008) (Figure 3). Male P. 

shumardi GSis followed similar trend and were positively correlated with female GSis (r 

= 0.79; P < 0.01). Sexual maturity was reached by age-1 in P. shumardi, with the 

smallest sexually mature male at 56 mm TL and smallest sexually mature female at 49 

mm TL. Mean monthly GSis for female P. apristis were elevated (>3.0%) and mature 
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ovaries were present for nine months (October 2007 through June 2008), with the 

exception of May 2008 when only one female was collected and had developing ovaries 

(Figure 3). Male P. apri.Stis GSis followed similar trend and were not correlated with 

female GSis (r = 0.42; P = 0.17). Sexual maturity was reached by age-1 in P. apristis, 

with the smallest sexually mature male at 46 mm TL and smallest sexually mature female 

at 53 mm TL. Mean monthly GSis for female P. carbonaria were elevated (>4.0%) and 

mature ovaries were present for six months (May 2007 and from December 2007 through 

April 2008) (Figure 3). Male P. carbonaria GSis followed similar trend and were 

positively correlated with female GSis (r = 0.81; P < 0.01). Sexual maturity was reached 

by age-I in P. carbonaria, with the smallest sexually mature male at 74 mm TL and 

smallest sexually mature female at 76 mm TL. 

Oocyte diameters were distributed among multiple cohorts concurrently 

throughout the reproductive season for each female and species. Distribution of oocyte 

diameters in P. shumardi consisted of at least three size cohorts, including the largest 

diameter cohort (1.2 to 2.1 mm), during the five month reproductive season (December 

2007 through April 2008) (Figure 4; distribution is shown for only one female per month). 

Distribution of oocyte diameters in P. apristis consisted of at least three size cohorts, 

including the largest diameter cohort (1.3 to 1.6 mm), during the nine month reproductive 

season (October 2007 to April 2008 and June 2008). Distribution of oocyte diameters in 

P. carbonaria consisted of at least three size cohorts, including the largest diameter 

cohort (1.3 to 1.6 mm), during the six month reproductive season (May 2007 and 

December 2007 to April 2008). 
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Environmental factors related to reproductive season 

Gonadosomatic indices of Percina were related to water temperature and number 

of daylight hours but not discharge (Figure 6). Collective GSis were negatively related to 

water temperature (P <0.001) and to number of daylight hours (P = 0.013). Collective 

GSis were not related to discharge (P = 0.99). Consequently, I rejected the null 

hypotheses that water temperature and number of daylight hours have no effect on GSis. 

Among females containing mature ovaries (Figure 6, shaded area), mean monthly water 

temperatures ranged from 11.4 to 23.1 °C, number of daylight hours ranged from 10.2 to 

14.1 hours, and discharge ranged from 1 to 62 m3/s. 

DISCUSSION 

Length of the reproductive season was notably divergent among the three Percina, 

compared to length of reproductive season of conspecifics and congeners in cooler and 

more humid climates. As predicted, the disjunct population of P. shumardi in the 

Guadalupe River had a one to two month longer reproductive season than its northern 

conspecifics (Cross 1967, Thomas 1970, Scott and Crossman 1973, Robison and 

Buchanan 1988). Likewise, P. carbonaria had a spawning season of three to five months 

longer than sister taxon P. caprodes, which spawns from one to three months during the 

Spring and Summer seasons at higher latitudes (mid March through July; Winn 1958, 

Hubbs 1985). The most divergent, however, was P. apristis, which spawned for at least 

nine months in the San Marcos River. Previous studies report spawning from January to 

June in the upper San Marcos (Brown 1955, Hubbs 1985) and sister taxon P. sciera 

spawns for three to five months (Hubbs 1961, Page and Smith 1970). 
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Collective reproductive season across all species examined by this study, as 

measured by gonadosomatic indices, was inversely related to water temperature. Mature 

ovaries, perhaps a more sensitive measure of reproductive season, were not found at 

water temperatures >23.5°C (range of water temperatures observed: 12 - 30°C). 

Gonadal quiescence at temperatures >23.5°C supports Hubbs (1985) theory that water 

temperatures are terminating cues for percinids. In fact, among available maximum 

spawning temperatures reported, all Percina cease spawning near 23°C: 20°C for P. 

pantherina (James et al. 1991), <25°C for P. phoxocephala (Brewer et al. 2006), 23°C for 

P. nigrofasciata (Mathur 1973), 22°C for P. vigil. Because of the support of water 

temperature as a terminating cue (this study) and ubiquity of20 to 24°C as a maximum 

spawning temperature across small scale (this study) and large-scale geography within a 

phylogenetic lineage, I hypothesize that termination of spawning around 20 - 24 °C is an 

ancestral condition within the Percina lineage. An alternative explanation is that in at 

least some spring fishes, continuous or near continuous spawning is a derived condition 

and one of many traits associated with a spring systems (Hubbs 1995). However, 

retention of ancestral traits in spring-associated fishes has been reported for the desert 

pupfish (Cyprinidon) populations (thermal tolerances; Brown and Feldmeth 1971), 

fountain darter Etheostomafonticola (thermal tolerance; Bonner et al. 1998), and Percina 

(batch spawning; Heins et al. 1992). Consequently, retention of the ancestral condition is 

the more parsimonious explanation that links phylogenetically similar taxa across diverse 

habitats and would provide a mechanism (i.e., lack of adequate terminating cue) for 

continuous or near continuous spawning of P. apristis in the thermally constant, but 

<23°C, San Marcos River. 
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Photoperiod was inversely related to collective Percina GSis, but mature ovaries 

persisted throughout the range ofphotoperiod (10.3 to 14.1 hours of daylight). Hubbs 

(1985) suggested that photoperiod is a predictive cue for gonadal recrudescence. 

Additional support for photoperiod as a predictive cue is found in P. pantherina 

populations in Oklahoma, where spawning began in two successive years at 12 and l 7°C, 

but at the same time of year (James and Maughan 1989). Our results were similar for P. 

shumardi and P. carbonaria, which had gonadal recrudescence in November and 

December at water temperatures ranging from 11 to l 8°C. 

Effects of adult food availability and river discharge on reproductive season were 

not detected in this study. Percina shumardi, P. apristis, and P. carbonaria are benthic 

invertivores, consuming a variety of aquatic insects throughout the year and typical 

among Percina (Goldstein and Simon 1999). Intra-annual variation in food items 

consumed was observed in all three species, but these differences likely were attributed to 

local availability of food items and not changes nutritive quality. Consequently, 

availability of adult food items is unlikely a contemporary influence on reproductive 

season. Likewise, elevated GSis and mature ovaries were found over a wide range (1-62 

m3/s) of river discharges and therefore unlikely to be influence by discharge regimes. 

Nevertheless, river discharge influences reproductive success (i.e., post hatch larval 

survival) in many riverine fishes (Arumugam and Geddes 1987, Lehtinen and Layzer 

1988, Durham and Wilde 2006) and should not be discounted as an important variable in 

overall reproductive success of percinids. 

Life history parameters assessed in this study for percinids in the most southwest 

extent of Percina distribution were similar to those of percinids elsewhere. Percina 
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shumardi, P. apristis, and P. carbonaria reached sexual maturity by age 1, produced 

multiple batches of oocytes throughout their respective reproductive seasons, and had a 

maximum life span of 2 to 3 years. Sexual maturity by age 1 and maximum life span of 2 

to 3 years are common among congeners, though some species live up to six years and 

sizes up to 200 mm TL (Winn 1958, Page and Smith 1970, Mathur 1973, Page 1974, 

Starnes 1977, Lutterbie 1979, Burkhead 1983, Page 1983, Heins and Baker 1989, Page 

and Burr 1991, Etnier and Starnes 1993, Hugg 1996, Rosenberger and Angermeier 2002, 

Roberts and Rosenberger 2008). Producing multiple batches throughout the spawning 

season is likely a basal character of Percina and of percinids in general (Heins et al. 

1992). Typical oocyte diameter distributions or spawning of multiple clutches has been 

observed in several Percina to date, including P. pantherina, P. vigil, and all three 

species in this study (James and Maughan 1989, Heins and Baker 1989). Production of 

multiple batches of eggs is documented in numerous freshwater fishes (Heins and Rabito 

1988, Fox and Crivelli 1998, Fuller 1998, Platania and Altenbach 1998, Barron and Albin 

2004), and is most commonly seen in small-bodied fish with extended spawning seasons 

(Burt et al. 1988). Multiple batch spawning confers benefits including increasing 

potential fecundity in small-bodied fishes, which are limited by body size in how many 

eggs can be produced at once (Hubbs et al. 1968, Blueweiss et al. 1978, Kramer 1978, 

Roff 1986, Trippel 1993). The mass and/or volume of eggs produced in one season by a 

multiple spawning fish can exceed that of the female herself (Wootton 1973, Gale and 

Deutsch 1985, Gale 1986, Burt et al. 1988). In addition, in unstable environments, 

spawning multiple clutches increases the odds that at least one clutch will find favorable 

conditions for larval survival (Nikolsky 1963, Giesel 1976, Lambert and Ware 1984). 
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While this does not necessarily apply for P. apristis in the environmentally stable upper 

San Marcos River, it may for P. shumardi and P. carbonaria, which inhabit reaches with 

more variation in water temperature and discharge. 

Among the three percinids in this study, only P. apristis is considered a species of 

concern (Hubbs et al. 2008). Population of P. apristis in the San Marcos River is not 

considered to be increasing or decreasing overall, comprising about 2% of the current fish 

assemblage (Perkin 2009). However, relative abundance of P. apristis has declined in the 

lower Guadalupe River, and P. apristis has not been reported in the upper Guadalupe 

River since 1960s (Perkin 2009). Recent efforts to document P. apristis in the upper 

Guadalupe River have not yielded any specimens (C. Folb, unpublished data). Status of 

the disjunct population of P. shumardi in the Guadalupe River drainage cannot be 

confidently determined (Perkin 2009), but considered stable in the lower Guadalupe 

River by Edwards (1997). Consistent collections of P. shumardi for this study support 

Edwards (1997) concept of a stable population persisting in the lower Guadalupe River. 

Populations of P. carbonaria are stable in the upper Guadalupe River (Perkin 2009), 

likely stable in the Pedemales River (Z. Shattuck, unpublished data), persisting in the 

Brazos River drainages (B. Labay, unpublished data), unknown in the San Antonio River 

(Runyan 2007), and declining in the lower Guadalupe River and San Marcos River 

(Perkin 2009). Reasons for decline of P. apristis in the upper Guadalupe River and of P. 

carbonaria in the lower Guadalupe River and San Marcos River are not immediately 

apparent, though Perkin (2009) detected corresponding declines in small flood events in 

the San Marcos River and population declines in other riverine fishes. As with other 

percinids, life-history characters, including fluvial-type habitat specialization, lithophilic 
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spawning (Simon 1998), and large-scale instream movements, make them susceptible to 

changes in water quality, water quantity, and instream impediments. 
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FIGURE 1.- Photoperiod and water temperatures for all three rivers during the study period and mean discharge for each month. 
Discharges are mean monthly values for 45, 15, and 30 years of records, respectively, from the USGS. 
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FIGURE 3. -Ovary condition and GSI trends found spawning seasons of five and six months in P. shumardi and P. carbonaria, and at 
least nine months in P. apristis. Numbers above GSI points represent number of individuals. Diagonal lines represent latent, 
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2008. 
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percinids taken from the lower Guadalupe River (P. shumardi), San Marcos River (P. 
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FIGURE 6.- Relationships between collective percinid gonadosomatic indices ( dependent 
variable) and water temperature, number of daylight hours (i.e. photoperiod), and 
discharge. 
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APPENDIX 1.-Seasonal percentage of the diet by wet weight made up by each food item 
found in Percina shumardi. Bolded values are the overall percentage each order or 
category made UE in each season. 

Season 
Winter SEring Summer Fall 

Ephemeroptera 18.33 54.13 65.30 71.71 
Baetidae 1.62 1.53 9.98 10.13 
Leptohyphidae 4.55 16.64 16.43 21.42 
Leptophlebiidae 3.73 25.15 32.35 29.98 
Heptageniidae 1.19 4.00 0.25 
Isonychiidae 6.52 
Unidentifiable 0.72 6.81 6.29 10.19 

Plecoptera 
Perlidae 1.26 1.39 

Trichoptera 11.48 24.02 20.15 16.02 
Hydropsychidae 3.77 21.47 12.62 
Leptoceridae 1.85 2.24 4.31 0.76 
Hydroptilidae 0.02 0.09 2.15 
Glossosomatidae - 1.08 0.28 
Unidentifiable 5.84 0.23 14.98 

Diptera 68.83 19.77 7.88 11.03 
Chironomidae 0.10 8.77 6.14 1.96 
Simuliidae 68.68 10.41 8.78 
Empididae 0.04 0.37 1.74 0.28 
Unidentifiable 0.23 

Lepidoptera 
Pyralidae 5.09 0.84 

Unidentified 
Insects 0.68 0.50 
Fish Eggs 0.40 
Plant 0.10 
Rock/Sand 1.08 
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APPENDIX 2.-Seasonal percentage of the diet by wet weight made up by each food item 
found in Percina apristis. Bolded values are the overall percentage each order or 
category made up in each season. 

Season 

Winter Sering Summer Fall 
Ephemeroptera 75.84 46.46 51.11 78.60 

Baetidae 41.78 19.43 14.88 55.44 
Leptohyphidae 16.11 21.06 22.67 11.24 
Leptophlebiidae 6.25 1.15 0.70 0.64 
Heptageniidae 3.24 0.54 
Isonychiidae 2.59 2.50 5.76 8.75 
Caenidae 2.45 0.28 
Unidentifiable 3.42 1.78 7.09 2.25 

Trichoptera 7.45 22.91 19.24 10.04 
Hydropsychidae 0.54 5.71 2.35 
Leptoceridae 2.17 15.39 12.79 1.02 
Hydroptilidae 1.24 0.42 0.83 
Glossosomatidae 0.68 1.50 0.16 
Polycentropodidae 0.79 0.16 3.70 
Hydrobiosidae 3.71 3.70 
Unidentifiable 0.10 0.54 2.15 

Diptera 2.51 8.47 8.10 4.92 
Chironomidae 1.85 5.70 6.84 2.14 
Simuliidae 0.06 1.70 0.42 0.60 
Empididae 0.54 0.83 
Unidentifiable 0.60 0.54 2.17 

Odonata 12.24 13.82 6.70 3.68 
Calopterygidae 5.76 9.16 4.74 0.59 
Coenagrionidae 2.08 2.70 1.14 1.54 
Libellulidae 2.20 0.82 
Zygoptera 0.46 
Anisoptera 0.82 
Unidentifiable 1.75 1.14 1.56 
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APPENDIX 2.-Continued. 
Season 

Winter S:ering Summer Fall 
Lepidoptera 

Pyralidae 0.75 4.44 8.45 0.24 

Coleoptera 
Elmidae 0.10 0.13 

Unidentified 
Insects 3.76 6.40 2.52 
Fish Eggs 0.57 
Plant material 0.42 
Rock/Sand 0.11 
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APPENDIX 3.-Seasonal percentage of the diet by wet weight made up by each food item 
found in Percina carbonaria. Bolded values are the overall percentage each order or 
category made up in each season. 

Season 

Summer Fall Winter Spring 
Ephemeroptera 44.37 48.97 27.25 61.48 

Baetidae 26.18 27.37 25.91 17.77 
Leptohyphidae 1.74 2.49 0.52 11.57 
Leptophlebiidae 2.89 5.11 0.77 16.73 
Heptageniidae 0.14 
Isonychiidae 7.62 10.09 15.42 
Siphlonuridae 5.96 2.59 
Unidentifiable 1.18 0.04 

Plecoptera 2.55 
Perlidae 2.55 

Trichoptera 7.10 10.59 1.43 25.83 
Hydropsychidae 4.47 7.77 0.02 18.48 
Hydroptilidae 2.59 2.33 0.05 0.14 
Philopotamidae 0.04 0.48 1.36 7.21 

Diptera 35.40 29.95 68.77 4.03 
Chironomidae 0.09 9.26 2.09 2.23 
Simuliidae 35.25 20.68 66.68 1.80 
Sciomyzidae 0.01 

Ceratopogonidae 0.05 

Odonata 7.34 9.47 1.34 0.09 
Gomphidae 0.05 
Libellulidae 7.34 9.42 1.34 0.09 

Lepidoptera 4.81 0.57 0.30 5.07 
Pyralidae 4.81 0.57 0.30 5.07 

Coleoptera 0.13 0.22 
Haliplidae 

(adult) 0.13 0.22 
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APPENDIX 3.-Continued 

Season 
Summer Fall Winter Spring 

Hemiptera 0.83 
Unidentified 0.83 

Neuroptera 0.24 
Sisyridae 0.24 

Phylum 
Nematoda 0.03 0.04 0.24 0.01 
Subclass 
Hirudinea 0.18 
Detritus 0.03 
Fish eggs 0.43 0.93 
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