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ASYMPTOTIC BEHAVIOUR FOR SCHRODINGER EQUATIONS
WITH A QUADRATIC NONLINEARITY IN ONE-SPACE
DIMENSION

NAKAO HAYASHI & PAVEL I. NAUMKIN

ABSTRACT. We consider the Cauchy problem for the Schrédinger equation
with a quadratic nonlinearity in one space dimension

1
Ut + Euzz = tialuz‘zv u(O,:c) = UO(CC),

where a € (0,1). From the heuristic point of view, solutions to this problem
should have a quasilinear character when o € (1/2,1). We show in this paper
that the solutions do not have a quasilinear character for all a € (0,1) due to
the special structure of the nonlinear term. We also prove that for o € [1/2,1)
if the initial data ug € H3:0 N H%2 are small, then the solution has a slow
time decay such as t~%/2. For a € (0,1/2), if we assume that the initial data
up are analytic and small, then the same time decay occurs.

1. INTRODUCTION

In this paper we consider the Schrodinger equation, with a quadratic derivative
term,
Lu=1t"%u,|? txeR

u(0,2) = up(x), = €R, (1.1)

where £ = i0;+ %33, and « € (0,1). The Cauchy problem for Schrodinger equations

with a cubic derivative term was studied in [9]. There the authors considered
Lu=t""°F(u,u,), t,xzeR (1.2)
u(0,z) = eup(z), =z €R, .

where 0 < § < 1, € is a sufficiently small constant, and the nonlinear interaction
term F' consists of cubic nonlinearities.

F(u,ug) = M |ul®u 4+ ida|u®us + idgu?ty, + A|ug|*u + Astu? 4 idg|ug |*ug,
where the coefficients A\, A\g € R, Ao, A3, A4, A5 € C, Ao — A3 € R, Ay — X5 € R. In

[9], the authors found a time decay estimate for the solutions of this problem,

lu(®)]loo < CJe| 712, (1.3)
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The same result is also true for the case 6 > 1. From the heuristic point of view
problem (1.1) corresponds to problem (1.2), when § = o + 1. Therefore it is
natural to make a conjecture that the solutions of (1.1) also have the decay property
(1.3). However, as we will show in the present paper, due to the special oscillating
structure of the nonlinear term, for « € (0,1) the asymptotic behavior of solutions
to (1.1) do not obey the estimate (1.3). Our result stated below depends on the
structure of nonlinearity which appears in the identity

(FU)|ua|*)(t,€) = (277)1/2/67”5”(7[74(*15)%(@n))(m(*t)um)(t,5+77)d77-

In the cases of u2 and u2 we have

(FU(—t)uz)(t,€)

= 0 el [ Ut § - ) U 6§ + )y
and
(FUC-H8)(t,)
= e [ R § - ) IO § + v
where U(t) is the linear Schrodinger evolution group

1
vV 2mit
Fo= (;AS = \/% [ e8¢ ¢(z)dx denotes the Fourier transform of the function ¢. The

“we = H gy = Fle 4 Fg,

oscillating function etity’ yields an additional time decay term through integration
by parts. However, the oscillating function e**¢¥ does not give an additional time
decay uniformly with respect to £&. This is the main reason why we do not have
estimate (1.3) for solutions of (1.1). In [6] we proved (1.3) for solutions of the
Cauchy problem
Lu = NTy)? 4+ pu?,  with A\, € C.

However, the nonlinearity |u,|?> was out of our scope. In the present paper we
intend to fill up this gap studying the case of quadratic nonlinearity t=|u,|?.
The methods developed for the nonlinear Schrodinger equations with quadratic
nonlinearities u2, |u,|? and w2 can be applied also to the study of the large time
asymptotic behavior for other quadratic nonlinear equations, such as Benjamin-
Ono and Korteweg-de Vries equations (in paper [8], mBO equation was reduced
to the cubic nonlinear Schrodinger equation). In paper [2], Cohn used the method
of normal forms of Shatah [11] to study the nonlinear Schrédinger equations with
quadratic nonlinearity %2 and showed that the solution exists on [0,7T) with T
bounded from below by Ce 6, where ¢ is the size of the data in some Sobolev norm.
In paper [10] the nonlinearity u2 was studied by the Hopf-Cole transformation. The
L?-estimate of solutions involving the operator J = z + itd, plays a crucial role
in the large time asymptotic behavior of solutions. However the nonlinearity A (u)
under consideration does not posses a self-conjugate structure e N (u) = N(e™u)
for all w € R, therefore we can not use the operator J = x + itd, directly in
(1.1). To overcome these obstacles we use the method developed in [7] and apply
systematically the operator Z = x0, + 2t0;.
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We now state our strategy for the proof. If we put v = u,. Then the problem is
written as
Lv=1t"%0,v]*, t,xeR.
By the identity
e T 0| = 0, (BT v + itT,v) = TT0pv + 20, Tv — 0T Opv
we have
LTv=t"T0|v[* =t~ (—|v|* + 0T 0pv + 20, T — vJ Opv).

Therefore, the operator J acts on this problem also. Thus global existence in time
of small solutions to the problem can be proved for « € (1/2,1) and the derivative
u, should have the same asymptotic behaviour as the solutions to the corresponding
linear problem (along with time-decay estimate (1.3)). Combining this fact and the
identity (1) we prove the time decay of solutions. Roughly speaking, we show there
exists a constant ¢ and a positive constant v such that

lu(t, Vt) — ct =/ < ot~ (/D=7
In the case of o € (0,1/2) we use the fact that

1 N
Dplu)® = E(ﬂju —uJu)

which implies that usual derivative yields an additional time decay, in particular, the
fractional derivative |0, | gives us an additional time decay like t# (see Lemma 2.4
below). However we have the derivative loss on the nonlinear term which requires
us to use some analytic function space.

To state our results we need some notation. We denote the inverse Fourier
transformation by F~'¢ = ¢ = \/%7 [ €8 p(€)dE. We essentially use the estimates
of the operators J = z + itd, = U(t)aU(—t) = itM (t)0, M (t) and T = 20, + 2td;,
M = ¢(@*)/2)  Note that the relation J 0, = T+2itL is valid, where £ = i0; + %6%
and U(t) = M (t)D(t)FM(t), D(t) is the dilation operator defined by (D(¢t)y)(z) =
(1/+/it)y(x/t). Then since D~ (t) = iD(1/t) we have U(—~t) = MF D1 ()M =
iMF1D(1/t)M.

We denote the usual Lebesgue space LP = {¢ € S';|¢|l, < oo}, where the
norm [|¢l, = ([ |6(2)[Pdz)/P if 1 < p < 0o and ||¢]| = ess.sup {|d(z)];z € R} if
p = oo. For simplicity we write || - || = || - ||. Weighted Sobolev space is

Hy* = {6 €8t | $llmkp = [[(2)"(i02)" 9|, < o0},

m,k € R, 1 <p<oo, () =1+ a2 The fractional derivative |9,|%, « € (0,1) is
equal to

N 3 N dz
0,06 = FU[e|" Fo = O/mea ~ 0l i

We denote also for simplicity H™* = HJ"* and the norm [|¢]lms = ||&]lm.x.2-
Different positive constants are denoted by the same letter C'. Denote ®(z) =
J e 3 E g,

Now we state the main results of this paper.
Theorem 1.1. Let a € [1/2,1). We assume that the initial data ug € H>°N H*?
and the norm |luglls,0 + l|uoll2,2 is sufficiently small. Then there exists a unique
global solution u of the Cauchy problem (1.1) such that u € C(R; H*). Moreover
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there exist unique constant B and functions P,Q such that |£|'~*P(£) € L>®(R),

1€ 72Q (&) € L*°(R) and the following asymptotic statement is valid

JHOE () T+ (™) ()
Vit

Vi

for all t > 1, uniformly in || < t'=°, and

iz? a
u(t,x) = Be 2t t~2®(

—apT ig? Ry —a—y 4 j—3—v(Ty-a
u(t,r) =t P(?)—Fe ﬁQ(t)+O(t +1 <t> ) (1.5)

for all t > 1, uniformly in |x| > t'=°, where p,v > 0 are small.

In the case o € (0,1/2) we have to assume that the initial data are analytic.
Denote

o0

1 .
Ag={peL’:|gla, =) Sl102]2 7 (20:)" 1,0 < oo}

n=0

Theorem 1.2. Let o € (0,1/2). We assume that the initial data ug € A and the
norm ||ugl|a, is sufficiently small. Then there exists a unique global solution u of
the Cauchy problem (1.1) such that uw € C(R; HY?). Moreover there exist unique
constant B and functions P,Q such that asymptotics (1.4) and (1.5) are valid.

Remark 1.1. In the region |z| = t!=# asymptotics (1.4) coincides with (1.5).

In Section 2 we prove some preliminary estimates. In Section 3 we prove Theorem
1.1. Section 4 is devoted to the proof of Theorem 1.2.

2. PRELIMINARIES

First we prove some time decay estimates.

Lemma 2.1. We have the estimate

1+8—~

[[tz]loo < Ct_l/QH}—u(_t)ux”oo + Ot 7 (Jlug| + |||8m\%_ﬁjazu“),
for all t > 0, where 8 € (0, %}, v €(0,0).

ix?

Proof. Denote w = U(—t)u,. Then since U(t) = MDFM, where M = ezt
D¢ = ﬁgf)(%) is the dilation operator, J = z + it0y = U(t)zU (1), we get

uy =U{t)w = MDFw + MDF(M — 1)w

and by virtue of the Hélder inequality and Sobolev embedding theorem |[|¢||, <
C’|||8w\%_%¢|| if 2 < p < oo, we have

IMDF(M — 1wl

1+8—~

< CUVHIFEM - Dwllee < CEV(M = Duwlly < O 2wy
< T (fwll + flawlly) < G (] + [10.]F P w])

< O (| + 10 F U (), )

< O (e + 110:1F T 0,

therefore the result of the lemma follows. Lemma 2.1 is proved. O
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Denote

_ _ 1_
19y = supt® ()= 01 ll0,1,00 + supt ™7 [[€]2 77 Ded ]| + sup [ Bllo.1,00,
t>0 t>0 t>0

where 3 € (0,3], v > 0 is small. In the next lemma we obtain the asymptotic
representation as & — 0 for the integral

t
= /0 dr / TENG, (7,€ + ) do(r )y

which corresponds to the identity (1).
Lemma 2.2. If ¢, € Y, [l =1,2, then we have

[ = I(1-a)g (sin(" /¢1 tn)a(t,m) €7 dn

+isigné cos( "+ /(/51 t,1)¢2(t,n)|n| """ signn dn)
ot gl*~ 1H¢1Hy|\¢2HY)~

for all |§] <t ™, t > 1, where u = 3—!, ~v > 0 is small.

Proof. We write I = Z?Zl 1}, where
/1€ )
L= [ e [ oo
0

t
I :/ T*adf/e*17§"¢1(77£+n)¢2(7, n)dn,
/€]

t” /1€] )
I = /O rdr / TNy (v, ) ba(ry ) — 1 (1, ) ot )y

/1€l ,
14 — /O T_adr/e_“-gn(qﬁl (T,f + 77) - (bl (T? 77))¢2(T7 77)d777

where v = 2y/a. If 7|€| > 1, we integrate by parts with respect to 7 to obtain
[t moatt.
< 07 [0, (6n 0+ m)alt )

< C(rg) 1t”2||¢3 zlloosupt "Izl < CrE) T [ nllv g2l

=1

hence changing 7|¢| = z we obtain

| T*adT/e*”ﬁ”(bl(t,x +n)oa(t, n)dn|
v/l

< Ctﬂ{||¢1|Y||¢2|Y//E<Tf>_l7'_ad7'SCt’y|§|a_1||¢1||y||¢2||y/ 27 ldz
tv v

< PP by llgally < CtIE T gnlly -
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Since

OO -« i'rénd — > —a d . o —a s d
/0 T % T /0 T~ % cos(7EN) T+Z/O T %sin(7En)dr
= T(1 - a)sin(5)lgn|*™"
il (1 — @) cos( )¢l sign(&n)
(see [1]), we find

L = /0 TfadT/eiiw%l(t,n)éﬁz(taﬁ)dn

—/ T*adT/efiTéanh(t,77)¢2(t777)d77
tv/1€]

= 1= asin(IE " [ ontmaatt, il

HD(1 = a)cos( g€ [ sign(n)on (tm)oa(t.mlal 'y
O 1 v o2l

In the same manner we obtain

t
|/ /l¢] T_adT/e_”{"ﬂél(ﬂw + 1) pa(7,m)dn|
tY/
t

< Ct”ll(blllYII(bleY/ /|£|<T§>_1T_O‘d7 < CE v 2y
tl—/

hence

|1I2| < CEIE T Ionllv o2l

To estimate I3 we note that
t
[6:0:6) = 617 Ol = | | 0,607, = O 1))
which implies

/1€l )
|I3| = | /0 T_adT/e_ZTfn((bl (7—7 n)¢2(7a 77) - ¢1 (t777)¢2(t777))d77|

/1€l
< C||¢1||Y||¢2||Y\/ 7247 < CtE [y | da v
0
since pa > v+ v and [§] < t7#. Now using the estimate

3
)~ (d(t, € +m) — ot )]y = ||<?7>’1/0 Ay (t,y + n)dylx
< CKlllelz el < Ctlellelly

for all [£] < 1, we get

e /le|
1] < CH¢1HYH¢2HYI€|/ T %dr < Ot byl
0

since p(1 —v) > v+ v and |£| <t *. Lemma 2.2 is proved.
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In the next lemma we consider the asymptotic behaviour of the integral
it

I(t,x) = / e HED f(1,6)de

as t — oo uniformly with respect to € R. Define ®(x) = fe’%(f’w)2\§|a’ld§.
Note that

O(x) = O({a) ™ + ()71

as |x| — oo. Let v be a small positive number and

B =min(1/2,a) — 7, u=3vy/a?
B S S (o S
a?(l—a)’ a?(1 —a)?’
Lemma 2.3. Let O¢f(t,€) = O(|€]*72) and f(t,€) = t1=2U(t€) + Ot =*7%) for
all |§] <971, 9 f(,€) = (a—1)B|¢[* 11+ Ot 7[E[*72) for all t971 < [¢] <t
and |||£\%’ﬁ£8§f(t, |l < CtY, then we have the asymptotic formula

p= 0=0++.

I(t,2) = Bt 3 ®(xt™2) + Ot~ 2 7/ ((wt~2) " 4 (xt~ 7))

for all t > 1 uniformly in |z| < t'=° and

Ilt) = VIR F B + VR0 5) 4 0 b )

for all t > 1 uniformly in |x| > t1=°.

Proof. For x > 0, we have

—n

¢ t
fen)+ [ oy fnans [ oty

f(t:€)

£ 13
— )+ (a—1)B / In[*~2dn + O(t™ / Inl*2dn)
t—H t—H

Lo ede (¢ )l / €PP3de)1/?)
= BE[*T O+ 7¢I
= Bl + 0@ g

for all t#=1 < |¢] < 2¢7F since p(1 — ) + 27 < p(1 — a). We make a change of
variable of integration & = zt~/2, then we have

I(t,z) = t71/2/eié(sz)zf(t,ztflm)dz,

where b = av/t = x/\/t. First consider the case |z| < t17°, ie. b < tz7F. We
represent

I =Bt 2®(b) + Ry + Ry,

where the remainder terms are

Ry = t71/2 [ A0 (g0, 2t710%) - BT o gy 2,
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the function ¢1(2) € CY(R) : ¢1(z) = 1 if 2 < b/3 and ¢1(z) = 0 if z > 2b/3,
w2(2) = 1—¢1(2). In the remainder term R; we integrate by parts via the identity

e_%(z_b)2 — 1 d

- - = —%(z—b)2
1—iz(z —b)dz (ze ) (2.1)

to get
Rl < 08 [l e ] + fat )
+Ct—%/| 2o (zb) e

Z<tn

< Ct 377 < CtE a7 (2.2)

In the remainder term Rs we use the identity

—5(-b)? _ L d st
e 2 T s dz((z b)e™ 2 ) (2.3)
to find
Rl £ €t [ e = 82 fpal + [ahl)d
+Ct*%/ 2z = b)2dz
|e|<t =3
+0f1/2/ o (2= b) TRt (2t |dz
|z|>2t2°
= Ot F7(D)* ) =0t 2 avt)* ), (2.4)
since

/ e byt 2| oY) dz
|z|>2t2°

< c\||£|%*"ff’<t,f>||</ R e e CE Y BN

|z|>2t2 77
1—-28

TP @[ 2y

|z|>2t2 77

< CeRTEAMIER e (ol < o)

IA

We consider now the case |z| > 7, i.e. b > t2=. Then we represent I in the
form

T=rt / e EC (1 a7 ) dz + | T f(t,a) + Rs + Ra,
|zl i

where the remainder terms are

Ro— [ ey S e ()
z|>t7 2

R, = til/Z/efé(szf(f(t,zt*l/z) — f(t,a))pa(2)dz.
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Consider the integral
12 / B f(t, 271/2)dz = / e HHE £ (1, €)de
|=|<t?~ 3 lel<to—1

- /5<te_1 e~ 3ED W (1g)de + Ot )

LT

ix2 .
t~ % 2t / eV (y)dy + O(t~*77)
ly|<t?

— V2mt e H U(a) + OO,

In the remainder term R3 above we integrate by parts via identity (2.1) to get

Ryl < Ot % / elo (o) " (o + [0} )

|2[>t°" 2
+Ct1/2/| ) p(zb>’1|zt’1/2||f'(t,zt’1/2)|dz (2.5)
z|>2t2

< Oretet0-e) L oprey < oo

since (1 — &) — p > . In the remainder term R4 we integrate by parts via (2.3)
to find

R < Ct‘l/Q/ F(t 2t~ 1/2) — F(t,a)| (= — b)~*d=
b/3
+t’1/ |f/(t, 2t 2)|(z — b) " 'dz (2.6)
b/3
< Cla ' < Cla) 12,

since

|f(t7 Zt_l/z) - f(t7 a)'

' ' A=3 g5
[ e < [ Rl

a

IN

ClllElEPeaef (1. ) /

Cla|" "5z — b)°.

€20 2ag)t 2
/2

t—1

IN

Collecting estimates (2.2), (2.4)-(2.6) we get the asymptotic statement needed and
Lemma 2.3 is proved. (|

In the next lemma we obtain time-decay estimate via additional derivative for
the nonlinear term. We will use this estimate in the proof of Theorem 1.2.

Lemma 2.4. We have the estimate
11022~ (us ) 1.0
< CP10:12Pull1 oll10x ]2 0|10
O (P | FU(— )t loo + (110217 ~Pull1,0) 118212 =7 T Br] 1,0
O (P FU(—) 0z [l oo + 11022 P0]11,0) 10212~ T il 1,0
for allt >0, where 8 € (0,1/2].




10 NAKAO HAYASHI & PAVEL I. NAUMKIN EJDE-2001/54

Proof. Application of the Fourier transformation yields

F(ugvg) = \/% /ﬂ(tf +n)o(t,n)(€ +n)ndn,

then changing inu(t,n) = e*%’ﬁqﬁ t,n) and inv(t,n) = e*%nzw t,n) we obtain
nu(t, n Ui n

1 .
FU(—t)(upTy) = —/e—”f" &+ t,n)dn, 2.7
(=t)(vat2) = o= d(t, &+ n)y(t, m)dn (2.7)
whence integrating by parts with respect ton we get

118212 (u, ) || = C|l[€]2 P FU(—t) (u,77) |

= g / NG (2, €+ )DL, M)
< Ol e / NGt €+ ) B Moo
il / NG (8, + )BT dnloc

4 / Nt €+ )Tyl ) nc)

Y[ [[0]] + Cto ) 8lloo €2 TP Betp | + CP 7|9l |l[€]Z P 0e |
Y |[[|ve|| + C*H | FU(—t)uz || oo 1|02 22 T D0 |
FOP Y| FU(—t) vz || oo 110222 T D

IN N

and

110212 =7 (upw2) | = C|l[€]2 P FU(—t) (w0 |

= Ol / NG (2, € + )G, M)

< Ct*1(|\|§|%*ﬁ/e’“g”¢g(t,§+n)¢(t, n)dr||

Lolelte / (8, € + )i (G M)

LV AP oll19ew L + CtYIglIIEIE P Oew|ly

(€20l + CtH I 1IE1E P o
CtH10. 12 ul1 0/1|0: 22 T 0,0
+CE [0 P 0]

IN

IN

1,0
1_
1,002 5j8wu||1,0-

Lemma 2.4 is proved. O

3. PROOF OF THEOREM 1.1

By virtue of the method in [4], [5] (see also the proof of a-priori estimates below
in Lemma 3.2) we easily obtain the local existence of solutions in the functional
space

Xp={¢€C((-T,T); L*(R)) : sup |[lp(t)|]x < oo},
te(—=T,T)
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where the norm in X is

lulx = & ullso+ & Zullyo + & 27|13
H T2 0 FU(—t)ug (1)

lO,Looa
with Z = 29, + 2t0;.

Theorem 3.1. Let the initial data ug € H>° N H?2. Then for some time T > 0
there exists a unique solution u € X of the Cauchy problem (1.1). If we assume
in addition that the norm of the initial data |luo||s,0 + |[uoll2,2 = €2 is sufficiently
small, then there exists a unique solution uw € Xp of (1.1) for some time T > 1,
such that the following estimate sup,co 7y ||ullx < € is valid.

In the next lemma we obtain the estimates of global solutions in the norm X.

Lemma 3.2. Let o € [1/2,1). We assume that the initial data ug € H>° N H??
and the norm |juolls,0 + |luolle,e = €? is sufficiently small. Then there exists a
unique global solution of the Cauchy problem (1.1) such that u € C(R; H3°) and
the following estimate is valid

sup ||ullx < €. (3.1)
>0

Proof. Applying the result of Theorem 3.1 and using a standard continuation ar-
gument we can find a maximal time 7" > 1 such that the inequality

Jullx < & (3.2)

is true for all ¢ € [0,T]. If we prove (3.1) on the whole time interval [0,T], then
by the contradiction argument we obtain the desired result of the lemma. In view
of the local existence Theorem 3.1 it is sufficient to consider the estimates of the
solution on the time interval ¢ > 1 only.

As a consequence of (3.2) we have

[FU(=t)ua ()

IN

|O,1,oo

t
Cet [ 10 FUCT)u (o
0

IN

t
Ce + Cs/ (T)7"1r=%dr < Ce.
0

Note that J0, = Z + 2itL, where J = = + itd,. Hence
1T 0zullr0 < [|Zullro + Ctl|Lullio0 < [ Zull1o + CE/2[lue oo llullz,o
and
|7 0:Tull < ||Z2ull + CHILTul| < | Z2ull + C+/?||ug|oo (| uall + | Ttz ).
Then by Lemma 2.1 with 8 = £, using estimate (3.4) we find
Lo < CE YR FUt)ugllo,00 + Ot 75 (|ull2,0 + |7 0wull1,0)
< Cet V24 Cethi |tz | oo s

[z |

whence
[t ||1,0.00 < Cet™Y/2, (3.3)

Therefore by virtue of (3.2) we have also the estimates

N T 0wl 0 + 37| T 0uZul|| < Ce. (3.4)
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Let us estimate norms ||uls,0, ||Zull1,0 and ||Z?u||. Differentiating three times
equation (1.1) we get for hg = (1 + 02)u

Lhy =t~ (Wp0pho + up0-ho) + Ry
where

1
L= Zat + Eaia RO = t_a(_|uz|2 + 3uzzﬂxmx + 3umwzﬂa::r)
Via (3.2), (3.3) we have the estimate
[Roll < Ct™[Juzll1,0,00 [0l < C*7

Applying the operator Z to both sides of equation (1.1) and using the commutator
relations £LZ = (Z + 2)L and [Z,¢t7%] = —2at~*, we find

Lhy, =t~ *(UyOphs, + uzOphy) + Ry, (3.5)

where k = 1,2, hy = (1 + 0,)Zu, hy = Z?u,

Ry =t~ (Upa Tty + UpeLtiy 4+ 2(1 — ) (1 4 0y) |t |?),
and

Ry = 2t7%(|Tuz|® + (2 — @)Z|uz|* + 2(1 — a)?|u,|?).
By (3.2) and (3.4) we have

1 Zua Tz < CH % | Tug |2 | T Tua |/ < C*07%,

then by virtue of (3.2), (3.3) we estimate the remainder terms

[R1] < Ct 2 Jugl1,0,00 (ullro + | ZTull1,0) < Ce*7

and

1Rzl < Ot 2 lualloo(ull10 + I Tulli0) + Ct 2| TusTug|| < O,

—ag

To cancel the higher-order derivative ¢~ 0, hg, we multiply (3.5) by E=et
The other higher-order derivative t~“u,0,hj will be eliminated via integration by
parts. Since E(L — t~u,0,) = (L — g)E, where g = —t™ Uy, + 5t72%(uy)? —
t72%|u,|?, from equation (3.5) we obtain

LEh; = t_aquaszk + ERy + gEhy. (3.6)

Note that || E|[1,0,00 < C and ||g||ec < Cet™! by virtue of (3.2), (3.3). Applying the
energy method to (3.6) we obtain

d _ _
I Ehi]* < Gt /qu(‘?z(hzc)Qdﬂﬂl + CUIERk| + lgERx ) ER |,
whence integration by parts yields
d _
1Bl < Cet HIER| + Cll Ry, (3.7)

where k£ = 0,1,2. Integrating (3.7) with respect to time ¢ € [1,7] we obtain the
estimate .

(&) Mulls.o + &) Zullo + ()Tl < 5. (3.8)
for all t € [0,T]. We now estimate ||0,FU(—t)uz(t)]l0,1,00- We apply the Fourier
transformation to equation (1.1), then changing the dependent variable Fu, =
e~ 2w, in view of (2.7) we obtain
it

e e~ "Mw(t, & + n)w(t, n)dn, (3.9)

iwt (ta 5) =
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where w(t, &) = FU(—t)u,. When t € (0,1) we get

lé [ e e, + muimdnlon.n < Cllulf, < Clul, < &
and if ¢ > 1, we integrate by parts with respect to 7,

||§/e’”§’7w(t,§ +nw(t, n)dnllo,1,c0

< C<t>’1||/ef“g”an(w(t,ﬁ+77)W(t,ﬂ))dﬂllo,1,oo

()M onwllollwllo,x
C{ty T 0xullrollull20 < C*()

<
<

therefore,

12| 8, FU(— ) ua () [lo.1.00 < % (3.10)
By (3.8) and (3.10) we see that estimate (3.1) is true for all ¢ € [0, T]. The contra-
diction obtained proves (3.1) for all ¢ > 0. d

To complete the proof of Theorem 1.1 we evaluate the large time asymptotic
estimate of the solution u. Note that by Lemma 2.1 derivative u, has a quasi linear
asymptotic formula

ug = MDw + Ot~ 4[| T d;ull) = MDw + O(*7~%),

where M = e%, D¢ = ﬁqﬁ(%) For the solution u(t,z) we have

it ¢2 M it x\2
uw(t,z) =F e 28 v = —/675(677) v(t, £)dE,
(t.2) T (t.¢)d¢

where v = FU(—t)u. In the same way as in the proof of (3.10) we have the estimate
H@t}'l/{(—t)l'uz(t)ﬂo’l,oo < Ct5’y_a_1.

To apply Lemma 2.3 we need to prove the representation
dev(t,€) = (a = DBJE* T+ Ot ¢*7?)
for all =1 < |¢] <t7H, Gev(t,€) = O(€]*72) and v(t,&) = 17U () + O(H—*~2)
for all |¢] < t9~1 with § > 0 + . From (3.4) we get [|£0¢v|| < [|0.Tul < CtY. We
have
Oev(t, &) = £ 1(2t0, — v — Tv),
where 7 = FIF ! = —0:€ + 2t0,.
Similarly to (3.5) we get
LTu =t~ (U Tty + ugZug) + 2(1 — a)t™*|u,|?,

hence

fv(t,g) = fv(O,{)—F \/L.z_ﬂ_/otTO‘dT/eiTE"fw(T,f—Fn)w(T,n)dn

, t -
+\/%/ T_adr/e_”&"w(ﬂé—i—n)Iw(T, n)dn
0

L 2i(1—a)

t
W /0 T*O‘dT/e*”g”w(T,{—l—n)w(T, n)dn.
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Since tdw = Ot~ (t&)~1) = Ot~ |€]*~ 1) for 91 < [¢] and tdw = O(|€]*~1) for
€| < %=1 applying Lemma 2.2 we get

—& T +v) + Ot [E[*7?)
7 ¢ PN -
= — T7%T ef”gnl'w(T &+ nw(r,n)dn
/—271_ 0 / ) )
i t _ -
o / T dr / e~ M (r, & + 1) Tw(T, n)dn
m™Jo

21

t
Y / =m0 (r, €+ mywl(mm)dy + Ot €] )
— Gl e 06 )

ve(t,€)

for all t/=1 < |¢] <t7#, and Jv(t, &) = O(|€]*2) for all |¢| < 971 where

24
G(t) = mf(l — a) sin( §R/Iw (t,m)w(t,n)|n|*tdn
2ic

+ I‘l—asm /wt a=Ldn,
i ot )Pl

since |w(t,n)|?signn and %(fw(t,n)w(t,n))signn are odd functions. We have by
(3.10)

[w(t,n) = w(r,n)

t t
01,00 < H/ dsw(s,m)dsllo1,00 <C [ 827 Hds <O
T T

for all 1 < 7 < t. Therefore there exists a limit W = lim;_, o, w(t) in H%(R) such
that

lw(t,n) = Wllo,1,00 < CT72.

Similarly to (3.10) we get by (3.4)
[0 Zwl|0.1,00 < Cet®r =1 (3.11)
for all t > 1. Hence there exists a limit K = lim_ o Zw(t) in H%!(R) such that

|Zw(t,n) = Kllo,1,00 < CT77

Thus
u(t,€) = Bulg|* T + O(t77]€[* ),
where
B, = 1F( ) sin( %/K W (n)|n|*tdn
V2r

2l

+ Flfasm /W a=lyg
e ORI
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Also we have

v(t,§) = /OTfo‘dT/efiTE”w(T,f—i—n)w(T,n)dn

t
/ rdr / =T () Pdy + O( min(€]* 1, 1))

/ 2 dz / Y () 2dy + O
= V() + Ot 5)

for |¢] < t971, where § = a — 27y, ¥U(z fo |z|7*dz [ e~ |W (n)|*dn. Now
application of Lemma 2.3 yields asymptotlcs (1.4) for the solution u(t,z). Using

Lemma 3.2 we get the result of Theorem 1.1 with B = B;/v2r, P = \/%\i/,

Q= \/%V. Theorem 1.1 is proved.

4. PROOF OF THEOREM 1.2

By the method in [3] (see also the proof of a-priori estimates below in Lemma
4.2), we easily obtain the local existence of solutions in the analytic functional space

Ar={¢ e C([-T.T;L*(R)) : sup |l¢(t)]a, < oo},
te[—T,T]

where the norm A; is defined as

[ulla, = (t >7”H|a |%7BUH30+15‘1< 0 FU(—t)uq (t)
+Z ull10-
n=1

Denote

ny
s =32 S ol
n=0

Theorem 4.1. Let o € (0,1). We assume that the initial data ug € Ag. Then
for some time T > 0 there exists a unique solution u € A of the Cauchy problem
(1.1). If we assume in addition that the norm of the initial data ||uglla, = €2 is
sufficiently small, then there exists a unique solution u € Ap of (1.1) for some time
T > 1, such that the following estimate sup,cjo 1) |lulla < ¢ is valid.

In the next lemma we obtain the estimates of global solutions in the norm A;.
Lemma 4.2. Let the initial data ug € Ag are such that the norm ||uo|a, = €2 is
sufficiently small. Then there exists a unique global solution of the Cauchy problem
(1.1) such that u € As. Moreover the following estimate is valid

lulla, <e (4.1)

for all t > 0.

Proof. As in Lemma 3.2 we argue by contradiction and find a maximal time 7" > 1
such that the estimate

lulla, <e (4.2)
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is valid for all ¢ € [0,T]. Via Theorem 4.1 it is sufficient to consider ¢ > 1.
As above in Lemma 3.2 we can estimate the norms ||uz||1,0,00, H|8w|%_ﬂjﬁxu||17o,
|||8m|%’ﬁjﬁquH17o via the norm ||u||z. Indeed we have the estimate

118122 T0pullio < 102 Tull1,0 + 2t]]104 2P Lul1,0
< Ollullz + Cllull < Ce

and

11012 PT0,Tullio < [|0:]2~
< COllullz + Cllul|} < Ce.

We first estimate ||0;FU(—t)uy(t)]|0,1,00- We apply the Fourier transformation
to equation (1.1), then changing the dependent variable Fu, = e_%fzw, in view of
(2.7) we obtain

it

Z’U)t(t,é-) = m

e~ (t, & + n)w(t, n)dn, (4.3)

where w(t, §) = FU(—t)u,. For t > 1, we integrate by parts with respect to n

0,1,00

¢ / (1, € + )l n)dy|

< o /e_itfnan(w(tf+77)W(t,77))d77\|0,1,oo <C(t)”

< C)” O
therefore,
t =20 FU(— )z (E) || 0100 < € (4.4)
for all t > 1. In the same manner
T 9, FU(—) Tug () [|0,1,00 < & (4.5)

We estimate the norm |juljz = >0, £-]|0. |2=BZ"u|1 o for all £ > 1. Note that

T

Zt_ T+ )l

n=0
oo n— J |CL| —
<yt z(ﬂw Wulho =303 (o Tl
n=0 n! n=0 j= 0 '

=3 at =
> nmnloz" e‘a“”Zj—nzfunmcnunz

JO' Jj=0
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We have by Lemma 2.4 denoting O = — ™

[Lullz =

IN

<

hence we get

m!(n—m!)

_ T 1_
I = 3 oL AT Pl
n=0

_ T 1
t Z H|3| AT —20)" Jual 1,0

n=0

[e.9]

_ -ny M i 1 . .
e ZC%HI(%I? (Z = 20)" 1, (Z — 20)7, |10

a—3n

ZZ"‘ |||a (T =1 = 20)"u), (T — 1 — 20)78). |10
O

n=0 j

o n t—a— 3ny+B8—-1
c ZZ
<|||aw\%- (T —1—2a)ull1,0+ 1012 72(Z — 1 - 20)! Td,ul|1,0)
Ct= Y|z (|lullz + | Zullz + tl|Lullz),

1B _ 1 _ n—j
o=y 1027 1 20) g

[ £ullz Ct= ot ullf + Ot~ ullz || Zullz

Ct " (Jlullz + |1 Zull2)-

VANRVAN

In particular we have

|TOzullz < Cllullz + C|Zul|z.

Using the commutation relations 70, = 0,(Z + 1)™, LI" = (T + 2)"L, I"t™* =

(T — 2a)"

applying operator Z to equation (1.1) we get
LI =t"(T +2(1 — a))"|u.|*. (4.6)

Via (4.3) we obtain

S ) U0 (T 42— 20) e o
n=0

< C i tmemm(pl) Zn: C™(2 —2a)" ™
n=0 m=0

x> CLIN0: P ((Z + 1Y w)o (T + 1) Tu)a|10

§j=0
Ct7= 2 ullZ + O~ ullz)| T Bzl
Cet™" (|lullz + | Zullz) -

IAIA

Using Lemma 2.4 we obtain

110212 72((Z + 1Y u)o (T + D)™ Tuslr 0

<

Ot 110,12 7(Z + 1) ullr,0]110:12 P (Z + 1)™ a1,
+CtP 10,2 P(T + 1) 3BT+ 1) T0yul1.0
FOP (10,22 (Z + 1) T0pul1,0/1102 122 (Z + 1)™ a1 0.




18 NAKAO HAYASHI & PAVEL I. NAUMKIN EJDE-2001/54

Hence by the energy method, in view of (4.2) we find

d i o o e
ol < =71 Tullz + Cet™ ullz + Cet™ | Tullz < C=tP~ fulz,

(4.7)
Integration of (4.7) with respect to time ¢ > 1 yields [ul|z < § for all t > 1. The

norm [[|8]2 ~Pul|s, is estimated in the same manner as in the proof of Lemma 3.2.
Therefore, Lemma 4.2 is proved. (I

Now we complete the proof of Theorem 1.2 by applying Lemmas 2.2 and 2.3 as
in the previous section.
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