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An e-regularity result for generalized harmonic
maps into spheres *

Roger Moser

Abstract

For m,n > 2 and 1 < p < 2, we prove that a map u € W,-?(Q,S"~ 1)
from an open domain 2 C R™ into the unit (n — 1)-sphere, which solves
a generalized version of the harmonic map equation, is smooth, provided
that 2 — p and [u]lgmo(e) are both sufficiently small. This extends a
result of Almeida [1]. The proof is based on an inverse Holder inequality

technique.

1 Introduction

For integers m,n > 2, let & C R™ be an open domain, and let S"~! C R"
denote the (n — 1)-dimensional unit sphere. Define the space

HY(Q,S" Y = {ve H'(Q,R"): |v| =1 almost everywhere},
and consider the functional

E(u) = %/Q|Vu|2dm, ue HY(Q,S"h).

A map u € H'(Q,S" 1) is called a weakly harmonic map, if it is a critical point
of F, 1. e.
u+tp

d
E‘t:OE(‘u + t¢|) =0

for all ¢ € C§°(Q2,R™). The Euler-Lagrange equation for this variational prob-
lem is

Au+ |Vul>u=0 in Q (1.1)

(in the distributions sense). Denote by A the exterior product A : R™ x R" —
AsR™, then (1.1) is equivalent to

diviu AVu) =0 in Q. (1.2)
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This form of the equation provides a natural extension of the notion of weakly
harmonic maps into spheres. Whereas we need a map in Hy._(Q,S"~!) to make
any sense of (1.1), the equation (1.2) only requires

ue WhHQ,S" 1) = {v e WL (Q,R™): |v] = 1 almost everywhere}.
A map in this space satisfying (1.2) is called a generalized harmonic map.

For m = 2, it was proven by Hélein [8, 9], that any weakly harmonic map
is smooth (also for more general target manifolds than spheres). For higher
dimensions, this is no longer true. Indeed Riviere [13] constructed a weakly
harmonic map in three dimensions which is discontinuous everywhere. But
there exists an e-regularity result, due to Evans [4] (and to Bethuel [2] for more
general targets), which can be stated as follows.

Theorem 1.1 There exists a number € > 0, depending only on m and n, such
that any weakly harmonic map u € H'(Q,S™~1) with the property [ulgmoa) < €
is smooth in Q.

Here we use the notation

[ulgmo(Q) =  sup ][ |u —Up, (zq)| dz, (1.3)
B (x0)CQ J B (o)

where B,.(z¢) denotes the ball in R™ with centre ¢ and radius r, and

1
Up, (o) = “dw:—/ e
By (@0) ]{gr(w [Br@o)l /B, o)

Together with the well-known monotonicity formula for so-called stationary
weakly harmonic maps, e. g. weakly harmonic maps which satisfy % lt=0 E (u(z+
ty(z))) = 0 for all ¥ € C§°(Q2,R™) (see Price [12]), one concludes that weakly
harmonic maps with this property are smooth away from a closed singular set
of vanishing (m — 2)-dimensional Hausdorff measure.

Generalized harmonic maps on the other hand may have singularities even
in two dimensions. A typical example is the map u(z) = x/|z| in R%. For
m = 2 and for any p € [1,2), Almeida [1] even constructed generalized harmonic
maps in WP(,S!) which are nowhere continuous. Nevertheless, there is an
e-regularity result for generalized harmonic maps in two dimensions, due to
Almeida [1]. (Another proof was given by Ge [6].)

Theorem 1.2 For m = 2, there exists € > 0, depending only on n, such that
any weakly harmonic map u € I/Vlicl (2, 8™ 1) with the property ||Vul| p2.00 () < €
is smooth in Q.

Here || - ||z2.(q) is the norm of the Lorentz space L?%°(Q,R™*"). (For a
definition and properties of Lorentz spaces, see e. g. [14], Chapter V.)
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2 Results

The aim of this note is to extend and improve this result. We replace the
smallness in the L?*°-norm by a weaker condition (reminding of Theorem 1.1),
and we prove the result for all dimensions. More precisely, we have the following
theorem.

Theorem 2.1 There exist p < 2 and € > 0, depending only on m and n,
such that any generalized harmonic map u € VVﬁ)’f(Q,S”_l) with the property
[ulpmo() < € is in C*°(Q,S"1).

To prove this theorem, it suffices to show that under these conditions, the
generalized harmonic map w is in HIIOC(Q, S"~1). Higher regularity is then im-
plied by Theorem 1.1 (provided that € is chosen accordingly). For this first step
on the other hand, we can also admit a non-vanishing right hand side in (1.2).

Theorem 2.2 For any q > 2, there exist p < 2 and € > 0, depending only on
m, n, and q, with the following property. Suppose that u € I/Vli’f(QS"_l) s a
distributional solution of

div(u A Vu) = F + div G, (2.1)

where F' € L{Zg/(mﬂ)(ﬁ, AsR™) and G € L}

e (L R™@AR™). If [ulgmo(a) < €
then u € Wli’cp/(p_l)(Q,Snfl).

As mentioned above, Theorem 2.1 is an immediate consequence of Theo-
rem 1.1 and Theorem 2.2. The proof of the latter is inspired by the inverse
Holder inequality technique used by Iwaniec—Sbordone [11] to prove regularity
for solutions of equations of the form

div A(z,Vu) = F + divG,

where A(z,§) = %—]g(a:, €) for a quasi-convex function F (satisfying certain con-
ditions). We combine these methods with arguments from the regularity theory
for weakly harmonic maps.

We will use the following well-known results. The first one is due to Gia-
quinta—Modica [7].

Proposition 2.3 For 1l < a <b, and for some ball Br(zo) C R™, suppose that
g € L%(Br(%0)) and f € L*(Br(z0)) are non-negative functions which satisfy

]{37‘/2(“) g%dx < AK]{?T(I” gdx)a +]{3r(zl) fe da:} + 6 o) g®dx

for every ball B.(x1) C Bgr(xo) and for certain constants A,6 > 0. There
exists a constant 6y = 0g(m,a,b) > 0, such that whenever 6 < 6y, then g €
LC(BR/2($0)) with

/e Ja e
(][];R/Z(zo) gc dx) 1 =0 |:(]{FBR(OCO) ga dl‘) 1 T <]{BR(x0) fc d.%') 1 :|
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for certain numbers ¢ > a and B > 0, both depending only on m, A, 8, a, and

b.

The following is a combination of the compensated compactness results of
Coifman—Lions—Meyer—Semmes [3], and the duality of the space BMO(R™) =
{f € Li,c(R™): [flemomm) < oo} with the Hardy space H'(R™). The latter
is due to Fefferman—Stein [5].

Proposition 2.4 For 1 < p < oo, suppose that a function f € I/Vli)cp(Rm) with

IV fllr@m) < 00, a vector field g € LP/®=D(R™ R™) with divg = 0 in the
distribution sense, and a function h € BMO(R™) are given. Then

Vf-ghdz| < C|VfllLe@m)

‘ gHLP/(pfl)(Rm)[h]BMQ(R,n)
R™

for a constant C' which depends only on m and p.

Having the ingredients ready, we can now prove Theorem 2.2.
Proof of Theorem 2.2. Suppose ¢ > 2, F € L/ m+q)(Q AoR™), and G €

loc

LE (9, R’”@AQR”) Let for the moment p be any number in (1, 2), and suppose
that u € T/VIOC (€2,S™71) is a solution of (2.1).
Let ¢ € V[/Ii’:w/(mﬂ)(ﬁ, AsR™) be a solution of

Ay =F in Q.
Then V) € W1 1(Q,R™ @ AR™), and u satisfies
div(u A Vu) = div(G + V).
Hence we may assume without loss of generality that ' = 0. Choose a ball
By(z0) C Q and a cut-off function ¢ € C§°(B,(z0)) with ¢ = 1 in B, /3(x0),
such that |V¢| < 4r~!. Consider the Hodge decomposition

V(= tp, (o) )P 2 u AV ((u = Up, (20)) = Vo + @,

where ¢ € WLP/P~D(Rm A,R™) and ® € L/ =D (R™ R™ © AyR™) have the
properties d1V<I> =0 and

IV s ®mm)

s(Rm) < 01||V( (U - UfB ))HL(p Ds(By(z0))

for any s € (pTll’ -27] and for a constant Cy = C1(m,n,s). The existence of

such a decomposition is due to Iwaniec-Martin [10]. In particular, we have

p—1
][ |Vo|®dx < Cy ]Z |Vul® dz (2.2)
Bi(x0) By (o)
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for a constant Cy = Ca(m, n, s), owing to the Poincaré and the Holder inequality.
Observe that

2_7"][ |Vul|P de
B,.j2(z0)

IN

f o AT n ) Vo4 8)
= ][ (uAV(((u—TUp,(z))) ) dx
BT(QTQ)
o (T ) ) e
By(x0)
_]{B - (V¢ (uAVU) - (¢ — B, (z0))) da
+ ]l (G. V(6 — p,(x0))) du,
B, (z0)

where we denote the standard scalar product in R™ and in R"™ ® AsR”™ by (-, ),
whereas we use a dot in R™ to avoid confusion. We have the estimates

][ (V¢ (uA (u— g, (z))) - VO) da
By (z0)

m+1 m—1

4 m m m m
_<][ |V¢‘w2z—+1 d:c) ’ (][ |u—ﬂBr(I0)|% dl‘) ’
T N B, (z0) By (z0)

p(m+1)

2m

Cs (]{gr(zo) |Vu|w2l_¢1 da:) )

by (2.2) and the Sobolev inequality, and similarly

IN

IN

p(m+1)

_][ <v<7 (u A VU) . (QS - éB,,.(wo))> dx < CY4 (][ |VU|"2’_:'”1 dx )
BT(mO)

BT(CE())
for certain constants C5, Cy which depend only on m and n.
Note that [((u — Up, (z0))]BMO®R™) < Cs[ulBMO(B,.(20)) for a constant Cs =

Cs(m,n). (This is proven in [4].) Extending Vu to R™ and applying Proposition
2.4, we thus find

][ (uAV((u—1Up,(z))), ®) dz
B (x0)

= 7][ C<VU/\(U*7TLBT($O)),(I)> dx
BT»(ZE())

IN

Cs [U]BMO(Q)][ |VulP dz
BT(IO)

for a constant Cg = Cg(m, n, p).
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Finally, choose a number o € (2,¢). We have

LG9 dp ) @
By (z0)

/o =
= o <][Br(x0) e dz)l (]ér(zo) |v¢|a/(071) dx)
1o (p=1)(z-)
= O <]{Br(ro) e dm) (][Br(mo) |VU|0/(U_1) dw)
ple—1)
<

Cs []{Br(m) |G| dx + (]{B’r(m) |Vu|7/(e=D) dx) T+ 1}

(for constants C7,Cs which depend on m, n, and o) by the Holder inequality,
the Poincaré inequality, the estimate (2.2), and Young’s inequality.

Now choose a € (1,min{m7+l,@ ), and set b = 2%, Let 6y be the
constant from Proposition 2.3 (belonging to a and b), and choose a number
6 € (0,6p). Then the conditions of Proposition 2.3 are satisfied for any ball

Br(zo) CC Q, for the functions
g=|VulPle, f=|G]7/"+1,

and for a constant A which depends only on m, n, and o, provided that p >
amax "%—Tl, =27} (which is strictly less than 2) and [u]gmo(n) < Cg 0. Hence
under these conditions, there exists a number ¢ > a, not depending on p, such
that |[Vu| € rrele (). If 2—p is sufficiently small, then B2 > £, and therefore

loc

u€ Wli’cp/(p_l)(Q, S"~1). This concludes the proof. O
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