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I. INTRODUCTION 

 The hydro-geologically complex Edwards Aquifer supports multiple ecosystems 

and provides high quality groundwater to humans for recreation, household use, and 

industry. Humans rely on the spring-flows from the aquifer for recreational activities 

such as swimming, tubing, kayaking, and fishing. Groundwater from the Edwards 

Aquifer provides a reliable source of municipal water supply. Industries utilizing 

groundwater from the Edwards Aquifer include farming and ranching. The aquifer also 

supplies flows to important local springs and provides fresh water to fragile habitats 

supporting endangered species. Because human and natural ecosystem depend on this 

limited groundwater resources, it is important to predict how much groundwater is 

available. And, with so many users dependent upon the Edwards Aquifer groundwater, 

accurately predicting groundwater levels can improve planning and management of an 

increasingly overextended resource.  

 Predicting groundwater level in highly heterogeneous karst aquifers has proven 

difficult using traditional statistics-based models with limited datasets (Lindgren et al., 

2004; Coppola et al., 2005; Szidarovszky et al., 2007; Chen et al., 2013; Wu & Zeng, 

2013). And, the Edwards Aquifer’s highly variable response to changes to the amount of 

water moving into or out of the system (i.e., recharge and discharge) require robust 

datasets representing a wide range of hydrologic responses to make consistent and 

accurate predictions of groundwater levels (Hensel and Hirsch, 2002; Ford & Williams, 

2007; Drew & Goldscheider, 2007; Bear & Cheng, 2010; Krešic & Stevanovic, 2010). 

Recent technological advances have allowed for the aggregation of computer-based data 

collections of time-series datasets of a wide range of hydrologic parameters and 
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responses that are especially useful for computational modeling of complex systems, such 

as the Edwards Aquifer groundwater levels (Fayyad, Piatetsky-Shapiro & Smyth, 1996; 

Han & Gao, 2009; Hoffman at al., 2011; Esling &Agon, 2012; Paasche et al., 2014). 

Time-series datasets are embedded with patterns of information about the inherent 

relationships within a complex system and require specialized techniques, such as data 

mining. Due of the characteristics of hydrologic data, such as autocorrelation and high 

degrees of heterogeneity in both the spatial and temporal dimension, data mining 

techniques are particularly useful when constructing models to predict complex 

hydrologic systems (Hensel & Hirsch, 2002; Zhou & Li, 2011; O’Reilly et al., 2012; 

Sahoo & Jha, 2013). Data mining consist of tasks to extract patterns from datasets 

capable of describing the system, and then using those patterns to derive a mathematical 

approximation of a complex systems response to changes using parametric and non-

parametric techniques (Miller, 2009; Sunitha & Reddy, 2014). Parametric techniques are 

used when you want to determine how much influence a finite number of physical 

parameters each contribute a response, while non-parametric techniques are used when 

you are not concerned about determining the most influential parameters but with 

predicting or simulating a response using parameters capable of describing the response 

(Hastie, Tibshirani & Friedman, 2009; Taneja et al., 2011). Unlike parametric prediction 

techniques, which seek to explicitly characterize a complex system typically with limited 

data, non-parametric data mining techniques do not require explicit characterization of 

the physical parameters influencing groundwater levels. In an alternative approach, non-

parametric data mining techniques use the patterns embedded in time-series datasets of 

highly similar groundwater wells, considered high quality training data, to estimate, or 
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predict, other wells groundwater levels. Artificial neural network (ANN) is a non-

parametric data mining techniques that processes information in a manner similar to a 

biological neural network, such as the human brain (Craven & Shavlik, 1997). ANNs are 

capable of making non-linear estimations, or predictions, of a complex systems response, 

such as groundwater levels, when trained with high quality training data (Han & Gao, 

2009; Trichakis, Nikolos & Karatzas, 2011; Kalina, 2013). Because of this, ANNs have 

been found to work particularly well when predicting responses in a complex hydrologic 

system. And, for homogenous aquifer systems with similar hydrogeologic properties 

throughout, highly accurate predictions of groundwater levels can be made using ANNs 

(Daliakopoulos, Coulibaly, & Tsanis, 2005; Sirhan & Koch, 2012; Rakhshandehroo, 

Vaghefi & Aghbolaghi, 2012; Mohanty et al., 2013; Karthikeyan et al., 2013; Chitsazan, 

Rahmani & Neyamadpour, 2013).  

 Although, when ANNs were applied to highly heterogeneous hydrologic systems, 

prediction accuracies tend to suffer due to a lack of high quality training data representing 

a robust range of conditions and responses (Lallahem et al., 2005; Trichakis, Nikolos & 

Karatzas, 2009; Wu, 2010; O’Reilly et al., 2014). And, in complex systems such as the 

Edwards Aquifer, a spatially dependent and spatially heterogeneous karst aquifer, 

groundwater levels response to system changes vary greatly, creating additional 

challenges when identifying high quality training data (Trichakis, Nikolos & Karatzas, 

2011). The following section provides a comparative overview of traditional numeric 

modeling and select data mining techniques, including ANNs, in the hydrologic sciences 

and discussion on current methods used to identify high quality training data. 
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Data mining techniques in hydrology 

 In recent literature, comparison of numerical and data mining techniques has been 

a common theme for researchers exploring the efficacy of applying data mining 

techniques to hydrologic systems (Szidarovszky et al., 2007; Mohanty et al., 2013) and 

several studies compared the efficacy of various data mining techniques (Taneja & 

Chauhan, 2011; Sahoo & Jha, 2013; Sunitha & Reddy, 2014). Terzi (2011 & 2012) 

compared the prediction capabilities of several data mining techniques to traditional 

prediction methods to estimate monthly river discharge, and then monthly rainfall, in 

Turkey and found that data mining techniques, including artificial neural network (ANN), 

produced comparable solutions much faster than traditional numerical hydrologic 

modeling methods. In 2013, Mohanty et al. conducted a comparative evaluation of 

MODFLOW, a numeric groundwater model, and ANNs to simulate weekly groundwater 

levels in India and found ANNs provided more accurate predictions than the MODFLOW 

for short term predictions. In Japan, Sahoo and Jha (2013) compared the data mining 

techniques of multi-linear regression (MLR) and ANN to predict monthly groundwater 

levels in 17 groundwater wells over the Konan groundwater basin of Kochi Prefecture. 

Using a correlation analysis to determine the physical parameters influencing 

groundwater levels, both MLR and ANN predicted with high accuracy, but the study 

found ANN predictions were in “better agreement” with observed groundwater levels 

because the ANNs ability to approximate the non-linearity of the system. 

 Because ANNs can be less time consuming and provide superior prediction 

accuracies over traditional modeling techniques when correctly applied, recent studies 

have focused on maximizing the robustness of ANN training data through parameter and 

algorithm optimization techniques to increase prediction accuracies, but with varying 
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results (Ratanamahatana & Keogh, 2004; Gaur et al., 2013; Gupta et al., 2014; Jha & 

Sahoo, 2015). Trichakis, Nikolos, and Karatzas (2009) used a differential equation for 

optimal selection of ANN parameters and found an improvement over empirical methods 

for selection of parameter inputs, which minimized training time and increased prediction 

accuracy. Then, Tapoglou et al. (2012) compared three different variations of the particle 

swarm optimization algorithm (PSO), an algorithm that moves ‘particles’ representing a 

candidate solution through a search space to attract like-values, aiming to increase the 

robustness of the ANNs training data. However, results showed the PSO algorithms could 

not sufficiently identify outliers in the data, thus resulting in poor prediction accuracies.  

 In most of these studies, ANNs were shown to have high prediction accuracies for 

relatively homogenous hydrologic systems, but prediction accuracy suffered with 

increasing hydrogeologic heterogeneity. Coppola et al. (2003), citing the results of a 

sensitivity analysis, noted the importance of identifying relevant input parameters, which 

are highly specific to the system being modeled, to increase the robustness of the training 

data. Lallahem et al. (2005), found that an “increase in the number of neighboring 

piezometers with different (hydrogeologic) features” prevented their test model from 

accurately predicting observed groundwater levels. Trichakis, Nikolos, and Karatzas 

(2011) applied ANNs to predict groundwater levels in the Edwards Aquifer using a 

correlation coefficient analysis to determine relevant input parameters. But, the study 

found the heterogeneity of the karst hydrogeology and a lack of pumping data hindered 

the ability of the ANN to capture the inherent relationships in the datasets during training, 

resulting in low prediction accuracy.  
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 Some studies found that grouping data increased the robustness of the ANN 

training data, but only when grouping of the data based on similar responses to changes. 

Sreekanth et al. (2009), when predicting groundwater levels in a groundwater basin in 

India, randomly subset the data to reduce model complexity, incidentally reducing the 

heterogeneity within the training data, and saw an increase the ANNs prediction 

capabilities during the training period. However, while the test model fit was good, the 

ANN was not able to predict outliers in the data. And, when Chitsazan, Rahmani, and 

Neyamadpour (2013) applied ANNs to predict groundwater levels in Aghili Plain in 

southwest Iran, a relatively homogenous groundwater basin, their research showed that 

grouping groundwater wells based on similar hydrologic properties (such as groundwater 

depth, hydraulic conductivity, and transmissivity) produced far more accurate 

groundwater level predictions than when not grouped.  

The results of these previous works show the importance of selecting highly 

representative ANN training data specific to the system being modeled, and illustrates 

some of the many methods used to increase the robustness of input data, from 

optimization techniques to manually grouping data. However, in those studies, parameter 

selection was mainly conducted in a trial and error approach during the ANN training 

phase instead of an explicit method to partition input data with the goal of identifying 

high quality training data. The lack of consensus on a straightforward methodology to 

identify highly robust ANN training data highlights the overall limitations of the current 

techniques used for data mining in the field of hydrology.  
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Research questions and objectives 

 The foundation of this study was guided by the success and failures of previous 

studies and aimed to improve ANN groundwater level prediction accuracies in the highly 

heterogeneous Edwards Aquifer. Results from past studies show that grouping data based 

on response similarity can improve prediction accuracy by reducing the heterogeneity 

within the training data. Therefore, this study first used the data mining technique of 

hierarchical clustering with the Dynamic Time Warping algorithm as a measure of 

similarity to facilitate the identification of highly representative ANN training data. 

 Dynamic time warping (DTW), a time-invariant distance algorithm, useful when 

modeling spatially and temporally complex systems, measures similarity, or distance, 

independent of time thereby identifying similar responses although those responses may 

not occur at the same time (Giorgino, 2009; Mori, Mendiburu & Lozno; 2015). DTW as a 

similarity measure to identify highly representative groundwater well time-series, used as 

ANN training data to model other wells groundwater levels, can increase groundwater 

level prediction accuracy by identifying outlier’s groundwater levels present in the data. 

However, while hierarchical clustering using DTW is a robust method of identifying 

similarity between time-series that may not align, common in highly heterogeneous 

systems, no studies thus far have applied the data mining technique of hierarchical 

clustering to group highly heterogeneous groundwater level data using the DTW as a 

similarity measure.  

 Next, an ANN was constructed for each cluster of groundwater wells identified 

during the hierarchical clustering analysis. Using the highly representative clusters of 

groundwater wells as ANN training data, along with spring-flow and precipitation data, 

groundwater level predictions were made for each of the groundwater wells. These data 
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mining techniques, applied in a novel two-step approach, were selected with the specific 

goal of identifying a straight forward methodology for accurately predicting groundwater 

levels in highly heterogeneous systems, using the Edwards Aquifer as a case study.   

 The purpose of this research was to determine if the data mining techniques of 

hierarchical clustering using DTW to measure similarity and ANNs, applied in a two-step 

methodology, can predict with a high degree of accuracy groundwater levels of a highly 

dynamic karst groundwater system. This research has been designed to answers the 

following questions: 1.) To what degree can these data mining techniques accurately 

predict groundwater levels within the highly dynamic Edwards Aquifer using historical 

time-series datasets, and 2.) to what degree can these data mining techniques accurately 

train data to identify outliers within historical time-series datasets. 

 To answer question one, the accuracy of the two-step methodology was measured 

by calculating the difference between the ANN predictions and the observed groundwater 

levels, reported in terms of the coefficient of determination (R2), a measure of overall 

model fit. To answer question 2, the average prediction error, or root mean square error 

(RMSE), was used to measure the degree to which the trained model could identify 

outliers in the data.  
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II. MATERIALS AND METHODS 

 A two-part methodology was explicitly designed with the goal of increasing 

groundwater level prediction accuracy in the Edwards Aquifer. Because ANNs can 

predict with a high degree of accuracy when trained with highly representative training 

data, identification of groups of wells that respond similarly across a range of 

hydrological conditions was considered integral to increasing ANN prediction accuracy. 

In step-one, hierarchical clustering, coupled with DTW as a measure of groundwater well 

similarity, was used to explore patterns in groundwater level time-series datasets from 

fourteen wells across a common interval of more than 7 years, and a range of 

hydrogeologic conditions including very wet and very dry periods. This technique was 

used to identify wells that respond similarly to a target well across all hydrologic 

conditions. Data from those wells were then used as ANN training data to predict 

groundwater levels of a target well. Wells that respond less similarly to the target well, or 

were similar under only certain hydrologic conditions, were rejected as ANN training 

data for a target well. In step-two, ANNs were constructed to predict daily observed 

groundwater levels for each of the fourteen wells using time-series data from wells that 

clustered with each target well, spring-flow, and precipitation as training data.  

 It is important to note that because this two-step methodology used non-

parametric data mining techniques with the specific goal of increasing prediction 

accuracy, a comprehensive analysis of all possible physical parameters influencing 

groundwater levels was not necessary. Instead, careful consideration of select physical 

parameters thought to be capable of describing groundwater levels in the Edwards 

Aquifer guided the choice of parameters used as ANN training data.  
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Study Area 

 The Edwards Aquifer is a heterogeneous and highly productive freshwater karst 

aquifer in Central Texas (Figure 1) that has formed in Cretaceous carbonates deposited 

in a shallow sea. Karst aquifers are formed in highly soluble bedrock, such as limestones 

or dolomite, and dissolution enhances and enlarges an integrated and connected system of 

pores, fractures, and conduits that can quickly and efficiently transport groundwater 

throughout the system. The Edwards Aquifer, is considered a mature karst aquifer and 

contains multiple types of porosity ranging from primary granular porosity to large 

conduit porosity (including caves). Varying degrees of conduit connectivity result in 

interrelated changes in groundwater levels as a response to changes in groundwater 

storage (recharge, natural discharge, or pumping). In addition, as long-term hydrologic 

conditions transition between periods of extreme wet and dry, the degree to which 

conduits are interconnected can change dramatically as groundwater levels and hydraulic 

heads rise or fall, leaving some conduits dry and inactive, or even changing flow 

directions in others.  

 The Edwards Aquifer is 180 miles long and up to 40 miles wide and is generally 

oriented in a northeast-southwest direction (EAA). The aquifer is composed of three 

distinct hydrogeologic zones: the contributing, the recharge, and the artesian zones. The 

contributing zone drains 5,400 mi² of the central TX Hill Country to the northwest of the 

aquifer and serves as a catchment area for overland flows, feeding streams that eventually 

contribute to recharge as they flow across the Balcones Fault Zone. Most recharge occurs 

along the 1,250 mi² exposed, unconfined recharge zone where extensive faulting forms 

the Balcones Fault Zone (BFZ), which is lies between the contributing zone and the deep 

artesian zone. The BFZ also hosts the BFZ Aquifer, a portion of the Edwards Aquifer 
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which is under unconfined water-table conditions. In the confined artesian zone, several 

large springs discharge from the aquifer, including the largest and second largest springs 

in TX: Comal Springs and San Marcos Springs. The artesian zone is confined by the 

impermeable Del Rio Clay formation above and the Upper Glen Rose Limestone below. 

Each zone responds to system changes differently due to varying degrees of spatial 

dependency and spatial heterogeneity in aquifer properties. In the recharge zone, because 

it is unconfined, the water table rises and falls with changes in storage. But groundwater 

levels in the artesian zone, because it is confined and under atmospheric pressure, 

respond to changes in pressure. Further complexity arises from groundwater pumping 

from thousands of wells located throughout the aquifer. Pumping creates an inverted cone 

of drawdown concentric to the pumping well, which can change groundwater gradients 

and flows both around the pumping well and at surrounding wells.  

Hydrologic datasets 

 Daily groundwater level data for fourteen wells were obtained from the Edwards 

Aquifer Authority (EAA), daily discharges from two springs from the United States 

Geological Survey (USGS), and daily precipitation values for nine climate stations from 

the National Oceanic and Atmospheric Administration (NOAA), were considered as 

training data for the ANNs. The 7-year study period was from April 1, 2004 to July 14, 

2011. The range of precipitations and spring flow values for the 7-year study period were 

not as robust of a range as the entire period of record available. However, it was decided 

that the 7-year study period provided a robust range of well responses across hydrologic 

conditions and that variable conditions were more important to groundwater level 

prediction accuracy than precipitation and spring-flow. Other studies have used daily,
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 Figure 1. Edwards Aquifer in Central Texas. FIGURE 1AQUIFER IN CENTRAL TEXAS. 

Edwards Aquifer in Central Texas 

1 inch = 350 miles 1 inch = 30 miles 
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weekly, or monthly resolutions when applying predictive ANNs with varying ranges of 

time-periods. Because daily datasets for the each of the input parameters chosen were 

available, a daily time resolution was used. 

Groundwater level data 

 The data used in this study were selected from a larger set of data for 2683 wells 

for the period of 1918-2015, collected by the EAA, the Texas Water Development Board 

(TWDB), the USGS, and the San Antonio Water System (SAWS), that have been 

compiled and maintained in a database by the EAA. Groundwater level measurements for 

individual wells range from every fifteen minutes to daily, weekly, or monthly 

measurements. The data were filtered to select wells with the longest continuous 

concurrent time-periods with minimal missing data. For each well, the criterion for 

inclusion in the study was daily data with no more than 15% of the groundwater well 

dataset missing (training and testing datasets combined) for the longest time-period 

possible. Based on this criterion, fourteen wells with 7 years of continuous, concurrent 

daily groundwater levels were selected. The wells were placed in alphabetical order 

starting with the least amount of missing data, well A, to the most missing data, well N. 

For the records with missing data, linear interpolation was used to fill data gaps, some of 

which were several months long. A plot of the fourteen wells time-series serves to 

illustrate the heterogeneity present in the groundwater level datasets (Figure 2). The 

wells chosen for this research were located both in the recharge and artesian zones, and 

across much of the length of the aquifer. Five of the fourteen wells, circled in Figure 2, 

were in the unconfined recharge zone or along the transition zone between the recharge 
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and artesian zones (wells C, K, M, N, and F), while the rest of the wells (wells, A, B, D, 

E, G, H, I, J, and L) were located in the confined artesian zone.  

 

 

 Figure 2. Raw time-series datasets of the fourteen wells.  FIGURE 2 

 

Spring-flow  

 Daily spring-flow data is available for five springs located in the study area for 

the period of 1947-2012 (Comal, San Marcos, Leona, San Pedro, and San Antonio 

Springs). As hydrologic conditions change, the degree of hydrologic connectivity of each 

spring to the rest of the aquifer is highly variable. During times of severe drought, several 

of the springs have ceased flowing for extended periods (in some cases close to a 

decade), while at least one, San Marcos Spring, has flowed for the entire period of record. 
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Because most of the water naturally discharged from the aquifer flows from Comal 

Springs and San Marcos Springs (the first and second largest springs in TX, 

respectively), and both springs continuously flowed throughout the 7-year study period, 

only these two springs were selected as input training data for the ANNs. Discharge at the 

two springs is highly variable both within and between the springs, which further 

illustrates the spatial-temporal complexity of the Edwards Aquifer. A one-week example 

of raw data for San Marcos and Comal Springs illustrates that spring discharge can 

routinely vary by 1 to 2 cfs. per day; Table 1. 

Precipitation 

 Precipitation from nine NOAA climate stations located across of the Edwards 

Aquifer region were used for ANN training data (figure 3). A 1-week sample of the raw 

data for each of the following nine stations is provided in Table 2:  Brackettville (Brack), 

San Antonio International Airport (SAIA), New Braunfels (NB), Parade Ranch (PR), 

Kerrville (Kerr), Hondo, Canyon Dam (CD), Boerne, and Hunt.  

 

Table 1. Example of 1 week of the spring flow data.   

Date San Marcos Springs (cfs.) Comal Springs (cfs.) 

10/18/2010 200 339 

10/17/2010 302 340 

10/16/2010 302 340 

10/15/2010 203 341 

10/14/2010 204 339 

10/13/2010 204 340 

10/12/2010 203 342 
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Table 2. Precipitation raw dataset. One-week precipitation values (inches per day) 

from each of the nine NOAA climate stations.  1. 1 

Date SAIA NB Hunt PR Kerr Hondo CD Brack Boerne 

10/18/2010 0 0 0 0 0 0 0.08 0 0 

10/17/2010 0 0 0 0 0 0 0.24 0.01 0 

10/16/2010 0 0.03 0 0 0 0 0 0 0 

10/15/2010 0 0 0 0 0 0 0 0 0 

10/14/2010 0.02 0 0 0 0 0 0.62 0 0 

10/13/2010 0.06 0 0.24 0 0   0 1.91 0 0 

  

  

 Groundwater levels in the unconfined recharge zone are mostly controlled by 

precipitation and related recharge and have a range of less than 20 feet for the study 

period. In the confined zone, artesian where groundwater levels are also controlled by 

precipitation and recharge, in addition to pumping, changes in hydraulic head were over 

100 feet for the study period. Because aquifer levels are highly dependent on 

precipitation and related recharge, precipitation data were considered to be important as 

ANN training data for wells located in the recharge zone and, to a lesser extent, the wells 

in the confined zone. However, since precipitation across the aquifer is highly variable 

and hydrologic conditions across the aquifer can change rapidly, often in just a few 

months, 30, 60 and 90-days moving averages of spatially averaged precipitation data 

were used as ANN training data instead of daily precipitation values from each individual 

station. Moving averages were calculated using the average daily precipitation value 

across all nine stations. The three moving average datasets were thought to provide the 

ANNs with important information representing antecedent hydrologic conditions across 

the aquifer, which was considered more relevant to groundwater levels than precipitation 
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values from each individual station. Locations for the 14 groundwater wells, the 9 NOAA 

climate stations, and the 2 springs are illustrated in Figure 3. 

Step One – Hierarchical clustering using dynamic time warping (DTW) 

  A hierarchical clustering analysis of the fourteen wells was conducted to identify 

wells that respond similarly across a wide range of hydrologic conditions, which were 

considered highly representative ANN training data necessary for accurate groundwater 

level predictions. A common exploratory analysis technique of organizing clusters of data 

by ranking wells based on similarity, hierarchical clustering has been found to be 

especially informative when the goal is to identify outliers in highly heterogeneous 

systems, such as the Edwards Aquifer (Han & Gao, 2009; Hastie, Tibshirani & Friedman, 

2009; Gupta et al., 2014).  

Dynamic time warping (DTW) algorithm 

 Hierarchical clustering requires a matrix of the measured similarity of each well 

to each other well. The similarity, or distance, between two time-series is calculated by 

measuring the distance between signals, or response values, along the two time-lines. The 

algorithm selected to measure similarity between two time-series is an important 

consideration because the appropriate algorithm can reveal relationships other algorithms 

or humans may not be able to easily identify. Therefore, because the time-series of wells  
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in the Edwards Aquifer frequently do not align because of time fluctuations, or lag times, 

between recharge or pumping and related groundwater level responses, the time-invariant 

 DTW, an algorithm that measures similarity independent of time, first originated 

in the field of automatic speech recognition when warping time-series was used to model 

time fluctuations of spoken words between two speech patterns (Sakoe & Chiba, 1978). 

Since then, research has repeatedly shown that measurements of similarity using DTW 

can identify the optimal alignment between two time-series more often than Euclidian 

distance, which simply measures vertical straight-line distance between two time-series 

(Ratanamahatana & Keogh, 2004; Han & Gao, 2009; Hastie, Tibshirani & Friedman, 

2009).   

 For time-series that align (i.e., responses occur at the same time, but maybe not at 

the same magnitude), Euclidean, or straight-line distance, is sufficient. However, 

environmental parameter time-series datasets commonly do not align on a time line 

because of the spatial dependency and spatial heterogeneity of a system over time (i.e., 

response times and magnitudes vary). When comparing two time-series that may not 

align on a time line, DTW measures similarity of signals independent of time alignment, 

hence disregarding the constraints of time to find the optimal similarity between two 

time-series. Figure 4 is an illustration of how DTW maps signals using a noisy sine and 

cosine wave as sample time-series. The independence from the constraints of time allows 

DTW to measure the response similarity of two wells that may geologically differ and/or 

have a lag time (the time it takes for groundwater to move from one well to another), 

thereby finding the optimal alignment between the two time-series by minimizing the 

distance between the two time-series. The lag time between two wells’ responses to a 
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change in the system is represented by the difference of when two mapped signals occur 

in time (the x axis). Figure 5 shows the optimal alignment of the noisy sine and cosine 

wave from Figure 4 as calculated by DTW.  

 

 

 Figure 4. DTW mapped signals of a cosine and noisy sine wave. FIGURE 4 

 

Dividing the study period  

 With the goal of identifying which wells respond similarly as hydrologic 

conditions oscillate from extremely wet to extremely dry, the study period was divided 

into fifteen, 6-month time-periods to identify which wells responded similarly under each 

time-period’s hydrologic conditions (Figure 5). Initially, the appropriate length of time, 

or resolution, for each time-period was unclear, so the hierarchical clustering analyses 

were conducted on time-periods of 3-month and 6-month, and on time-periods of varying 

lengths between 6-month to 2-years. To determine the best time resolution for the 
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clustering analysis, dendrograms of each time resolution were analyzed for patterns of 

wells that clustered and visually compared to the time-series of each corresponding time-

period to determine if the clustering solutions correctly represented the patterns observed 

in the time-series (Figure 6). 

 

 

 Figure 5. Optimal alignment between a noisy sine wave and a cosine wave. 

FIGURE 5 

 

 The 3-month time-periods clustering solutions failed to follow the general 

patterns in the time-series. Because the DTW algorithm finds the optimal alignment 

independent of time, the 3-month time-periods were found to contain too little 

information for the hierarchical clustering analysis. The 6-month time-period clustering 

solutions reflected    the patterns in the time-series for the time-periods the best. For the 

time-periods of varying lengths, the clustering solutions for the shorter time-periods (6-9 

months) were approximately the same as the 6-month time-periods, but the clustering 

solutions for the longer time-periods (over a year) failed to cluster according to the 
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 Figure 6. Study period divided into fifteen time-periods.   FIGURE 6
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patterns present in the time-series for that time-period. Therefore, it was decided the 6-

month time-periods were the appropriate time resolution for the hierarchical clustering 

analysis. The 6-month time-periods began March 1 and September 1 of each year in the 

study period, except for the first and last time-periods which were shorter periods. For 

each of the fifteen time-periods, the fourteen well time-series datasets were scaled [0,1] 

and standardized to begin at the same initial value. Then for each time-period, the well 

response similarity was measured using the DTW algorithm which provided fifteen 

similarity matrices for the hierarchical clustering analysis. 

Identifying clusters of wells for each time-period 

 A hierarchical clustering analysis was conducted on each of the fifteen, 6-month 

time-periods. Results were inspected to determine the optimal number of clusters during 

each of the time-periods. In a hierarchical clustering analysis, the researcher can 

determine the optimal clusters based on their knowledge of the dataset using a 

dendrogram to visualize the results. A dendrogram is a tree-like graphic that is a useful 

tool to visually examine ranking patterns that are based on the similarity matrix as input 

(Figure 6). On the y-axis is the similarity at which new clusters were made, while the x-

axis merely lists the clustered objects at equal distances and provides no information 

about a cluster’s similarity.  

 The most telling feature of the dendrogram is the height of the vertical line 

merging two clusters or objects to form a single cluster. The robustness of the 

information present in a cluster is observed by examining the distance from where the 

cluster was formed to where the cluster merges with another cluster, i.e. the vertical 

distance between two adjacent horizontal lines. Longer vertical lines indicate greater 
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difference between clusters, while shorter vertical lines indicate less differences between 

clusters. In this study, a bottom-up approach, also referred to as an agglomerative 

approach, was used to join wells. Initially, each groundwater well is a single cluster at the 

bottom of the dendrogram. Then, in an iterative process, groundwater wells are clustered 

based on the quantitative DTW measure of similarity. When new clusters are formed, the 

two closest clusters are joined by a horizontal line, indicating the distance at which the 

cluster was formed along the y-axis, with individual wells initially having a distance of 0. 

When comparing, and interpreting multiple dendrogram, such as in this study, it was 

useful to set an arbitrary threshold on the y-axis to guide selecting the optimal number of 

clusters. For this study, the arbitrary threshold was set at 1.0 which can be seen in Figure 

7. It is important to note that this threshold is subjective and must be determined by each 

researcher based on their own knowledge of the study area and datasets.  

Identifying clusters of wells across hydrologic conditions 

 Selecting the optimal number of clusters for each time-period’s set of solutions 

was a task essential to identifying which wells responded similarly across the fifteen 

time-periods (considered a cluster of wells) and assisted in determining whether outlier 

wells (wells that did not cluster with others) are present among the well datasets. The 

following criteria were used to determine which wells clustered across hydrologic 

conditions and which wells were outliers: 1) a well that failed to cluster with at least one 

other well across at least twelve of the fifteen time-periods was considered an outlier well 

and not considered for ANN training data, and 2) wells that repeatedly clustered together 

for at least twelve or more of the time-periods were determined to be a cluster of wells. 
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Using these criteria, each of the fourteen wells were either assigned to a cluster or 

determined to be an outlier.  

 

 

Figure 7. Dendrogram to visualize clustering solutions. FIGURE 7 

 

Step Two – Artificial neural networks 

 In step-two, artificial neural networks (ANNs) were constructed for each of the 

wells that clustered with another well, or wells, across hydrologic conditions using the 

criteria provided in section 2.3.3.  
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ANN architecture  

 ANNs architecture consists of an input layer(s), a hidden layer(s), and an output 

layer(s). The ANNs in this study were each constructed with a single input layer, two 

hidden layers, and single output layer. ANN architecture also refers to the direction 

information flows during training. Because the emphasis of this study was on discovering 

high quality ANN training data to predict groundwater levels, the successes of previous 

studies guided the selection of the feed-forward, back-propagation configuration, a 

universal approximator commonly used to simulate and predict within complex systems, 

particularly useful for predictive ANNs (Hastie, Tibshirani, and Friedman 2009). In a 

feed-forward/back-propagation architecture, as input training data is fed into the hidden 

layer, the error of the fit is iteratively subtracted from each prediction attempt and the 

resulting output is reintroduced to the ANN as new input.  

 Predicted groundwater levels are iteratively calculated by an activation function 

located in neurons connecting each layer that calculates the weight of each input to obtain 

the best model fit. In an ANN, neurons are basically a series of interconnected activation 

functions aggregated to create a neural network. As each neuron recursively recalculates 

new weights, the predictions are further constrained to an increasingly smaller range of 

values, effectively reducing the error from the previous attempt to fit the data. ANN 

training is improved by iteratively constraining and adjusting the weights. Because ANNs 

are commonly used to model non-linear systems, Sigmoid activation function, valuable 

for representing highly heterogeneous, non-linear relationships, are often used with 

ANNs to present non-linearity to the predicted output and was therefore used in this study 

(Taneja and Chauhan 2011). Figure 8 is an illustration of the structure of an ANN which 

includes the input, hidden, and output layers, and final calculated weights of each input. It 
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should be noted that, because ANNs are non-parametric, input weights cannot be 

meaningfully interpreted. 

ANN training data 

 ANN construction included selecting the optimal physical parameters for each 

well. All possible ANN training data included the physical parameter datasets (30, 60, 

and 90-day moving averages of precipitation and spring flow from San Marcos and 

Comal Springs), and the groundwater wells that clustered together. All the training 

datasets were scaled to [0,1] to prepare the data for ANN input. It was not immediately 

apparent whether all precipitation and spring-flow datasets selected for this study were 

useful ANN training data. Therefore, all physical parameters for precipitation and spring 

flow were initially included as training data and in a trial and error process during the 

training phase the decision of whether to include specific spring-flow and/or precipitation 

datasets as ANN training data was guided by whether exclusion of the respective physical 

parameter dataset resulted in an increase in groundwater level prediction accuracy. 

However, inclusion of a specific well dataset as ANN training data was pre-determined 

during the hierarchical clustering analysis where the wells used for training data were 

identified.  

ANN training and testing 

 The 7-year study period was separated into two datasets for the purposes of 

training and testing: an approximately 6-year test dataset, April 1, 2004 to September 1, 

2010, and a 1-year testing dataset, September 2, 2010 to July 14, 2011. Approximately 

80% of the data was used for ANN training, while 20% was reserved for ANN testing; a 

common data ratio used with predictive ANNs. During the testing phase of the ANN, the 
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Figure 8. Example ANN architecture. FIGURE 8 

 

test portion of the data was used to measure the ANNs ability to accurately predict 

groundwater level in the target groundwater well by comparing the ANNs predictions to 

observed groundwater levels. How well the ANN models predict the test data was 

determined by inspecting the coefficient of determination, R², a statistical indicator of 

model fit. The degree to which the trained ANN could accurately identify outlier 

groundwater levels was measured by calculating the average prediction error, or root 

mean square error (RMSE). 
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III. RESULTS AND DISCUSSION 

Clusters of wells responding similarly across hydrologic conditions 

 A hierarchical clustering analysis was conducted on each of the fifteen, 6-month 

time-periods to identify clusters of wells for ANN training data. The results of the 

hierarchical clustering were fifteen dendrograms visualizing each of the fifteen-time-

period’s set of solutions (Figures 9-23). First, the solution sets of each dendrogram were 

confirmed by comparing the clustering solutions to the respective time-series (Figures 

24-38) to ensure the hierarchical clustering analysis correctly clustered wells that 

responded similarly. The dendrograms solution sets appeared to correctly cluster of wells 

most of the time, except time-period 2 (Figure 10) where the set of solutions show low 

similarity for all the wells. Inspection of the time-series for time-period 2 (Figure 25) 

reveal the data is poor quality as a result of missing and corrupted data. Several of the 

time-periods had similar data quality issues, such as time-period 3 (figure 10, c) where 

well L had corrupted data and well D had missing data that had been linearly 

interpolated, and in time-period 5 (Figure 28) well D again had missing data that had 

been linearly interpolated. However, when comparing the dendrograms of the solution to 

the time-series of those time-periods, the set clustering solutions were considered to 

represent the overall patterns of the time-period. Therefore, only time-period 2 clustering 

solutions were not considered in the hierarchical clustering analysis because the 

clustering solutions were incomprehensible. Because time-period 2 was rejected from the 

hierarchical clustering analysis, the criteria for a well to be considered a member of a      

cluster was adjusted to require a well to cluster with the other members only eleven of the 

remaining fourteen time-periods. 
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 Next, the dendrograms of the remaining fourteen time-periods were inspected to 

determine which wells responded similarly by interpreting the height at which a well, or 

wells, joined another well, or wells, to create a new cluster. An arbitrary threshold, set at 

a height of 1.0 on the y-axis of each of the fourteen dendrograms, was used as a guideline 

to compare which wells responded similar across each time-period. Wells that repeatedly 

clustered together at a low height were considered a cluster of very similar wells and 

thought to be within similar hydrogeologic settings across all hydrologic conditions, 

although whether the wells were hydrologically connected could not be determined. And, 

wells that repeatedly clustered but at varying heights were thought to have different 

hydrogeologic settings across some portion of the hydrologic conditions. As each of the 

fourteen time-periods dendrogram were inspected, a generalized clustering pattern 

emerged that showed four distinct groups of wells cluster together at least eleven of the 

fourteen time-periods, the criteria set forth in section 2.3.2 for wells to qualify as part of a 

cluster: wells A, E, G, and L (Cluster 1; Figure 39), wells C, K, M, and N (Cluster 2; 

Figure 40), wells B, J, and I (Cluster 3; Figure 41), and wells H and D (Cluster 4; 

Figure 42). However, well F failed to cluster with a cluster of wells consistently enough 

to be considered part of a cluster and was therefore rejected as potential ANN training 

data.  

Cluster 1: wells A, E, G, and L 

 Inspection of the height of the fourteen dendrograms (Figures 9-23), excluding 

time-period 2, show that Cluster 1 wells (circled) have highly similar responses to 

changes during all time-periods, except time-periods 4, 10, and 14 (Figures 12, 18, 22) 

where at least one of the four wells in Cluster 1 failed to cluster with the other wells. A 
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closer inspection of the time-series of the wells in Cluster 1 during time-period 4 (Figure 

27) showed well E’s response is similar to wells A, G, and L during the first half of the 

time-period, however in the last half of the time-period, well E responded more similarly 

to wells I, K, M, and N. Although well E clustered with Cluster 2 wells during time-

period 4, it was determined that because well E clustered with wells in Cluster 1 for the 

other thirteen time-periods, and the general shape of well E time-series was more similar 

to the wells in Cluster 1, well E was considered a member of Cluster 1. In time-period 10, 

wells E and G clustered together separately than well A and L, which clustered together. 

But because during this time-period each of the wells clustered with at least one other 

member of Cluster 1, the clustering solutions for time-period 10 did not affect the 

inclusion of wells A, E, G, and L as members of Cluster 1. The last time-period where 

Cluster 1 wells did not cluster together was in time-period 14, where well G did not 

cluster with wells A, E, and L. Inspection of the time-series for time-period 14 shows that 

well G had poor quality and missing data. Because during the portion of the time-period 

the data were not poor quality well G responded similarly to wells A, E, and L, well G 

was determined to correctly belong with Cluster 1 wells during time-period 14.   

 During each of the three time-periods where Cluster 1 wells did not all cluster 

together, hydrologic conditions were getting dryer (Figure 39). This indicated that as 

groundwater levels lowered due to drier conditions, the heterogeneity between the wells 

in Cluster 1 increased. The wells in cluster 1 are located in the confined artesian zone 

where groundwater levels are mainly influenced by pressure and groundwater levels can 

vary greatly. Because of this, heterogeneity of the wells’ clustering patterns during drier 

hydrologic conditions were thought to be the result of changing hydrogeologic properties 
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as groundwater levels lower in response to drier conditions. However, because during the 

majority of the time-periods Cluster 1 wells clustered together tightly, thus having a low 

similarity value, the heterogeneity of the wells responses during dryer times was 

considered very minimal.  

Cluster 2: wells C, K, M, and N 

 Cluster 2 wells (rectangle) clustered together across most of the clustering time-

periods excepts time-period 3, 4 and 12 (Figures 12-13, 20). During time-period 3, wells 

C, K and M clustered together while well N clustered with wells A, E, G, and L. 

Inspection of the time-series for time-period 3 (Figure 26) shows that well N’s response 

to changes is not similar to wells A, E, G, and L, and is actually more similar to wells in 

Cluster 2, wells C, K and M. Therefore, the results for well N for time-period 3 were not 

considered when well N was assigned to Cluster 2. During time-period 4, well C did not 

cluster with Cluster 2 wells, instead clustering with wells B and J. Visual inspection of 

the time-series for time-period 4 (Figure 27) showed that well C was more similar to 

Cluster 2 wells and the results were not considered when assigning well C to Cluster 2. 

Then, in time-period 12, Cluster 2 wells split into two clusters: wells C and N clustered 

together and wells K and M clustered together. Inspection of the time-series for time-

period 12 (Figure 35) shows that well K appears to have corrupted data and a time-series 

that is very different than well M’s time-series. This highlights the reason the clustering 

solutions should be compared to the time-series of each time-period to confirm the 

clustering solutions correctly cluster wells based on response. DTW algorithm measures 

similarity between two time-series based on the distance between the two time-series, and 

because of this if two time-series have the same mean response, even though the two 
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time-series have very different shapes, the wells will have a lower overall similarity value 

than if the wells had different mean responses. This can lead wells which do not have 

similar response values to have low overall similarity values, such as the case with wells 

K and M. In time-period 12, because the mean response of well K and M time-series was 

more similar, the wells were clustered together even though the shape of the two time-

series of the two wells were not similar. Because well K appeared to have poor quality 

data for time-period 12, the clustering solutions of well K for this time-period were not 

considered. And, since well M was clustered with well K because the wells had similar 

mean responses and were not actually similar, well M clustering solutions were also not 

considered for time-period 12. However, the clustering solutions for wells C and N were 

used for time-period 12 since the clustering solutions for wells C and N matched the 

time-series for time-period 12.  

 The wells in Cluster 2 clustered together tightly most of the time-periods, even 

during the time-periods when all four wells did not cluster such as in time-periods 3, 4, 

and 12. Because the well in Cluster 2 are located in the unconfined recharge zone of the 

aquifer where groundwater levels are mainly influenced by changes in precipitation 

(instead of pressure like the wells in Cluster 1, 3, and 4), the range of groundwater levels 

for the wells in Cluster 2 vary little across the 6-year study period. And, since the 

clustering analysis compared the responses of all fourteen wells, most of which have a 

much larger range of groundwater levels because they are in the pressure-controlled, 

confined artesian zone, Cluster 2 wells repeatedly formed into a cluster well below the 

guideline threshold of 1.0.  
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Cluster 3: wells B, I, and J 

 The hierarchical clustering dendrograms (Figures 9-23) show that of the fourteen-

time-period considered, wells B, I, and J (triangle) clustered together each time-period 

except time-periods 4, 5, and 8 where well I did not cluster with wells B and J each time. 

In time-period 4 and 5, hydrologic conditions were transitioning from dry to very dry 

conditions and in time-period 8 hydrologic conditions were transitioning from wet to dry. 

Inspection of time-series of time-periods 4, 5, and 8 (Figures 13-14, 31) shows wells B 

and J responses had less magnitude than well I’s response. Well B, I, and J are in the 

confined artesian zone where groundwater levels mainly respond to pressure and vary 

greatly. In addition, wells in Cluster 3 are known to be under the influence of the Knippa 

Gap, a hydrogeologic barrier inhibiting groundwater movement during certain 

hydrogeologic conditions. Further, well I is known to be hydrologically connected to the 

Frio watershed and experiencing groundwater-surface water interactions that wells B and 

J do not. The Knippa Gap and interflow from the Frio watershed is thought to be one 

reason well I respond with more magnitude than wells B and J during certain hydrologic 

conditions (Ronald T. Green, personal communication, September 2016). This can be 

seen in the time-series of the time-period 4 and 5, where well I groundwater levels lower 

more than wells B and J during dry conditions, and again in the time-series for time-

period 8 where well I groundwater levels rise more in response to wetter changes.  

Cluster 4: wells D and H 

 Wells D and H (rectangle with curved corners) repeatedly cluster tightly across 

most time-period (Figures 9-23). But, during time-periods 4, 5, and 8, wells D and H did 

not cluster together (Figures 24-38). During time-period 4, well D clustered with well F 
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(Figure 12) and inspection of the time-series of time-period 4 (Figure 27) shows well D 

and F indeed had more similar responses than the other wells during the last half of the 

time-period where groundwater levels in well D and F declined more quickly than the 

other wells. However, during the first half of the time-period, well D had a large amount 

of missing data that had been linearly interpolated and may have affected the accuracy of 

the rest of the time-periods responses. And, during time-period 5, well D again had large 

amounts of missing data (Figure 28). Therefore, well D clustering solutions for time-

period 4 and 5 not used in the hierarchical clustering analysis. 

 During time-period 8, a very wet period that was getting drier quickly, wells D 

and H clustered together loosely. Inspection of the time-series of time-period 8 (Figure 

31) shows Wells D and H have a similar response, but well H responses were more 

dramatic. Well D and H were thought to be hydrologically connected to each other based 

on the wells proximity to each other in the aquifer and the general shape of the well’s 

time-series. The wells are located in the confined artesian zone of the aquifer where 

groundwater levels for wells D and H ranged less than 20 feet during the study period. 

For wells that are hydrologically connected, groundwater levels can respond quickly to 

change as conduits of varying sizes transport large volumes of groundwater between 

wells quickly, depending on their degree of connectivity. Therefore, the loose clustering 

of well D and H was thought to be because well H may have a higher connectivity to 

other surrounding wells and therefore receive preferential groundwater flow from other 

wells, while well D may have received less. 
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Discussion 

 The patterns in the solutions of the fourteen dendrograms show that for most of 

the wells, regardless of whether the well was confined or not, as hydrologic conditions 

change so does their response and to a varying degree. Certain clusters of wells responses 

remained highly similar across hydrologic conditions, such as Cluster 1 (wells A, E, G, 

and L) and Cluster 2 (wells C, K, M, and N), while the degree to which other clusters of 

wells exhibited similar responses changed across hydrologic conditions, such as Cluster 3 

(wells B, I, and J) and Cluster 4 (wells D and H). For Cluster 1, the plotted raw time-

series of the wells shows the high similarity of the wells responses across most 

hydrological conditions (Figure 39). The plotted raw time-series of the wells in Cluster 2 

appear to indicate that the wells have less similarity (Figure 40). However, this is 

because the y-axis of the plot has a much smaller range of values since Cluster 2 wells 

are located in the unconfined recharge zone of the aquifer and the wells had highly 

similar. Clusters 3 and 4 wells had highly similar responses under certain hydrologic 

conditions, then less similarity under different hydrologic conditions, reflected in the raw 

time-series of each the clusters of wells (Figures 41-42). During certain time-periods, 

some wells showed very little similarity to the cluster of wells it most often joins. This 

was attributed to possible changes in the hydrogeologic properties of a well as hydrologic 

conditions oscillate from very wet to very dry (causing groundwater levels rise and 

lower) and changes in a wells hydrologic connectedness to other wells in the aquifer. 

 It is known that the hydrogeological connectivity of the Edwards Aquifer changes 

across hydrological conditions. A recent study by Land et al. (2011) reported a change in 

preferential flow during times of drought that allowed groundwater to bypass the San 

Marcos springs and instead contribute to the Barton Springs flow, which was initially 
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observed in groundwater level datasets. In this study, the result of the hierarchical 

clustering analyses shows that when hydrologic conditions were transitioning between 

wet to dry, all the clusters of wells had more heterogeneity between well responses. For 

example, each of the four clusters had wells that did not fully cluster during time-period 

4, 5, 8, or 10, time-periods when hydrologic conditions were transitioning to drier 

conditions. The results of a hierarchical clustering analysis, such as this analysis which 

clusters well responses across hydrologic conditions, can be used to confirm the 

suspected changing preferential flow paths in the Edwards Aquifer by comparing what is 

known about the aquifer to the dendrogram solutions across hydrologic conditions.  
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Figure 9. Dendrogram for time-period 1. 9 
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Figure 10. Dendrogram for time-period 2. 10 
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Figure 11. Dendrogram for time-period 3. 11 
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  Figure 12. Dendrogram for time-period 4. 12 
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  Figure 13. Dendrogram for time-period 5. 13 
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  Figure 14. Dendrogram for time-period 6.14 
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  Figure 15. Dendrogram for time-period 7. 15 
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  Figure 16. Dendrogram for time-period 8. 16 
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  Figure 17. Dendrogram for time-period 9. 17 
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  Figure 18. Dendrogram for time-period 10.18 
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  Figure 19. Dendrogram for time-period 11. 19 
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  Figure 20. Dendrogram for time-period 12.  20 
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  Figure 21. Dendrogram for time-period 13.21 
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  Figure 22. Dendrogram for time-period 14. 22 
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  Figure 23. Dendrogram for time-period 15.23 
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 Figure 24. Time-series of the fourteen wells during time-period 1. 24  
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 Figure 25. Time-series of the fourteen wells during time-period 2. 25 
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 Figure 26. Time-series of the fourteen wells during time-period 3. 26 
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 Figure 27. Time-series of the fourteen wells during time-period 4. 27 
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 Figure 28. Time-series of the fourteen wells during time-period 5. 28 
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 Figure 29. Time-series of the fourteen wells during time-period 6. 29 

 



 

 

 

5
9
 

 

 Figure 30. Time-series of the fourteen wells during time-period 7. 30 
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 Figure 31. Time-series of the fourteen wells during time-period 8. 31 
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 Figure 32. Time-series of the fourteen wells during time-period 9. 32  
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 Figure 33. Time-series of the fourteen wells during time-period 10. 33 
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 Figure 34. Time-series of the fourteen wells during time-period 11.  34 
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 Figure 35. Time-series of the fourteen wells during time-period 12. 35 
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 Figure 36. Time-series of the fourteen wells during time-period 13. 36 
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 Figure 37. Time-series of the fourteen wells during time-period 14. 37 
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   Figure 38. Time-series of the fourteen wells during time-period 15.   38 
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Figure 39. Cluster 1: Wells A, E, G, and L. 39 
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Figure 40. Cluster 2: Wells C, K, M, and N. 40 
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Figure 41. Cluster 3: Wells B, J, and I. 41 
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Figure 42. Cluster 4: Wells D and H. 42

G
ro

u
n
d
w

at
er

 E
le

v
at

io
n
 (

ft
.)

 
H 

D 



 

72 

 

ANN groundwater level prediction accuracy 

 During the hierarchical clustering analysis, four clusters of wells were identified 

for ANN training data. ANNs were constructed for each well in the study, except for well 

F because it failed to cluster with other wells for at least eleven of the fourteen time-

periods. For each ANN constructed, the possible ANN training data included wells it 

clustered with, 30, 60 and 90-day moving averages of precipitation and spring flows for 

San Marcos and Comal Springs. Optimal ANN training data and the 1-year test period 

predictions for each well were calculated, as well as statistical assessments of the ANNs 

prediction accuracy (R2 and RMSE); Table 3. 

Cluster 1 ANNs 

 ANNs for Cluster 1 included wells A, E, G, and L. During the training process for 

well A, various combinations of the possible training data were used as input (Figures 

43-49). Initially, spring flow was included as training data, the ANN fit the data relatively 

poorly (ANN predictions crossed the observed and were misaligned) and had a low R2 

value (Figure 43). This may be because discharge from San Marcos and Comal Springs 

is influenced by larger-scale hydrogeologic relationships and environmental drivers 

across the aquifer, resulting in an inability to accurately predict Cluster 1 groundwater 

levels. The model inputs providing the best fit for well A were wells E, G, and L, and 30, 

60, and 90-day moving averages of precipitation (Figure 44). During the testing period, 

the ANN groundwater level predictions fit the observed with a R2 of 99.94% and a 

RMSE of 0.3985 feet. When moving averages of precipitation were removed and only 

wells E, G, and L were used as training data, model fit was high, R2 = 99.82%, but the 

RMSE of 1.091 feet was consistently higher than when the moving averages of 
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precipitation were included as training data (Figure 45). This was considered an 

indication the ANN needed information about the recent past groundwater levels to 

calibrate to the predictions to initial groundwater conditions. Then, because well G was 

known to have data issues (missing and corrupted data during the training and testing 

time-periods), an ANN was trained without well G to determine if training improved. 

When trained without well G, ANN prediction accuracy (R2 was 99.90% and RMSE was 

1.054 feet) did not improve over the best model (Figure 46). While the prediction 

accuracy appears high during the first part of the testing period, prediction accuracy 

gradually decreased until the end of the testing period indicating that well G was highly 

similar to well A toward the end of the testing period. It was thought that more accurate 

predictions were made when the ANN was trained with wells E, G, and L because each 

of the three wells contribute important information about observed well A groundwater 

levels. And, although well G contains missing and corrupted data, the best ANN 

constructed for well A (Figure 44) included well G, highlighting the flexibility of ANNs 

prediction capabilities, and the fact that even though an input may not appear to be high 

quality, it may still contain valuable information.  

 ANNs were also constructed for wells E and L. During the test period the ANN 

predicted groundwater levels with high accuracy, with a R2 of 99.75% and RMSE of 

0.6849 feet for well E (Figure 47) and R2 of 99.75% and RMSE of 0.5715 feet for well L 

(Figure 49), which was expected since Cluster 1 wells clustered together tightly (were 

highly similar) across all hydrologic conditions during the hierarchical clustering 

analysis. During the test period for well G, data were missing and estimated using a 

linearly interpolated to fill the data gaps. Therefore, the true accuracy of the ANNs 
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predictions could not be measured because of the inaccuracy of the interpolated data. 

However, other than the period with missing data, it can be visually seen in Figure 48 

that ANN predictions are very close to observed groundwater levels. The predictions for 

well G were included in the results of this study to illustrate how accurate predictions for 

missing groundwater levels using ANNs can be made. The predictions made for the 

missing data during the test period can be inserted into the original dataset in place of the 

linear interpolated data, resulting in a much higher quality dataset. 

Cluster 2 ANNs 

 Cluster 2 consisted of the wells C, K, M, and N. When ANNs were constructed 

for the wells in Cluster 2, the model fit and RMSE were high during the testing period for 

each of the wells (Figures 50-53). However, closer inspection of Cluster 2 ANN test 

predictions compared to observed groundwater levels in the test period show that, 

although R2 and RMSE seem to indicate highly accurate predictions, the predictions do 

not smoothly follow the observed. Cluster 2 wells are in the unconfined zone of the 

Edwards Aquifer and groundwater levels range only 20 feet across all four wells. 

Because of the small range of groundwater levels, R2 is high and RMSE is very low for 

each of the wells’ test predictions even though the predicted and observed did not align 

well. The misalignment is thought to be a result of low quality training and testing data. 

The wells were ranked alphabetically based on the amount of missing data and Cluster 2, 

wells K, M, and N contain the highest amount of missing data of the four clusters. As 

seen in Figure 51, well K appears to have corrupted data during the middle portion of the 

test period which then caused low prediction accuracies for wells C, M, and M (Figures 

50, 52-53).  
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Cluster 3 ANNs 

 ANNs were constructed for Cluster 3, wells B, I, and J, located in the confined 

artesian zone and in an area where the hydrogeology is known to be relatively complex. 

During certain hydrologic conditions, well I is connected to the neighboring Frio 

watershed and well I’s degree of connectivity to other wells in the aquifer is controlled by 

the Knippa Gap, a groundwater divide that disconnects well I from wells B and J when 

groundwater levels are lower than the divide. During the hierarchical clustering analysis, 

well B and J clustered in most of the fourteen-time-periods. However, well I failed to 

cluster with well B and J during time-periods 4, 5, and 8, time-periods when hydrologic 

conditions were transitioning from wet to dry (Figures 27-28, 31). The effect of the 

Knippa Gap on groundwater levels can be seen in the time-series of well B, I, and J 

(Figure 41). During times when groundwater levels are relatively high, wells B, I, and J 

respond similarly. But, when transitioning between wetter to dryer times, when 

groundwater levels are lower, well I’s response is more pronounced than well B and J 

because well I is under the influence of the Knippa Gap and exchanges flows with the 

Frio watershed. Because of this, it was at first unclear whether to include well I in Cluster 

3 ANN trainings data. To answer this, ANNs were constructed for well B and J with well 

I included as training data, and compared to the ANNs trained without well I. The most 

accurate predictions for wells B and J were made when ANN training included well I. 

Using the input training data of well J and I, and a 90-day of moving average of 

precipitation, well B ANN test prediction accuracy was R2 of 90.05% and RMSE of 2.156 

feet (Figure 54). ANN test prediction accuracy for well J, trained on well B and I, and a 

90-day moving average of precipitation, was R2 of 91.58% and RMSE of 2.125 feet for 

well J (Figure 56). It was thought that including well I in the training process for both 
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wells B and J contributed important information to the ANNs that was not available using 

just well B or just well J as training data. This was confirmed when training the ANN to 

predict well I groundwater levels (Figure 55). When both well B and J were used as 

training data, along with a 90-day moving average of precipitation, ANN prediction 

accuracy was even better for well I than well B and J, with R2 of 99.65% and RMSE of 

1.507 feet. For each of the wells in Cluster 3, ANN prediction accuracy could improve in 

future work, if additional wells are identified as possible training data.  

Cluster 4 ANNs 

 Lastly, ANNs were constructed for Cluster 4 which contained wells D and H. The 

ANN test predictions for both well D and H were poor because of poor data quality. 

Although during the test period the model fit was high, well D had a R2 of 98.53% and 

well H had a R2 of 99.98%, the RMSE was considerably high, 9.291 feet and 5.293 feet 

respectively (Figures 57-58). Because predicted groundwater levels for both well H and 

well D were displaced by approximately the same value across the test period, similar to 

the test prediction displacement seen for well A in Cluster 1 without 30, 60 and 90-day 

moving averages of precipitation as training data, it is thought that yet-to-be-identified 

physical parameters could improve ANN prediction accuracy for wells D and H. 
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Cluster Well Inputs R2 RMSE (ft.) 

1 A Wells E, G, L, & 30, 60, 90-days moving averages of precipitation 99.94% 0.3985 

E Wells A, G, L, & 30, 60, 90-days moving averages of precipitation 99.75% 0.6849 

G Wells A, E, L, & 30, 60, 90-days moving averages of precipitation 95.20% 0.2139 

L Wells A, E, G, & 30, 60, 90-days moving averages of precipitation 99.75% 0.5715 

2 C Wells K, M, N, & 90-days moving averages of precipitation 99.54% 0.3229 

K Wells M, N, & 90-days moving averages of precipitation 98.78% 0.4303 

M Wells C, K, N, & 90-days moving averages of precipitation 98.46% 0.3615 

N Wells C, K, M, & 90-days moving averages of precipitation 94.51% 0.5969 

3 B Wells I, J, & 90-days moving averages of precipitation 99.05% 2.156 

I Wells B, J, & 60, 90-days moving averages of precipitation 99.65% 1.507 

J Wells B, I, & 90-days moving averages of precipitation 91.58% 2.125 

4 D Wells H & 90-days moving averages of precipitation 99.98% 5.293 

H Wells D & 90-days moving averages of precipitation 98.53% 9.291 

Table 3. Statistical measurements of the ANNs prediction accuracy.  
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Figure 43. Cluster 1: Well A ANN predictions-1. Trained with wells E, G, and L, and 30, 60, 

and 90-day moving averages of precipitation, and spring flow from San Marcos and Comal 

Springs as input. 43 

 

R² = 94.87% RMSE = 31.25 feet 
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Figure 44. Cluster 1: Well A ANN predictions-2. Trained with wells E, G, and L, and 30, 60, 

and 90-day moving averages of precipitation as input. 44 
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Figure 45. Cluster 1: Well A ANN predictions-3. Trained with wells E, G, and L as input. 45 

R² = 99.82% RMSE = 1.091 feet 
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Figure 46. Cluster 1: Well A ANN predictions-4. Trained with wells E and L, and 30, 60, and 

90-day moving averages of precipitation as input. 46 

R² = 99.90% RMSE = 1.054 feet 
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Figure 47. Cluster 1: Well E ANN predictions. Trained with wells A, G, and L, and 30, 60, and 

90-day moving averages of precipitation as input. 47 

R² = 99.76% RMSE = 0.6849 feet 
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Figure 48. Cluster 1: Well G ANN predictions. Trained with wells A, E, and L, and 30, 60, and 

90-day moving averages of precipitation as input. 48 

R² = NA RMSE = NA 
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Figure 49. Cluster 1: Well L ANN predictions. Trained with wells E, G, and L, and 30, 60, and 

90-day moving averages of precipitation as input. 49 

R² = 99.75% RMSE = 0.5715 feet 
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Figure 50.  Cluster 2: Well C ANN predictions. Trained with wells K, M, and N, and a 90-day 

moving average of precipitation as input. 50 

R² = 99.54% RMSE = 0.3229 feet 
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Figure 51. Cluster 2: Well K ANN predictions. Trained with wells M and N, and a 90-day 

moving average of precipitation as input. 51 

R² = 98.78% RMSE = 0.4303 feet 
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Figure 52. Cluster 2: Well M ANN predictions. Trained with wells C, K, and N, and a 90-day 

moving average of precipitation as input. 52 

R² = 98.46% RMSE = 0.3615 feet 
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Figure 53. Cluster 2: Well N ANN predictions. Trained with wells M, K, and N, and 90-day 

moving average of precipitation as input. 53 

R² = 94.51% RMSE = 0.5969 feet 
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Figure 54. Cluster 3: Well B ANN predictions. Trained with wells I and J, and a 90-day 

moving average of precipitation as input. 54 

R² = 99.05% RMSE = 2.156 feet 
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Figure 55. Cluster 3: Well I ANN predictions. Trained with wells B and J, and a 90-day 

moving average of precipitation as input. 55 

R² = 99.65% RMSE = 1.507 feet 
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Figure 56. Cluster 3: Well J ANN predictions. Trained with wells B and I, and a 90-day 

moving average of precipitation as input. 56 

R² = 91.58% RMSE = 2.125 feet 
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Figure 57. Cluster 4: Well H ANN predictions. Trained with Well D and 90-day moving 

average precipitation as input. 57 

R² = 99.98% RMSE = 5.293 feet 
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Figure 58. Cluster 4: Well D ANN predictions. Trained with well H and a 90-day moving 

average of precipitation as input. 58 

 

 

 

 

 

 

R² = 98.53% RMSE = 9.291 feet 
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IV. CONCLUSION 

 The complex hydrogeology of the Edwards Aquifer result in a wide range of 

observed groundwater levels that change as hydrologic conditions oscillate from wet to 

dry conditions and back, challenging accurate predictions groundwater levels. Further 

complexity is introduced from thousands of pumping wells which affect nearby wells 

groundwater levels to a varying degree. To address these issues when predicting 

groundwater levels in the Edwards Aquifer, in step-one of this study, the data mining 

technique of hierarchical clustering was used to identify wells that respond similarly 

under all hydrologic conditions with the aim of providing highly robust data for ANN 

prediction. And, because of the spatial and temporal heterogeneity of the Edwards 

Aquifer, the DTW algorithm was used to match well groundwater levels although they 

may not have occurred at the same time. It was determined that the DTW algorithm 

revealed well response similarities that may not have been as easily identified if simply 

grouped according to geographic location or hydrologic properties, for example Cluster 3 

(wells B, I, and J) and Cluster 4 (wells D and H). In Cluster 3, although the magnitude of 

well I’s response was more pronounced than wells B and J when oscillating between 

hydrologic conditions, the wells in Cluster 3 wells clustered together for most of the 

hydrologic time-periods. When wells B and J did not cluster with well I (time-periods 4, 

5, and 8) hydrologic conditions were getting drier (Figure 41). And, in Cluster 4, wells D 

and H clustered through all considered hydrologic time-periods (time-period 4 and 5 for 

well D were discarded due to poor data quality) except for time-period 8 when hydrologic 

conditions were getting drier. 
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 Next, in step-two, the data mining technique of ANN were used to predict 

groundwater levels for each well using the other wells that clustered with it, 30, 60, and 

90-day moving averages of precipitation and spring flows. The degree of similarity 

varied between each cluster, and as expected, the clusters with wells that responded the 

most similarly across all hydrologic conditions provided the highest quality ANN training 

data, such as Cluster 1. Cluster 1 ANNs predicted groundwater levels for each of the 

wells in the cluster with a high degree of accuracy even though well G was missing data 

(Figures 44-49). However, the inclusion of spring flow during ANN training resulted in a 

poor model fit where the predictions crossed, and were poorly aligned with, the observed 

(Figure 43). But, ANN prediction accuracies were best when moving averages of 

precipitation were used as training data (Figures 44-45). In Cluster 2, although wells 

were highly similar and moving averages of precipitation were used as input, ANN 

predictions suffered due to poor quality data (Figures 50-53) which inhibited ANN 

training. The ANNs for wells in Clusters 3 resulted in lower ANN prediction accuracies 

because wells B, I, and J were less similar across hydrologic conditions (Figures 54-56). 

The ANNs for Cluster 4, although the RMSE was high, the R² was very high indicating 

that predictions could improve with higher quality training data such as other 

groundwater wells (Figures 54-56).  

 The Earth Sciences have traditionally been slow to integrate data mining 

techniques to model complex systems; however, this research shows that data mining 

techniques are effective tools to explore and model physical relationships within complex 

systems using environmental time-series data. The results of the ANNs highlight the 

importance of using high quality training data when training ANNs to predict in a highly 
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heterogeneous system. This study shows that using hierarchical clustering with DTW to 

identify high quality training data can improve ANN prediction accuracies. This 

methodology can be used to accurately predict missing values in hydrologic datasets 

(Figure 48), such precipitation, discharge, and spring flow datasets. Areas of future 

research include determining whether using ANNs to predict Cluster 2 missing and 

corrupted data can smooth ANN test predictions and determining whether inclusion of 

additional training data, such as additional wells or physical parameters, improves 

prediction accuracies for the wells in Cluster 3 and 4.  
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