
IMPLEMENTATION OF

A NEW 802.1X

PORT AUTHENTICATION METHOD

THESIS

Presented to the Graduate Council

of Texas State University-San Marcos

in Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Yu-Ming Cheng, B.A

San Marcos, Texas

December 2004

DEDICATION

This thesis is dedicated to my lovely family and friends who gave me support and

encouragement during this work and to the Computer Science Department at Texas

State University-San Marcos.

ACKNOWLEGDEMENTS

I thank many people whose support and encouragement brought me here.

Without this help, I would never have finished this work.

First and foremost, I would like to thank my advisor, Dr. McCabe, for his

continuous guidance and support. With his invaluable advice and excellent teaching, this

two-year graduate thesis research has been one of the most valuable and unforgettable

experiences of my life. I truly appreciate his patience and the help he has given me.

Also I am very thankful to the other two members of my thesis committee, Dr.

Peng and Dr. Hazlewood, for supporting my thesis work.

Finally, I am extremely grateful to my parents who gave me both life and spiritual

support while studying in United States. With their help, I am able to fully concentrate on

my studies without worrying about anything. This honor of graduation is dedicated to

them.

This manuscript was submitted on November 8, 2004

lV

TABLE OF CONTENTS

ACKNOWLEGDEMENTS•................................•.•.......•.....••......•••.....•••.....•. iv

LIST OF TABLES ...•......................•................•..... vii

LIST OF FIGURES .. viii

ABSTRACT ..•................................•............. ix

CHAPTER

I. INTRODUCTION •..•..••.•....•••......••••.....•••.•••••••......••••••..••••...•••••..••.••••..••....•••••..•••• 1
1.2. Organization of the Thesis ... 3
1.3. Current 802.11 Standard Issues ... 4

II. 802.1X PORT AUTHENTICATION FRAMEWORK ... 8
2.1. 802.1X Port Authentication Protocol.. ... 8
2.2. Extensible Authentication Protocol ... 10
2.3. Remote Authentication Dial in User Service Protocol .. 12
2.4. 802.1X Authentication Process ... 14

III. 802.1X EAP AUTHENTICATION METHODS AND KEY MANAGEMENT 16
3.1. Password Based EAP Authentication Methods .. 16
3.2. Certificate Based EAP Authentication Methods .. 18
3.2.1. Certificate and Certificate Authority ... 18
3.2.2. Transport Layer Security Protocol ... 19
3.2.3. Common Certificate Based EAP Methods .. 20
3.3. EAP Key Management ... 24

IV. 802.1X AUTHENTICATION SIMULATOR ... 26
4.1. Necessity of Simulator .. 26
4.2. Simulation Work ... 27
4.3. Software Design Architecture .. 29
4.4. Supported Functionality .. 36
4.5. Example of Simulation Output ... 37

V. A NEW 802.1X EAP AUTHENTICATION METHOD ... 40
5.1. Issues .. 40
5.2. EAP-TTLS with EAP-MD5 Authentication Procedure .. 41
5.3. Man-in-the-Middle Attack Scheme .. 43
5.4. EAP-TTLS-CHENG ... 44

VI. LATEST DEVELOPMENT IN STANDARDS ... 47
6.1. Wi-Fi Protected Access 0/VPA) .. 47
6.2. WPA2. and 802.11 i Standard ... 48

TOOLS AND SOFTWARE USED ... 51

AP PEN DICES .•.••••••...........••••••••••••••••..•.•••.•••••..••••••.•..•••....•••••...•••....••••••.•.••••••••• 52

A.1. FREERADIUS Set Up ... 53

A.2. Generate Certificate for EAP-TLS/TTLS ... 55

A.3. Authentication Simulator Set Up .. 58

A.4. Modification of FREERADIUS Source Code .. 59

V

REFERENCES •••••••••••.•••.••••.•••••••••.••••••••••••••••••• 69

Vl

LIST OF TABLES

Table 3-1 Comparison of Certificate Based EAP Authentication Methods 23

Table 4-1 Available EAP support for Supplicant and Authentication Server 26

vu

LIST OF FIGURES

Figure 1-1 802.11 Infrastructure mode (left) and Ad hoc mode (right) 5

Figure 1-2 WEP encipherment .. 6

Figure 2-1 802.11 and 802.1X architecture relationship .. 8

Figure 2-2 802.1X architecture overview ... 9

Figure 2-3 EAP frame format. .. 10

Figure 2-4 RADIUS Frame Format .. 12

Figure 2-5 802.1X authentication process ... 15

Figure 3-1 TLS layer structure ... 19

Figure 3-2 TLS handshake process ... 20

Figure 3-3 Conversation Overview .. 24

Figure 4-1 Simulation Process .. 28

Figure 4-2 Module Dependency Design Diagram of Simulator 29

Figure 4-3 Port Tmers State machine .. 31

Figure 4-4 Reauthentication Timer State machine ... 31

Figure 4-5 Authenticator PAE State machine .. 32

Figure 4-6 Backend Authenticator State machine .. 33

Figure 4-7 Key Transmit State machine .. 34

Figure 4-8 Key Receive State machine ... 34

Figure 4-9 Supplicant PAE State machine ... 35

Figure 4-10 FREERADIUS Server Running Result (Partial) .. 37

Figure 4-11 Authenticator Simulator Running Result (Partial) .. 38

Figure 4-12 Supplicant Simulator Running Result (Partial) .. 38

Figure 5-1 EAP-TTLS Message Exchange41

Figure 5-2 Packet Relationship in EAP-TTLS42

Figure 5-3 Man-in-the-Middle for EAP-TTLS/EAP-MD5 .. .43

Figure 5-4 Man-in-the-Middle vs. Authenticator simulation result..45

Figure 5-5 True supplicant vs. Authenticator simulation result..45

Figure 6-1 WPA Encapsulation Process48

Figure 6-2 WEP vs. TKIP & CCMP .. 49

Vlll

ABSTRACT

IMPLEMENTATION OF A NEW 802.1 X

PORT AUTHENTICATION

METHOD

by

YU-MING CHENG, B.A

Texas State University-San Marcos

December 2004

SUPERVISING PROFESSOR: THOMAS MCCABE

With increasing usage of wireless devices, security issues have become a major

challenge for wireless network. In order to solve security defects of the 802.11 standard,

the 802.1X authentication standard is adapted to provide additional security. This thesis

aims at studying and analyzing 802.1X protocols used to provide security. It includes

detailed explanations of various EAP authentication methods which are used by 802.1X,

their functionalities and weaknesses, in terms of different security attacks. This paper

also describes the advantages and design of an authentication simulator. Then we

propose a new EAP authentication method based on the 802.1 X protocol and simulate

the authentication process based on the simulator.

IX

CHAPTER 1

INTRODUCTION

Security has become a big issue for networks. Because of the Internet and accompanying

dependency on computer networks for business environments, preventing attacks or

eavesdropping has become a primary task. Some common network security attacks are as

follows:

• Eavesdropping

Because network communication occurs in clear text format, attackers can easily listen to

the network and monitor all traffic. This is called passive wiretapping. However, sometimes

attackers not only listen but also modify or inject something into network called "active"

wiretapping, which can cause serious problems. The normal way to prevent active or passive

wiretapping is to use data encryption so that attackers can listen on the network but can't decode

data nor can they inject modified (unencoded) data.

• Denial of Service

Denial of Service is a situation where a user or organization is deprived of the services of

a resource; such as, an attacker floods a network with useless requests so that it can't handle

real user requests. By doing this, attackers can either cause a network computer to disconnect

from network, crash the computer or otherwise deny access to the service. Denial of Service

attack is easy in wireless networks because of the broadcast use of radio signals.

1

2

• Dictionary Attack

A dictionary attack involves gathering a list of keys or words in order to break security

systems, especially legacy password based systems. Attackers can go through a dictionary

beginning with higher probability words and systematically test all probable passwords in systems

they attack.

• Session Hijacking

Session Hijacking is a way of stealing a user's identity in an ongoing conversation

(session) and impersonating the real user. In wireless environments, attackers can perform

hijacking by obtaining packets between two stations and changing an attacker's interface

firmware to produce the same MAC address as the real user.

• Man-in-the-Middle Attack

Man-in-the-middle attacks occur when an attacker is able to intercept the communication

between two parties. Without knowing there is a man in the middle of the conversation, both

parties will assume this communication is secure. The attacker can pretend to be either party by

receiving message from one party, modifying it and forwarding it to the other party. This attack

becomes fairly easy under wireless environment because everyone is able to intercept radio

signals.

A variety of methods have been created to protect against these network attacks, such as

using strong data encryption, firewalls, complicated authentication methods such as packet

authentication, login authentication, certificate chains and others.

Wireless communication with its portability and flexibility, has become a new trend in

communication networks for organizations. However, when compared with wired networks, due to

its broadcast nature and communication medium, wireless communication is susceptible to more

attacks and requires additional protections. The following are some of the threats and

vulnerabilities that a wireless communication network encounters [33]:

3

• Wireless networks have all the security problems that old conventional wired network

have.

• Because of the natural "a1rwave" character of transmission media, an unauthorized user

can access the wireless network, bypassing firewall protections.

• Transmission data without encryption or poor encryption can easily be intercepted and

read.

• Anonymous entities may steal others identity and gain access to an internal network with

full, authorized privileges.

• Intruders may easily inject bad data to corrupt data on wireless devices and gain access

to internal wired network.

In this thesis, we mainly focus on 802.11 wireless local area networks (WLAN) and look at, in

general, the security issues associated with the 802.11 standard. Then we will introduce our main

subject, the 802.1X port authentication framework and its authentication methods. We will

consider advantages and disadvantages provided by 802.1X for 802.11 WLAN and how 802.1X

addresses different security issues. We will also look at the need for an authentication simulator,

what functionality it requires and how to simulate an authentication process. In the last part of the

thesis we will propose a new authentication method based on the 802.1X framework and

compare it with different 802.1 X authentication methods. The method will be tested with the

simulator.

1.2. Organization of the Thesis

The remaining chapters are organized as following:

Section 1.3 addresses current 802.11 standard security issues. We will cover basic

802.11 infrastructure, authentication methods, the concept of using wired equivalent privacy key

(WEP) for data encryption and discuss security problems with it.

Chapter 2 discusses the 802.1X port authentication standard and how it provides a

security framework on top of 802.11. We will cover details of the EAP and RADIUS protocols

4

used in 802.1X and the advantage of using these protocols. We also briefly mention new 802.1X

authentication methods.

In Chapter 3, we cover 802.1X some authentication methods in detail. We will compare

different methods (EAP/MD5, Cisco LEAP, EAP/TLS, EAP/TTLS and EAP/PEAP) and how they

handle security problems and attacks, weakness of each method, and methods to counter each

weakness.

In Chapter 4, we propose the design and implementation of an 802.1X authentication

simulator. We discuss the reasons we need a simulator and how it is used to simulate different

authentication methods. We also cover the detailed design of the simulator and the functionality it

provides with a sample result of testing an authentication method using the simulator.

In Chapter 5, we propose a new authentication method based on 802.1 X and use the

authentication simulator to verify the authentication processes with a real, external open source

radius server, FREERADIUS. We also look at how our new method counters security attacks

compared with current 802.1X authentication methods and present some conclusions.

Chapter 6 presents the latest standard developments using 802.1X. We will look at the

WiFi Protect Access (WPA) and new 802.11 i standard.

1.3. Current 802.11 Standard Issues

In the IEEE 802.11 standard [1], a WLAN can operate in one of two modes. In

infrastructure mode or basic service set (BSS) mode, it is composed of clients, which are

computers equipped with wireless network interface cards (NIC), and other computers called

access points (AP). Clients communicate to each other through the access points, which also act

as bridges between wired and wireless networks. The 802.11 standard defines management

frames to provide support for use in infrastructure mode. They are Beacon, which is used by AP

to broadcast its existence, Authentication (request and response), Association (request and

response), Reassociation (request and response), Dissassociate and Deauthenticate. An ad-hoc

mode or independent basic service set (IBSS) network, on the other hand, is only composed of

5

clients which communicate directly to each other using their wireless NIC, without an intervening

an access point. The Common use of ad hoc mode is to create a short-lived network to support a

meeting in a conference room. The following figure (source: Corporate Wireless LAN: Know the

Risks and Best Practices to Mitigate them) demonstrates differences between two modes:

Access Point
(ROQ1 Unit)

WirM Access Point
·.• _, -..:~ - .. . __ (Aoo1 U II}
-< -- . J _·,. ·,;.,._ - -...
~

\

Figure 1-1 802.11 Infrastructure mode (left) and Ad hoc mode (right)

The 802.11 standard contains several security issues. They are described as following:

• Issue 1: Usage of service set identifier(SSID)

The 802.11 standard, for each 802.11 LAN, defines a unique id called the service set id

(SSID), which is a network name used to identify an access point in order to limit access. A

station has to know the access point's SSID in order to associate with the access point. However,

each access point usually broadcasts its SSID in beacon frames; therefore any station can easily

associate with an access point based on this SSID. Even though an access point can be

configured to not broadcast a beacon, because of the "clear text" form of a SSID in other frames,

it is easy for intruders to catch radio signals and find the SSID of a wireless access point.

• Issue 2: Insecure wired equivalent privacy(WEP)

802.11 defines an encryption method called wired equivalent privacy to provide data

encryption for preventing eavesdropping. It uses a symmetric algorithm, the RC4 encryption

6

algorithm. RC4 is a stream cipher which means it takes a short key and expands it into a pseudo

random key stream. The sender can XOR the key stream with data, converting it into cipher text.

If an observer catches two cipher texts encrypted with same key, it is possible to begin to

discover the short key and hence, to decipher the data stream. WEP address these issues by

using an Integrity Check to prevent packet from being modified and an Initialization Vector (IV) to

produce different RC4 key streams for each packet. WEP use a 24 bit Initialization and either a

40 or 104 bit WEP key to produce a 64 or 128 bit RC4 key. However, a 24 bit IV was a very poor

design decision because it necessitates reuse of the IV after at most 16M transmissions. Then, it

will produce the same key stream used before. A busy access point running at 11 Mbps could run

out of IVs within 5 hours. With this defect, intruders can easily collect two ciphertext packets that

are encrypted with same key. The following figure (source: How Secure is Your Wireless

Network?: safeguarding your Wi-Fi LAN) demonstrates WEP operation.

1

Plaint :ict

CRC

lncegnty C e<:k Valve

, 4

In itializatio S c et
Vector Key

Figure 1-2 WEP encipherment

• Issue 3: Open system and shared key authentication modes.

In the 802.11 standard, a station needs to associate with an access point in order to access

its connected networks. The 802.11 standard defines association as a three-state process: (1)

unauthenticated and unassociated; (2) authenticated and unassociated; (3) authenticated and

associated . Therefore, a station can not get associated with an access point before the

7

authentication process has completed. Two types of authentication processes are supported by

802.11: open system and shared secret.

For open system, as the name describes, the AP and its network are open to any station. As

long as a station knows the access point's SSID, it can send an Authentication-Request. The

access point will send an Authentication-Response to indicate success. After the authentication

process completes, the client will send an Association-Request to request connection to the AP.

Once the AP sends back Association-Response, the client is associated to the AP. In the open

method, any anonymous user may get associated with an access point and gain privilege to

backend networks. Even though, an open system can use WEP for encryption, it is still a very

poor way to prevent security attacks.

For the shared secret authentication method, a station and access point use a predefined

WEP secret for authentication. After the station sends an Authentication-Request, the access

point will send a random challenge back. The station will use the shared secret as part of a key to

hash the challenge and send the hashed value back to the access point. Upon receiving the

response, the access point will verify it by hashing and comparing the identical data. The access

point will then send an Authentication-Response to indicate success or failure. If the

authentication succeeds, the association process can then occur. Although the shared secret

method provides better authentication using its encrypted challenge response, since a WEP key

is very easy to crack, intruders can easily find the WEP key and produce the same hash value

response.

• In conclusion: The 802.11 standard suffers from the following weakness:

-Weak per packet authentication.

-Weak user identification and authentication

- No central authentication support

- No dynamic key generation and management.

CHAPTER2

802.1X PORT AUTHENTICATION FRAMEWORK

2.1. 802.1 X Port Authentication Protocol

The 802.1 X standard [2] was originally defined as port based access control protocols for

authenticating and authorizing devices that try to attach to a LAN port. The idea was to prevent

anyone from connecting to a network by plugging an Ethernet cable into a hole in the wall without

checking the user's identity and authorization status or to prevent unauthorized connections via

modems over the public telephone system. The 802.1X protocols provide advantages such as

user identification, centralized authentication control and key management. Due to the security

weaknesses of 802.11 standards previously mentioned, 802 .1X has been adapted for wireless

LANs to overcome some security problems inherent in 802.11 by offering an overlay of new

authentication methods. The architectural relationship between the 802.1 X and 802.11 standards

is indicated in the following figure (source: www.cisco.com):

:! .-.. ':, I (_ ,., u , h I:. N l I (_ A I I O N ••• , •.~• L 1 l l

Figure 2-1 802.11 and 802.1X architecture relationship

8

9

As the above figure shows, 802.1 X provides extra authentication methods on top of any

802 network. It uses a frontend authentication algorithm, Extensible Authentication Protocol (EAP)

with a backend centralized authentication control protocol, such as Remote Authentication Dial in

User Service Protocol (RADIUS), to implement the entire authentication process. In order to

perform its port control authentication mechanism, it defines three important actors:

ClienUSupplicant, Authenticator, and Authentication Server

Authenticator - An Authenticator is an entity which enforces authentication before

allowing external devices to attach to its ports in order to access most LAN services. It is

responsible for determining an authorized port's state according to the response from an

authentication server. In wireless LANs, the authenticator is usually an Access Point.

Supplicant - A supplicant is an entity which desires access to the ports offered by

authenticator {AP). It can either initiate authentication by supplying its credentials or respond to

identity requests initiated by an authenticator. In wireless LANs, a supplicant can be any device

with a wireless adapter wishing to access an AP.

Authentication Server - An authentication server performs the authentication process,

validates a supplicant's credentials, then indicates whether the supplicant is authorized to access

the authenticator's port services or not. The Authentication server is typically a RADIUS server

accessed over EAP transport (see discussion below).

The following figure (source: Introduction to 802.1 X for Wireless Local Area Networks)

demonstrates the 802.1 X architecture and the relations between the three different actors.

EAP encapsulated in RADIUS ~

~
i......~~-"-"'L___E_A_P_o_v_er_L_AN _ _ ___,1~------------ [""""'

AP RAD-Series Server

Supplicant
System

Supplicant

L AN

Authenticator
System

Servi ce& offered
by Authenticator•,

Syste m

controlled
pen

uncon·trolled

'---------""" pen

Figure 2-2 802.1 X architecture overview

Authentication
Server

10

When a new supplicant attaches to a port, which is a logical port in wireless environments, an

authenticator will set its controlled port into Unauthorized state and block all messages through

the port with the exception of special EAP messages. The authenticator will forward received

EAP messages to the appropriate authentication server, where the authentication check takes

place. The server usually has access to a global database for authentication certification. Upon

receiving a response from the authentication server, an authenticator will set a port into

Authorized state if authentication succeeds or set it to the Unauthorized state and the supplicant

fails authentication. Once authentication succeeds, the supplicant can access the port and the

attached wired and wireless LANs.

2.2. Extensible Authentication Protocol

EAP was defined in RFC 2248 [18], (made obsolete by RFC 37 48 [07]), and was

originally created as an extension to the Point to Point protocol (PPP) [23] to provide additional

authentication support. It usually runs over a data link without requiring IP addresses; therefore,

any protocol that carries frames can be used for EAP. A general EAP frame format is defined as

shown in the following figure (source: Examining 802.1X and EAP):

Figure 2-3 EAP frame format

The Code field indicates the type of EAP packet. EAP defines four types of packets to be carried.

They are EAP-REQUEST (code = 1) which carries a request from authenticator to supplicant;

EAP-RESPONSE (code =2) which allows a supplicant to send a response to an authenticator;

EAP-SUCCESS (code = 3) which indicates success of authentication ; and EAP-FAILURE (code

= 4) which indicates failure of authentication. For every request and response packet, there is a

type field which indicates the type of EAP authentication method to be used, such as Identity

(type = 1), Nak (type = 3) and MOS-Challenge (type =4). In order to provide extra authentication

for current 802.11 broadcast networks, the 802.1 X framework uses the EAP protocol to carry

11

protocol messages over wired or wireless LANs, which extends EAP from EAP over PPP to EAP

over LAN (EAPOL) or EAP over Wireless (EAPOW). 802.1X defines four new message formats

for EAPOL: EAPOL-START, which Is used by a supplicant to signal an authenticator to start the

authentication process; EAPOL-KEY, which is used by an authenticator to send encryption keys

to a supplicant, once the authentication process succeeds; EAPOL-PACKET, which is used to

carry the actual EAP message over LAN; and EAPOL-LOGOFF, used by a supplicant to inform

an authenticator that it is disconnecting from the network port. Only one of the EAPOL message

types is used to carry traditional EAP messages, the rest provide administrative support. The

advantages of using EAP include:

• EAP supports multiple authentication mechanisms without having to pre-negotiate a specific

one.

• An authenticator may act as a "pass through" and just forward a message to an

authentication server; therefore it doesn't have to understand multiple EAP authentication

methods. Only a server has to decide which authentication protocols are supported and

negotiate each with a supplicant.

• By separating the roles of authenticator and authentication server, an authenticator only

enforces authentication status at the port. Credential management is simplified, being

isolated to the authentication server.

However, in order to carry out the entire EAP process in 802.1X, all three entities have to support

the EAP protocol. But by separating the authenticator and authentication server, an extra

authentication protocol (RADIUS) has to be used in order to carry EAP messages. This increases

the complexity of security issues and key distribution [25].

EAP itself is not an authentication protocol. It's only a standard that describes how a

message is carried and exchanged between supplicant and authentication server. It relies on

other protocols for authentication. The commonly used methods include: EAP-MD5, Cisco LEAP,

EAP-TLS, EAP-TTLS and PEAP. By choosing the proper EAP authentication method, 802.1X

authentication can provide a counter to eavesdropping, dictionary attacks, session hijacking and

man-in-the-middle attacks.

12

2.3. Remote Authentication Dial in User Service Protocol

RADIUS is an authentication, authorization, accounting (AAA) [1 O] protocol that is used to

provide network access control. It is a connectionless, UDP-based protocol and thus, it requires

an underlying IP network. RADIUS authentication was defined in [11] . The RADIUS packet format

is composed as following figure (source: http://ing.ctit.utwente.nl/WU5/D5.1/Technology/radius/):

0 8 16 24
Code Identifier Length

Authenticator

Attributes

Figure 2-4 RADIUS Frame Format

The Code field defines the type of RADIUS packet. It contains four types of packets for

authentication. They are ACCESS-REQUEST (code = 1), which carries request from

authenticator to authentication server; ACCESS-CHALLENGE (code = 11), which used by an

authentication server to issue challenge to an authenticator; ACCESS-ACEPT (code = 3), which

indicates success of the authentication; and ACCESS-REJECT (code= 4), which indicates failure

of the authentication. Both authentication server and authenticator authenticate each packet by

using a predefined shared secret. In order to prevent a packet being modified or prevent replay

attacks, every ACCESS-REQUEST packet contains a 16 octet randomly generated Request

Authenticator field. When an authentication server sends back a response, it contains a

Response-Authenticator field which is a MD5 hash value of code, identifier, length, Request

Authenticator, attributes and shared secret. Upon receiving this challenge, the authenticator is

able to check if a packet has been modified or not.

RADIUS also defines several attribute fields in order to carry different types of data. In

order to support EAP in RADIUS, two types of attributes are used: EAP-MESSAGE and

MESSAGE-AUTHENTICATOR [08]. The EAP-MESSAGE attribute allows an EAP message to be

encapsulated within RADIUS, which is referred to as EAP over RADIUS and the EAP message is

passed from authenticator to server. The MESSAGE-AUTHENTICATOR attribute is present only

13

when an EAP message is encapsulated inside RADIUS. It provides ACCESS-REQUEST packet

integrity protection by calculating the MD5 hash of the whole packet. Although RADIUS is not part

of 802.1X, it has become a de facto back-end protocol used in 802.1X to carry EAP message

between authenticator and authentication server [19].

Even though RADIUS provides a method to support authentication, it has security

weaknesses [29].

• Shared secret based attack

Because Response-Authenticator field and MESSAGE-AUTHENTICATOR attribute are

based on the MD5 hash of a shared secret, by capturing Response-Authenticator or MESSAGE

AUTHENTICATOR, the RADIUS shared secret is vulnerable to offline dictionary attack by pre

computing the MD5 hash of the packet and then resuming the hash for each guess. In addition,

authenticator and server only authenticate each other through the shared secret. RADIUS allows

use of the same shared secret between multiple authenticators. This provides more data for

attackers to use and any compromised client can compromise other machines. Most

implementations of RADIUS allow the shared secret to be an ASCII string with no more than 16

characters. This implementation limit makes it easier to guess the shared secret.

• Request-Authenticator based attack

The whole packet protection mechanism in RADIUS is based on the authenticator field,

which means its protection depends on how the random and unique Request-Authenticator field

is generated. Therefore, if these random numbers collide, attackers can use collisions to

masquerade as the server and replay responses. Also attackers can predict and create server

responses to masquerade as valid server response and produce seemingly valid ACCESS

REJECT packets, creating a denial of service attack.

14

2.4. 802.1X Authentication Process

As mentioned in section 2.1, 8~2.1X provides an authentication framework on top of 802.11.

Therefore, the 802.1X authentication process starts after the 802.11 Association-Response frame

has been received from the supplicant. The authentication process can be divided into two parts:

EAP conversation between supplicant and authenticator and RADIUS conversation between

authenticator and server. The process starts by a supplicant signaling the authenticator with a

EAPOL-START packet which indicates the starting of the EAP process. After receiving the start

signal, an authenticator will issue an EAP-REQUEST with type field set to Identity to request the

supplicant provide proper identification for the server. Once the authenticator receives EAP

RESPONSE, it will encapsulate the response in a RADIUS EAP-MESSAGE attribute and send a

RADIUS ACCESS-REQUEST packet to an authentication server. After the server receives the

packet, if the user identity matches the server's global database, it will start negotiating with the

supplicant by sending an EAP message with type field indicating which EAP authentication

method the server wishes to use. If supplicant agrees with the authentication method, the

choosen authentication process will continue back and forth from supplicant to server until the

server issues either ACCESS-ACCEPT for success or ACCESS-REJECT for failure. Then the

authenticator will forward the outcome of the server message by issuing EAP-SUCCESS or EAP

FAILURE to the supplicant. The following figure (source: Introduction to 802.1X for Wireless Local

Area Networks) describes the whole 802.1X process with RADIUS authentication:

Laptop

802.11 finish ⇒

802. l X start ⇒

Association Request

Association Response

EA POL-Start

EAP-RequesVldentity

EAP-Response/ldentity

EAP- Request

EAP-Response

EAP-Success

EAP0L-Key

Access Point

EAP-Response/ldentity over
RADIUS

EAP-Request over RADIUS

EAP-Request over RADIUS

EAP-Success & Encryption Key
over RADIUS

Figure 2-5 802.1X authentication process

RAD-Series
Server

15

The last two messages of the figure above, which are Encryption Key passed from server to

authenticator and then, EAPOL-Key sent from authenticator to supplicant, will only occur if the

chosen EAP method supports key generation. Although 802.1X does define the passing of keys,

it doesn't require an underlying EAP method to support key material and key generation . The use

of EAPOL-Key is for the authenticator to transmit an encrypted key to the client. It includes the

transmission of unicast key, which is only used between authenticator and client for data

encryption, and a broadcast key used between AP and a group of clients that associate with it.

CHAPTER3

802.1X EAP AUTHENTICATION METHODS AND KEY
MANAGEMENT

3.1. Password Based EAP Authentication Methods

Among authentication methods currently supported for EAP authentication, common

methods that have been implemented can be divided into two categories: password based

authentication and certificate based authentication. In password based authentication, the client

and server authenticate each other through a predefined password. The password based EAP

authentication methods include:

• EAP-MD5

EAP-Message-Digest-5 is the basic authentication method defined in the EAP standard.

It is based on a MD5 hash of the supplicant's username and password. The authentication

process starts after a server receives a client's IDENTITY-RESPONSE. If the server is configured

to use EAP-MD5, it will issue an EAP message that contains a 16 octet randomly generated

challenge with type field set to MOS-Challenge, encapsulated in a RADIUS ACCESS

CHALLENGE packet. Once the client receives this EAP message, if it supports EAP-MD5, it will

calculate the MD5 hash of the concatenation of packet id, user password and the challenge and

generate a 16 octet response to send back to the server. Since the server knows all the elements

of the MD5 hash, it can also compute the MD5 hash value and compare it with the received

response. If these two values match, the authentication process succeeds, otherwise it fails.

16

17

EAP-MD5 provides a very lightweight authentication and is very easy to deploy; however

it has serious security problems when used in a wireless environment. First, it only provides one

way authentication (server authenticates client), which makes It susceptible to a man-in-the

middle attack. Second, it doesn't generate any keys that can be used for subsequent channel

encryption. Therefore, the supplicant and AP have to use WEP keys for data encryption. Since

WEP can be attacked, so can EAP-MD5. Because EAP-MD5 is a password based authentication,

it may suffer from dictionary attacks. Although 16 octet challenges provide less possibility for

attack, attackers with large dictionaries may still break through.

• Cisco LEAP

LEAP [26], which stands for Lightweight EAP, is not part of the EAP standard. It was

developed by Cisco and used primary for Cisco wireless environments. It Is also a password

based authentication. Unlike EAP-MD5, LEAP does provide mutual authentication and key

generation for data encryption. The LEAP process is similar to EAP-MD5 except there are two

challenges: one for the client and another for the server. LEAP uses 8 octet challenges with 24

octet responses computed by using Microsoft's MS-CHAP [16] algorithm. The 24 octet client

response is calculated by a function NTChallengeResponse() defined in [16], using the server's

challenge and Unicode of the password as input. On the other hand, the 24 octet server response

is generated by calculating 16 octets of MPPEHASH then using the client's challenge and

MPPEHASH as input to function ChallengeResponse(). After the server verifies client

authentication, it starts the client-authenticates-server process. Depending on the result of the

server authentication, the server then issues EAP-SUCCESS or EAP-FAILURE. Finally, by the

time mutual authentication succeeds, server and client will each have independently computed

the same intermediate key by using the Microsoft Point to Point Encryption (MPPE) [13] function

and then have generated a 34 octet session key. Since authentication occurs only between client

and server, the authenticator has no way of knowing how to generate the key. Therefore, the

server will now send the computed key in an ACCESS-ACCEPT packet to the authenticator.

18

Upon learning the session key, the authenticator and client can further negotiate keys for data

encryption.

LEAP prevents man-in-the-middle attack by using mutual authentication. Also by

generating a session key and distributing it to the authenticator, LEAP is able to generate a

dynamic WEP key between client and authenticator for strong data encryption. Unfortunately,

LEAP has already been broken. A researcher, Joshua Wright, was able to go through large

dictionary files very quickly and mount an offline dictionary attack against LEAP [30).

3.2. Certificate Based EAP Authentication Methods

All certificate based EAP authentication methods have two important components. They

are described as following:

3.2.1. Certificate and Certificate Authority

In public key infrastructure (PKI) [9], two keys are used for encryption. One is a private

key and the other is a public key. As the name suggests, the public key is usually published and

known to anyone. However, when two parties try to communicate securely by using both sites'

public key for encryption, unless they are "directly'' told the value of the public keys, it is very

difficult to distinguish real public keys from fakes. The issue of certifying whether a public key

really belongs to the "person" you are expecting to talk to has become more important with the

increasing use of e-commerce. Certificates were created to provide a secure way of publishing

verifiable public keys. When a trusted third party, a certificate authority (CA), creates a certificate

for a user's public key, the public key can be more trusted. If an entity is presented with a public

key within a certificate, it can request the CA to verify the contents of the certificate, using the

CA's digital signature system. In other words, if you can trust the CA then the assumption is that

you can trust the contents of any certificate it has signed, including the one just presented to you.

Certificates are at the heart of modem authentications where the two parties are unknown to each

other before the interaction begins.

19

3.2.2. Transport Layer Security Protocol

Transport Layer Security (TLS) Protocol is the standard version of Secure Sockets Layer

(SSL) Protocol. SSL was developed originally by Netscape for providing secure transactions in

web browser/server interactions and is based on the use of digital certificates. After SSL was

standardized by the IETF, it was renamed TLS, defined in [21]. The difference between TLS and

SSL is that TLS does not concern itself with browsers but is entirely concerned with the transport

protocol layer. TLS consists of two internal layers and several sub-protocols. The TLS layer

structure can be described as the following figure indicates (source: Internet Application Security):

,A.pplicati on Layer Protocol

Handshake .AJert OlangeOpher ~plication
Prctocol Prctocol ~ec Protocol Frotocol

TLS Record Protocol

Transport Layer Protocol

Figure 3-1 TLS layer structure

TLS Record Protocol is used to provide a private and reliable connection; it is responsible

for transporting encrypted data between two peers using the encryption parameters agreed to in

the handshake protocol. Handshake Protocol provides the connection with a reliable and secure

negotiation of encryption and cryptographic keys to be used in the connection. It also performs

peer identity authentication.

A relation between two parties is established in TLS by using a complicated handshake

algorithm. At the end of the handshake, both parties have computed a TLS master key and have

agreed to a secure channel where only the two end peers can "read" the contents of the channel.

This channel is often referred to as a secure tunnel through the intermediate network. Starting

from this point, all data are encrypted using a master key. The TLS handshake exchange is

presented in the following figure (source: http://www.cisco.com/warp/public/759/ipj_ 1-

1 /images/fig2SSL.gif):

Client Server

Establish secwity capabi I ities;.
including rprolocol version,.
:session 10. CipherS&.dle,
corqptessioh1 method. and iniUaJ
r:ahdom numbet$.

Sener mat send! cert if" cate,
11:e,:; Hchange. and request
certlfical9'. Serwer $tgnats end
o,f, hello mM.Sa9B phase.

Cl'iml. $ends certifieci'le if
reques ed. CU&nl senlfs key
e xchange. Clfent 1may 58nd
certiflcalB verificabon.

Change ci,ph&r suite and finish
hahlhbake prurocot

Nale: Shaded lr..rnsTers are opllona/ or sitllati.on-dependent
mess11ge.s thal are nol always sent

Figure 3-2 TLS handshake process

3.2.3. Common Certificate Based EAP Methods

• EAP-TLS

20

EAP-TLS was defined in [5], which defines how TLS can be directly transported over

EAP instead of using TCP/IP . The idea is that TLS packets are encapsulated inside EAP

messages. EAP-TLS requires both client and server authenticate each other by using digital

certificates in the TLS handshake.

The EAP-TLS authentication process starts after the server receives the client's

IDENTITY-RESPONSE. The server will issue an EAP-REQUEST with TLS start flag set. Once

the client receives this start flag messages, the TLS handshake exchange starts with the TLS

handshake encapsulated and carried inside EAP. After both parties finish the handshake, the

21

server then derives the AAA-key and passes it to the authenticator using Microsoft Vendor

specific RADIUS Attributes [14] inside an ACCESS-ACCEPT packet with EAP-SUCCESS. By

passing an AAA-key in an ACCESS-ACCEPT packet to the authenticator, the authenticator is

able to synchronize and compute a Transient-Session-Key identical to the client's for future

encryption. Since the authenticator Is acting like a pass-through, it doesn't need to understand

TLS to carry out the process. It only decides the port's authorized status according to EAP

SUCCESS or EAP-FAILURE delivered from the server at the end of the process.

EAP-TLS provides security protections which include mutual authentication by certificate

and dynamic WEP key generation. EAP-TLS is difficult to deploy because of certificate

management. It also inherits all security issues that affect the TLS protocol.

• EAP-TTLS

EAP-TTLS is a short name for EAP Tunneled TLS. EAP-TTLS was defined in an IETF

draft [20]. It is an extension method to EAP-TLS and provides strong encryption without the

complexity of using mutual certificates on both client and server. The idea is to use TLS to

establish a security tunnel first and then use more authentication methods inside the tunnel. The

inner authentication methods can be non EAP protocols such as PAP, CHAP [24], MS-CHAP and

MS-CHAP-V2 [15] or EAP methods such as EAP-MD5.

The authentication process of EAP-TTLS can be divided into two phases. Phase one is

the same as EAP-TLS except it only requires the server to be authenticated to the client.

Therefore, the server CERTIFICATE-REQUEST and client's CERTIFICATE handshake will not

appear in the TLS handshake exchange. Also after the FINISH handshake has been sent, the

server will not issue an ACCESS-ACCEPT with EAP-SUCCESS. Both parties establish a secure

tunnel by using a derived Transient-EAP-Key for data encryption between server and client. Once

the secure tunnel between client and server has been established, the authentication process will

enter phase two. One advantage of EAP-TTLS is it provides identity protection by giving an

option for the user to provide its real identity inside the secure tunnel. Therefore, in phase one,

22

even if the server requests the user to provide its identity, a user can use an anonymous identity

instead, and provide its real identity in phase two's identity request.

Phase two will start by the server sending EAP-REQUEST with type field Identity

encapsulated inside an ACCESS-REQUEST packet. If the client did not provide its real identity in

phase one, it will give its real identity in EAP-RESPONSE. Upon receiving the client's real identity,

the server will start the second part of the authentication process, which depends on the inner

method chosen. If the inner method's authentication process succeeds, the serve will issue an

ACCESS-ACCEPT to the authenticator and indicate success.

Since EAP-TTLS is an extension of EAP-TLS, it inherits all security protections that TLS

has, such as mutual authentication, dynamic WEP key generation etc. It also provides extra user

identity protection. However, one recent research paper [32] has pointed out that EAP-TTLS can

suffer from a man-in-the-middle attack. The main reason is that the inner authentication method is

not aware of the existence of the secure tunnel. An attacker can first form a secure tunnel to the

server without the server validating the client's identity (only server is authenticated to client but

not vice versa). Then the attacker can pretend to be an authenticator asking a client for

authentication information, passing it to the server through the secure tunnel. In other words, the

man-in-the-middle attacker can authenticate to the server by getting the appropriate answers

from an actual, unsuspecting client. Once the inner authentication process succeeds, the attacker

can just deny the real client and gain access to the port.

• PEAP

PEAP is the acronym for Protected EAP, which was defined in an IETF's draft [4]. PEAP

actually is a special case of EAP-TTLS by allowing only EAP authentication methods as an inner

method. PEAP authentication procedure is the same as EAP-TLS. Phase one is used to establish

a secure tunnel and phase two runs an EAP method inside the tunnel. Microsoft implements

PEAP by choosing EAP-MS-CHAP-V2 [22] as its inner method. Besides mutual authentication,

dynamic WEP key generation and identity protection, PEAP also provides extra protection

against man-in-the-middle attacks by using cryptographic binding of the keys. In normal EAP-

23

TTLS, after authentication success, client and server generate AAA-key using TLS keying

material. When performing a man-in-the-middle attack, only the attacker and server form a secure

tunnel. Therefore, attackers can generate AAA-key once the authentication process is complete.

PEAP solves this problem by combining TLS and the inner method keying materials together and

generating an AAA-key using both. In this situation, an attacker no longer can compute the

correct AAA-key since he only knows TLS keying material but not the inner method keying

material. In order to use cryptographic binding [17] to protect against man-in-the-middle attacks,

any EAP method that doesn't support generation of keying materials can not be used as an inner

method for PEAP.

The following table (source: A Technical Comparison of TTLS and PEAP) lists detailed

comparisons among three certificate based authentication methods.

EAP-TLS (RFC
ITTLS {Internet draft) PEAP(lnternet draft)

2716)

I Protocol Operations

Establish TLS
Two phases: (1) Establish Two parts: (1) Establish session and

Basic protocol validate TLS between client and TTLS TLS between client and

structure certificates on
server (2) Exchange attribute- PEAP server (2) Run

both client and value pairs between client EAP exchange over
and server TLS tunnel server

j Inner methods jNone jAny(Non EAP or EAP) jAny EAP method

Fast session
INo Ives Ives reconnect

lwEP Integration !server can supply WEP key with external protocol (e.g. RADIUS extension)

I PKI and Certificate Processing

I Server Certificate !Required I Required I Required

I Client Certificate !Required joptional I optional

I Cert Verification !Through certificate chain or OCSP TLS extension (current Internet draft)

!client and User Authentication

Authentication Mutual: Uses Mutual: Certificate for server Mutual: Certificate for

direction
digital certificates authentication, and tunneled server, and protected
both ways method for client EAP method for client

I Protection of user
identity exchange INo Ives; protected by TLS [ves; protected by TLS

Table 3-1 Comparison of Certificate Based EAP Authentication Methods

24

3.3. EAP Key Management

Although 802.1X defines a new message type, EAPOL-KEY to pass keying material

between authenticator and supplicant, it doesn't define how the key is generated or how it is used.

All key generations depend on which EAP authentication method is chosen. For example, EAP

TLS relies on keying material generated from the outer TLS protocol. In order to provide overall

details about key generation and management, an IETF internet draft [6], EAP Key Management

Framework, provides a framework for generation, transport and usage of keying material

generated by EAP authentication methods. In this draft, if an EAP method supports key derivation,

it defines three phases of the protocol as the following figure indicates (source: EAP key

management framework):

EAP peer Authenticator Auth. Server

~---------,>I
Discovery (phase 0) I

~--------->l<----------,>1
EAP auth (phase 1a) I AAA pass-through (optional) I

I I
1--------->1
I AAA-Key transport I
I (optional; phase 1b) I

----------->I I
Unicast Secure association I I

(phase 2a) I I
I I

----------->I I
Multicast Secure association I I

(optional; phase 2b) I I
I I

Figure 3-3 Conversation Overview

Phase O is just a simple process for a client to discover the location of the

authenticator. For wireless environment, the discover phase occurs when a client computer tries

to discover and associate with an AP's SSID. In phase 1 a, EAP authentication takes place. After

phase 1 a succeeds, phase 1 b will occur only if the EAP method supports key generation. Server

and client will then both compute an AAA-key according to keying material derived from the EAP

method and the server will pass the AAA-key to the authenticator. Once client and authenticator

25

both have an AAA-key, phase 2 secure association starts between client and authenticator to

exchange information, and then mix it with the AAA-key to create unicast (phase 2a) and

broadcast (phase2b) secure channels. Exchanging information during the secure association

phase guarantees the mutual proof of possession of the AAA-key, which demonstrates both client

and authenticator have been authenticated to each other and authorized by the backend server.

This phase also generates a fresh Transient-Session-Key using exchanged information and the

AAA-key. Since the Transient-Session-Key is not directly derived from AAA-key, this protects

against compromise of AAA-key and assures freshness of Transient-Session-Keys.

CHAPTER4

802.1X AUTHENTICATION SIMULATOR

4.1. Necessity of Simulator

In order to establish an infrastructure for a 802.1X authentication framework, the following

concerns have to be satisfied:

• Three entities; a supplicant which Is a computer with wireless NIC card; an authenticator

which is an access point; and an authentication server which is a RADIUS server on a

wired network have to be present.

• Although an authenticator acts as a pass through, 1t has to have both EAP and RADIUS

protocols implemented in It.

• Both client and authentication server need to support the same EAP authentication

methods in order to complete any authentication process.

Currently many 802.1X capable APs, clients and RADIUS servers have been implemented by

different universities, organizations and companies. The following table lists some of the available

802.1X supplicant and authentication servers with the supported EAP authentications.

-·

I EAP-MD5 ·I EAP-TLS I EAP-TTLS I PEAP I LEAP
--

I

'
· RADIUS Cisco, FreeRADIUS, CISCO, FreeRADIUS, Funk, Interlink, Cisco, Funk, , Cisco, FreeRADIUS, i
'Server Funk, Interlink, Funk, Interlink, Meetinghouse, Interlink, Funk, Interlink,

Meetinghouse, Meetinghouse, Radiator Meetinghouse, Meetinghouse, I

Support . Microsoft, Radiator Microsoft, Radiator Microsoft, Radiator Radiator '
- - - ---

· Supplicant Funk, Open1X, CISCO, Funk, I Alfa-Ariss, Funk, Funk, Cisco, Funk, i
Client Meetinghouse, Meetinghouse, I Meetinghouse, Meetinghouse, Meetinghouse

Microsoft Microsoft, Open1X Open1X Microsoft
Support :

- - - -

Table 4-1 Available EAP support for Supplicant and Authentication Server

26

27

As the above table indicates, most only support common EAP authentication methods as

described in Chapter 3. New EAP authentication methods have been proposed, but only a few of

them are implemented or supported. In this thesis project, we developed an 802.1X

authentication simulator to provide a first hand and easy implementation framework for EAP

authentication development without using actual wireless devices. Development of an AP and

client simulator was necessary because of the complexity and cost of implementing new security

protocols in real devices. Normally the protocols used by a wireless supplicant are actually

implemented in firmware delivered with the device. Modifying such firmware would require both

tedious and tricky reverse engineering. The same would be true in modifying an AP.

The simulator developed in this project includes both supplicant and authenticator actors

and can simulate EAP authentication methods, and the simulator can interact with a real, external

RADIUS server. Also, by testing newly implemented methods with the simulator, it is possible to

test and analyze security issues that an authentication method might suffer.

4.2. Simulation Work

The authentication simulator developed in this thesis project implements the EAP

"conversation" by using message queues (EAP over Message Queues) between the

authenticator and supplicant. But the communication between authenticator and server uses UDP

over an IP network, with both entities either on the same machine or on separate machines. Both

authenticator and supplicant simulators are composed of their own state machines (authenticator

has five state machines and supplicant has three). With the control and interaction between state

machines, these two simulators are able to instantiate the EAP conversation and pass an EAP

message encapsulated inside a RADIUS packet to the server. The simulation process is

described by the following figure:

Supplicant
Simulator

IPC Message Queue

Authenticator
Simulator

Figure 4-1 Simulation Process

The steps of a single authentication simulation are as follows:

Internet

RADIUS
server

28

1. For each port, the authenticator creates a message queue available to any supplicant

which wants to connect, and then blocks for a port connection request.

2. The supplicant will run its three concurrent state machines which signal the

authenticator for a port connection with EAPOL-START, through the message queue.

3. After the authenticator receives EAPOL-START, 1t will fork a child process to handle

the supplicant; the child process runs the five state machines concurrently. According to

the state and port status controlled by the state machine, the authenticator child will issue

an EAP-REQUEST with type field set to Identity to supplicant, through the message

queue.

4. Once the supplicant receives the requests, its state machine will handle this request by

sending EAP-RESPONSE including its identity to authenticator, through the message

queue.

5. Upon receiving response, the authenticator's state machine will encapsulate EAP

messages inside a RADIUS ACCESS-REQUEST packet, and send 1t to the server over

UDP.

6. When the server issues an ACCESS-CHALLEGE to the authenticator, the

authenticator will respond by decapsulating the EAP message and then send it as EAP

REQUEST to the supplicant, via the message queue.

7. The simulation process will keep going back and forth until the server issues ACCESS

ACCEPT or ACCESS-FAILURE. Depending on the result from the server, the

authenticator's state machine will change to the corresponding state (Authenticated or

Failure) and set the port status to either Authorized or Unauthorized.

29

4.3. Software Design Architecture

A dependency graph for the software modules appears as follows:

Contain EAP-MD5 functions based

on EAP module to provide EAP-MD5

authentication method

Define EAP, EAPOL frame formats

and functions to transmit EAP and

EAPOL betweem authenticator and

supplicant via message queues

Define 802.1 X state machines for

authenticator and supplicant

Contain three state machines defined in

EAP state machine module. They are
supplicant PAE, port timers and key

receive state machines

Contain EAP-TTLS function using

EAP-TLS and EAP module to provide
EAP-TTLS authentication method

Contain EAP-TLS functions using
openssl library and EAP module

for EAP-TLS authentication method

EAP over RADIUS

Contain five state machines defined in EAP state
machine module. They are authenticator PAE,

backend authentication , reauthentication timer,

port timers and key transmit state machines

Define RADIUS header,

attributes and functions

to communicate with

RADIUS server

Establish a socket

to RADIUS server
using UDP

RADIUS Server
(FREERADI US)

+
Indicate dependency

Figure 4-2 Module Dependency Design Diagram of Simulator

The implementation of the authentication simulator consists of two parts: Authenticator

and Supplicant which are based on open source implementations of 802.1 X authenticator,

HostAP and supplicant, WPA_Supplicant. Instead of carrying EAP over wireless between

supplicant and authenticator, the simulator uses System V interprocess communication {IPC)

message queues, to pass EAP messages (EAP over message queues) which simplifies the

wireless signal and hardware requirements. After the authenticator receives EAP messages, it

communicates with real, external RADIUS server using RADIUS protocol via LANs. It can accept

a maximum of four concurrent supplicant connections. The software architecture of the simulator

30

relies on different external modules and two main simulator programs, authenticator and

supplicant. They are described as follows:

• Modules

The EAP module defines EAP and EAPOL frame formats. It also implements different

EAP functions which can be used by the authenticator and supplicant to carry on an

authentication process. These functions are called by EAP state machines. Depending on the

EAP authentication method chosen from server, the EAP functions will use a function

implemented in the EAP authentication method module to perform authentication.

Three EAP authentication method modules are responsible for providing functionality to

perform different authentications. In the EAP-MD5 module, one function is used to build EAP

MD5 responses. The EAP-TLS module defines TSL flags and SSL structures to perform the TLS

protocol by using the openssl library. Because EAP-TTLS is based on EAP-TLS, the EAP-TTLS

module uses the EAP-TLS module to establish a secure channel (phase one) and then uses the

EAP-MD5 module to perform the inner authentication method (phase two).

The RADIUS module defines RADIUS frame formats and different attributes. It also

provides functions for an authenticator to communicate with a RADIUS server such as building

RADIUS-REQUEST packets, encapsulating EAP messages and packet integrity checking etc.

The RADIUS client module simply acquires a UDP socket for communicating to the RADIUS

server.

The EAP state machine module Is the core of this authent1cat1on simulator. It defines

some global variables, timers and different state machines according to the state diagram defined

in 802.1X, with minor changes. These state machines are used in two main programs, the

authenticator and supplicant simulators.

• Authenticator Simulator

The authenticator simulator can be divided into five state machine components which are

defined according to their definitions in the 802.1X protocol. They are Port Timers,

31

Reauthentication Timer, Authenticator Port Authentication Entity {PAE), Backend Authenticator

and Key Transmit state machines.

The Port Timers state machine is responsible for decreasing timer variables every

second. These timer variables are used for controlling the state operations of the authenticator

and supplicant. The following figure (from IEEE 802.1 X port-based network access control)

shows the state diagram of the Port Timers state machine.

+
TICK UCT

dec(aWhile) (unconditional transition)

dec(authWhile)
dec(heldWhile)

+initialize dec(quietWhile) 'H

dec(reAuthWhen)
ONE_SECOND

dee(startWhen)
dec(txWhen)
tick== FALSE t tick== TRUE I

Figure 4-3 Port Tmers State machine

The Reauthentication Timer machine ensures that periodic reauthentication of the

supplicant takes place. When the timer expires, it will signal the Authenticator PAE state machine

to abort the supplicant's authentication status and reset the port status. The following figure (from

IEEE 802.1X port-based network access control) indicates the state diagram of the

Reauthentication Timer state machine.

(portControl != Auto) II initialize
II (portStatus == Unauthorized) II
!reAuthEnabled • INITIALIZE

reAuthWhen = reAuthPeriod

reAuthWhen == 0

REAUTHENTICATE

reAuthenticate = TRUE

UCT

Figure 4-4 Reauthentication Timer State machine

32

The Authenticator PAE is in charge of controlling port status and requesting user identity

when it senses a supplicant requests a port. It will signal the Backend Authenticator state

machine to start a process, once it receives user identity, and it will be a conduit for the supplicant

to Backend Authenticator conversation . According to the result from the Backend Authenticator,

Authenticator PAE will decide the supplicant's port status and allow traffic to pass through. The

following figure (from IEEE 802.1X port-based network access control) indicates the state

diagram of the Authenticator PAE state machine.

{(portControl == Auto) &&
(portMode != portControl))

II initialize II !portEnabled

+ • l l .-- INITIALIZE HELD

DISCONNECTED currentld = 0 portStaus = Unauthorized

portStaus = Unauthorized
portMode = Auto quietWhile = quietPeriod

eapLogoff = FALSE UCT
eapLogoff = FALSE

reAuthCount = 0
inc(currentld)

inc(currentld) quietWhile == 0

eaplogoff 11 t UCTI I

(reAuthCount>reAuthMax)

~ + ~, u +
CONNECTING

((txWhen == 0) 11 eapStart
eapStart = FALSE II reAuthenticate) &&
reAuthenticate = FALSE !eaplogoff && (reAuthCount<=reAuthMax) txWhen = txPeriod !authAbort
rxPespid = FALSE
eapRequestld
inc(reAuthCount)
eapReceive

L__J
rxRespid &&

+ ~, (reAuthCount<=reAuthMax)

AUTHENTICATED AUTHENTICATING +
portStatus = Authorized authSuccess = FALSE ABORTING
reAuthCount = 0 authFail = FALSE authAbort = TRUE inc(currentld) authTimeout = FALSE inc(currentld)

I authStart = TRUE
I L_

eapStart II L_ reAuthenticate II
authSuccess eapStart II

reAuthenticate eaplogoff 11 eaplogoff &&

authFail authTimeout !authAbort
eaplogoff

Figure 4-5 Authenticator PAE State machine

33

The Backend Authenticator state machine is responsible for communicating with the

server and sending results back to supplicant once Authenticator PAE signals starting the

authentication process. After the authentication process completes, it is also responsible for

informing the Authenticator PAE, so that it can determine the supplicant's port status. The

following figure (from IEEE 802.1 X port-based network access control) indicates the state

diagram of the Backend Authenticator state machine.

+ 7,......_ ___ ___, (portControl != Auto) II
initialize II authAbort

(aWhile == 0) &&

reqCount != maxReq

REQUEST

currentld = idFromServer
eapRequest
aWhile = suppTimeout
reqCount ++
eapolReceive

+
INITIALIZE

abortAuth
authAbort = FALSE

UCT
__J rxResp I

+ u

RESPONSE

aReq = aSuccess = FALSE
authTimeout = FALSE
rxResp = aFail = FALSE
aWhile = serverTimeout
reqCount = 0
send Resp ToServer
RecvRespFromServer

(aWhile == 0) &&

reqCount != maxReq

aReq

aSuccess I
aFail

L

+
SUCCESS

currentld = idFromServer
eapRequest
authSuccess = TRUE

, , aWhile == O + .--------..._ ___ _,,

FAIL TIMEOUT

currentld = idFromServer authTimeout = TRUE
eapRequest
authFail = TRUE UCT

UCT '~-----~. UCT + .~-----.----------------.
IDLE

authStart = FALSE
reqCount = 0

authStart I

Figure 4-6 Backend Authenticator State machine

34

The Key Transmit state machine is activated when port status is authorized and key

material is available. It will transmit the key information using EAPOL-KEY frame to supplicant.

The following figure (from IEEE 802.1X port-based network access control) indicates the state

diagram of the Key Transmit state machine.

initialize II ! portEnabled

NO_KEY _RECEIVE

KEY _RECEIVE

rxKey

Figure 4-7 Key Transmit State machine

• Supplicant Simulator

The supplicant simulator can be configured to use different EAP authentication modules

and is composed of three state machines: Port Timers, Key Receive and Supplicant PAE state

machines.

The Key Receive state machine allows EAPOL-KEY frame to be received from the

authenticator. After receiving keys, the supplicant can procede with any encryption mechanism

negotiated between supplicant and authenticator. The following figure (from IEEE 802.1X port

based network access control) indicates the state diagram of the Key Receive state machine.

initialize II ! portEnabled • NO_KEY _RECEIVE

rxKey

• ~,
KEY _RECEIVE

rxKey I

Figure 4-8 Key Receive State machine

35

The Supplicant PAE state machine is the main part of the supplicant simulator. It

connects to the authenticator's port and triggers the authentication process by sending an

EAPOL-START frame. It also provides any responses for EAP authentication requests coming

from the server. The following figure (from IEEE 802.1X port-based network access control)

indicates the state diagram of the Supplicant PAE state machine.

(userlogoff && ! logoffSend) &&
! (initialize II ! portEnabled)

T

LOGOFF

eapolLogoff
logoffSent = TRUE
suppStatus = Unauthorized

! userlogoff L_

initialize i!portEnabled

DISCONNECTED

eapSuccess = FALSE
eapFail = FALSE
startCount = O
logoffSent = FALSE
previousld = 256
suppStatus = Unauthorized

eapFail && ! (initialize II ! portEabled)
&& ! userlogoff && ! logoffSent

+
HELD

heldWhile = heldPeriod
eapFail = FALSE
eapSuccess = FALSE
suppStaus = Unauthorized

heldWhile == 0

apSuccess && e
!(

&

-- UC] ,r ! • t initialize II I portEnabled)
& !userlogoff && ! logoffSent

+ H CONNECTING
AUTHENTICATED

startWhen = startPeriod (startWhen == 0) &&
eapSuccess = FALSE startCount ++ (startCount<maxStart)
eapFail = FALSE reqld = FALSE
suppStatus = Authorized eapolStart

reqld (start\Mlen ==O) && LJ reqld
(startCount>=maxStart)

--

!Td ~~

ACQUIRED

+ ! authWhile = authPeriod
startCount = 0 AUTHENTICATING
reqld = FALSE

authWhile = authPeriod reqAuth = FALSE
eapResponseld reAuth = FALSE

previousld = receivedld eapResponse

eapolReceive previousld = receivedld

l_Jreqld L authWhile == 0
ea pol Receive

reqAuth j reqld I authWhile == 0
reqAuth

Figure 4-9 Supplicant PAE State machine

36

4.4. Supported Functionality

The functionality of the simulator can be described as follows:

• 802.1X capable without hardware support

The simulator implements the 802.1X protocol. It has EAP and RADIUS modules that are

compatible with EAP and RADIUS protocols. Combined with a RADIUS server, it can

simulate a 802.1 X framework with different EAP authentication methods. Because it uses

EAP over message queues, it does not need any wireless hardware devices. Since the

simulator only provides authentication simulation, it only procedes until either authentication

success or failure is attained, without any further data transmission.

• Platform independent and work with real, external RADIUS server

Since this simulator is implemented using System V IPC message queues, any UNIX like

system that support message queues can run this simulator. The simulator also has been

tested with a real, external RADIUS server, FREERADIUS. Once both sides have been

configured to use the same EAP authentication method, the simulator can perform

authentications successfully using FREERADIUS.

• Support EAP-MD5, EAP-TLS and EAP-TTLS

The simulator has implemented some common EAP authentication methods. It supports

EAP-MD5 by requesting a user to enter a password from a command prompt. For certificate

based authentication, the user needs to predefine certificates before the authentication

process can start. The simulator does not support certificate management. For EAP-TTLS

authentication, this simulator only supports inner method EAP-MD5, but any reasonable

authentication method can be easily added as an inner method, once it is defined.

• Easy implementation framework for new EAP authentication methods

One of the ideas of creating this simulator is to provide easy testing of new EAP

authentication methods. As the design figure shows, all the EAP authentication modules rely

on the same EAP software modules, which provide the basic function of EAP communication.

One can implement a new EAP authentication method module simply by adding to the frame

37

format and functions provided in the EAP module without changing the software of the

simulator.

4.5. Example of Simulation Output

The following example outputs demonstrate the simulation results for EAP-TLS

authentication, using the authentication simulator with a real radius server, FREERADIUS.

rlllL.eap: Kequest rouna, releasea trom the 11st
rlm_eap: EAP/tls
rlm_eap: processing type tls
rlm_eap_tls: Authenticate
rlm_eap_tls: processing TLS

rlm_eap_tls: Received EAP-TLS ACK message
rlm_eap_tls: ack handshake is finished
eaptls_verify returned 3
eaptls_process returned 3

********** recv-key ***********
7d fc 08 3b e8 11 09 2d 6f c4 6c ea 6f dd 6f a3 9f 7e 9b lb 83 de 14 40 d4 fa 39

21 94 e8 0111
rlm_eap: Freeing handler
modcall[authenticate]: module "eap" returns ok for request 5

modcall: group authenticate returns ok for request 5
Sending Access-Accept of id 6 to 127 .0.0. 1 :32769

MS-MPPE-Recv-Key = Ox7dfc083be811092d6fc46cea6fdd6fa39f7e9blb83del440d4f
a392194e80111

MS-MPPE-Send-Key = Oxe88853887ed085d3b22bb5179bf450b6847alabe61402af6008
c8b83d125abaa

EAP-Message = Ox03060004
Message-Authenticator= OxOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
User-Name= "yclOOS"

Finished request 5
Going to the next request
Thread 1 waiting to be assigned a request
--- Walking the entire request list ---
Cleaning up request 5 ID 6, with timestamp 4:180879b
Nothing to do. Sleeping until we see a request.

Figure 4-10 FREERADIUS Server Running Result (Partial)

Once EAP authentication process succeeds, the authentication server will issue ACCESS

ACCEPT with AAA-Key (encrypt using MPPE and store in MS-MPPE-Send and Recv Key

attributes) and EAP-SUCCESS (in EAP-Message attribute) to the authenticator (figure 4-10).

Sending eap resquest to c1ient
,Receive eap responsetype: TLS response

.. R.EAUTH TIJ,,t:ER Enter IN'ITIALIZE State

.. BE_AUTH Enter RESP0,NSE State
Sending radius request to :radius server

· Receiving radius cha11enge from :radius se:rv·er
send decrypt key hex
es BS 53 BS 7e do BS d3 b2 2b bS 1 7 9b f4 so b6 84 7a 1a be 6

, 1 40 2a f6- oo Sc Sb 83 di 25 ab aa 3c 29 32 ef 5 ·9 oo oo oo 48
13 13 42 48 13 13 42 f4 9c

recv decrypt key hex
7d fc OB 3b es 11 09 2d 6f c4 6 ,c ea 6f dd 6 -f a3 ·9f 7e 9b 1.b B
3 de 14 40 d4 fa 3 ·9 21 94 ea 01 1..1 11 54 ae Sb 31 oo oo oo 48

13 13 42 4 ,8 13 13 42 cd 37
D-ecapsu1ate :radius cha11enge package and prepare eap request

********** REAUTH TIMER Enter INITIALIZE State **********

....................................... BE_AUT.H' Enter SUCCESS State
Sending eap success to c1ient

....................................... AUTH Enter AUTHENTICATED State

.. BE_AUTH Enter IDLE State **********

Figure 4-11 Authenticator Simulator Running Result (Partial)

38

The authenticator simulator will then decrypt MS-MPPE-Send and Recv Key attributes using

its shared secret with the authentication server to get AAA-Key. Then it will forward EAP-

SUCCESS to the supplicant simulator and enter authenticated state (figure 4-11) .

.................................. SUPP Enter AUTHENTICATING State
Re,qu,est type: TLS

:prepare response
SSL: eap_t1s_verify_cb - ok=1 err,=O (ok) depth=1 buf= • /C=CA/ST=Prov
ity/O=Organization/OU=1oca1host/CN=Client certificate/emai1Address=
e.com'SSL: eap_t1s_verify_cb - ok=1 err=O (ok) depth=O buf='/C=CA/S
Some Ci t:y/O=O:rganizati.on/OU=1oca1host/CN=Root certifi..cate/emai1Addr
p1e.com'SSL_connect - want more data
SSL: 2030 bytes 1eft to be sent out: (of tota1 2030 bytes)
Receive eap request

********** SUPP Enter AlJTHENTICATING State **********
Request type: TLS
Prepare response

,SSL_connect - want more data
ISSL: 632 bytes 1eft to be sent out (of tota1 2030 bytes)
Receive eap request

********** SUPP Enter AUTH:ENTICATING State **********
Request type: TLS
Prepare response
SSL: No data to be sent out
TLS done

:Receive eap success

' ********** SUPP Enter AUTHENTICATED State **********

Figure 4-12 Supplicant Simulator Running Result (Partial)

39

Finally the supplicant simulator simply translates into authenticated state once it receives

EAP-SUCCESS message (figure 4-12). The source code for the simulators is not included in

the appendix because of the size - over eight thousand lines of code.

CHAPTERS

A NEW 802.1X EAP AUTHENTICATION METHOD

5.1. Issues

EAP-TTLS and PEAP, mentioned in section 3.2.3, are both extensions of EAP-TLS.

There are two reasons for using these two methods instead of EAP-TLS. First, by using EAP

TTLS or PEAP, it is only necessary to use digital certificates for the server to be authenticated to

the client. Not requiring mutual certificate authentication simplifies certificate management, such

as certificate distribution and revocation, etc. Also by setting up a secure channel first and using

inner method for client authentication, identity protection is provided and eavesdropping is

prevented, since the inner method packet is encrypted by TLS. Even if attackers can intercept

EAP packets under wireless environments, they have no way of reading them. However, the draw

back of using tunneled method is that it can allow man-in-the-middle attacks. PEAP, which uses

EAP-MSCHAP-V2 as inner method, solves the man-in-the-middle attack by binding cryptographic

keying material generated in EAP-MSCHAP-V2 with TLS keying material to produce a fresh AAA

key. On the other hand, EAP-TTLS may be able to prevent man-in-the-middle attacks depending

on the inner method chosen. In this chapter, we focus on the EAP-TTLS by choosing EAP-MD5

as its inner method and propose an extension of it, EAP-TTLS-CHENG to solve man-in-the

middle attacks. Then we test the extension by adding its features to the simulator and by

modifying the publicly available FREERADIUS server.

40

41

5.2. EAP-TTLS with EAP-MD5 Authentication Procedure

As the Chapter 3 EAP-TTLS section mentioned, EAP-TTLS has a two phase

authentication. The following figure gives a detailed message exchange of EAP-TTLS:

Client
EAP-Request/ldentity

<----------

EAP-Response/ldentity

EAP-Request passthrough
<----------

EAP-Response/TTLS:
ClientHello

EAP-Request passthrough
<----------

EAP-Response/TTLS:
ClientKeyExchange
ChangeCipherSpec

Finished

EAP-Request passthrough
(End of phase one)

<----------
EAP-Response/TTLS:

{EAP-Response/ldentity}

EAP-Request passthrough
<----------

EAP-Response/TTLS:
{EAP-Response/MD5-Challenge}

EAP-Success passthrough
<.----------

~
AP

RADIUS Server
(FREERADIUS)

RADIUS Access-Request:
EAP-Response passthrough
---------->
RADIUS Access-Challenge:

EAP-Request/TTLS-Start
<----------

RADIUS Access-Request:
EAP-Response passthrough
---------->
RADIUS Access-Challenge:

EAP-Request/TTLS:
ServerHello
Certificate

ServerKeyExchange
ServerHelloDone

<----------

RADIUS Access-Request:
EAP-Response passthrough

RADIUS Access-Challenge:
EAP-Request/TTLS:
ChangeCipherSpec

Finished
<----------

RADIUS Access-Request:
EAP-Response/ldentity

---------->
RADIUS Access-Challenge:

EA P-Req uest/
MD5-Challenge

<----------
RADIUS Access-Request:

EAP-Response/MD5-Challenge
---------->

RADIUS Access-Accept:
EAP-Success

<.----------

Figure 5-1 EAP-TTLS Message Exchange

42

Phase one establishes a secure channel by encapsulating the TLS handshake inside

EAP-TTLS packets and then forwarding it to the RADIUS server by encapsulating EAP inside

RADIUS. After both parties perform the TLS KeyExchange handshake, the TLS negotiated

ciphersuite is used to set up a protected channel for phase two EAP conversations. Starting from

phase two, EAP-TTLS uses Attribute-Value-Pairs (AVPs), which are compatible with RADIUS

attributes format, to carry packets, and encapsulate AVPs inside TLS. TLS is then again

encapsulated inside EAP-TTL and forwarded to the server inside RADIUS packets. The following

figure indicates the packet relationship in the EAP-TTLS phase one and phase two:

Phase one Phase two

EAP-MD5
TLS UsmgAVPs

EAP-TTLS TLS

RADIUS EAP-TTLS

RADIUS

Figure 5-2 Packet Relationship in EAP-TTLS

If a client is configured to use anonymous identity in the phase one, the client will send its real

identity to AP in the beginning of the phase two. After the identity is received by the server, the

server will issue an EAP-MD5 challenge to the client. By sending the correctly computed MD5

hash value of the challenge back to server, the authentication process is completed. As was

previously described in Chapter 3, at this point, both parties will take the TLS Master-Secret

derived from TLS handshake exchange together with TLS Server-Random, TLS Client-Random

and label - "ttls keying material", as inputs and produce a 64 octet Master-Session-Key. This 64

octet Master-Session-Key is then used by the server as AAA-key to pass to authenticator using

MPPE. The AAA-Key that is passed to the authenticator can be divided into two halves. They are

32 octets "Peer to Authenticator Encryption Key" (Enc-RECV-Key) and 32 octets "Authenticator to

Peer Encryption Key" (Enc-SEND-Key), which are transported separately in MS-MPPE-Recv-Key

and MS-MPPE-Send-Key attributes in ACCESS-ACCEPT packet; Once client and authenticator

both possess AAA-Key, they can verify each party's identity and compute fresh Transient

Session-Key for data encryption.

43

5.3. Man-in-the-Middle Attack Scheme

Surprisingly, although EAP-TTLS seemed to provide better security protection by running

client authentication process inside a secure tunnel, it is still open to man-in-the-middle-attacks.

The reason is the inner authentication method is not aware of the existence of the secure channel.

The man-in-the-middle attack scheme can be described as the following figure indicates:

I
I

Client
answers

questions
for the

attackers

Client

' '
: Man in j
j the :
: middle : : _____ r _____ : AP Server

Establishing a secur!3 EAP-TTLS Tunnel

EAP-REQUEST / Identity
~----------

EAP-RESPONSE / Identity

----------➔

EAP-REQUEST / EAP-MDS
challenge

~----------

EAP-RESPONSE / EAP-MDS
challenge response

----------➔

(only server ~uthenticated)
I
I
I

AAA-Key
distributes

to AP
~-----

Figure 5-3 Man-in-the-Middle for EAP-TTLS/EAP-MD5

Since, in phase one, only the server is required to authenticate to client without the user providing

its real identity, anonymous attackers can perform a TSL handshake and give an anonymous

identity, establishing a secure tunnel with the server before the real client contacts the server.

Once an attacker succeeds in establishing a tunnel with the server, it can pretend to be an AP

and request the real client to perform client authentication by first asking client's identity. After

44

receiving the identity from the real client, attackers can encapsulate it and send it back to the

server via the secure tunnel. With EAP-MD5 configured as inner method, the server will then

issue an EAP-MD5 challenge to the attacker. The attacker can simply forward the MD5 challenge

as EAP-REQUEST to the real client. Since the client has no knowledge of the tunnel, it will think

the server is requesting EAP-MD5 authentication. It then will compute the MD5 hash value of the

challenge with its shared secret and send it back to the attacker. By forwarding the response to

the server, the authentication process is completed. In addition, EAP-TTLS only uses keying

material generated from the TLS handshake to compute a Master-Session-Key using TLS

pseudo-random function (PRF). Therefore once the server distributes AAA-Key to AP, both

attacker and AP are able to prove possession of the AAA-Key. At this point, the attacker can steal

the port by issuing EAP-FAIL to real client, denying its request and then connect to the port with

the stolen identity.

5.4. EAP-TTLS-CHENG

As the attack scenario mentioned above demonstrates, we can conclude there are two

reasons why man-in-the-middle attacks can succeed. First, a client will compute the hash value

for attackers without knowing the existence of tunnel. Second, EAP-TTLS only uses TLS keying

~~~~-h~~~~~~~~~~~~q~b~~ 

definition of EAP-MD5. Therefore, we counter the second problem by combing the EAP-MD5 

shared secret with TLS keying material to produce a new Master-Session-Key. The idea is, 

instead of using the original TLS PRF which takes TLS Master-Secret, TLS Server-Random, TLS 

Client-Random and label - "ttls keying material" as inputs to generate Master-Session-Key, we 

use the following modified PRF function to compute 64 octets Master-Session-Key. 

Master-session-key = PRF-CHENG (TLS Master-Secret, label - "ttls keying material with inner 

md5", TLS Server-Random, TLS Client-random, shared secret (userpassword)). 

With this scheme, even though an attacker can be authenticated successfully to the server, it 

does not have a user password to compute the Master-Session-Key. Once the server distributes 



45 

AAA-Key to the AP, the attacker can no longer prove its possession of the AAA-Key to the AP. 

Only the real client can make the calculation, since only the real client has the shared secret. The 

following example output demonstrates the simulation result of two clients: one {man-in-the

middle) use regular EAP-TTLS and the other one {true supplicant) use EAP-TTLS-CEHNG with 

radius server using EAP-TTLS-CHENG. {Highlight indicates the key generation results.) 

Request type: MOS challenge 
Prepare response ..... . 
Please enter your password for authentication 
yc10053946 

uuuuu SUPP Enter AUTIIENTICATED State .......... 

Man-in-the-middle 

.. .,.,,.., BE_AIFll! Enter RESPONSE State ***'*"*" 
Sending radius request to radius server 
Receiving radius challenge fron radius server 

capsulate radius challenge package and prepare eap request 

**" .. '*** BE...AIFll! Enter SUCCESS State .. .,,.,. .. 
Sending eap success to client 

**"****" REAIFll! TINER Enter INITIALIZE State ,uuu,u 

Authenticator 

Figure 5-4 Man-in-the-Middle vs. Authenticator simulation result 

.......... SUPP Enter AUTIIENTICATING State ......... . 
EAP-ms: Received packet Flags Ox80, left 110 
EAP-ms: ns Message Length: 106 
EAP-ms: AVP - EAP Message 
EAP-ms: received Phase 2: code=l identifier=6 length=22 
EAP-ms: Phase 2 EAP Request: type=4 MDS challenge 
equest type: MDS challenge 

Prepare response ..•••• 
Please enter your password for authentication 
yc10053946 
eap ttls CHENG' s key 

: 3b be es f9 c7 fa b2 H H 9b 1a ld cl bb 6f 51 

: e-:l 5d +± Ge S2 )8 7 d -±D 43 t8 S9 78 90 7 a fS b-1 

Receive eap success 

True supplicant 

'********* REAIFll! TINER Enter INITIALIZE State '****'**** 

.......... BE_AU111 Enter RESPONSE State ........ .. 
Sending radius request to radius server 
Receiving radius challenge fro■ radius server 

capsulate radius challenge package and prepare eap request 
( ler=32) t~ Sd ~i Ce S2 s~ 7d iO -J-8 es 76 la £8 bi 

cc eb ~ti ii ~ia 25 fc e7 iJd SU 36 fc e5 

(ler:=32.l, Jb be e5 fJ cl fa b2 i~ '~1b ill ld Cb f.f 

c3frbfldc9j9Sf Re 

.......... BE_AU111 Enter SUCCESS State .......... 
Sending eap success to client 

Authenticator 

Figure 5-5 True supplicant vs. Authenticator simulation result 



46 

As the above result of the simulation process indicates, we can see even though the man-in-the

middle can authenticate with server successfully; it generates a different AAA-Key compared with 

the one the authenticator received (figure 5-4 ). On the other hand, the true supplicant, which uses 

EAP-TTLS-CHENG, generates the same AAA-Key as the authenticator (figure 5-5). Therefore, 

we can conclude that combining the user password with the key generation function, the man-in

the-middle attack can be solved, since the attacker can not prove possession of the same AAA.

Key to the authenticator. By using the password as part of the keying material, it is possible for an 

attacker to mount a dictionary attack against the password so that he can get enough information 

to compute the same key. But this possibility is really low if the user uses a strong password. Also 

by emulating CHENG's method, legacy authentication methods such as CHAP or MSCHAP, used 

as an inner method of EAP-TTLS, can be modified by using a new key generation function to 

prevent man-in-the-middle attacks. 



CHAPTER6 

LATEST DEVELOPMENT IN STANDARDS 

6.1. Wi-Fi Protected Access (WPA) 

The original 802.11 standard was created by the IEEE in 1997. The IEEE makes an effort 

to update and correct the standard, but there are still some areas that are ambiguous or not fully 

defined, creating difficulties in terms of design issues. The Wi-Fi Alliance 1 was formed by a group 

of major manufactures. They created a Wi-Fi certification program for testing manufacturer's 

products. In order to quickly provide a security solution for 802.11 's WEP key weakness without 

waiting for new 802.11 i standard, a new security specification was adopted by Wi-Fi Alliance in 

2002. Wi-FI Protected Access [35] is a subset of the incoming 802.11 i standard and is compatible 

with all 802.11 standard devices. WPA can be used in two environments: WPA-Enterprise which 

combines 802.1X EAP authentication framework with the Temporary Key Integrity Protocol [28] 

[29](TKIP) for strong encryption; WPA-Personal/SOHO which uses Pre-Shared Key (PSK) that 

allows users to manually enter passwords for authentication was combined with TKIP for data 

encryption. 

TKIP was created to solve the weakness of WEP. It adds several features: TKIP uses 

128-bit keys and employs a key hierarchy and key management to mathematically derive and 

change encryption keys and IV values automatically (creating per-packet keys). It also uses 64-bit 

1The Wi-Fi Alliance is a nonprofit intemabonal assooabon fonned in 1999 to 
certify interoperab1hty of wireless local area network products based on IEEE 
802 11 specifications 

47 



48 

Message Integrity Check (MIC or called "Michael [27]") to prevent packet forgeries. The 

Initialization Vector (IV), one of the big weaknesses of WEP, is solved by increasing the size of IV 

(using 48-bit IV). The following figure (source [341) demonstrates the WPA encryption process 

using TKIP and Michael. 

Ton.:::::• 7 Key MWng 
4g..bitIV =:I 
oounter 

RC4KEY 

MlC Key 
1'ran.\mitt.er Addre.'I:.\ 

Rc:ceiv.:W Address 

Plaintex.t --~ 

MlC 

Figure 6-1 WPA Encapsulation Process 

Ciphertext 

As figure 6-1 indicates, TKIP defined in [29] uses 16-byte Temporal Key (TK) together with 6-byte 

Transmitter Address and a 48-bit IV as inputs to Key Mixing function and outputs a 16-byte RC4 

key. The Key mixing function is a two-phase process. There is phase one, P1 K = Phase1 (TK, TA, 

IV32) where IV32 is the 32-most significant bit of 48-bit IV; and phase two, RC4KEY = Phase2 

(P1 K, TK, IV16) where IV16 is the least significant 16 bits of the 48-bit IV. A recent paper [34] has 

pointed out the weakness in the TKIP. Since TKIP security depends on RC4-keys, if the attacker 

Is able to get a few RC4-keys computed under the same IV32, it is possible for an attacker to 

compute backward through Phase2 to recover the TK and thus, decrypt any packet the same 

way the receiver does. 

6.2. WPA2 and 802.11i Standard 

In the 802.11 i [3] standard, an important component was defined: Robust Secure 

Network (RSN), which uses an Advance Encryption Standard [31) (AES) cipher system and 

Counter Mode CBC MAC protocol [12] (CCMP) along with 802.1X and EAP. RSN is a protocol for 



49 

establishing secure communication over 802 .11 wireless networks. By default, it requires use of 

AES but currently, in order to provide backward compatible to TKIP and WEP, 802.11 i also 

defines a Transitional Security Network (TSN) so that both RSN and WEP systems can operate 

in parallel. WPA2 is the second generation of WPA and is based on the final 802.11 i amendment 

to the 802.11 standard. The main differences between WPA and WPA2 are WPA2s use RSN and 

AES/CCMP instead of TKIP, which is still a RC4 based encryption algorithm in WPA. WPA2 can 

also be used in Enterprise and Personal environments and is backward compatible to WPA. AES 

is a complex and strong encryption mechanism and it uses a block cipher which operates with 

blocks of 128-bit data. CCMP is a security protocol based on AES. It uses Counter Mode with 

CBC-MAC (CCM) mode of operation and computes a Message Integrity Check based on CBC

MAC method . CCMP use a 48-bit IV same as TKIP to ensure the lifetime of AES key. Unlike 

TKIP, CCMP doesn't need per-packet keys. It just uses the same AES key to provide 

confidentiality and integrity protection . The following figure summaries features of WEP vs. 

TKIP&CCMP (source: WPA-strong standards-based, interoperable security for today's Wi-Fi 

networks). 

WEP TKIP CCMP 

ClphQr RC4 RC4 AIES 
KQ)'Slm(05 ,40. or H) .. blt 128-blt encryption. 128-blt 

ancry1ptlon 6<f.ibtt authentication 

Key LlfetJme 2.f..blt wrapping IV 48-blt IV '48-bltlV 
Par-packet key Concatenate IV to TKIP mlXlng functton Not needed 

base key 

Integrity None Source and. denlnadon ·CCM 
Packet Header add ll'QSHS rrotectedl 

by Mlchae· 

Pack8t Data CRC-32 Mlchaal CCM 
Replay detactlon None Enforce tv Enforce rv 

sequencing sequencing 

Kay Management None IEEE 802. IX iEEE 802.IX 

Figure 6-2 WEP vs. TKIP & CCMP 

Whether using TKIP or AES/CCMP, 802.1 X is the core requirement for WPA and 802.11 i since it 

provides centralized control and dynamically generates and distributes the keying materials. 

TKIP and AES/CCMP are used for providing a secure data encryption between supplicant and 

AP after the authentication process is complete. Both TKIP's Temporal Key and AES/CCMP rely 



50 

on the keying material generated from the 802.1 X EAP authentication methods such as EAP

TLS or EAP-TTLS. By countering the man-in-the-middle attacks in EAP-TTLS using CHENG's 

variation, it directly increases the safety of using TKIP and AES/CCMP since their keying material 

is derived from the EAP authentication method. Also testing different EAP authentication methods 

using the simulator we developed helps us analyze the security problems they encounter and 

solve them in advance to ensure the security of the TKIP and AES/CCMP encryption. 



TOOLS AND SOFTWARE USED 

• Red Hat Linux - http://www.redhat.com 

• Windows XP Professional- http://www.microsoft.com 

• Free RADIUS - http://www.freeradius.org/ 

• HostAP - http://hostap.epitest.fi/ 

• WPA_Supplicant - http://hostap.epitest.fi/ 

• Openssl - http://www.openssl.org/ 

51 



APPENDICES 

52 



A.1. FREERADIUS Set Up 

In order to use FREERADIUS for EAP-TLS authentication, Openssl has to be installed. 

Install Openssl: 

1. Download Openssl snapshot from ftp://ftp.openssl.org/snapshot/ 
2. Once you untar it and change directory to the openssl directory. 
3. In the command prompt, type: 

#./config shared --prefix=/usr/local/openssl 
#make 
# make install 

4. If no error messages show up, installation process is successful. 

Install FREERADIUS: 

1. Download FREERADIUS from www.freeradius.org 
2. Untar and change to freeradius directory. 
3. In the command prompt, type: 

#./configure --with-openssl-includes=/usr/local/openssl/include \ 
--with-openssl-libranes=/usr/local/openssl/l1b \ 
--prefix=/usr/local/rad ius 

#make 
# make install 

4. Once no error showup, installation succeeds. 

Configure FREERADIUS: 

53 

After successful installation, there are three file has to be modified in order to run radius for 
different authentication. They are eap.conf, clients.cont and users which are located at 
/usr/local/radius/etc/raddb. 

1. clients.cont: 
This file contains information about the authenticator (AP). The example configuration is listed 
as follows: 

client 127.0.0.1 { 

} 

secret = aaaaabbbbb 
shortname = localhost 

where "127 .0.0.1" is the IP address where your authenticator simulator is. In above example, 
authenticator simulator and FREERADIUS server Is located in the same machine. 

"secret = aaaaabbbbb" is the share secret used between authenticator simulator and 
server. 

2. users 

"shortname = localhosf' is the name for your authenticator simulator. It can be any 
name you want to call. 

This file contains information about the supplicant who wants to authenticate with RADIUS 
server. Example is listed as following: 

#EAP-MD5 
yc1005 Auth-Type :=EAP, User-Password== "yc10053946" 



# EAP-TLS 
yc1005 

where "yc1005" is the user name wish to be authenticated by server. 
"yc10053946" Is the user password for user. 

54 

As above example, for EAP-MD5 authentication username, auth-type and user-password 
have to be included in the users file. For EAP-TLS, only user name has to be included. Once 
you have EAP-MD5 and TLS configuration, you don't have to add any user configuration for 
EAP-TTLS if inner method uses EAP-MD5. 

3. eap.conf 
This file contains eap authentication type information. It defines different eap authentication 
type that can be used for RADIUS server. The configuration example is listed as below: 

eap { 
default_eap_type = md5 

md5{ 
} 
#tis { 

#} 
#ttls { 

#private_ key _password = whatever 
#private_key_file = ${raddbdir}/certs/cert-srv.pem 

#certificate _file = ${raddbdir}/certs/cert-srv .pem 
#CA_flle = ${raddbdir}/certs/demoCA/root.pem 

#dh_file = ${raddbdir}/certs/dh 
#random_file = ${raddbdir}/certs/random 

#fragment_size = 1024 

#default_eap_type = md5 
#} 

As above example, "default_eap_type = md5" decides which authentication method is used by 
radius server. The default set up in eap.conf is md5. If you want to use TLS or TTLS you have to 
uncomment the TLS section and TTLS section first as above example shows. In the TLS section, 
you have to give the path to different certificates where "private_key_password" is the password 
you use to decode "private_key_file", "private_key_file" stores your private key, "certificate_flle" 
stores your public key certificate, "CA_file" stores your CA's certificate, "dh_file" and "random_file" 
both store random information. In the TTLS section, it uses the same certificate information in 
TLS section. Therefore, once the configuration of the certificate is done in the TLS section, you 
don't need to configure any certificate path. The only thing you need to do is to give a default 
inner method type as above example. 

Run FREERADIUS: 

You can run radius server by typing 
#/usr/local/radius/sbin/radiusd 
Or run it with debug mode by typing 
#/usr/local/radius/sbin/radiusd -xxx 



55 

A.2. Generate Certificate for EAP-TLS/TTLS 
To use EAP-TLSITTLS, server and client certificates are needed. Since we didn't go out to the 
certificate authority to get a public certificate, we can use openssl to generate a self-signed up CA 
certificate and sign our own certificate. A script file, CA.all, provided by freeradius can be used to 
easily generate server and client certificate. This is file is located in "script'' directory under 
freeradius. However, before running CA.all script file, openssl has to be configured by updating 
the openssl configuration file, openssl.conf, which is located at /usr/local/openssl/ssl. The 
following example demonstrates the partial of configuration that has to be changed for openssl. 

Openssl.conf: 

countryName = Country Name (2 letter code) 
countryName_default = US 
countryName_min = 2 
countryName_max = 2 

stateOrProvinceName = State or Province Name (full name) 
stateOrProvinceName_default = Texas 

localityName = Locality Name (eg, city) 
localityName_default = San Marcos 

0.organizationName = Organization Name (eg, company) 
0.organizationName_default = TXSTATE 

organizationalUnitName = Organizational Unit Name 
organizationalUnitName_default = CS 

commonName = Common Name (eg, YOUR name) 
commonName_max = 64 
commonName_default = CA 

emailAddress = Email Address 
emailAddress_max = 40 
emailAddress_default = yc1005@txstate.edu 

# SET-ex3 = SET extension number 3 

[ req_attributes] 

challengePassword = A challenge password 
challengePassword_min = 4 
challengePassword_max = 20 
challengePassword_default = whatever 

unstructuredName = An optional company name 

Once you update the openssl.conf file, you can run CA.all file. However, you might need to 
change the path of the openssl in CA.all script depending on your openssl installation. When you 
run CA.all script, the above openssl configuration information will appear for three times. The first 
pass of information will produce CA's root certificate. If you set up your openssl configuration file 
same as above, you only need to accept all the settings for the first pass. The second pass will 
generate client's certificate signed up by CA's certificate. You only need to change 
"commonName" option which is CA as above example to the client name you want to use. The 
last pass of information will result server certificate. Same as client pass, you only need to 



56 

change a "commonName" to a server name without changing anything else. The following gives 
an example of the CA.all file that I used to generate certificates. 

~ 

SSL=/usr/local/openssl/ 

export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH} 

export LD_LIBRARY_PATH=${SSL}/lib 

rm -rf demoCA roo* cert* *.pem *.der 

echo-e "" 
echo -e "\t\t##f###ii!#l#UN#tiilllUUr 
echo -e "\t\tcreate private key" 
echo -e 1'\t\tname : name-root" 
echo -e "\t\tCA.pl -newcert" 
echo -e "\t\t##h'#l/l/#######ii####\11" 

openssl req -new -x509 -keyout newreq.pem -out newreq.pem -days 730 -passin pass:whatever -
passout pass:whatever 

echo-e 1111 

echo -e "\t\t#.'#/##########H####. 
echo -e 1'\t\tcreate CA" 
echo -e 1'\t\tuse just created 1newreq.pem1 private key as filename" 
echo -e 1'\t\tCA.pl -newca" 
echo -e "\t\t##f/######f#Ut#ff##ll/1\,1" 

echo "newreq.pem" I /usr/local/openssl/ssl/misc/CA.pl -newca 

#Is -lg demoCA/private/cakey.pem 

echo-e "" 
echo -e 1'\t\t##/1#####/ut;;;;;;;.i;;;u;;;" 
echo -e 1'\t\texporting ROOT CA" 
echo -e 1'\t\tCA.pl -newreq" 
echo -e "\t\tCA.pl -signreq" 
echo -e 1'\t\topenssl pkcs12 -export-in demoCA/cacert.pem -inkey newreq.pem -out root.pem" 
echo -e 1'\t\topenssl pkcs12 -in root.car -out root.pem" 
echo -e 1'\t\t#l#l##if#tllllftlll#tl#if##\n" 

openssl pkcs12 -export -in demoCA/cacert.pem -inkey newreq.pem -out root.p12 -cacerts -passin 
pass:whatever -passout pass:whatever 
openssl pkcs12 -in root.p12 -out root.pem -passin pass:whatever -passout pass:whatever 
openssl x509 -inform PEM -outform DER -in root.pem -out root.der 

echo-e 1111 

echo -e 1'\t\t#l#l##ff llififiiffJf#iill###" 
echo -e 1'\t\tcreating client certificate" 
echo -e 1'\t\tname : name-cit" 
echo -e 1'\t\tclient certificate stored as cert-clt.pem" 
echo -e "\t\tCA.pl -newreq" 
echo -e "\t\tCA.pl -signreq" 
echo -e 1'\t\t#ffifllf:i.lflt#IN#l####lf.##\n" 



57 

openssl req -new -keyout newreq.pem -out newreq.pem -days 730 -passin pass:whatever -
passout pass:whatever 
openssl ca -policy policy_anything -out newcert.pem -passin pass:whatever -key whatever -
extensions xpclient_ext-extfile xpextensions -inflles newreq.pem 

openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out cert-clt.p12 -clcerts -passin 
pass:whatever -passout pass:whatever 
openssl pkcs12 -in cert-clt.p12 -out cert-clt.pem -passin pass:whatever-passout pass:whatever 
openssl x509 -inform PEM -outform DER -in cert-clt.pem -out cert-clt.der 

echo-e "" 
echo -e ''\t\l#/#UU:#IN#NNNN!ti#f.f Jf#" 
echo -e ''\t\tcreating server certificate" 
echo -e ''\t\tname : name-srv" 
echo -e "\t\tserver certificate stored as cert-srv.pem" 
echo -e ''\t\tCA.pl -newreq" 
echo -e ''\t\tCA.pl -signreq" 
echo -e ''\t\l/#f##Jff#/f.f##fl#f.f#/if.f##\n" 

openssl req -new -keyout newreq.pem -out newreq.pem -days 730 -passin pass:whatever -
passout pass:whatever 
openssl ca -policy policy_anything -out newcert.pem -passin pass:whatever -key whatever -
extensions xpserver_ext -extfile xpextensions -infiles newreq.pem 

openssl pkcs12 -export -in newcert.pem -inkey newreq.pem -out cert-srv.p12 -clcerts -passin 
pass:whatever -passout pass:whatever 
openssl pkcs12 -in cert-srv.p12 -out cert-srv.pem -passin pass:whatever -passout pass:whatever 
openssl x509 -inform PEM -outform DER-in cert-srv.pem -out cert-srv.der 

echo -e "\n\t\tf.f#f.f/i#f.fh'/i#iNlf.ff.ff.f/i/i/iff\n" 

After successful running CA.all script, it will produce nine certificates. They are root.pem, 
root.p12, root.der, cert-clt.pem, cert-clt.p12, cert-clt.der, cert-srv.pem, cert-srv.p12, cert-srv.der. 
For freeradius server, it has to use root.pem and cert-srv.pem. By putting root.pem and cert
srv.pem to the directory path where tis section of eap.conf file indicates, FREERADIUS server will 
load certificates when you run it. For supplicant simulator, it has to use cert-clt.der, cert-clt.pem 
and root.pem. The configuration of loading certificates in the supplicant simulator is described in 
next section. 



58 

A.3. Authentication Simulator Set Up 

The authentication simulator doesn't need to configure which authentication method it uses. It will 
depend on RADIUS server which means if you configure RADIUS to use EAP-MD5 
authentication then authentication simulator will also run EAP-MD5. However, you do need to 
give certificate information if you use EAP-TLS or TTLS. To configure certificates for supplicant 
simulator, you have to look at the source code file, tls.c. In tls.c file, there are some #define 
statements where you can define your certificates. Once you are done with defining certificates, 
you can compile the source code and supplicant simulator will load certificates when it runs. 

Compile Authentication simulator: 

Type following command on the command prompt 
#make ap 
# make supplicant 
Once you are done, you will get two executable file, ap and supplicant. 

Run Authenticator simulator: 

#.lap tsunami 127.0.0.1 aaaaabbbbb 

where "tsunami" is the ssid of authenticator simulator. 
"127.0.0.1" is the RADIUS server IP address 
"aaaaabbbbb" is the shared secret between authenticator simulator and RADIUS server. 
This shared secret must be the same as the one defined in RADIUS clients.conf file. 

Run Supplicant simulator: 

#./supplicant tsunami yc1005 

where "tsunami" is the ssid id of authenticator simulator 
"yc1005" is the user name that used for authentication. This user name information must be 

the same as the one defined in RADIUS users file. 

Use EAP-TTLS-CHENG: 

In order to use EAP-TTLS-CHENG, there are two source code files in authentication simulator 
have to be modified. In eap.c and eap_ttls.c, you have to uncomment the "#define CHENG" 
statement and then recompile the source code. Also you have to do the same thing in 
FREERADIUS source file listed as next section and recompile the source code. 



A.4. Modification of FREERADIUS Source Code 

/* 
* rlm_eap_ttls.c contains the interfaces that are called from eap 
* 
* Version: $Id: rlm_eap_ttls.c,v 1.5 2004/03/05 17:51 :17 aland Exp$ 
* 
* This program is free software; you can redistribute It and/or modify 
* it under the terms of the GNU General Public License as published by 
* the Free Software Foundation; either version 2 of the License, or 
* (at your option) any later version. 
* 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
* GNU General Public License for more details. 
* 
* You should have received a copy of the GNU General Public License 
* along with this program; if not, write to the Free Software 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 
* 
* Copyright 2003 Alan DeKok <aland@freeradius.org> 
*/ 

#include "autoconf .h" 
#include "eap_ttls.h" 

//#define CHENG 

typedef struct rlm_eap_ttls_t { 
I* 
* 
*/ 

char 
int 

/* 
* 
* 
*/ 

int 

/* 
* 
* 
*/ 

Default tunneled EAP type 

*default_eap_type_name; 
default_ eap _type; 

Use the reply attributes from the tunneled session in 
the non-tunneled reply to the client. 

use_ tunneled_reply; 

Use SOME of the request attributes from outside of the 
tunneled session in the tunneled request 

int copy_request_to_tunnel; 
} rlm_eap_ttls_t; 

static CONF _PARSER module_config□ = { 
{ "default_eap_type", PW_ TYPE_STRING_PTR, 

offsetof(rlm_eap_ttls_t, default_eap_type_name), NULL, "md5" }, 

59 



}; 

I* 
* 
*/ 

{ "copy_request_to_tunnel", PW_ TYPE_BOOLEAN, 
offsetof(rlm_eap_ttls_t, copy_request_to_tunnel), NULL, "no"}, 

{ "use_tunneled_reply'', PW_TYPE_BOOLEAN, 
offsetof(rlm_eap_ttls_t, use_tunneled_reply), NULL, "no" }, 

{ NULL, -1, 0, NULL, NULL } /* end the list */ 

Detach the module. 

static int eapttls_detach(void *arg) 
{ 

} 

I* 
* 
*I 

rlm_eap_ttls_t *inst= (rlm_eap_ttls_t *) arg; 

if (inst->default_ eap _ type _name) free(inst->default_ eap _type_name ); 

free(inst); 

return O; 

Attach the module. 

static int eapttls_attach(CONF _SECTION *cs, void **instance) 
{ 

rlm_eap_ttls_t *inst; 

inst= malloc(sizeof(*inst)); 
if (!inst) { 

} 

radlog(L_ERR, "rlm_eap_ttls: out of memory''); 
return -1; 

memset(inst, 0, sizeof(*inst)); 

I* 
* Parse the conf1gurat1on attributes. 
*/ 
if (cf_section_parse(cs, inst, module_config) < 0) { 

eapttls_detach(inst); 

} 

I* 
* 
* 
*/ 

return -1; 

Convert the name to an integer, to make 1t easier to 
handle. 

inst->default_ eap _type = eaptype _name2type(inst->default_ eap _type_name ); 
if (inst->default_eap_type < 0) { 

} 

radlog(L_ERR, "rlm_eap_ttls: Unknown EAP type %s", 
inst->default_eap_type_name); 

eapttls_detach(inst); 
return -1; 

60 



} 

r 
* 
*I 

I* 
* 
* 
* 
* 
*I 

Can't tunnel TLS inside of TLS, we don't like it. 

More realistically, we haven't tested it, so we don't 
claim it works. 

if ((inst->default_eap_type == PW_EAP _TLS) 11 
(inst->default_eap_type == PW_EAP _TTLS) II 
(inst->default_eap_type == PW_EAP _PEAP)) { 

} 

radlog(L_ERR, "rlm_eap_ttls: Cannot tunnel EAP-Type/%s inside of TTLS", 
inst->default_ eap_type _name); 

eapttls _ detach(inst); 
return -1; 

*instance = inst; 
return O; 

Free the TTLS per-session data 

static void ttls_free(void *p) 
{ 

} 

/* 
* 
*/ 

ttls_tunnel_t *t = (ttls_tunnel_t *) p; 

if (!t) return; 

if (t->username) { 

} 

DEBUG2(" TTLS: Freeing handler for user %s", 
t->username->strvalue ); 

pairfree(&t->username ); 
pairfree(&t->state ); 
free(t); 

Free the TTLS per-session data 

static ttls_tunnel_t *ttls_alloc(rlm_eap_ttls_t *inst) 
{ 

} 

ttls_tunnel_t *t; 

t = rad_malloc(sizeof(*t)); 
memset(t, 0, sizeof(*t)); 

t->default_eap_type = inst->default_eap_type; 
t->copy_request_to_tunnel = inst->copy_request_to_tunnel; 
t->use_tunneled_reply = inst->use_tunneled_reply; 
return t; 

61 



/* 
* Do authentication, by letting EAP-TLS do most of the work. 
*I 
static int eapttls_authenticate(void *arg, EAP _HANDLER *handler) 
{ 

int rcode, i; 
eaptls_status_t status; 
rlm_eap_ttls_t *inst= (rlm_eap_ttls_t *) arg; 
tls_session_t *tls_session = (tls_session_t *) handler->opaque; 

VALUE_PAIR *password; 
uint8_t *cha; 

DEBUG2(" rlm_eap_ttls: Authenticate"); 

I* 
* Process TLS layer until done. 
*/ 

status = eaptls_process(handler); 
DEBUG2(" eaptls_process returned %d\n", status); 
switch (status) { 

I* 
* 
* 
* 
* 
* 
*I 

EAP-TLS handshake was successful, tell the 
client to keep talking. 

If this was EAP-TLS, we would just return 
an EAP-TLS-Success packet here. 

case EAPTLS_SUCCESS: 
eaptls_request(handler->eap _ds, tis_ session); 
return 1; 

I* 
* 
* 
* 
*/ 

The TLS code is still working on the TLS 
exchange, and it's a valid TLS request. 
do nothing. 

case EAPTLS_HANDLED: 
return 1; 

I* 
* 
* 
*I 

Handshake is done, proceed with decoding tunneled 
data. 

case EAPTLS_ OK: 
break; 

/* 
* 
*/ 

default: 

Anything else: fail. 

return O; 
} 

I* 

62 



* 
* 
*I 

Session is established, proceed with decoding 
tunneled data. 

DEBUG2(" rlm_eap_ttls: Session established. Proceeding to decode tunneled 
attributes."); 

I* 
* 
* 
*/ 

We may need TTLS data associated with the session, so 
allocate it here, if it wasn't already alloacted. 

if (!tls_session->opaque) { 
tls_session->opaque = ttls_alloc(inst); 
tls_session->free_opaque = ttls_free; 

} 

I* 
* Process the TTLS portion of the request. 
*/ 

rcode = eapttls_process(handler, tls_session); 

switch (rcode){ 
case PW _AUTHENTICATION_REJECT: 

eaptls_fail(handler->eap_ds, O); 
return O; 

I* 
* Access-Challenge, continue tunneled conversation. 
*I 

case PW _ACCESS_ CHALLENGE: 
eaptls_request(handler->eap_ds, tls_session); 
return 1; 

I* 
* Success: Return MPPE keys. 
*/ 

case PW _AUTHENTICATION_ACK: 

eaptls_success(handler->eap_ds, O); 

/*************** MODIFICATION OF THE EAP-TTLS: CHENG'S VERSION *****************/ 

#ifndef CHENG 
eaptls _gen_ m ppe _ keys( &handler->request->reply->vps, 

tis_ session->ssl, 
"ttls keying material"); 

#else 
password = pairfind(handler->request->config_items, PW _PASSWORD); 
eaptls _ cheng_ m ppe _ keys( &hand ler->request->reply->vps, 

tis_ session->ssl, 
"ttls keying material with inner md5", password); 

#endif 

/*****************************************************************************************************/ 

63 



} 

I* 
* 
* 
*/ 

return 1; 

I* 
* 
* 
* 
* 
*/ 

No response packet, MUST be proxying it. 
The main EAP module will take care of discovering 
that the request now has a "proxy" packet, and 
will proxy it, rather than returning an EAP packet. 

case PW_STATUS_CLIENT: 
rad_assert(handler->request->proxy != NULL); 
return 1; 
break; 

default: 
break; 

} 

/* 
* Something we don't understand: Reject it. 
*/ 

eaptls_fail(handler->eap_ds, O); 
return O; 

The module name should be the only globally exported symbol. 
That is, everything else should be 'static'. 

EAP _ TYPE rlm_eap_ttls = { 
"eap_ttls", 

}; 

eapttls _attach, /*attach*/ 
/* 
* 
* 
* 
* 
* 
* 
* 
*/ 
NULL, 

Note! There is NO eapttls_initate() function, as the 
main EAP module takes care of calling 
eaptls_initiate(). 

This is because TTLS is a protocol on top of TLS, so 
before we need to do TTLS, we've got to initiate a TLS 
session. 

NULL, 
eapttls_authenticate, 
eapttls_detach 

/* Start the initial request*/ 
/*authorization*/ 
/*authentication*/ 
/*detach*/ 

64 



I* 
* mppe_keys.c 
* 
* Version: $Id: mppe_keys.c,v 1.3 2004/02/26 19:04:31 aland Exp $ 
* 
* This program is free software; you can redistribute it and/or modify 
* it under the terms of the GNU General Public License as published by 
* the Free Software Foundation; either version 2 of the License, or 
* (at your option) any later version. 
* 
* This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied warranty of 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
* GNU General Public License for more details. 
* 
* You should have received a copy of the GNU General Public License 
* along with this program; if not, write to the Free Software 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 
* 
* Copyright 2002 Axis Communications AB 
* Authors: Henrik Eriksson <henriken@axis.com> & Lars Viklund <larsv@axis.com> 
*/ 

#include <openssl/hmac.h> 
#include "eap_tls.h" 

//#define CHENG 
I* 
* Add value pair to reply 
*/ 

static void add_reply(VALUE_PAIR** vp, 

{ 

} 

/* 

const char* name, const char* value, int len) 

VALUE_PAIR *reply_attr; 
reply_attr = pairmake(name, "", T_OP _EQ); 
if (!reply_attr) { 

} 

DEBUG("rlm_eap_tls: " 
"add_reply failed to create attribute %s: %s\n", 
name, librad_errstr); 

return; 

memcpy(reply_attr->strvalue, value, len); 
reply_attr->length = len; 
pairadd(vp, reply_attr); 

* TLS PRF from RFC 2246 
*/ 
static void P _hash(const EVP _MD *evp_md, 

{ 

const unsigned char *secret, unsigned int secret_len, 
const unsigned char *seed, unsigned int seed_len, 
unsigned char *out, unsigned int out_len) 

65 



} 

HMAC_CTX ctx_a, ctx_out; 
unsigned char a[HMAC_MAX_MD_CBLOCK]; 
unsigned int size; 

HMAC_CTX_init(&ctx_a); 
HMAC _ CTX_init( &ctx _out); 
HMAC_lnit_ex(&ctx_a, secret, secret_len, evp_md, NULL); 
HMAC_lnit_ex(&ctx_out, secret, secret_len, evp_md, NULL); 

size = HMAC_size(&ctx_out); 

/* Calculate A(1) */ 
HMAC_Update(&ctx_a, seed, seed_len); 
HMAC_Final(&ctx_a, a, NULL); 

while (1) { 

} 

/* Calculate next part of output*/ 
HMAC_Update(&ctx_out, a, size); 
HMAC_Update(&ctx_out, seed, seed_len); 

/* Check if last part*/ 
if ( out_len < size) { 

} 

HMAC_Final(&ctx_out, a, NULL); 
memcpy(out, a, out_len); 
break; 

/* Place digest in output buffer*/ 
HMAC_Final(&ctx_out, out, NULL); 
HMAC_lnit_ex(&ctx_out, NULL, 0, NULL, NULL); 
out+= size; 
out_len -= size; 

/* Calculate next A(i) */ 
HMAC_lnit_ex(&ctx_a, NULL, 0, NULL, NULL); 
HMAC_Update(&ctx_a, a, size); 
HMAC_Final(&ctx_a, a, NULL); 

HMAC_CTX_cleanup(&ctx_a); 
HMAC_CTX_cleanup(&ctx_out); 
memset(a, 0, sizeof(a)); 

static void PRF(const unsigned char *secret, unsigned int secret_len, 

{ 

const unsigned char *seed, unsigned int seed_len, 
unsigned char *out, unsigned char *buf, unsigned int out_len) 

unsigned int i; 
unsigned int len = (secret_len + 1) / 2; 

const unsigned char *s1 = secret; 
const unsigned char *s2 =secret+ (secret_len - len); 

P _hash(EVP _md5(), s1, len, seed, seed_len, out, out_len); 
P _hash(EVP _sha1(), s2, len, seed, seed_len, buf, out_len); 

66 



for (i=0; i < out_len; i++) { 
out[i] "= buf[i]; 

} 
} 

#define EAPTLS_MPPE_KEY _LEN 32 

#define EAPTLS_PRF _LABEL "ttls keying material" 

I* 
* Generate keys according to RFC 2716 and add to reply 
*/ 

void eaptls_gen_mppe_keys(VALUE_PAIR **reply_vps, SSL *s, 

} 

canst char *prf_label) 

unsigned char out[2*EAPTLS_MPPE_KEY _LEN], buf[2*EAPTLS_MPPE_KEY _LEN]; 
unsigned char seed[64 + 2*SSL3_RANDOM_SIZE]; 
unsigned char *p = seed; 
size_t prf _size; 

prf_size = strlen(prf_label); 

memcpy(p, prf_label, prf_size); 
p += prf_size; 

memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE); 
p += SSL3_RANDOM_SIZE; 
prf_size += SSL3_RANDOM_SIZE; 

memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE); 
prf_size += SSL3_RANDOM_SIZE; 

P RF ( s->session->master _key, s->session->master _ key _length, 
seed, prf_size, out, buf, sizeof(out)); 

p = out; 

add_reply(reply_vps, "MS-MPPE-Recv-Key", p, EAPTLS_MPPE_KEY _LEN); 
p += EAPTLS_MPPE_KEY _LEN; 
add_reply(reply_vps, "MS-MPPE-Send-Key", p, EAPTLS_MPPE_KEY _LEN); 

/********************** MODIFICATION: CHENG'S KEY GENERATION FUNCTION**************/ 
#ifdef CHENG 
void eaptls_cheng_mppe_keys(VALUE_PAIR **reply_vps, SSL *s, 

canst char *prf_label, VALUE_PAIR *value) 

unsigned char out[2*EAPTLS_MPPE_KEY _LEN], buf[2*EAPTLS_MPPE_KEY _LEN]; 
unsigned char seed[64 + 2*SSL3_RANDOM_SIZE]; 
unsigned char *p = seed; 
size_t prf_size; 

prf _size = strlen(prf _label); 

memcpy(p, prf_label, prf_size); 
p += prf _size; 

67 



memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE); 
p += SSL3_RANDOM_SIZE; 
prf_size += SSL3_RANDOM_SIZE; 

memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE); 
p += SSL3_RANDOM_SIZE; 
prf_size += SSL3_RANDOM_SIZE; 

memcpy(p, value->strvalue, value->length}; 
prf _size += value->length; 

P RF ( s->session->master _key, s->session->master _ key _length, 
seed, prf_size, out, buf, sizeof(out)); 

p = out; 

add_reply(reply_vps, "MS-MPPE-Recv-Key", p, EAPTLS_MPPE_KEY _LEN); 
p += EAPTLS_MPPE_KEY _LEN; 
add_reply(reply_vps, "MS-MPPE-Send-Key", p, EAPTLS_MPPE_KEY _LEN); 

} 
#endif 
/*******************************************************************************************************/ 

#define EAPTLS_PRF _CHALLENGE "ttls challenge" 

I* 
* 
* 
* 
* 
*/ 

Generate the TTLS challenge 

It's in the TLS module simply because it's only a few lines 
of code, and it needs access to the TLS PRF functions. 

void eapttls_gen_challenge(SSL *s, char *buffer, int size) 
{ 

unsigned char out[32], buf[32]; 

68 

unsigned char seed[sizeof(EAPTLS_PRF _CHALLENGE)-1 + 2*SSL3_RANDOM_SIZE]; 
unsigned char *p = seed; 

} 

memcpy(p, EAPTLS_PRF _CHALLENGE, sizeof(EAPTLS_PRF _CHALLENGE)-1 ); 
p += sizeof(EAPTLS_PRF _CHALLENGE)-1; 
memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE); 
p += SSL3_RANDOM_SIZE; 
memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE); 

P RF ( s->session->master _key, s->session->master _ key _length, 
seed, sizeof(seed), out, buf, sizeof(out)); 

memcpy(buffer, out, size); 



REFERENCES 

IEEE Standard 

[01] Institute of Electrical and Electronics Engineers, "Information technology
Telecommunications and information exchange between systems - Local and 
metropolitan area networks - Specific Requirements Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) Specifications", 
IEEE IEEE Standard 802.11-1997, 1997. 

[02] Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area 
Networks: Port-Based Network Access Control", IEEE Standard 802.1X-2001, 
June 2002. 

[03] Institute of Electrical and Electronics Engineers, "Information technology
Telecommunications and information exchange between systems-Local and 
metropolitan area networks- Specific requirements-Part 11: Wireless LAN 
Medium Access Control (MAC) and Physical Layer (PHY) specifications: 
Amendment 6: Medium Access Control (MAC) Security Enhancements", IEEE 
Standard 802.11 i-2004, July 2004. 

Internet Engineering Task Force(IETF), Request for Comments/Internet Drafts 

[04] Ashwin Palekar, Dan Simon, Joe Salowey, Hao Zhou, Glen Zorn, S. Josefsson, 
"Protected EAP Protocol (PEAP) Version 2", IETF Internet Draft, October 15, 
2004 

[05] B. Ababa, D. Simon, "PPP EAP TLS Authentication Protocol", RFC 2716, 
October 1999 

[06] 8. Ababa, D. Simon, J. Arkko, J. Arkko, H. Levkowetz, Ed., "EAP Key 
Management Framework", IETF Internet Draft, November 3, 2003 

[07] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, H. Levkowetz, Ed., "Extensible 
Authentication Protocol (EAP)", RFC 37 48, June 2004. 

[08] 8. Aboba, P. Calhoun, "RADIUS (Remote Authentication Dial In User Service) 
Support For Extensible Authentication Protocol (EAP)", RFC 3579, September 
2003. 

[09] C. Adams, S. Farrell, "Internet X.509 Public Key Infrastructure Certificate 
Management Protocols", RFC 2510, March 1999 

69 



[1 0] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence, "Generic AAA 
Architecture", RFC 2903, August 2000 

[11] C. Rigney, S. Willens, A. Rubens, W. Simpson, "Remote Authentication Dial In 
User Service (RADIUS}", RFC 2865, June 2000. 

[12] D. Whiting, R. Housley, N. Ferguson, "Counter with CBC-MAC", RFC 3610, 
September 2003 

[13] G. Pall, G. Zorn, "Microsoft Point-To-Point Encryption (MPPE} Protocol", 
RFC 3078, March 2001 

70 

[14] G. Zorn, "Microsoft Vendor-specific RADIUS Attributes", RFC 2548, March 1999 

[15] G. Zorn, "Microsoft PPP CHAP Extensions, Version 2", RFC 2759, January 2000 

[16] G. Zorn, S. Cobb, "Microsoft PPP CHAP Extensions", RFC 2433, October 1998 

[17] J. Puthenkulam, ''The Compound Authentication Binding Problem", IETF Internet 
Draft, July 2003 

[18] L. Blunk, J. Vollbrencht, "PPP Extensible Authentication Protocol (EAP}", 
RFC 2284, March 1998. 

[19] P. Congdon, B. Aboba, A. Smith, G. Zorn, J. Roese, "IEEE 802.1X Remote 
Authentication Dial In User Service (RADIUS} Usage Guidelines", RFC 3580, 
September 2003 

[20] Paul Funk, Simon Blake-Wilson, "EAP Tunneled TLS Authentication Protocol", 
IETF Internet Draft, July 2004 

[21] T. Dierks, C. Allen, "The TLS Protocol Version 1.0", RFC 2246, January 1999 

[22] Vivek Kamath/Ashwin Palekar, "Microsoft EAP CHAP Extensions", IETF Internet 
Draft, April 5, 2004 

[23] W. Simpson, Ed., "The Point-to-Point Protocol (PPP}", STD 0051 RFC 1661, 
July 1994. 

[24] W. Simpson, "PPP Challenge Handshake Authentication Protocol (CHAP}", 
RFC 1994, August 1996. 

Other References 

[25] Arunesh Mishra/William A. Arbaugh, "An Initial Analysis of the IEEE 802.1X 
Standard", University of Maryland, February 6, 2002 

[26] Cameron Macnally, "Cisco LEAP protocol Description", September 6, 2001 



71 

[27) Ferguson, N., "Michael: an improved MIC for 802.11 WEP", IEEE 802.11 doc 02-
020r0, January 17, 2002. 

[28) Housely, R., and D. Whiting, "Temporal Key Hash", IEEE 802.11 doc 01-550r1 
October 31, 2001. 

(29] Housely, R., ID. Whiting and Ferguson, N., "Alternate Temporal Key Hash", IEEE 
802.11 doc 02-282r0 April 2, 2002 

[29] Joshua Hill, "An Analysis of the RADIUS Authentication Protocol", lnfoGard 
Laboratories, 2001 

[30] Joshua Wright, "ASLEAP: As in "asleap behind the wheel'"', 
http://asleap.sourceforge.net/, 2001 

[31] National Institute of Standards and Technology, "Specification for the Advanced 
Encryption Standard (AES)", FIPS 197. November 26, 2001. 

[32) N. Asokan, Valtteri Niemi, Kaisa Nyberg, "Man-in-the-Middle in Tunneled 
Authentication Protocols", Draft version 1.3, http://eprint.iacr.org/2002/163.pdf, 
Nokia Research Center, Finland, November 11, 2002 

[33] Tom Karygiannis/Les Owens, "Wireless Network Security: 802.11, Bluetooth and 
Handheld Devices", National Institution of Standards and Technology, November 
2002 

[34] Vebjorn Moen/H0 avard Raddum/Kjell J. Hole, "Weaknesses in the Temporal Key 
Hash of WPA", Mobile Computing and Communications Review, Volume 8, 
Number 2, Department of Informatics, University of Bergen. 

[35) Wi-Fi Alliance, 'Wi-Fi Protected Access: Strong, standards-based, interoperable 
security for today's Wi-Fi networks", April 29, 2003 



VITA 

Yu-ming Cheng was born in Taipei, Taiwan, Republic of China, on April 21, 1977. 

After completing his high school in I-Lan, Taiwan, R.O.C, he entered National Cheng 

Kung University, Tainan, Tawan, R.O.C, and received his Bachelor's degree in Chemical 

Engineering in 1999. He then served in the army as a military police in Xindian Military 

Prison, Xindian, Taiwan, R.O.C, for two years. In summer 2002, he entered Texas State 

University-San Marcos and completed his Master's degree in Computer Science in 

2004. 

Permanent Address: 4th Fl., NO. 15, Lane 230, Jingfu St. Wenshan Chu, 
Taipei, Tawan, R.O.C (116) 

This thesis was typed by Yu-ming Cheng. 


