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Counterdrug interdiction efforts designed to seize or disrupt
cocaine shipments between South American source zones and
US markets remain a core US “supply side” drug policy and na-
tional security strategy. However, despite a long history of US-led
interdiction efforts in the Western Hemisphere, cocaine move-
ments to the United States through Central America, or “narco-
trafficking,” continue to rise. Here, we developed a spatially
explicit agent-based model (ABM), called “NarcoLogic,” of narco-
trafficker operational decision making in response to interdiction
forces to investigate the root causes of interdiction ineffectiveness
across space and time. The central premise tested was that spatial
proliferation and resiliency of narco-trafficking are not a conse-
quence of ineffective interdiction, but rather part and natural con-
sequence of interdiction itself. Model development relied on
multiple theoretical perspectives, empirical studies, media reports,
and the authors’ own years of field research in the region. Param-
eterization and validation used the best available, authoritative
data source for illicit cocaine flows. Despite inherently biased, un-
reliable, and/or incomplete data of a clandestine phenomenon, the
model compellingly reproduced the “cat-and-mouse” dynamic be-
tween narco-traffickers and interdiction forces others have quali-
tatively described. The model produced qualitatively accurate and
quantitatively realistic spatial and temporal patterns of cocaine
trafficking in response to interdiction events. The NarcoLogic
model offers a much-needed, evidence-based tool for the robust
assessment of different drug policy scenarios, and their likely im-
pact on trafficker behavior and the many collateral damages asso-
ciated with the militarized war on drugs.

illicit supply networks | illicit economy | drug policy reform | transaction
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Counterdrug interdiction efforts, designed primarily to seize
or disrupt cocaine shipments in the “transit zone” between

South American sources and US markets, continue to be at the
core of US supply side drug policy and national security strategy
(1–3) with $4.7 billion allocated to interdiction in fiscal year
2016, or about 18% of total federal drug control spending. In
addition to “production zone” strategies like drug crop eradi-
cation, transit zone interdiction strives to create scarcity, increase
the operating costs of drug trade organizations (DTOs), and
ultimately raise retail prices to deter drug abuse in the United
States (4, 5). However, the US government’s own assessments
have long showed that interdiction has at best only an ephemeral
impact on retail prices and supply (5–11). In fact, wholesale
cocaine prices in the United States have dropped significantly since
1980, deaths from cocaine overdose are rising (12), and the dismal
rate at which counterdrug forces intercept cocaine shipments is
well documented (13). Despite these failures, interdiction budgets
increased in 2018 and 2019 (14, 15), signaling that interdiction
continues to be a key part of US counterdrug strategy. A better
understanding of the root causes of narco-trafficking dynamics

and interdiction ineffectiveness within the transit zone is needed
to inform US drug policy (16).
Critics of interdiction point to failures to increase retail prices

and reduce supply as evidence that interdiction itself is the
problem (7–10). Moreover, interdiction has been qualitatively
linked to the unintended spread and fragmentation of existing
trafficking routes—known as the “balloon and cockroach ef-
fects,” respectively—into new and more numerous locations (2, 4).
As a result, the Western Hemisphere transit zone grew from 2 to
7 million square miles between 1996 and 2017 (17, 18), making it
more difficult and costly for law enforcement to track and disrupt
trafficking networks (2, 5, 19). This expansion has also brought a
litany of collateral damages. Locations through which drugs are
smuggled experience narco-fueled violence and corruption (20),
infusion of unparalleled amounts of cash and weapons (21), dis-
possession and seizure of land from rural communities (22), and
extensive and rapid environmental destruction (21–23). Critics add
that interdiction is not a sustainable counterdrug strategy, because
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counterdrug forces will never be as well-capitalized, organized, or
nimble as DTOs (24).
Proponents of interdiction, in contrast, locate the problem

with drug traffickers. They argue that interdiction efforts are
important for decreasing the total volume entering the United
States, and are vital for deterring narco-trafficking activities in
specific places (25). Indeed, seizure volumes are reaching all-
time highs (26), and supply-side interdiction in source and
transit zone countries has been linked to higher overall prices in
consumption countries than would otherwise be attained in legal
markets (19, 27–29). Furthermore, supporters have pointed to
the symbolic and moral value of interdiction efforts, because
narco-traffickers are criminals and actions must be taken to stop
them (30, 31). Proponents also maintain that interdiction would
be more effective by correcting a number of operational aspects:
insufficient and inconsistent interdiction equipment, funding,
and staffing (25); low capacity and corruption among transit zone
country partners (32, 33); and ineffective intelligence sharing
among US military and law enforcement agencies (34). In par-
ticular, collateral damages from interdiction could be minimized
with better intelligence to support spatially targeted interdiction
(26) and greater funding to support a “whole-region” approach
to increase citizen security (35).
Clearly, the latter logic animates current policy, even as there

is widespread recognition that ongoing approaches are in-
effective and have unintended collateral damages. Indeed, the
need for change is recognized by both sides (17). Agreement on
how national and international interdiction polices should
change, however, remains elusive, in part because the processes
that link observed narco-trafficking proliferation (i.e., the bal-
loon and cockroach effects) and interdiction operations are
poorly understood. Simulation models have been a primary tool
for studying trafficking–interdiction interactions among aca-
demic (5, 10, 19) and military (36–38) operations researchers for
at least 30 y. However, existing models are constrained by poor
data, focus only on partial trafficking strategies (e.g., maritime
only) (37), and/or treat the transit and interdiction space as a
“black box” (e.g., refs. 5, 35, and 38). Understanding the full
effects of interdiction requires a model that integrates price,
volume, and spatial responses of narco-traffickers to shifting
levels of interdiction in a geographically realistic model space.
The central contribution of this paper is the development of a

spatially explicit agent-based model (ABM), called NarcoLogic, to
model the decision-making processes of narco-traffickers in re-
sponse to interdiction efforts. NarcoLogic differs from previous
modeling approaches because it simultaneously models local- and
network-level narco-trafficking dynamics in response to in-
terdiction. Additionally, NarcoLogic is calibrated and validated
with, what is to our knowledge, the only non-US government-
affiliated or -commissioned (e.g., ref. 39) application of data
from the Consolidated Counterdrug Database (CCDB), which
includes event-based estimates that “are the best available au-
thoritative source for estimating known illicit drug flow through
the Transit Zone” (13). The model enables us to test our main
hypothesis: the spatial proliferation and resiliency of narco-
trafficking is not a consequence of ineffective interdiction, but
rather a part and natural consequence of interdiction itself—that
is, we theorize their interplay as a complex adaptive system (40).
In other words, interdiction ineffectiveness in not the result of
either interdiction or traffickers, but rather their interaction over
many years. We test this hypothesis by comparing NarcoLogic’s
predictions of where, when, and how cocaine shipments where
trafficked during 2000–2014 against actual spatial and temporal
patterns of cocaine flows recorded in CCDB. We also compare
predictions from a counterfactual model version that omits top–
down coordination from DTOs to test our hypothesized multilevel
mechanism for spatial and dynamic reorganization of trafficking
networks in response to interdiction.

Approach
Our theoretical framing of the organization, decision making,
and spatial dynamics of narco-trafficking networks draws from
literatures on geographies of crime and transaction cost theory.
Crime geography provides two key insights: (i) locations of
criminal activities can be predicted by an intersection of social,
political, and environmental features that lower the risk of de-
tection, and (ii) the scale of analysis must be consistent with
that at which criminal activities are perpetrated (41). Narco-
trafficking has been associated with sociopolitical settings of
weak governance, conflicting property rights, and high levels of
poverty and inequality (22, 42, 43). Remote areas, often within
forested and/or protected areas, are also targeted by narco-
traffickers due to weak law enforcement (21, 23). Understanding
of why narco-traffickers exploit certain locations within the transit
zone has not been explicitly modeled, since geographic consider-
ations of the illicit drug trade have focused on producing and
consuming locations (44, 45).
Transaction costs are essential to consider, because similar to

legitimate supply chain actors, DTOs derive earnings based on
their logistical abilities to maximize profit and efficiency while
managing risks to supply disruptions (5, 46, 47). Narco-trafficking
networks tend toward vertical integration in an effort to minimize
transaction costs associated with incomplete price information and
labor supply, identifying reliable transaction partners, and enforc-
ing transaction agreements (1, 48, 49). However, interdiction dis-
rupts that vertical integration, forcing decentralization of trafficking
decisions to minimize risk (1–3). We posit that such adjustments
are primarily spatial in nature: active trafficking nodes will emerge
in locations with lower perceived transaction costs. While these
effects have been anecdotally observed (i.e., “balloon effect” and
“cockroach effect”), and transaction cost theory provides a plau-
sible rationale, the dynamic, spatial implications of this mechanism
have never been modeled in the context of an illicit supply network.

The NarcoLogic Model
NarcoLogic (50) formalizes these theoretical principles into quan-
titative predictions of the spatial structure, dynamics, and adaptation
of narco-trafficking networks in response to interdiction within the
transit zone of Central America. Specifically, the model implements
a logic for DTO and individual trafficker node (i.e., locations of
transshipment) behavior through partially coordinated but dis-
aggregated decision making based on “first principles” of profit
maximization and risk management. This logic is informed by em-
pirical studies on cocaine trafficking and traffickers, media reports,
and the authors’ own years’ of research in the region. Higher profits
are captured by minimizing the number of nodes through which
shipments flow (i.e., profits split between smaller number of supply
chain actors), but interdiction risk for any single movement increases
with transit distance. Thus, the fewer the intermediaries, the higher
the overall profits captured by a DTO or trafficking node, but at an
increased risk of interdiction. Operationally, a DTOmay choose to
consolidate existing trafficking routes to maximize profit, or ex-
pand their network to new nodes to diffuse overall risk and min-
imize losses. Individual trafficking nodes make similar decisions
to concentrate or evenly distribute shipments among potential
downstream buyer nodes. Management of the profit-to-risk trade-
off in response to interdiction events is the main adaptive decision-
making process producing emergent trafficking network behaviors
and location-specific cocaine flows that can be compared against
existing data.
The model environment is a spatially explicit representation of

Central America in which narco-trafficking nodes are georefer-
enced within the administrative boundaries of Guatemala,
Honduras, El Salvador, Nicaragua, Costa Rica, and Panama
(Fig. 1). Geographic suitability for trafficking nodes is assumed
to be a function of proximity to country borders, remoteness, tree
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cover, market access, slope, protected area status, and existing
land uses (SI Appendix, Table S1). Node locations remain fixed
through the simulation linked through a predefined, randomly
generated network. The total volume of cocaine entering the
trafficking network increases throughout the simulation period
based on estimates from the CCDB.† Based on empirical esti-
mates (51, 52), the model assumes the price of a kilo of cocaine
increases as it moves northward along the trafficking network (SI
Appendix, S2.1.2). Movement of cocaine from one node to an-
other incurs an exogenous transaction cost based on distance
between any two nodes, volume being transported, and mode of
transportation; and an endogenous transaction cost of a “risk
premium” related to dynamic perceptions of node-to-node in-
terdiction risk (5) (Methods).
Three types of agents are modeled. “Network Agents” are a

simplified representation of the known role of Mexican/Colombian-
based DTOs in orchestrating trafficking throughout the region
(1, 2). Two competing DTOs are modeled to explore differential
effects of interdiction strategies on each DTO’s trafficking network.
“Node Agents,” representing transportista (local drug transport
coordination groups) actors observed on the ground (2, 22), have
a fixed spatial position operating each trafficking node. Node Agents
that are “activated” by their Network Agent purchase shipments
of cocaine from supplier nodes, and decide how to allocate the
shipment among potential buyer nodes along trafficking network
ties. Node Agents only interact with other Node Agents to which
they are directly linked in the trafficking network (i.e., immediate
neighbors). A single “Interdiction Agent” represents the collective
interdiction activities of various law enforcement and military
entities coordinated by the US Joint Interagency Task Force–South
and in-country partners across Central America and associated
maritime areas. Reflecting current practice (53), the Interdiction
Agent decides when and where to deploy limited interdiction re-
sources among suspected trafficking route segments (i.e., network
linkages) to meet an annual interdiction volume target.
The model is run at a monthly time step for the period of

2001–2014, or 180 mo, which corresponds with the period during
which Central America became the preferred trafficking corridor
following interdiction campaigns in Mexico and the eastern
Caribbean (54). Attempting to recreate the evolution of traf-
ficker–interdiction dynamics during the transition to Central
America, agents are assumed not to have preexisting knowledge
of optimal routes or interdiction allocation. At each time step,
each Network Agent selects Node Agents to “activate” based on
profit expectations and past experiences with interdiction. In-
dependently, the Interdiction Agent allocates interdiction ca-
pacity to trafficking route segments with the highest perceived
probability of interdiction success. Interdiction events occur if
shipments move along policed routes. The entire volume is
seized and affected trafficking nodes (both sending and re-
ceiving) update perceived interdiction risk. At the end of each
time step, Network Agents may choose to expand or consolidate
existing trafficking nodes for future shipments based on the value
of losses to interdiction. Independently, the Interdiction Agent
adjusts future interdiction capacity based on the volume of co-
caine seized relative to a target volume (Methods). Based on the
“arms race” mentality of US interdiction policy, interdiction
capacity is assumed to increase with seizure volumes (26, 55).

Results
We tested our assumptions about the structure, function, and
adaptation of narco-trafficking to interdiction by implementing
two alternative model versions—with and without a Network
Agent. Only local transaction costs were considered by individual

Node Agents in the model version without a Network Agent,
whereas both local and global (i.e., network-wide) transaction
costs were used to coordinate trafficking routes in the version
with a Network Agent. Outcomes of alternative model versions
were compared with multiple “target patterns” in empirical data
(Methods): (i) notable increases in narco-trafficking activity were
first observed in Guatemala and Honduras in the early 2000s,
and shifted southward in geographic extent and intensity during
the study period (2, 21, 54); and (ii) the timing and magnitude of
cocaine flows reported in select administrative departments (based
on data completeness) in the CCDB database.‡

As Fig. 1 shows, the model version with Network Agents
outperformed the alternative version at both the subnational and
Central American scales, and produced statistically significant
cross-correlations with the CCDB time series data in Colón
(Honduras), Gracias a Dios, Atlántico Norte and Sur, and Costa
Rica (SI Appendix, Table S2.1 and SI2.1.1). Predicted volumes of
cocaine flows were qualitatively consistent with—and at many
points in time within a quartile of—observed flows reported in
CCDB for all of the subnational units (i.e., departments, n = 8)
analyzed except the Petén (SI Appendix, SI2.1.5). In many cases,
the overall trajectory and timing of peak cocaine flows were also
consistent with observed data. These quantitative and qualitative
findings supported our assumption that a combination of top-
down and bottom-up coordination between Network and Node
Agents was realistic. At the Central America scale, the model
successfully recreated the historical southward shift of narco-
trafficking activity (Fig. 2A). Early in the simulation, direct
transport routes to northern countries were the most profitable
(i.e., fewest intermediate nodes with greatest profit margins) and
were exploited first, but these were also at the greatest risk of
interdiction because of long transit distances. As a result of in-
terdiction, shorter and relatively less profitable routes were
gradually adopted, shifting trafficking activity south.
The model also provided insight into how DTO and individual

node decisions created balloon and cockroach effects at the re-
gional scale. For example, Fig. 2A indicates that the first cocaine
shipments moved through Panama during 2006–2008, which
corresponded with the timing of peak per node shipment vol-
umes in Fig. 2B. As narco-trafficking moved into new areas
(balloon effect), shipments concentrated in one or a few nodes.
However, as narco-trafficking became entrenched and interdic-
tions occurred in these areas, routes and shipments fragmented
(cockroach effect), leading to lower flows through any given
node despite relatively unchanged or increasing overall flows
through the area. This resulted in, for example, Panama’s nu-
merous shifting nodes while also increasing volumes by 2012.
The model version without a Network Agent failed to produce

or produced substantially underestimated and/or delayed cocaine
shipments in all departments except the Petén, for which it sub-
stantially overestimated known shipment volumes (SI Appendix,
SI2.1.5). Failure of this model version indicated the importance of
top-down route selection to balance risk and profit across the en-
tire trafficking network. The Network Agent was able to perceive
and act on network-wide interdiction risk information enabling
trafficking to shift to lower risk yet still profitable locations else-
where in the network; without a Network Agent trafficking only
exploited locally viable locations. Consequently, perceived risks
were not great enough to reroute into remote areas (e.g., Gracias a
Dios, Darién, for which zero flow values were predicted; Fig. 1)
that were less risky, but less direct and more expensive to reach.
Differences in outcomes between the alternative model versions
demonstrated that the two-level structure of narco-trafficking de-
cision making was more realistic (56).

†United States Interdiction Coordinator (2015) Data extracted from the Consolidated
Counterdrug Database. Accessed December 31, 2014.

‡United States Interdiction Coordinator (2015) Data extracted from the Consolidated
Counterdrug Database. Accessed December 31, 2014.

7786 | www.pnas.org/cgi/doi/10.1073/pnas.1812459116 Magliocca et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1812459116


Fig. 1. Central America modeling domain (center) with an example simulated narco-trafficking network consisting of inactive nodes (gray circles), active
nodes (red circles), and trafficking routes between each active node (dashed lines). The most southern and northern nodes outside of the model domain
represent supply (e.g., Colombia) and demanding nodes (e.g., Mexico), respectively. Around the periphery, comparisons of subnational cocaine shipment
volumes (blue regions in map) reported at the administrative level of departments in the Consolidated Counterdrug Database (CCDB) (red line) and median
volumes simulated by model versions with (blue line) and without (black line) a Network Agent. Shaded regions represent the bounds of the second and third
quartiles of simulated cocaine volumes. Departments were selected to include at least one location per country and on the basis of having at least 5 y of
continuous observations reported in CCDB. Cocaine flows in departments with an asterisk (*) were predicted independent of model calibration (Methods).
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Local sensitivity analysis was performed (Methods) on all
calibrated parameters using a genetic algorithm (SI Appendix,
Table S1 and SI2.3). Interdiction’s role in the evolution of narco-
trafficking behavior was particularly clear with variations in in-
terdiction capacity. Increased interdiction capacity resulted in
increased total seizure volumes (Fig. 3A) and decreased median
delivery sizes (Fig. 3B). This was consistent with interdiction’s goal
of removing as much volume from the supply chain as possible.
However, narco-traffickers concurrently succeeded in maximizing
profits and minimizing the value of shipments lost. No statistically
significant difference in the median value of seizures resulted from
increased interdiction capacity beyond its lowest level (Fig. 3C).
Similarly, no significant difference resulted in the total value
seized among baseline and higher interdiction capacities (Fig. 3D).
Furthermore, increased interdiction capacity did not reduce the
number of active nodes (Fig. 3E). In fact, trafficking at each node
intensified by forcing the same value of cocaine through fewer
routes at any one time (Fig. 3F), resembling the boom–bust eco-

nomic fluctuations observed anecdotally at individual nodes within
transit zones (57). Even when it appeared that interdiction was
effective (i.e., increased seizure volumes), there was little effect on
the value of cocaine trafficked and geographic extent of narco-
trafficking’s influence.

Discussion
The US government’s cocaine interdiction mission in the transit
zone is now in its fifth decade. This is despite its long-
demonstrated ineffectiveness, both in cost and results (9, 21).
More cocaine entered the United States in 2015 than in any
other year, inspiring a Department of Homeland Security-
commissioned study that concluded “additional work is re-
quired to gain a better understanding of exactly how these drugs
are successfully evading US law enforcement interdiction ef-
forts” (ref. 58, p. 53).
The NarcoLogic model points to a clear, reproducible, and

testable answer. The model produced realistic predictions of
where and when narco-traffickers move in and around Central
America in response to interdiction. In the process, it shows that
the spatial dynamics of trafficker activity result from adaptive
interactions with interdiction agents. In other words, narco-
trafficking is as widespread and difficult to eradicate as it is
because of interdiction, and increased interdiction will continue
to spread traffickers into new areas, allowing them to continue to
move drugs north.
Conceptually, the NarcoLogic model offers three lessons. (i) It

operationalizes, in a model space, the balloon and cockroach
effects, by testing and identifying simple decision rules—
based on first principles of profit maximization and transaction cost
management—that produce qualitatively accurate and quantita-
tively realistic spatial and temporal patterns of cocaine trafficking in
response to interdiction events. (ii) Dynamic interactions between
narco-trafficking networks and interdiction forces are best un-
derstood as a complex adaptive systems. Narco-trafficking networks
are emergent, self-organized, and highly adaptive systems, and their
evolution and spatial manifestations are highly path dependent—
that is, they result from the location and timing of past interdiction
events. Modeling these interactions as a complex adaptive system
compellingly reproduces the cat-and-mouse dynamic others have
qualitatively described (e.g., ref. 2). (iii) The model is also innova-
tive in spatializing transaction cost theory, within an ABM or
otherwise, which is essential to the application of transaction cost
theories to illicit activities. Compared with licit economies, clandestine
activities have distinct spatial dynamics (1, 44) that are funda-
mental to their operation and persistence, and are thus central to
their analysis.
Methodologically, the performance of the NarcoLogic model

is remarkable considering the substantial knowledge and data
gaps associated with studying clandestine phenomena, particu-
larly in transit spaces, which are often the largest and least visible
phase of the supply chain (44). Testing the balloon and cock-
roach effect hypotheses was thought to be impossible given these
gaps (59), but the spatially explicit and process-based nature of
NarcoLogic enables “connecting the dots” among sparse cocaine
flow data in the CCDB. The model also reconciles a methodo-
logical gap in the study of illicit dynamics: the spatial scale and/or
organizational level at which illicit activities are analyzed is often
different from that at which they are enacted. NarcoLogic for-
malized and tested our assumptions about the multilevel nature
of narco-trafficking decisions, and provided a mechanism of
network function and location adaptation that explains the ap-
parent contradiction between increased seizure volumes and sta-
ble cocaine prices. Similarly, the model links interdiction and its
unintended consequences (i.e., intensified trafficking, spreading to
new nodes) in space, which are both cause and consequence of the
same narco-logic of adaptation.

Fig. 2. Southward progression of narco-trafficking over time measured by
the average month (year) of the first cocaine shipment at each trafficking
node (A). Trafficking intensity, measured as the average month (year) and
median volume of the largest annual total shipments for each node, shows a
nearly inverse pattern (B).
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Finally, the NarcoLogic model offers a preliminary tool for the
robust assessment of different drug policy scenarios, and their
likely impact on trafficker behavior and the many collateral
damages associated with the militarized war on drugs (60). For
example, the model could be used to test elements of the four
scenarios laid out by the Organization of American States in
their pathbreaking 2013 report (61). How—for example—would
traffickers be likely to respond to the relaxation of hemisphere-
wide interdiction activities—spatially, economically, and organi-
zationally? Or if transit zone countries were to pursue different
approaches, how would that response compare with a drawdown of
interaction assets? The NarcoLogic model offers a much-needed,
evidence-based tool to move this deadlocked issue forward.

Methods
General Model Logic. The purpose of NarcoLogic was to formalize alternative,
theoretically informed principles of DTO operational decision making, and
test which model version could accurately predict DTOs’ spatial responses to
interdiction in real geographic space. Hypothesized narco-trafficker decision
making was operationalized with estimates of space- and time-varying co-
caine prices and endogenously updated risk premiums and interdiction ef-
fort. Adaptive spatial responses to interdiction emerged from first principles
of goal-seeking behavior and risk management decisions. A full model de-
scription in ODD format is provided (SI Appendix, SI1).

Model Environment. Trafficking nodes were georeferenced with latitude and
longitude within the administrative boundaries of the modeled Central
American countries (Fig. 1). Geographic location informed trafficking node
suitability, position in the supply chain, and exogenous transportation costs.

Suitability for trafficking nodes was represented with 30-m raster data
layers and assumed to be a function of proximity to country borders,
remoteness, tree cover, market access, slope, protected area status, and
suitability of existing land use (SI Appendix, Table S1). Risk of interdiction
and increase in cocaine value were highest at border crossings, making

these strategic locations for trafficking nodes (i.e., high suitability). In gen-
eral, remote locations (using population density and market access as
proxies) and locations with more tree cover were more suitable because of
reduced risk of detection. Slope negatively influenced the suitability of the
location for a given land use (licit or illicit) and/or airstrips. Protected areas
were considered suitable because detection risk is low and/or governance is
often weak. Finally, land cover types classified as shrubs, trees, and pasture
were rated highly suitable, whereas all other land uses (e.g., built-up areas,
row crops, established plantations) were deemed unsuitable. Node locations
were randomly selected among the top 30% overall most suitable cells
within each department, and their locations remained fixed through the
simulation. Depending on node characteristics and dynamic interactions
within the trafficking network, any given node may or may not become
active (i.e., receive shipments). The model was executed 30 times for each
unique parameterization to account for the effects of stochasticity in
node location.

Links between trafficking nodes were unidirectional (roughly southeast to
northwest), randomly generated, and remained constant throughout all
simulations. The producer node represented a South American-producing
region and was not explicitly simulated as a node agent. The producer
node was the starting point for all shipments and was connected to all other
nodes. The end node represented Mexico and was not explicitly represented
as a Node Agent. All nodes within the trafficking network had a link to the
end node, which was the ultimate destination for shipments that were not
seized or lost in transit. Nodes within the trafficking network were linked
with a number of other nodes randomly chosen between 1 and 10% of
remaining nodes in the network. Nodes located closer to the end node had
fewer possible routes remaining to the end node.

Movement of cocaine from one node to another incurred both exogenous
and endogenous transaction costs. Exogenous transaction costs were based
on distance between any two nodes, volume being transported, andmode of
transportation. Volume-based transport costs per kilogram were parame-
terized as follows: $160/kg by sea, $371/kg by land, and $3,486/kg by air (5).
Total transport costs for any given segment in the trafficking network were
then the product of volume-based costs and the distance between nodes of
that route segment. Variations in these costs related to the number of

Fig. 3. Median (A) and total (B) volume of seized shipments, median (C) and total (D) value of seized shipments, and median number of active nodes (E) and
routes (F) with variations in interdiction capacity. Calibrated and baseline value of interdiction capacity was 125 route segments that can be policed per
month. Red plus signs (+) represent outliers in the distribution of outcomes from 30 model executions.

Magliocca et al. PNAS | April 16, 2019 | vol. 116 | no. 16 | 7789

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812459116/-/DCSupplemental


people involved in the trafficking and the relative risk of each mode. The
mode of transportation depended on the distance between nodes and/or
proximity to the coastline. If both sending and receiving nodes were within
20 km of the coast, maritime transport was possible. Movements that
exceeded 500 km between nodes were eligible for air transport. Movement
over land was possible between all nodes.

Endogenous transaction costs were related to perceived risk of interdiction
between two nodes. Increased interdiction risk resulted in a higher risk
premium (5) added to the cost to transport between nodes. Risk premiums
were based on dynamic, subjective perceptions of risk of interdiction be-
tween each node, which were independently learned over time by each
node through interactions with the interdiction agent.

The baseline cocaine price started with the wholesale price in Panama of
$4,500 kg−1 (52) and increased $4.46 kg−1·km−1 northward along the traf-
ficking network. The price could increase endogenously with the risk pre-
mium, Y, to reflect dynamic risk of interdiction along a given trafficking
route. The risk premium increased transaction costs at a given node based on
the ratio of perceived interdiction risk, E(pij) (defined in the next section), to
a risk threshold. For the route between nodes i and j at time t, the risk
premium modified the price, P, at node j:

Pðj, tÞ= Pðj, t − 1Þ
2
4ð1− δÞYi,j,t−1 + δ

E
�
pij

�

I*

3
5,

where I* is the risk premium threshold and δ is the learning rate (SI Ap-
pendix, Table S1 and SI2.1.2).

Agent Decision Models. The timing and location of active trafficking nodes
emerged from profit-maximization and risk aversion/seeking behaviors of
Nodes and Network Agents. Node Agents observed prices offered at each
buying node in the trafficking network, and whether an interdiction event
occurred and affected it or its neighbors in previous time steps. Over time,
Node Agents learned how best to allocate shipments among neighboring
nodes to maximize profit and minimize risk of interdiction.

Risk perception was grounded in theories of availability bias and salience
(SI Appendix, SI1.3.4). Availability bias reflects the tendency to place more
weight on recent risk information than past information (62) and was sim-
ulated with a time-weighting factor (63, 64). Following the formalization of
Gallagher (64) for risk perception of discrete events, the expected proba-
bility of an interdiction event E(pij) between nodes i and j, or subjective risk
perception, at time t was formalized as follows:

E
�
pij jI′t , t′

�
=

I′t + α

t′+ α+ β
,

where α = 2 and β = 0.5 are parameters of a beta distribution,

I′t =
Pt

b=1yijφ
t−b are weighted interdiction event observations between nodes

i and j, and t′=
Pt

b=1φ
t−b is the number of time step “observation equiva-

lents” with time-weighting parameter φ= 1 as the baseline value.
Salience theory (ST) (65) is similar to prospect theory (66) in that there is

risk aversion relative to a reference point. However, it goes beyond prospect
theory to also address risk-seeking behavior. ST frames decisions under risk
as a choice problem between payoffs from two or more “lotteries” (L). Sa-
lience is expressed as a salience value for each lottery outcome where the
perceived probability of a discrete event is distorted based on its relative
salience. For example, the expected payoff from a risky but highly profitable
trafficking route is increasingly distorted upward relative to lower profit but
less risky routes as the difference in payoffs becomes larger (i.e., more sa-
lient). A full enumeration of the behavioral options and calculation of sa-
lience is provided in SI Appendix, SI1.3.4.2. Based on this information and
knowledge of transportation costs, node agents decided how to allocate
shipment volumes among neighboring nodes.

The Network Agent decided when and where to expand or consolidate
trafficking routes depending on the total losses experienced to interdiction
during a time step relative to a loss tolerance (LossTol). Network Agents were
more tolerant of losing larger volume, low value shipments early in the
supply chain (e.g., Panama) than smaller, higher value shipments further
along in the supply chain (e.g., Guatemala). Thus, loss tolerance was set to a
percentage (LossLim) of the maximum profit margin obtained during a
given time step. This value was compared against the total losses (TotLoss)
from nodes experiencing an interdiction event, NI, given the price (P) dif-
ference between sending node i and receiving node j and associated
transportation costs ðCtrans

ij Þ:

LossTol = LossLim*max
h
Qij

�
Pj − Pi −Ctrans

ij

�i
,

TotLoss=
X

j=1 :NI

Qij

�
Pj − Pi −Ctrans

ij

�
.

If losses to interdiction exceeded the tolerance level (TotLoss > LossTol), the
Network Agent activated new nodes and directed shipments away from a
susceptible location. The number of new nodes to be activated was given by
the ratio of TotLoss to LossTol up to the maximum value specified by Exp-
Rate (SI Appendix, Table S1). If losses were below or equal to this value
(TotLoss ≤ Loss Tol), the Network Agent consolidated current trafficking
routes by discontinuing shipments to the highest risk nodes. The number of
nodes to be eliminated was given by the ratio of LossTol to TotLoss, such
that route consolidation increased as losses approached the tolerance level
(SI Appendix, SI1.3.4.4).

The Interdiction Agent’s main decisions were which trafficking routes to
interdict and how to allocate limited resources to maximize volume seized.
At initialization, all trafficking route segments lacked information about
past trafficking activity, and the Interdiction Agent estimated expected
probabilities of successful interdiction based on node suitability. Three fac-
tors were used to estimate the success of interdiction (and thus probability
of interdicting a given route segment): remoteness (−), proximity to the
coast (−), and transportation distance (+). The minus and plus signs indicate
an inverse or direct relationship, respectively, with probability of interdiction
success (SI Appendix, SI1.3.4.1). Overall, the probability of successful in-
terdiction was given as the mean of these three factors, which accounted for
the setting of each node and trafficking routes between them.

When information about past interdiction for a given trafficking route
segment was available, a reinforcement learning algorithm modified the
initial suitability-based probability of successful interdiction in proportion to
the normalized volume of cocaine seized (i.e., trafficking route segment with
the largest seizure receives a weight of 1). Trafficking route segments with
large volume seizures were more likely to experience additional interdiction
events in the future, until seizures returned lower volumes and future in-
terdiction events were discouraged. Trafficking route segments with the
highest expected probability of successful interdiction were selected
according to interdiction capacity (see below).

The number of routes that could be chosen at any given time step was
constrained by the Interdiction Agent’s capacity (SI Appendix, Table S1), which
varied over time based on the success of interdiction efforts. The Interdiction
Agent was assumed to have a seizure target, which was the volume of cocaine
per time step that interdiction efforts strived to remove from supply. A default
value of 30% of total cocaine volume in any given time step was chosen as
a conservative assumption. Official Office of National Drug Control Policy sei-
zure targets were set at 40% of suspected total cocaine volume by 2015 (67);
however, historic seizure rates have never exceeded 25% (58). Interdiction ca-
pacity was adjusted over time based on total seizures relative to the seizure
target within minimum and maximum values specified at model initialization.
Capacity increased proportionally when seizures exceeded the seizure target
volume, or decreased when seizures were less than the seizure target. More
details are provided in SI Appendix, SI1.3.4.1.

Model Calibration. A pattern-oriented modeling (POM) (68) approach was
used to calibrate key parameters. POM is a well-known model evaluation
approach for ABMs when confronted with incomplete data and/or process
knowledge. POM compares model outcomes with multiple empirical pat-
terns, or target patterns, at different hierarchical system levels. If a model
can reproduce all patterns simultaneously, the model’s process representa-
tion and internal structure are reasonably consistent with those of the real
system. Target patterns were derived from select department-level (sub-
national administrative unit) observations of cocaine shipments delivered in
the CCDB.§ Subnational units selected were Petén in Guatemala, Gracias a
Dios in Honduras, Atlantíco Norte in Nicaragua, and Colón and Darién in
Panama. These departments were selected to include at least one location
per country and on the basis of having at least 5 y of continuous observa-
tions reported in CCDB. National-level cocaine flows were used for Costa
Rica since no department reported 5 y of consecutive observations. The
timing and cumulative magnitude of modeled cocaine flows were aggre-
gated to the department level and compared with the target patterns.
Following the method used in ref. 69, a genetic algorithm was used to search

§United States Interdiction Coordinator (2015) Data extracted from the Consolidated
Counterdrug Database. Accessed December 31, 2014.
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the potential parameter space for the combination of parameter values that
produced statistically significant correlations with all of the target patterns
simultaneously. Sources of model stochasiticity—node location and network
configuration—were held constant across all model runs. The resulting
calibrated parameter values are provided in SI Appendix, Table S1.
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