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DIFFERENCE SCHEME FOR AN ILL-POSED

CAUCHY PROBLEM

MURAT A. SULTANOV, MUSABEK I. AKYLBAEV, RASKUL IBRAGIMOV
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Abstract. In this article, we obtain criteria for stability of two-layer differ-

ence schemes for an abstract ill-posed Cauchy problem. Method of proof is

based on obtaining a priori difference weighted Carleman type estimates. Sta-
bility conditions for solutions of two-layer difference schemes are used to prove

the theorem of conditional stability of a solution of three-layer scheme that

approximates an ill-posed Cauchy problem for an integral-differential equation
associated with a coefficient inverse problem.

1. Introduction

In this article, stability problems of difference schemes for an ill-posed Cauchy
problem and their application to investigation of coefficient inverse problems are
considered. The applied research method is based on concept of stability of a differ-
ence scheme on functions with compact support, and in obtaining difference a priori
weighted Carleman type estimates. This concept was introduced and developed by
Bukhgeim [7, 8] in connection with construction of the theory of difference schemes
for ill-posed Cauchy problems, encompassing equations with variable coefficients.

Application of a priori estimates with weight for proof of uniqueness of a solution
of the Cauchy problem originates from the work of Carleman [10]. Later this
method was extended to a wider class of partial differential equations by many
authors [12, 13, 19].

To inverse problems on determining coefficients of partial differential equations,
the method of weighted a priori estimates was first applied in the work of Bukhgeim
and M.V.Klibanov [9]. They proved uniqueness theorems for solutions of multidi-
mensional inverse problems in “whole”.

Stability of difference schemes for an ill-posed Cauchy problem with constant
coefficients was first investigated by Chudov [11], by using the Fourier transform
method. The approach based on definition of ρ-stability, introduced by Samarskii
[20], and SM (Spectral Mimetic) stability with respect to ill-posed and inverse
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problems was investigated in the works of Vabishchevich [22, 23]. Methods of quasi-
reversibility have been discussed in [6, 17], iterative methods have been investigated
in [2, 3].

With reduction of the method to practical numerical algorithms for solving ill-
posed inverse problems, the Carleman estimates method was first proposed by
Klibanov and Timonov [18]. Further development and application of the method
were considered in (see [1, 4, 14, 16] and their references). Current state and
application of Carleman estimates in the theory of multidimensional coefficient
inverse problems is given in the review paper of Klibanov [15].

Conditions for conditional stability of the solution of a three-layer difference
scheme for an ill-posed Cauchy problem for an integro-differential equation are ob-
tained. This equation is associated with one-dimensional coefficient inverse problem
for the nonstationary Schrödinger equation. The stability of the difference scheme
is proved by factoring the problem into a sequence of two-layer schemes. In contrast
to [8], in which necessary and sufficient conditions for abstract two and three-layer
schemes are obtained, we apply these results to the coefficient inverse problem
and explicitly construct the spectral decomposition of the difference version of the
operator −i∂t, that occurs in the main part of the Schrödinger operator.

2. Finite stability and stability of two-layer difference schemes

Let Z = {0,±1,±2, . . . } and u : Z→ H be a function of integer arguments j ∈ Z
with values in complex Hilbert space H, with the norm ‖u‖ and dot product 〈u, v〉,
τ be an arbitrary positive number. We define the difference derivatives, and use
the usual notation for difference schemes:

ut = (uj+1 − uj)/τ, ut̄ = (uj − uj−1)/τ, utt̄ = (uj+1 − 2uj + uj−1)/τ2,

∧
u = uj+1,

∨
u = uj−1.

Consider an abstract two-layer difference scheme with weight:

(Pu)j ≡ (uj+1 − uj)/τ −A(σuj+1 + (1− σ)uj) = fj ,

u0 = g, j = 0, 1, . . . , N − 1.
(2.1)

Here A is a linear bounded operator, acting in the space H, and, possibly,
depending on j;σ is a real parameter; g, fj are given elements in the space H,
τN = T − const. Using the notation introduced above, we write the difference
scheme (2.1) in the compact form:

Pu ≡ ut −A(σ
∧
u+(1− σ)u) = f. (2.2)

Introduce the corresponding weighted norms (see [8, p.133]). Let ZN0 = {0, 1, . . . N},
ϕ : ZN0 → R be a real-valued monotonic decreasing weighted function, i.e. −ϕt > 0.
Using the function ϕ and number, we construct the function Ψ : ZN−1

0 → R so that:

Ψt = s
∧
Ψϕt, Ψ0 = 1.

The function Ψ is a discrete analogue of the weighted function exp(sϕ(t)). For the
function u : ZN−1

0 → H we put:

‖u‖2s = τ

N−1∑
j=0

Ψ2
j (s)‖uj‖

2
. (2.3)
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The norm (2.3) is a discrete analogue:∫ T

0

exp(2sϕ(t))‖u(t)‖2dt, (2.4)

moreover, as τ → 0 the expression (2.3) converges to (2.4).
If we denote by l2(k,N ;H) the Hilbert space of grid functions u : ZNk → H,

ZNk = {k, k + 1, . . . , N} with the norm ‖u‖2l2(k,N ;H) = τ
∑N
j=k ‖uj‖

2, then due to
the definition of the norm ‖u‖s : ‖u‖0 = ‖u‖l2(0,N−1;H).

We denote by C0(ZN0 ) the space of functions u : ZN0 → H such that: u0 =
uN = 0. The linear space C0(ZN0 ) is a discrete analogue of the space C0(0, T ) of
continuous functions u(t) : u(0) = u(T ) = 0 with compact support on the interval
[0, T ].

Definition. Difference scheme P of the form (2.2) is called stable on functions with
compact support, if there exist independent from τ, ‖A‖ numbers s0 > 0, M > 0,
such that for all s ≥ s0, u ∈ C0(ZN0 ) the following estimate holds:

s‖u‖2s ≤M ‖Pu‖2s. (2.5)

To obtain a stability estimate on the whole grid ZN1 , it is necessary to take into
account contribution of outside integral terms that arise when we use the formula
of summation by parts, and, therefore, it is necessary to work not with functions
with compact support C0(ZN0 ), but with arbitrary u : ZN0 → H. For brevity, we
introduce the notation

‖u‖2s(k,N) = τ

N∑
j=k

Ψ2
j (s)‖uj‖

2
, k ≥ 0.

Consider the difference scheme

Pu ≡ ut − (A+ iB)u = f, i2 = −1,
u0 = g,

(2.6)

where A,B are independent on j, selfadjoint, commuting, positive operators, i.e.

A∗ = A, B∗ = B, [A,B] = 0, A, B ≥ 0 .

To obtain the stable estimate we will estimate ‖Pu‖2s below. We have

‖Pu‖2s = τ

N−1∑
j=0

‖ut − (A+ iB)u‖2Ψ2
j (s).

Put Ψu = v. According to the formula of difference differentiation of product:
ut = (Ψ−1v)t = (Ψ−1)t

∧
v+Ψ−1vt. From (2.3) it follows that (1/Ψ)t = (−sϕtj)/Ψj ,

thus,

ut = (vt − sϕt
∧
v)/Ψ.
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Then
‖Pu‖2s

= τ

N−1∑
j=0

‖vt − sϕt
∧
v−(A+ iB)v‖

2

= τ

N−1∑
j=0

{
‖vt − iBv‖2+ + ‖Av + sϕt

∧
v‖

2

− 2 Re〈vt − iBv,Av + sϕt
∧
v〉
}

= τ

N−1∑
j=0

{
‖vt − iBv‖2 + ‖Av + sϕt

∧
v‖2 − 2 Re〈vt, Av〉 − 2 Re〈vt, sϕt

∧
v〉

+ 2 Re〈iBv,Av〉+ 2 Re〈iBv, sϕt
∧
v〉
}
≡

6∑
k=1

Ik.

(2.7)

Here by Ik we denoted τ
∑N−1
j=0 , corresponding to the k-term in curly brackets of

the expression (2.7). For numerical functions of a discrete argument, we introduce
the following notation:

[x, y) ≡ τ
N−1∑
j=0

xjyj , (x, y) ≡τ
N−1∑
j=1

xjyj . (2.8)

Using this notation, from (2.7) we obtain:

I1 = [1, ‖vt − iBv‖2) ≥ 0, I2 = [1, ‖Av + sϕt
∧
v‖

2

) ≥ 0,

I3 = −[1, 2 Re〈vt, Av〉), I4 = −[sϕt, 2 Re〈vt,
∧
v〉),

I5 = [1, 2 Re〈iBv,Av〉), I6 = [sϕt, 2 Re〈iBv, ∧v〉).
For functions of discrete argument v, w : Z → H the formula of difference differen-
tiation has the form:

∂〈v, w〉 = 〈vt,
∧
w〉+ 〈v, wt〉.

In particular, when w = v, ∂‖v‖2 = 〈vt,
∧
v〉 + 〈v − ∧v, vt〉 + 〈∧v, vt〉 = −τ‖vt‖2 +

2 Re〈vt,
∧
v〉, i.e. 2 Re〈vt,

∧
v〉 = ∂‖v‖2 + τ‖vt‖2. 2 Re〈vt,

∧
v〉 = ∂‖v‖2 + τ‖vt‖2. Then

for I4 we obtain: I4 = −[sϕt, 2 Re〈vt,
∧
v〉) = −[sϕt, ∂‖v‖2)−sτ [ϕt, ‖vt‖2). According

to the formula [x, ∂y) = −(∂̄x, y) + (xN−1yN − x0y0) of summation by parts, we
obtain: I4 = (sϕtt̄, ‖v‖

2)−[sτϕt, ‖vt‖2)−s(ϕtN−1‖vN‖
2 − ϕt0‖v0‖2). Suppose that

µ̃ ≥ −ϕt ≥ µ > 0. Taking this condition into account, we have

I4 ≥ (sϕtt̄, ‖v‖
2)− [sτϕt, ‖vt‖2) + sµ‖vN‖2 − sµ̃‖v0‖2. (2.9)

We now transform the expression 2 Re〈iBv, ∧v〉. 2 Re〈iBv, ∧v〉 = 2 Re〈iBv, v +
τvt〉 = 2 Re〈iBv, v〉+τ ·2 Re〈iBv, vt〉. Because of self-adjointness B,Re〈iBv, v〉 = 0
for all v ∈ H, therefore, 2 Re〈iBv, ∧v〉 = τ · 2 Re〈iBv, vt〉. From this equality we
obtain

|2 Re〈iBv, ∧v〉| = τ |2 Re〈iBv, vt〉| ≤ τ
{
α‖B‖2‖v‖2 + α−1‖vt‖2

}
.

Here we used α-inequality: 2ab ≤ αa2+α−1b2, α > 0. Since I6 = s[ϕt, 2 Re〈iBv, ∧v〉),
we have |I6| ≤ τs[|ϕt|, α‖B‖2‖v‖2) + τs[|ϕt|, α−1‖vt‖2). Thus, writing |ϕt| in the
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form |ϕt| = −ϕt(−ϕt > 0), we obtain

I6 ≥ τs
{[

1, ϕtα‖B‖2‖v‖2
)

+
[
1, ϕtα−1‖vt‖2

)}
= τ2sϕt0α‖B‖2‖v0‖2 + τs

(
1, ϕtα‖B‖2‖v‖2

)
+ τs

[
1, ϕtα−1‖vt‖2

)
≥ −τ2sµ̃α‖B‖2‖v0‖2 + τs

{(
1, ϕtα‖B‖2‖v‖2

)
+
[
1, ϕtα−1‖vt‖2

)}
.

(2.10)

From the equality 2 Re〈vt, Av〉 = ∂〈v,Av〉 − τ〈vt, Avt〉, and using the formula of
summation by parts, we obtain

I3 = −[1, ∂〈v,Av〉) + [1, 〈vt, τAvt〉)
= [1, 〈vt, τAvt〉)− 〈vN , AvN 〉+ 〈v0, Av0〉
≥ − 〈vN , AvN 〉.

(2.11)

Here we took into account the fact that A∗ = A, A ≥ 0.
Compute the term I6. From commutativity of the operators A and B, we obtain

2 Re〈iBv,Av〉 = 〈iBv,Av〉+ 〈Av, iBv〉 = 〈iABv, v〉−〈iBAv, v〉 = 〈i[A,B]v, v〉 = 0,

then
I5 = [1, 2 Re〈iBv,Av〉) = 0.

The obtained estimates yield the following result.

Lemma 2.1. Let Pu ≡ ut− (A+ iB)u,A∗ = A ≥ 0, B∗ = B ≥ 0, [A,B] = 0. Then
for all u : ZN0 → H:

‖Pu‖2s =
6∑
k=1

Ik, I1 = [1, ‖vt − iBv‖2) ≥ 0,

I2 = [1, ‖Av + sϕt
∧
v‖

2

) ≥ 0, I3 ≥ −〈vN , AvN 〉, I5 = 0,

I4 ≥ (sϕtt̄, ‖v‖
2)− [sτϕt, ‖vt‖2) + sµ‖vN‖2 − sµ̃‖v0‖2,

I6 ≥ τs
{

(1, ϕtα‖B‖2‖v‖2) + [1, ϕtα−1‖vt‖2)
}
− τ2sµ̃α‖B‖2‖v‖2.

Here v = Ψu,−ϕt > 0.

This lemma implies the following theorem.

Theorem 2.2. Let in the conditions of Lemma 2.1 for all s ≥ s0 and some δ > 0
the following conditions hold:

M1 ≡ (sϕtt̄ + τsϕtα‖B‖2)E ≥ sδE, (2.12)

M0 ≡ −sτϕt(1− α−1)E ≥ 0, α > 0. (2.13)

Then for all u : ZN0 → H, s ≥ s0 for the difference scheme (2.6) the following
stability estimate holds

s‖u‖2s(1,N) ≤ µ
−1
2

{
‖Pu‖2s + sµ0‖u0‖2 + Ψ2

N 〈uN , AuN 〉
}
. (2.14)

Here µ0, µ2 are certain positive constants.

Proof. Discarding the quantities I1, I2 ≥ 0, and collecting separately the terms
containing v and vt, by Lemma 2.1 we obtain:

‖Pu‖2s ≥ (1, 〈M1v, v〉) + [1, 〈M0vt, vt〉)

− sµ̃(1 + τ2α‖B‖2)‖v0‖2 − 〈vN , AvN 〉+ sµ‖vN‖2.
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Thus, from (2.12) and (2.13), and taking into account that v = Ψu, Ψ0 = 1, we
have

δs‖u‖2s(1,N−1) + sµΨ2
N‖uN‖2

≤ ‖Pu‖2s + sµ̃(1 + τ2α‖B‖2)‖u0‖2 + Ψ2
N 〈uN , AuN 〉.

(2.15)

When 0 < τ ≤ τ0 and µ2 = min(δ, µτ0 ), we obtain

sδ‖u‖2s(1,N−1) + sµΨ2
N‖uN‖2 ≥ sµ2‖u‖2s(1,N).

Taking this estimate into account, and assuming µ0 = µ̃(1 + τ2
0α‖B‖

2), after di-
viding the inequality (2.15) by µ2, we obtain (2.14). The proof is complete. �

Furthermore, we assume that the following conditions are satisfied:

ϕtt̄ ≥ 1, −ϕt ≥ 1.

Theorem 2.3. Let
τ‖B‖2 ≤ c, c > 0. (2.16)

Then there exists a number c1 = c(α, c)such that when

ϕtt̄ + cϕt ≥ 1 (2.17)

for the difference scheme (2.6) the estimate (2.14) holds.

Proof. By choosing sufficiently large numbers s0 and α, we obtain non-negativity
of the operatorM0. Similarly, due to (2.16) and (2.17), we have:

〈M1v, v〉 = sϕtt̄‖v‖2 + τsϕtα‖B‖2‖v‖2

≥ sϕtt̄‖v‖2 + sϕtα · c‖v‖2

= s(ϕtt̄ + c1ϕt)‖v‖2 ≥ s · ε‖v‖2

at a large enough number and small ε. Reference to Theorem 2.2 completes the
proof of the theorem. �

Consider now the difference scheme:
Pu ≡ ut + (A+ iB)u = f, i2 = −1,

u0 = g.
(2.18)

Here operators A and B satisfy the same conditions as in (2.6). Similarly to Lemma
2.1, we establish the following result.

Lemma 2.4. Let Pu ≡ ut + (A+ iB)u, where A∗ = A ≥ 0, B∗ = B ≥ 0,
[A,B] = 0. Then for all u : ZN0 → H we have:

‖Pu‖2s =
6∑
k=1

Ĩk,

Ĩ1 = [1, ‖vt + iBv‖2) ≥ 0, Ĩ2 = [1, ‖Av − sϕt
∧
v‖

2

) ≥ 0,

Ĩ3 ≥ −[1, 〈vt, τAvt〉)− 〈v0, τAv0〉,

Ĩ4 ≥
(
sϕtt̄, ‖v‖

2)− [sτϕt, ‖vt‖2)− sµ̃‖v0‖2 + sµ‖vN‖2, Ĩ5 = 0,

Ĩ6 ≥ τs
{

(1, ϕtα‖B‖2‖v‖2) + [1, ϕtα−1‖vt‖2)
}
− τ2sµ̃α‖B‖2‖v‖2.

This lemma yields the following two theorems.
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Theorem 2.5. Let in the conditions of Lemma 2.4 for all s ≥ s0 and for some
δ > 0 the following inequality hold:

M̃1 ≡
(
sϕtt̄ + τsϕtα‖B‖2

)
E ≥ sδE,

M̃0 ≡ −sτϕt(1− α−1)E − τA ≥ 0.

Then for all s ≥ s0, u : ZN0 → H to solve the difference scheme (2.18) we have the
stability estimate:

s‖u‖2s(1,N) ≤ µ
−1
2

{
‖Pu‖2s + sµ0‖u0‖+ 〈u0, Au0〉

}
. (2.19)

Theorem 2.6. Let for some m, c > 0 the following inequality hold:

τA ≤ mE, τ‖B‖2 ≤ c. (2.20)

Then there exists a number c1 = c1(α,m, c) such that when

ϕtt̄ + c1ϕt ≥ 1

to solve the difference scheme (2.18) we have the estimate (2.19).

Theorems 2.5 and 2.6 are proved simlarly to Theorems 2.2 and 2.3.

Remark 2.7. To obtain Lemmas 2.1, 2.4 we used the method of proofs of [8,
Lemma 2.1 p. 142], where it is used to obtain sufficient conditions for stability with
compact support of two-layer difference schemes.

Remark 2.8. Theorem 2.3 was proved by Bukhgeim the case of functions with
compact support without assumption of positivity of the operators [8].

3. An ill-posed Cauchy problem for integral-differential equation

In this section we give an ill-posed Cauchy problem related to the one-dimensional
coefficient inverse problem for the Schrödinger equation. Such an ill-posed Cauchy
problem arises instudy of questions of uniqueness and stability of solutions of co-
efficient inverse problems in non-stationary formulation [5, 8]. Scheme of proof
of these theorems consists in reducing the inverse problem to an ill-posed Cauchy
problem for integral-differential equations, and the subsequent application of a pri-
ori weighted Carleman type estimates. Therefore, justifying the difference methods
for solving these inverse problems, it becomes necessary to obtain stability estimates
for solutions of difference schemes that approximate an ill-posed Cauchy problem
for the corresponding integral-differential equations or inequalities.

Let Ω = {x, t : x > 0, t2 + (x− r) < 0} (see Figure 1).
Consider on the domain Ω the following ill-posed Cauchy problem:

ivt + vxx = a1(x)v + (b1∂ + b0)(u2(x, t)f(x)/f2(x)

+
∫ t

0

K(x, t, τ)v(x, τ)dτ),
(3.1)

v(0, t) = g′(t)− g′2(t)g(t)/g2(t), vx(0, t) = 0, (3.2)

where K(x, t, τ) = u2(x, t)/u2(x, τ), ∂ = ∂/∂x, i2 = −1. Concerning to the coeffi-
cients in (3.1), we assume that they are smooth enough functions of their variables
(conclusion of the integro-differential equation (3.1) is given in [8, p.40]). Writing
the equation (3.1) in more detail, and assuming

b(x, t) ≡ b0(x, t)u2(x, t)/f2(x) + b1(x, t)(u2(x, t)/f2(x))x,
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Figure 1. Source area.

b1(x, t) ≡ b1(x, t)u2(x, t)/f2(x),

K(x, t, τ) ≡ b0(x, t)K(x, t, τ) + b1(x, t)Kx(x, t, τ),

K1(x, t, τ) ≡ b1(x, t)K(x, t, τ),

it can be rewritten in the form

ivt + vxx = a1(x)v + b(x, t)f(x) + b1(x, t)f ′(x)

+
∫ t

0

(K(x, t, τ)v(x, τ) +K1(x, t, τ)vx(x, τ))dτ.
(3.3)

We make the change of variables in the equation (3.1). Put x = ξ− t2, t = t. Then

v(x, t) = w(ξ, t) = w(x+ t2, t), vt = 2t · wξ + wt, vx = wξ, vxx = wξξ.

After simple transformations and using the formula
∫
δ(p(τ))u(τ)dτ = u(τ0)

|p′(τ0)| ,
where τ0 is a unique root of the equation p(τ) = 0 (in our case p(τ) = τ2−t2+ξ−η),
we obtain:

2itwξ + iwt + wξξ

= ã1(ξ, t)w(ξ, t) + b̃(ξ, t)f̃(ξ, t) + b̃1(ξ, t)f̃ξ(ξ, t)

±
∫ ξ

ξ−t2

K̃(η, t,±
√
η − ξ + t2)w(η,±

√
η − ξ + t2)

2
√
η − ξ + t2

dη

±
∫ ξ

ξ−t2

K̃1(η, t,±
√
η − ξ + t2)wη(η,±

√
ηξ + t2)

2
√
η − ξ + t2

dη.

(3.4)

Here the sign (+) corresponds to the case t > 0, and the sign (-) to the case
t < 0. For convenience we rename the variables ξ, t : ξ := t, t := x. Then the
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equation (3.4) has the form

2ixwt + iwx + wtt

= ã1(t, x)w(t, x) + b̃(t, x)f̃(t, x) + b̃1(t, x)f̃t(t, x)

±
∫ t

t−x2

K̃(η, x,±
√
η − t+ x2)w(η,±

√
η − t+ x2)

2
√
η − t+ x2

dη

±
∫ t

t−x2

K̃1(η, x,±
√
η − t+ x2)wη(η,±

√
η − t+ x2)

2
√
η − t+ x2

dη,

(3.5)

w
∣∣
γ

= gx(t, x)− g2x(t, x)g(t, x)/g2(t, x), wt
∣∣
γ

= 0 , (3.6)

where γ : t = x2. Note that the original domain Ω after the change of variables,
and renaming, goes into the domain bounded between the parabola t = x2 and line
t = r, which we also denote by Ω (see Figure 2).

Figure 2. Area after the change of variables and renaming.

Assuming w0 = w
∣∣
γ . and introducing a new function w̃ = w − w0, the problem

(3.5) - (3.6) can be reduced to a problem with homogeneous boundary conditions
on γ:

2ixw̃t + iw̃x + w̃tt = F, (3.7)

w̃
∣∣
γ

= 0, w̃t
∣∣
γ

= 0 . (3.8)

where F is the right side of the equation (3.5). We extend the function w̃ in (3.7)
by continuity by zero to a rectangular domain, and rename w̃ := w. The condition
(3.8), unbounded generality, is replaced by w(0, x) = g(x), wt(0, x) = 0. Then in
the domain we obtain the following problem:

wtt + iwx = ã1(t, x)w − 2ixwt +Kw + f(t, x), (3.9)

w(0, x) = g(x), wt(0, x) = 0. (3.10)

Here
Kw = K0w +K1w, K0w(t, x)

= ±
∫ t

t−x2

K̃(η, x,±
√
η − t+ x2)w (η,±

√
η − t+ x)

2
√
η − t+ x2

dη,
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K1w(t, x) = ±
∫ t

t−x2

K̃1(η, x,±
√
η − t+ x2)wη(η,±

√
η − t+ x2)

2
√
η − t+ x2

dη,

f(t, x) = b̃(t, x)f̃(t, x) + b̃1(t, x)f̃t(t, x).

Our goal is to obtain an estimate of conditional stability of a solution of difference
scheme that approximates the ill-posed Cauchy problem (3.9)-(3.10). Construction
and proof of the conditional stability of difference scheme solution for this problem
are carried out in the next section. Unconditional stability of three-layer difference
scheme for the problem (3.9)-(3.10), depending on two parameters, was obtained
in [21].

4. Stability of difference scheme for an ill-posed Cauchy problem

We associate with the problem (3.9)-(3.10) the following three-layer difference
scheme:

ukj+1 − 2ukj + ukj−1

τ2
−Aukj−1

= ãk1 j−1u
k
j−1 − 2ikh(ukj − ukj−1)/τ +Kτ, hu

k
j−1 + fkj−1,

(4.1)

u0 = gk, u1 = u0,

j = 1, 2, . . . , N − 1, τN = r,

k = 0,±1, . . . ,±(N1 − 1), ±hN1 = ±
√
r ≡ ±T.

(4.2)

Here Aukj−1 = −iu
k+1
j−1−u

k−1
j−1

2h , Kτ,h is an approximation of the operator K = K0+K1

such that
‖Kτ,hu‖ ≤ c(‖u‖+ ‖ut‖). (4.3)

Naturalness of this assumption follows from boundedness and Volterra property of
the integral operator K0 by t. We will consider the operator as an operator acting in
the complex Hilbert space. As H we take the space of grid functions u(x) defined
on the grid ω̃h = {xk = kh, k = 0,±1, . . . ,±N1,±hN1 = ±T} and vanishing for
k = −N1, k = N1. The dot product and norm in space Hare introduced in the
usual form:

〈u, v〉 = h

N1−1∑
k=−(N1−1)

ukv̄k ‖u‖2 = h

N1−1∑
k=−(N1−1)

|uk|2

Obviously, A will be a self-adjoint operator in H. Furthermore, we shall omit the
index k in all the functions. We denote the right-hand side of (4.1) by Fj , and
write the equation (4.1) with a shift by a step to the right:

uj+2 − 2uj+1 + uj
τ2

−Auj = Fj . (4.4)

Put:

uj+1 −Ruj = τvj , (4.5)

vj+1 − Svj = τFj , (4.6)

and we will try to pick up the operators R and S so that after exclusion v the
system (4.5) - (4.6) goes into equation (4.4). Eliminating vj from (4.6) with the
help of (4.5), we obtain

uj+2 − (R+ S)uj+1 + SRuj = τ2Fj+1;
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thus

R+ S = 2E, (4.7)

SR = E − τ2A. (4.8)

We represent the operator A in the form of difference of two nonnegative commuting
operators A±: A = A+ − A−, (A±)∗ = A± , A+ = QA, A− = (Q− E)A, where Q
is an orthogonal projection, projecting the space onto the subspace of eigenfunctions
corresponding to the nonnegative part of spectrum of the operatorA. Since A± ≥ 0,
the nonnegative operators

√
A± are uniquely determined. By definition,
√
A =

√
A+ + i

√
A−.

Since by construction A±A∓ = 0, then E− τ2A = (E − τ
√
A)(E + τ

√
A). Assum-

ing now S = (E − τ
√
A), R = (E + τ

√
A), we find the solution of the system of

equations (4.7)-(4.8):

uj+1 − (E + τ
√
A)uj = τvj , u0 = g,

vj+1 − (E − τ
√
A)vj = τFj+1, v0 = −

√
Au0,

or

ut −
√
Au = v, u0 = g, (4.9)

vt +
√
Av = F̃ , v0 = −

√
Au0, (F̃ = Fj+1). (4.10)

Applying Theorem 2.3 from Section 1 to the difference scheme (4.9), and Theorem
2.6 to the scheme (4.10) with N := N − 1, and taking into account that in our case
A =

√
A+, B =

√
A−, and the conditions (2.16), (2.20) have the form

τ
√
A+ ≤ mE, τ‖

√
A−‖2 ≤ c, (4.11)

we obtain

s‖u‖2s(1,N) ≤ µ
−1
2

{
τ0‖v0‖2 + ‖v‖2s(1,N−1) + sµ0‖u0‖2 + Ψ2

N 〈uN ,
√
A+uN 〉

}
(here we noted that Ψ0 = 1, τ ≤ τ0),

s‖v‖2s(1,N−1) ≤ µ
−1
2

{
‖F̃‖2s(0,N−2) + sµ0‖v0‖2 + 〈v0,

√
A+v0〉

}
. (4.12)

Combining these estimates, we have

s2‖u‖2s(1,N) ≤ sµ
−1
2

{
sµ0‖u0‖2 + Ψ2

N 〈uN ,
√
A+uN 〉

}
+ sµ̃0‖v0‖2

+ µ−2
2

{
‖F̃‖2s(0,N−2) + 〈v0,

√
A+v0〉

}
,

where µ̃0 = τ0µ
−1
2 +µ−2

2 µ0. Combining this inequality with (4.12), and taking into
account the fact that v = ut −

√
Au, we obtain

s2‖u‖2s(1,N) + s‖ut −
√
Au‖2s(1,N−1)

≤ sµ−1
2

{
sµ0‖u0‖2 + Ψ2

N 〈uN ,
√
A+uN 〉

}
+ sc1‖v0‖2 + c2

{
‖F̃‖2s(0,N−2) + 〈v0,

√
A+v0〉

}
.

(4.13)

Here c1 = µ̃0 + µ−1
2 µ0, c2 = µ−2

2 + µ−1
2 . Applying Theorem 2.6 to the difference

problem
ut +

√
Au = v, u0 = g, (R = E − τ

√
A),
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and Theorem 2.3 to the difference problem

vt −
√
Av = F̃ , v0 =

√
Au0, (S = E + τ

√
A),

we obtain

s‖u‖2s(1,N) ≤ µ
−1
2

{
τ0‖v0‖2 + ‖v‖2s(1,N−1) + sµ0‖u0‖2 + 〈u0,

√
A+u0〉

}
,

s‖v‖2s(1,N−1) ≤

≤ µ−1
2

{
‖F̃‖2s(0,N−2) + sµ0‖v0‖2 + Ψ2

N−1〈vN−1,
√
A+vN−〉

}
.

(4.14)

As above, combining these estimates, we have

s2‖u‖2s(1,N) ≤ sµ
−1
2

{
sµ0‖u0‖2 + 〈u0,

√
A+u0〉

}
+ sµ̃0‖v0‖2

+ µ−2
2

{
‖F̃‖2s(0,N−2) + Ψ2

N−1〈vN−1,
√
A+vN−1〉

}
.

Combining this inequality with (4.14) and taking into account that v = ut +
√
Au,

we have
s2‖u‖2s(1,N) + s‖ut +

√
Au‖2s(1,N−1)

≤ sµ−1
2

{
sµ0‖u0‖2 + 〈u0,

√
A+u0〉

}
+ sc1‖v0‖2

+ c2
{
‖F̃‖2s(0,N−2) + Ψ2

N−1〈vN−1,
√
A+vN−1〉

}
.

(4.15)

Adding now the estimate (4.15) with the estimate (4.13), and taking into account
the identity:

‖ut −
√
Au‖2 + ‖ut +

√
Au‖2 = 2‖ut‖2 + 2‖

√
Au‖2,

we obtain

2s2‖u‖2s(1,N) + 2s(‖ut‖2s(1,N−1) + ‖
√
Au‖2s(1,N−1))

≤ sµ−1
2

{
2sµ0‖u0‖2 + 〈u0,

√
A+u0〉+ Ψ2

N 〈uN ,
√
A+uN 〉

}
+ 2sc1‖v0‖2

+ c2
{

2‖F̃‖2s(0,N−2) + 〈v0,
√
A+v0〉+ Ψ2

N−1〈vN−1,
√
A+vN−1〉

}
.

(4.16)

Estimate the term ‖F̃‖2s(0,N−2) in the right-hand side of (4.16). Noting that F̃ =
= Fj+1 in the right-hand side of (4.1), due to the obvious inequality ‖u‖s(0,N−2) ≤
‖u‖s ≤ ‖u‖s(0,N) and the condition (4.3), we have

‖Fj+1‖2s(0,N−2) ≤ c(‖u‖
2
s(1,N) + ‖ut‖2s(1,N−1) + ‖f‖2s + ‖u0‖2) (4.17)

with some constant c. Here we used the condition u1 = u0 and Ψ0 = 1, τ ≤ τ0.
From (4.17) and (4.16) we obtain

2s2(1− c2c0
s2

)‖u‖2s(1,N) + 2s(1− c2c0
s

)‖ut‖2s(1,N−1) + 2s‖
√
Au‖2s(1,N−1)

≤ sµ−1
2

{
2sµ0‖u0‖2 + 〈u0,

√
A+u0〉+ Ψ2

N 〈uN ,
√
A+uN 〉

}
+ 2c2c0‖u0‖2

+ 2sc1‖v0‖2 + c2
{
〈v0,

√
A+v0〉+ Ψ2

N−1〈vN−1,
√
A+vN−1〉

}
+ 2c2c0‖f‖2s.

Choosing s0 large enough, it is possible to achieve the condition 1− c2c0
s ≥

1
2 when

s ≥ s0 (especially 1− c2c0
s2 ≥

1
2 ). Therefore,

s2‖u‖2s(1,N) ≤ sµ
−1
2

{
2sµ0‖u0‖2 + 〈u0,

√
A+u0〉+ Ψ2

N 〈uN ,
√
A+uN 〉

}
+ 2c2c0‖u0‖2 + c2

{
〈v0,

√
A+v0〉

+ Ψ2
N−1〈vN−1,

√
A+vN−1〉a

}
+ 2c2c0‖f‖2s.

(4.18)
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Note that vN−1 = utN−1 −
√
AuN−1, v0 = −

√
Au0, by (4.9) and (4.10). Taking

into account that
√
A =

√
A+ + i

√
A−, (

√
A±)∗ =

√
A± ≥ 0,

√
A±
√
A∓ = 0 it

is easy to establish the following equalities:

‖v0‖2 = 〈A+u0, u0〉+ 〈A−u0, u0〉, 〈v0,
√
A+v0〉 = 〈

√
A+

√
A+u0,

√
A+u0〉,

〈vN−1,
√
A+vN−1〉 = 〈

√
A+utN−1, utN−1〉 − 2 Re〈A+utN−1, uN−1〉

+ 〈
√
A+

√
A+uN−1,

√
A+uN−1〉

According to these equalities, and taking into account the obvious inequalities

Ψj+1 < Ψj , ‖u‖2s(1,N) ≥ ‖u‖
2
s(1,N−1) ≥ Ψ2

N−1‖u‖2l2(1,N−1;H),

‖f‖2s ≤ ‖f‖2l2(1,N−1;H),

from (4.18) we obtain the estimate

s2Ψ2
N−1‖u‖2l2(1,N−1;H)

≤ sµ−1
2

{
2sµ0‖u0‖2 + 〈u0,

√
A+u0〉+ Ψ2

N−1〈uN ,
√
A+uN 〉

}
+ 2c2c0‖u0‖2

+ 2sc1(〈A+u0, u0〉+ 〈A−u0, u0〉) + c2

{
〈
√
A+

√
A+u0,

√
A+u0〉

+ Ψ2
N−1

(
〈
√
A+utN−1, utN−1〉 − 2 Re〈A+utN−1, uN−1〉

+ 〈
√
A+

√
A+uN−1,

√
A+uN−1〉

)}
+ 2c2c0‖f‖2l2(0,N−1;H).

Assuming s ≥ 1 and

c̃1 = max
( 1
µ2
, c2
)
, c̃2 =

2µ0

µ2
+ 2c2c0, c̃3 = max

( 1
µ2
, 2c1, c2, 2c2c0

)
from the above estimate we have

s2Ψ2
N−1‖u‖2l2(1,N−1;H)

≤ sc̃1Ψ2
N−1

{
〈
√
A+uN , uN 〉+〈

√
A+utN−1, utN−1〉

− 2 Re〈A+utN−1, uN−1〉+ 〈
√
A+

√
A+uN−1,

√
A+uN−1〉

}
+ s2c̃2‖u0‖2 + sc̃3

{
〈
√
A+u0, u0〉+〈A+u0, u0〉+ 〈A−u0, u0〉

+ 〈
√
A+

√
A+u0,

√
A+u0〉+ ‖f‖2l2(0,N−1;H)

}
.

Dividing both sides of this inequality by s2Ψ2
N−1, and supposing

ε2 = c̃1/s, c2(ε) = max
{
c̃2 exp(2s m̃ τ), c̃3s−1 exp(2s m̃ τ)

}
,

from inequality 1/ΨN−1 < 1/ΨN ≤ exp(sm̃τ) (see [8, Lemma 1.1, p.132]) we obtain

‖u‖2l2(1,N−1;H)

≤ ε2
{
〈
√
A+uN , uN 〉+〈

√
A+utN−1, utN−1〉

− 2 Re〈A+utN−1, uN−1〉+ 〈
√
A+

√
A+uN−1,

√
A+uN−1〉

}
+ c2(ε)

{
‖u0‖2 + 〈

√
A+u0, u0〉+〈A+u0, u0〉+ 〈A−u0, u0〉

+ 〈
√
A+

√
A+u0,

√
A+u0〉+ ‖f‖2l2(0,N−1;H)

}
.
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Denoting ‖u‖2D = 〈Du, u〉, where the operator D ≥ 0, we rewrite the last inequality
in the form

‖u‖2l2(1,N−1;H) ≤ ε
2
{
‖uN‖2√A+

+ ‖utN−1‖2√A+

− 2 Re〈A+utN−1, uN−1〉+ ‖
√
A+uN−1‖2√A+

}
+ c2(ε)

{
‖u0‖2 + ‖u0‖2√A+

+ ‖A1/2
+ u0‖+

+ ‖A1/2
− u0‖+ ‖

√
A+u0‖2√A+

+ ‖f‖2l2(0,N−1;H)

}
.

(4.19)

We now turn to the construction of the operators A+, A−,
√
A+,

√
A−. Consider

for the operator

(Au)k = −iu
k+1 − uk−1

2h
, i2 = −1,

and the eigenvalue problem

Auk = λuk, k = 0,±1, . . . ,±(N1 − 1), ±hN1 = ±T,
uN1 = u−N1 = 0.

(4.20)

By direct calculations it is not difficult to show that eigenvalues of the operator A
and the corresponding eigenfunctions are determined by the formulas

λm =
1
h

sin
πm

2N1
, ukm = eik

πm
2N1 − (−1)k−N1ei(2N1−k) πm2N1 ,

for k,m = 0,±1, . . . ,±(N1 − 1), and norm of the eigenfunctions ukm in the sense of
the above dot product is ‖ukm‖2 = 4T .

Since the eigenfunctions ukm are orthogonal, and consequently, linearly inde-
pendent, then the functions µkm = 1

2
√
T
ukm for orthonormal basis in the space H,

consisting of eigenfunctions of the operator A, corresponding to {λm}.
Since A∗ = A, we have spectral decomposition of the operator A:

A =
N1−1∑

m=−(N1−1)

λmPm =
N1−1∑
m=0

λmPm −
−1∑

m=−(N1−1)

(−λm)Pm,

where Pm projector, defined by the relation Pmu = 〈u, µkm〉µkm, u ∈ H. Hence we
see that the operators A± have the form:

A+ =
N1−1∑
m=0

λmPm , A− =
−1∑

m=1−N1

(−λm)Pm.

We define the operators
√
A± by

√
A+ =

N1−1∑
m=0

λ1/2
m Pm ,

√
A− =

−1∑
m=1−N1

(−λm)1/2
Pm.

It is obvious that

‖A‖ = ‖A+‖ = ‖A−‖ =
1
h

sin
π(N1 − 1)

2N1
≤ 1
h
,

‖
√
A+‖ = ‖

√
A−‖ =

√
1
h

sin
π(N1 − 1)

2N1
≤ 1√

h
.

(4.21)
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We transform the conditions

τ‖
√
A+‖2 ≤ c, τ

√
A+ ≤ mE, c,m > 0, (4.22)

under which we obtained stability of the two-layer difference schemes (4.9), (4.10).
Note that the condition τ

√
A+ ≤ mE is satisfied if τ‖

√
A+‖ ≤ m. Indeed,

〈(mE − τ
√
A+)u, u〉 = m‖u‖2 − τ〈

√
A+u, u〉

≥ m‖u‖2 − τ‖
√
A+‖‖u‖2

= (m− τ‖
√
A+‖)‖u‖2 ≥ 0,

if τ‖
√
A+‖ ≤ m. By (4.21) and this remark, instead of the condition (4.22) we

obtain the conditions
τ

h
sin

π(N1 − 1)
2N1

≤ c, τ ≤ ch

sinπ(N1−1)
2N1

,

τ2

h
sin

π(N1 − 1)
2N1

≤ m2, τ2 ≤ m2h

sinπ(N1−1)
2N1

.

(4.23)

Since sin π(N1−1)
2N1

= sin π
2 (T−hT ) = O(1) at small h, from conditions (4.23) we obtain

the condition:
τ2 ≤ c · h,

where c = min(c, ;m), c and m are constants from (4.22). Therefore, the following
theorem of conditional stability of solution of the difference scheme (4.1).

Theorem 4.1. Let τ2 ≤ ch and c > 0. Then for all τ ∈ (0, τ0], (τ0 =
√
ch), ε > 0,

u : ZN0 → H, to solve the difference scheme (4.1) we have the stability estimate
(4.19).

Conclusions. On the basis of notion of stability of a difference scheme on func-
tions with compact support, stability criteria for two-layer difference schemes, that
approximate an ill-posed abstract Cauchy problem, are obtained. Stability of dif-
ference schemes is based on obtaining a priori difference weighted Carleman type
estimates. Obtained stability criteria are used to prove conditional stability of the
solution of a three-layer difference scheme for an ill-posed Cauchy problem. In
connection with cumbersomeness and technical complexity of obtaining a differ-
ence analogue of weighted stability estimates for three-layer schemes, preliminary
factorization of the problem into a sequence of two-layer schemes was carried out.
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