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Existence and regularity results for the gradient

flow for p-harmonic maps *

Masashi Misawa

Abstract

We establish existence and regularity for a solution of the evolution
problem associated to p-harmonic maps if the target manifold has a non-

positive sectional curvature.

1 Introduction

Let M and N be compact, smooth Riemannian manifolds without boundary, of
dimensions m and k, with metrics g and -y, respectively. Since N is compact, by
Nash’s embedding theorem we can regard N as being isometrically embedded
in a Euclidean space R” for some n. For a C'—map v : M — N C R", we

define the p-energy E(u) by
B = [ HDurdd, p=>,
M

where, in local coordinates on M,

m n
dM = +/|gldz, |Du|* = Z Zgo‘ﬁDauiDgui,

a,B=11i=1

with (9°%) = (gag) ™, 9] = |det(gap)| and Do = 8/02, o =1,- -+

The Euler-Lagrange equation of the p-energy is
—Apu+ Ay(uw)(Du, Du) =0,

where A, denotes the p-Laplace operator

- 1 ap p—2
APU \/m Da< |g|g |Du| Dﬁu>

(1.1)

on M, which is a degenerate elliptic operator, and where A, (w)(Du, Du) is given

by
A, (u)(Du, Du) = |DulP~2g*" A(u)(Dsu, Dgu)
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2 Existence and regularity results EJDE-1998/36

in terms of the second fundamental form A(u)(Du, Du) of N in R™ at w.

Here and in what follows, the summation notation over repeated indices is
adopted.

We call (weak) solutions of (1.2) (weakly) p-harmonic maps.

One method to look for p-harmonic maps is to exploit the gradient flow
related to the p-energy, which is called p-harmonic flow. The gradient flows are
described by a system of second order nonlinear degenerate parabolic partial
differential equations

Ou — DNpu+ Ap(u)(Du,Du) =0 in  (0,00) x M, (1.3)
u(0,2) = uo(xz) forz e M. (1.4)

For p = 2, Eells and Sampson showed in [12] that there exists a global
smooth solution provided that the target manifold N has nonpositive sectional
curvature and that the solution converges to a harmonic map suitably as t; —
00. This result concerns the homotopy problem, that is, to find a harmonic
map homotopic to a given map. When the target manifold NV is of non-positive
sectional curvature and p > 2, the homotopy problem was solved by Duzzar and
Fuchs [11] by applying the direct method in the calculus of variations for the
regularized p-energy functional (see (2.2) below) and using Cl—estimates for
solutions of the Euler-Lagrange equation (1.2). In this paper we establish the
global existence and C%! —regularity of a weak solution to the p-harmonic flow
provided that the target manifold N has non-positive sectional curvature. The
regularity of weak solutions of degenerate parabolic systems with only principal
terms was discussed and the C%!—regularity of solutions was established in|[2,
7,8, 9]. (Also see [4, 5, 28, 29] for corresponding elliptic systems.) The global
existence of a weak solution to the p-harmonic flow was shown when the target
manifold is a sphere in [1], and, more generally, a homogeneous space in [18, 19].
For p = m, the global existence of a partial C%!— weak solution was established
in [20]. For the regularity of harmonic maps and flows, we refer to [25, 14, 27, 3].

To state our results, we need some preliminaries. Let us define the metric
dqy ¢ > 1, by

(21, 22) = max{|ts — to]/%, 21 — o]}

for any z; = (t;,x;) € (0,00) x R™, ¢ = 1,2. If ¢ = 2, the metric 02 is the
usual parabolic metric. For a bounded domain 2 C R™, we use the usual
function spaces C¥(€, R"), LY(Q, R") and W} (2, R"). For any T > 0, denote
by C*/%2([0,T] x Q, R") the space of functions defined on [0, T] x Q with values
in R™, Holder continuous with respect to the metric J; with an exponent o,
0 < a < 1. In particular, CY/%1([0,T] x €, R") is the space of functions with
values in R™ that are Lipschitz continuous with respect to the metric §,. We
also use the notation

CL2(10,T] x Q,R™) = €2 ([0, T}; C2(2, R™)) N CL ([0, T); CR, R™)),
C2H0,T) x 0, R") = CF ([0, T); C (2, B™)).
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If the domain is a compact, smooth Riemannian manifold M, then, for z; =
(ti,zi) € (0,00) x M, i = 1,2, we replace the metric d,, ¢ > 1, by

max {|t1 — tgll/q ,diStM (111,1‘2)} 5

where distys (21, 22) means the geodesic distance of x1,22 € M with respect
to the metric g on the manifold M, and we define C*(M, R™), Cg/q’l([O,T] X
M, R™), Ca/™*([0,T] x M, R"), CY([0,T] x M, R") and C3*(0,T] x M, R")
to be the spaces of functions belonging to the corresponding spaces above with
Q = U for any local coordinate neighborhood U on M. We now define a set of
Sobolev mappings from M to N, which is called the energy space:

WYP(M,N) = {u € W"?(M,R") : u(z) € N for almost all z € M},
equipped with the topology inherited from the one of the linear Sobolev spaces
WP (M, R").

We are interested in a global weak solution u € L°((0,00); WP (M, N))
NWLH2((0,00); L2(M, R™)) of (1.3) and (1.4), satisfying, for all
¢ € LP'((0,00); WHP' (M, R™))NL>( (0, 00) XM, R™) with p’ the dual exponent
of p, the support of which is compactly contained in (0, 00) X U for a coordinate
chart U on M,

/ {¢-0u+|DulP 29’ Dgu - Dag + ¢ - Ap(u)(Du, Du)} dM dt =0,
(0,00)x M

(1.5)
and satisfying the initial condition

|u(t) — UO|L2(M) —0, t—0. (16)
Our main theorem is the following:

Theorem 1.1 Assume that the sectional curvature of the target manifold N is
nonpositive. Let ug € Cé (M, N) with0 < 8 < 1, the image of which is contained
in a geodesic ball B (ag) in N around a point ag € N. Then there exists a global
weak solution u € L°((0, 00); WHP(M, N)) N WH2((0, 00); L2(M, R™)) with the
enerqgy inequality

/ |Opu|?dMdt + sup E(u(t)) < E(ug) for all T > 0. (1.7)
(0,T)x M 0<t<T

Moreover, for a positive number o,0 < a < 1, u € Cﬁ)/é”a((o, o0) X M, R"™) and
Du € CP/2%((0,00) x M, R™).

2 The regularized p-energy

First we will make a special isometric embedding of (N*,~) in (R", h). (Refer
to [20].) Let us define a metric h as follows. Since N is compact, we can use
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the standard Nash embedding of N in R™ and choose a tubular neighborhood
O325(N) C R™ of N such that Og5(N) = {z € R™ : dist(x, N) < 2§}, where ¢ is
a sufficiently small positive constant, and dist is the usual Euclidean distance.
Then let us put (3;;) = (vi;) @ (6i;) locally on N x B %, where Bl " is a
ball in R"~* with a radius 20. We can extend 7;; smoothly to R™ by defining
hi; = ¢%i; + (1 —¢)d;; for ¢ € C§°(R™, R) with support in Oz5(N) and ¢ =1 on
Os(N). By such an embedding of N into R™, we have an involutive isometry =
from a tubular neighborhood Oy to itself, which has exactly the target manifold
N for its fixed points.
For u € R™, let

Fik<u>=éhif‘(%(u)—%wﬁiﬁ(u)), (h'7) = (hij)~", (2.1)

be the Christoffel symbol for the metric (h;;). For € > 0, the regularized p-
energy (refer to [11], [20]) of a map w: (M, g) — (R™, h) is defined by

p
2

E (u) = /M ec(u)dM, ec(u) =2 (e+ |Dul?)? , (2.2)

where, in local coordinates () of M and (u?) of R,

|Du|? = g*®(x)hij(u) Dou’ Dgu’. (2.3)
We consider the gradient flow for E., described by the parabolic system

Opu — Aju — 'y (u)(Du, Du) = 0, (2.4)
where, in local coordinates of M and R™,

€. 2\2 1 8
Aju = —=Da (e +[Dul*)5 = /Iglg*" Dyu) .

IS (u)(Du, Du) = (€ + [Dul?)2 7¢I (u) Dau'Dgu’. (2.5)

Recall that ug is a member of CE(M, N), 0 < 8 < 1, and has image in the
geodesic ball B (ag) C N around the point ag € N. Let us consider the initial
value problem for the equation (2.4) with (1.4). We apply the Leray-Schauder
fixed point theorem to show the existence of a solution u. to the problem for
any €, 0 <e<1.

For this purpose we introduce the linearized parabolic system: Let us take
T > 0 arbitrarily. For any 7, 0 < 7 < 1, and w € C%1(]0,T] x M, R"), we find
a classical solution u € C}2([0,T] x M, R"™) of the linear parabolic system

Opu’ = A%ﬁ(t,x)DaDﬁuj + Biﬁj(t,x)Dguj in (0,7)xM, i=1,---,n,
u = exp,, (Texp,)! (ug)) on {t=0}x M, (2.6)

where exp,, (-) is the exponential map defined on a Euclidean ball B(0) C RF
around the origin with values in B (ag) C N, and the coefficients are, in local
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coordinates of M and R",

(pec(w))' > <g“56¢j + (p - 2) LR (g Dy ) ;

(pee(w)) P

AP (1, )

Bj(tw) = 51‘1'(1’6e(w))1‘%{\/#7 Da( Iglgaﬁ)

af wk D, w! i v ot
+ (5 — 1) £RuntBpnt (42 () M (w) + g D - B (w) )

(pee(w)) P
+ (pec(w))" 7 g (w) Do (27)
The equation (2.6) is written as
ha(w)Oyu' = ha(w) AP (t,2) Do Dgu? + hi(w) By, (t,z) Dgu, (2.8)
in which

hi(w) A3 (¢, @)

BYD whhar (w)g® Wik (w
= (o)) (g hat) + (p - DL bl st )

(pee(w)) P

which is a positive definite matrix. Here we note the relation for the principal
term of (2.4) with 0 <e < 1:

(Apuj + (T (u)(Du, Du) J)
7 e <(Pee( N'"F Vglg® ﬁhw( )Dﬁ“j)

—1 (pec (u))' ™% g*? ik (u) Do’ Dgu®.

We fix an “approximating number” €, 0 < € < 1. We define an operator P:
[0,1] x C%1([0,T] x M,R"™) > (1,w) = u = P(r,w) € C%1([0,T] x M, R") such
that u = P(7,w) is a classical solution to (2.6). The exponent o, 0 < a < 1,
will be stipulated later.

To exploit the Leray-Schauder fixed point theory, we have to verify the following
conditions:

1. There exists a unique classical solution to (2.6), which implies that the
operator P is well-defined.

2. The operator P is continuous and compact on [0, 1] x C%1([0,T] x M, R™).

3. If 7 = 0, there exists a unique solution determined uniformly on all w €
C%1([0,T] x M, R™).

4. Fixed points u, of the operator P(r,-), which are solutions to the equation
with w = u, in (2.6), are uniformly bounded in C%1([0,T] x M, R") with
respect to 7,0 <7< 1 (and ¢, 0 < e < 1).

In the following sections, we will show the validity of the above statements.
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3 Linearized parabolic system

In this section, we prove the existence of a classical solution to the linearized
parabolic system (2.6), and show that the corresponding operator P is contin-
uous and compact.

Let the exponent a be 0 < a < 3, where (8 is a Holder exponent of the initial
value ug.

Lemma 3.1 There exists a unique classical solution to the linearized parabolic
system (2.6).

Noting (2.7), we immediately see that the coefficients Af‘jﬁ and B, a,f =
1,---,m; 4,5 =1,---,n, are Holder continuous in [0,7T] x M with the exponent
o and the Hélder constant depending only on (g?), (hy;), €,p and |w| o1, and
that

p_ o . P_q
e e < AZ el hni(w) < (e supggyens [Dul?) €7 (3)

holds for any (t,z) € [0,T] x M and £ = (¢,) € R™, where

67 =03 ().
a=11i=1

The parabolic system of the same type as (2.6) is investigated in [22] and the
maximum principal for a classical solution is obtained. By combination of it
with the Schauder estimates in [23](see [22]), we have the uniform boundedness
in C12([0,T] x M, R™) for classical solutions u:

[uleas <7 (1 lgarne + luolez) (3.2)

where a positive constant v depends only on the Hblder constant of (A?ﬁ) and

(Bﬁ) and hence v depends on p, € and |w|Cg,1. Thus we conclude the following
result.

Lemma 3.2 Let u € C12([0,T] x M, R"™) be a solution to the parabolic system
(2.6). Then there exists a positive constant v depending only on |w|ca/2.a,
luolcz, €, (gap) and (hij) such that

ful e <. (3.3)

As in [22], we can prove the existence of a classical solution of (2.6).
Now we prove the continuity and compactness of the operator P.

Lemma 3.3 The operator P is continuous and compact in [0, 1] x C21([0, T x
M, R™).
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Proof. (Compactness) For all w € X := C%1([0,T] x M, R"™) such that
|lw|x < U with a uniform positive constant U, and all 7, 0 < 7 < 1, let
u = P(r,w). Then, by Lemma 3.2, we have

|u, Du, D*u, Osu| cas2.e <7, (3.4)

with a positive constant v depending only on U, |U0|03; e and p. Here we
note that the coefficients in (2.7) are Lipschitz continuous in w and Dw with
a Lipschitz constant depending on e. By the uniform boundedness of D?u and
Oru, we can apply Lemma 3.1 in [21, pp.78-9] with o« = 8 = 1 to find that
| Dulc1/2.1(j0,71x ar) 18 uniformly bounded. The family {u} of such functions is
actually a compact set in X, since a < 1. Consequently, the operator P(r,),
0 <7 <1, maps a bounded set in X into a compact set in X.

(Continuity) Take wy,ws € X satisfying, for § > 0,

lwy —wa|x <6 (3.5)

and let u; = P(7,w1) and ug = P(7,w2) for any 7, 0 < 7 < 1. Subtract the
equation for u; from the one for us to obtain, for u = us — uq,

Opu = A(x, we, Dwy) - D*u + B(x,we, Dws) - Du + F(t,z), (3.6)
where A(z,v, Dv) and B(z,v, Dv) are (A?ﬂ) and (B”) in (2.7) with w = v,
respectively, and

F(t,x) = (A(z, w2, Dws) — A(z, w1, Dwy)) - D*uy
+ (B(z, w2, Dws) — B(z, w1, Dwy)) - Duy .

Noting the Lipschitz continuity in the variables w, Dw of the coefficients
A(z,w, Dw) and B(z,w, Dw), we obtain, from (3.2),

|U’|Ci’2 < 7|F|Ca/2,a, (3.7)

where we note that u = 0 on {t = 0} x M, and that the positive constant v is
determined by [A[ga/2.e and |B|gas2.«, and hence v depends only on |wa|01,€,
(9ap) and (h;j). F is estimated from above by

|F|garza < ylwr —welx, (3.8)

where the positive constant v depends only on |Dui|ga/2.0, |D*u1|gasz.a, €,
(9ap) and (h;j). Thus, we choose a positive constant v depending only on
|wi|x, |uolcz, €, (gap) and (hi;) such that

lur — uz|x < fulgrz < 7. (3.9)

As above, we can verify that P(r,w) is continuous on 7 for each w € X: For
71,72, 0 < 71,72 < 1, we put u3 = P (71, w) and ug = P (12, w) for fixed w € X.
Then u = us — uy satisfies the equation

0w = A(z,w, Dw) - D*>u + B(z,w,Dw) - Du in [0,T] x M,
u(0) = exp,, (T2 exp, ! (u)) — exp,, (11 expy, (uo)) - (3.10)
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Noting the definition of the exponential map exp,, (-), we have, with a positive
constant y depending only on (h;;),

|u(0)|cg §7|T2_Tl||u0|cgo (3.11)
Applying Schauder estimates (3.2) and (3.11) for (3.10), we obtain
lulgae < |72 — 71 [uolce (3.12)

where the positive constant v depends only on p, €, [w[go1 and (hi;). Conse-
quently, we find that the operator P is continuous in [0,1] x X.

We now consider the case 7 = 0. If 7 = 0, then, for any w € X, u = P(0,w) is
a solution of (2.6) with the initial condition

u=aqap on{t=0}x M. (3.13)
By the uniqueness of the solution of (2.6) with this initial condition, P (0, w) =
ag for all w € X. Thus, P(0,-) maps all w € X into the constant map ao.
4 Uniform boundedness of Du

Now we consider a priori estimates for fixed points of the operator P(r,-),
0 <7 <1, which are solutions to the parabolic system

R 1-2 ap
O = = Do ((pec(w)'#/Iglg™ Dou)
+(pec(u)) "7 g*Ty;(w)Dau'Dgu?  in (0,T] x M,  (4.1)
u = exp, (Texp,'(ug)) on {t=0}x M. (4.2)

First we establish an energy inequality for solutions of (4.1).

Lemma 4.1 Let u € Cy2([0,T] x M, R") be a solution to (4.1). Then the
enerqy inequality

/ Oul2dMdt + B.(u(t))) < B.(u(to)) (4.3)
(to,tl)XM
holds for all tg,t1, 0 <tg <t; <T.

Proof. We multiply (4.1) by h;;(u)dwu’. For the right hand side of the result-
ing equality, we use (refer to [26, pp.558-9, pp.564-5))

= Do ((pec(w)' ™% V/Iglg™ Do 'hiy (u)

= == Da ((pec(w)*"# Vgl Do’ ) duu'hiy () (4.4)

+(pee (u))lf 5 go‘ﬁDgujDa (8tuih1-j (u))
Orec(u) + (A;uj + (pee(u))k%Fj (u)(Du, Du)) Opu'hij(u).
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Integrate (4.4) on [tg, t1] x M to obtain
/ hij(u)Ou'Opu? dMdt + / {ec(u(t1)) — ee(u(to))}dM =0
(to,tl) xX M M
and hence the desired estimate. In particular, noting that Du(0) = 7Dug in M,
we have obtained (4.3) with E. (u(to)) replaced by E. (Tug) for all¢;,0 <¢; < T.

Lemma 4.2 Let u € Cy([0,T] x M, R™) be a solution to (4.1). Suppose that
the image of u is contained in the target manifold N. Then we have, with a
positive constant v depending only on M, N, T and sup,, | Duo|,

sup |Du| <~vy=x (M, N,T, sup|Duo|> . (4.5)
(0,T)xM M
For solutions to (4.1), we have the Bochner formula (refer to [10, pp.134-135]
and [15, pp.128-131]): Put v = (e + |Du|?)/2. Then we have, in (0,T) x M,

0 — =D ((20)5 0™ Dav) + (p — 2)(20)F g Dav Do

Vsl
—|—(2v)gflgwgﬁﬁDyDguiDﬁDgujhij (u) + (QU)%*IRifDauiDgujhij (u)
= (20)57 g2 P RN, Do’ Dgu? Dsu* Dl (4.6)

where we put

aaﬁ (t,w) _ /|g| (gaﬁ + (p o 2) gaungDM;"vD,,ujhij(u) ) )

Since we assume that the sectional curvature of IV is nonpositive, we have

gadgﬁBngklDauiDgujDo—tukDgul <0. (4.7)

Thus we obtain, from (4.7) and (4.6), with a positive constant v depending only

on (gap) and the derivative,

0 — —= Da ((21})%_IGO‘BDBU) <~y@20)% i (0,T)x M.  (4.8)

For brevity, we assume that (gog) = Id. (We can argue similarly in the general
case.) Then the formula (4.8) becomes

Ov — Dy, ((2v)g_1a°‘5D5v) < P/, (4.9)
Let k be k > k = max{1,sup,, | Duo|?} and put M; = (0,t) x M for 0 < t < T.

Then we substitute a test function ¢ = (v—k)* = max{v—k, 0} into the formula
(4.9) to obtain

/ {8,50(11 k)T + (ZU)g_l a®?DgvD (v — k)+} dz < 'y/ P2 (v — k) tdz.
M, My
(4.10)
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Now we estimate [, vP/?(v — k)tdz. First we deform v?/%(v — k)% as
(v — k)+)§+1 4 kEtL,

We estimate the quantity [, ((v— k)*)P/2+1dz by using the Holder and Sobolev
inequalities. Set V = (v — k)*. Then

/ Vitldz
M,
1/a 1/b
< sup </ V2d:1:> sup (/ nga:) X
0<r<t \J {r}x M o<r<t \J{r}x M
¢ :
/(/ Vm'"iz(%“)dx) dr
0 {r}xM

1/a 1/b
sup (/ V2dac> sup </ Vp/2dac> X
0<7<t \J{r}x M 0<7<t \J{r}x M

e(m— , . e
v(mﬁMli)ﬂJwﬁn</ 0ﬁ+hHDV“5“Mﬂd% "
M,

t

IN

where the exponents a, b and c satisfy

i » 1 2= 1 _(m-2)p-2
T mp—D1% b mp-D+2 o mp-2+zp *H

Noting that 1/a + m/c(m — 2) = 1, we have

1/b
c(m—2)
/ Vitld: < ’y(m,p,|M|7#)t<ﬂ—1>m—2ﬂ sup< V”/Qda:) X
M, M

0<r<t
2
> dz}.

{ sup / V2dac+/ <V§+1—|— ‘DVPTH
0<r<tJ{r}xM M

Using the energy inequality (4.3) and choosing ¢ > 0 to be small, we estimate

o c(m—2) /2 %
y (m,p, |M| 7n) te-Dm-2¢ gsup VP24
M,

0<r<t

1 c(m—2) 1/b 1
< x (7771,1)7 |M|_W) tmlc—D—2¢ / |Du0|pdx < -,
M, 2

where we note that c¢(m — 2)/(m(c — 1) — 2¢) > 0 and that the positive number
t depends only on E(ug) and y(m, p, |M|~/™). Thus we have

1/b
» c(m—2)
VEtTld, < ,y(m,p’|M|_%)t7(cfl)7n72u sup (/ Vp/Qdm> %
o<r<t \Jm,

{sup / V2da:+/ ‘DV%
0<r<tJM M,

’ dz}. (4.12)
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Next we treat kP/2+1|M; x {v > k}|. By Holder’s inequality, we have
pt2 1/6 ¢ 1,1
k7| My x {v>k}| <k* sup </ vp/de> / {v > k}|aTedr, (4.13)
o<r<t\JMm 0
where the exponent ¢ is determined by

(p—2)(p+2)+8p

20 = . 4.14)
2(m(p —2) + 2p) (
Now we note that, if we take the exponents k,q and r to satisfy
2(1 1 1 1
M:L C:_+_’ _+EZE’ (4.15)
r q a ¢ r  2q 4

then
k>0, 0<d<1l+k.

Combining (4.12) with (4.13) and substituting the resulting inequalities into
(4.10), we have

sup /MT((v—k)+) da:+/ v2 | D(v —k)T|?dz

0<7<t M,
L c(m—2) . 1/b
< 'y(m,p, |M|_F>tm sup / ((v—k)+)5dac> X
0<r<tJ{r}xM
pt2 2
( sup (/ ((v— k)+)2dm+/ D((v— k) dz) (4.16)
0<7<t {r}xM M;

1/b t

+v(m,p) sup (/ vp/Qd:c) k%/ {v > k}etedt,
0<r<t \J{r}xM 0

where we used the facts that the matrix (ao‘ﬁ) is positive definite and that

v < max{1,sup,; | Dug|*} on {t = 0} x M.

Using (4.3) and noting that c¢(m —2)/(m(c—1) —2¢) > 0, we choose t; =t > 0

to satisfy

c(m—2) 2 2
tm(cfl)72c (%) r}/ (m7p,|M|#> EI(UO)% S % (4.17)

Then we obtain, from (4.16), with a positive constant v depending only on m
and p,

sw [ (-t [ DR R (18)
0<7<t1 J{r}xM My,
1/b & 1 1
< 7(m,p) sup </ v”/Qda:> kQ‘S/ {v > k}|=Fedt,
0<7<ty {T}xM 0

where we used that £ > 1 and

[ |pe-nne
M.

t1

2 p
dz < (%)2/ vz D(v — k)T|?dz.

My,
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Now apply Theorem 6.1 in [21, pp.102-103] for (4.18) to obtain
supv < y(m,p) max{l,sup |Du0|2} .
My, M

Noting that, by (4.17), the positive number ¢; depends on Ej(ug), |M|, m and
p, and arguing as in [21, p.186], we have

sup v < y(m,p) max {l,sup |Du0|2} .
(0,T)x M M

Once we have the uniform boundedness (4.5), we can argue as in [6, p.245,
Theorem 1.1; p.291, 14, pp.217-218] (also see [5]) to arrive at the following;:

Lemma 4.3 Letu € Co?([0,T] x M, R™) be a solution of (4.1). We can choose
positive constants vy, depending only on M, N,p,sup r)xm |Dul|, and a,0 <
a < 1, depending only on m and p, such that

C&/2,a S Y- (4.19)

Cé&/p,é + |Du

|u

We now specify the value of the exponent o, 0 < a < 3, which has not yet been
determined. We set o = min{a, 8}, where & is selected in Lemma 4.3.
Now we prove the uniqueness of a solution of (4.1).

Lemma 4.4 Let uy,uz € Cy2([0,T]x, R™) be two solutions to (4.1) with the
same initial value exp,, (Texpy(uo)). Then uy = uy in [0,T] x M.

Proof. We consider only the case 7 = 1, since u(0) = exp,, (T exp,'(ug)) € N
on M and the case 0 < 7 < 1 is investigated similarly. Let u € CL2([0,T] x
M, R™) be a solution to (4.1) with 7 = 1. Then u(0) = uo in M.

Since the image of ug is contained in the target manifold N, we can choose a
positive number T = T'(u) such that u € Os(N) in [0,T] x M. Then, by the
definition of the metric (h;;) of R™, we find that

gaagﬁBRf}(kl(u)DauiDgujD@ukDgul <0 in[0,7] x M, (4.20)

since the sectional curvature of N is nonpositive. Thus, by Lemma 4.2, we have
(4.5) with replacing T by T'. Let u1,us € C22([0,T] x M, R") be two solutions
to (4.1) with 7 = 1. Set T = min{T(u),T(uz)}. Subtract the equation for u,
from the one fgr ug and take a test function us — wy in the resulting equation
for t, 0 <t < T to obtain, with v = us — uq,

/ v-OpwdM dt
M,
+/ {(peg(uQ))lf%hij (ug) Dpul, — (pee(ul))lfﬁhij(ul)Dgu{} g*P D vidMdt
M,
= [ o {edua)H s ua) (Do, Do)
M

—(pee(ul))l_%f‘ij(ul)(Dau’i,Dﬁu{)} ~vdM dt.
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We estimate each term of this equality. Put w(s) = (1 — s)uy + suq for s,
0 <s<1. Then

((pec(ua))' = hus (u2) Dt = (pec(un))'™ Fhsy(ur) Duf ) g° Do’

N / {(pee<w<s>>>13 |Dol? + (p — 2)(pec(w(s)))' ™ ¥ (Dv, Duw(s))?

+(pec(w(s))) ™5 g% Dpv? Dow' (5) 22 (w(s)) - v
' dh¥

220 (w(9)! 9 D () Dy s)o- S w(s)) (D). D) .

The third and fourth terms on the right hand side are bounded from above by
1
(b oo Dl sup Duaf) [ polas
My M 0
1
+3 [ edw(e) 73 (1D + (- 2) 22229 Y.
0

(pee(w(s)) P

As above, we have

9°° ((pec(ua))' 7Ty (u) (Datip, D) — (pec(un))'# iy (ur) (Do, Dgu]) ) v

1
< 7<p,M,N,sup|Du1|,sup|DuQ|>/ |v|2ds
M M 0

1
+ / (pec(u(s)) <|Dv|2+<p—2>% ) ds.

(pee(w(s))) P
As a result we have

1
/ {v <O + %/ (pee(w(s)))k% <|Dv|2 +(p— Z)M ) ds} dMdt
M, 0

(pee(w(s))) P

< fy<p,M,N,sup|Du1|,sup|DuQ|>/ |v|?dM dt . (4.21)
Mz Mz

M

Putting F(t) = fMt lv|2dMdt for any ¢, 0 < ¢t < T, and noting v(0) = 0, we find
from (4.21) that

£7(0) < (121,500 (D sup D] ) 70
T T

for all 0 < ¢t < T, from which it follows that exp(—vt)F(t) < 0 for all t € [0, T].

Therefore we have F(T) = 0, which implies that v = 0 in [0, 7] x M. Now we
observe that the images of u; and us are in the target manifold N. We consider

u = u;. Take a positive number T = T'(u) such that u € O5(N) in [0,T] x M.
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We use the involutive isometry 7 from Os(N) to itself such that the fixed point
set of 7 is exactly the target manifold N. Compare m(u) with u: Since the
image of ug is imposed on N, m(u)(0) = »(0) in M. Noting that the operator
7m: Os(N) = Os(N) is isometry, we know that m(u) satisfies (4.1) with 7 = 1,
of which u is also a solution. By the arguments above, we find that 7(u) = u in
[0,7] x M and that the image of u in [0,7] x M is on the fixed point set N of
7. Therefore we have verified that u; = ug € N in [0,T] x M.

Replacing an initial value uo with u1(T)(= u3(T)) and repeating the above
argument, we conclude our uniqueness assertion: u; = ue in [0,T] x M. In
addition, we have proven the following:

Lemma 4.5 Let u € Cy2([0,T] x M, R™) be a solution to (4.1). Then u € N
in [0,T] x M.

By combination of Lemmata 4.2, 4.3 with Lemma 4.5, we conclude that (4.5)
and (4.19) hold uniformly for all solutions u € Co%([0,T] x M, R™) of (4.1).

5 The limit ¢ — 0

First we claim the existence and uniqueness of the regularized p-harmonic flow,
which is a solution of (4.1) with 7 = 1. By the arguments in Sect.3 and Sect.4,
we can apply the Leray-Schauder fixed point theorem and obtain a unique fixed
point u, in C12([0,T] x M, N) of the operator P;.

Lemma 5.1 For any e, 0 < € < 1, there exists a unique solution u. in
CL2([0,T] x M,N) of (2.4) with the initial value (1.4).

We now explain how to pass to the limit ¢ — 0 and show the validity of Theo-
rem 1.1.

By Lemma 4.1, we choose a subsequence {uy} with ux = u,,, 0 < € < 1, and
a function u defined on (0,7) x M with value in R™ such that, as e, — 0,

Duy, — Du  weakly* in L*°((0,T); LP(M)),
Oyuy — Opu weakly in L2((0,T) x M), (5.1)

Noting Lemmata 4.2 and 4.3, we apply the Ascoli-Arzela theorem to obtain
ur — u  strongly in Cg’l([O,T] x M,R"™). (5.2)
By Lemma 4.5 and (5.2), we know that
ueN in[0,T]x M. (5.3)

By (5.1) and (5.2), we can take the limit €, — 0 in the weak form of the equation
(2.4) with a test function ¢ € C*°([0,T] x M, R™):

_2
‘/‘(O,T)XM{(ZS - Opug + (peék (uk))l pgaﬁDﬁuk - Dog
—(pee, (Uk))k%gaﬁrij (ug)Dous, - Dgui} dM dt =0
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and find that the limit function u satisfies (1.5), where we note (5.3). Using
(5.1) in the energy inequality (4.3) with € = ¢, and u = uy, we have (1.7).
Lemma 4.3 with (5.2) implies the Holder continuity of v and Du in the statement
of Theorem 1.1 with the Holder exponent « = min{a, 8}.

Finally, we use the energy inequality (4.3) to make the estimate

/ lur(t) — uo|® dM < t/ |Byug|® dMdt < tE; (ug). (5.4)
M (0,t)x M
By (5.2), we take the limit kX — oo in (5.4) to show the validity of (1.6).
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