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Abstract

Many ecological studies use the analysis of count data to arrive at biologically meaningful inferences. Here, we introduce a
hierarchical Bayesian approach to count data. This approach has the advantage over traditional approaches in that it directly
estimates the parameters of interest at both the individual-level and population-level, appropriately models uncertainty,
and allows for comparisons among models, including those that exceed the complexity of many traditional approaches,
such as ANOVA or non-parametric analogs. As an example, we apply this method to oviposition preference data for
butterflies in the genus Lycaeides. Using this method, we estimate the parameters that describe preference for each
population, compare the preference hierarchies among populations, and explore various models that group populations
that share the same preference hierarchy.
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Introduction

Count data is frequently used in studies of ecology, behavior, and

evolutionary biology. Behavioral count data might include the

number of approaches to a particular mate phenotype [1], the

number of times aggressive displays are observed [2], or the number

of eggs laid on various oviposition substrates [3]. Ecological data

might include the number of seeds germinated [4], or the number of

parasitized individuals [5]. Evolutionary data might include the

number of offspring in a particular ecological arena [6] or,

conversely, the number of deaths [7]. Statistical analyses of count

data are then used to guide biologically relevant inferences. A

battery of methods have been developed to analyze count data

[8,9,10].

Frequently, these statistical methods model the data in the form

of analysis of variance (ANOVA), or use methods often regarded

as their non-parametric equivalents. The p values provided by

these tests are then used in a traditional sense to guide statistical

inference. For example, item A might be significantly chosen more

often than item B based upon an a prioi determined a value, usually

a = 0.05. However, often the parameter of interest is not directly

modeled when carrying out such analyses. For example, imagine

an experiment with 20 replicates where two host plants are

provided to an herbivore and the number of eggs laid on each

plant (count data) is the response variable. One might analyze

these data as a paired t-test, where each pair is the pair of plants in

each experimental arena. Here, the test is not directly estimating

the strength of preference (the true parameter of interest) for each

plant at the individual or population level, rather it is examining

whether the mean difference in preference is different from zero.

Instead, the strength of preference is often estimated as a proportion

of eggs laid on each plant over the experiment, or the mean of the

proportions across replicates, in a post-hoc manner. Some notable

potential problems with this approach include that the statistical

analysis is largely independent of the parameters of interest and that

the statistical analysis itself does not directly incorporate uncertainty

at the level of the individual replicate. Often, ANOVA on

proportions is implemented on such experiments. Although

weighting schemes can be applied, this approach does not generally

account for uncertainty around those proportions for each replicate.

That is, it will not directly account for differences in the total counts

per replicate (such as might occur if there is substantial variation in

the number of observations per replicate), or the uncertainty around

the proportions calculated for each of those replicates. Additionally,

proportional data will frequently violate the assumption of

normality for the response variable even after the commonly used

arcsin square root transformation is applied [11,12]. Non-

parametric, or rank-based, methods can be used to overcome some

of the problems associated with parametric analyses. Most of these

methods are based on rankings of observations within replicate,

such as the commonly used Friedman test. However, this test also

fails to account for differential information provided in each

replicate (i.e., among replicate variation in the total number of

observations). The Quade test was proposed as an alternate to the

Friedman test to account for these differences [10]. Here, not only

are the choices within replicate ranked, but also the total number of

observations among replicates are ranked. Each replicate is thus

‘‘ranked’’ based on the amount of information provided. For

example, a replicate with 50 total eggs laid is weighted more heavily

in the analysis compared to a replicate with only 10 eggs. However,
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these methods also fail to directly estimate the parameter of interest,

the parameter that describes preference in the above example.

Here, we describe an alternate approach to count data; a

hierarchical Bayesian approach. This approach has the advantage

that it directly estimates the parameters of interest (those that

describe preference) and appropriately models uncertainty.

Further, this approach also provides a framework to compare

the parameter estimates among a priori defined groups (e.g.,

populations, families, environments, etc.). As an example, we

apply this method to oviposition preference data for butterflies of

the genus Lycaeides (Lepidopetera: Lycaenidae) from various

populations in western North America. Our goal is not to delve

deeply into the evolution of host plant preference in this group,

rather to use this experimental data as an exemplar of how this

hierarchical Bayesian approach can be used for this and similar

types experimental data.

Materials and Methods

Hierarchical Bayesian Model for Count Data
The count data for each individual within a population is

modeled as a hierarchical Bayesian model. This approach is

applicable to any data that are recorded as counts (i.e., integers), and

individuals need not necessarily be the lowest level in the hierarchy.

For example, cafeteria experiments where multiple resources are

available in a field setting, or pooled choice experiments where

multiple individuals are confined to an experimental arena, can

apply this method. Additionally, this method need not be restricted

to choice data, and might include number of individuals dying

under different conditions, number of lesions following infection by

various pathogens, etc. The only requirement beyond count data, is

that the investigator is explicitly aware of what each hierarchical

level describes (i.e., response at the level of individual, cage, feeding

station, sample, etc.).

For simplicity (and consistency with the example below), the

model is described as oviposition preference data (i.e., the number

of eggs an individual female laid on each plant provided in the

oviposition choice arena) obtained from multiple females (i.e.,

experimental replicates) to estimate the population level prefer-

ence. The response for each individuals’ choices are modeled as a

multinomial distribution with a unique set of parameters that

reflect the preference for that individual, thus, for each individual,

we model P(countsjindividualpreference). This gives rise to the

first level likelihood model,

P(xjp,n)~ P
j

i~1

ni!

xi1! � � � xik!
p

xi1
i1 � � � p

xik
ik , ð1Þ

which is the product of j multinomial distributions, where j is the

number of individuals (i.e., experimental replicates). x is the count

data for all individuals among the k number of plants to choose

among. n is a vector of counts, or number, of eggs laid on each plant

by each individual. p are the probabilities (contained within the

vector, p) of laying an egg on each plant for each individual. Because

we are interested in estimating population-level preference, in

addition to individual-level preference, we assume that this vector of

parameters describing each individual’s preference for each plant is

drawn from a Dirichlet distribution, the continuous analog of a

multinomial distribution, describing the prior probability of

preferences that characterize the population. This prior probability

is not specified for the analysis, rather it is estimated from the data.

Thus, we model P(individualpreferencejpopulationpreference),
the probability of an individual’s preference given the population-

level preference. This gives rise to a conditional prior for individual

preferences, a Dirichlet,

P(pja)~
1

B(a)
P
j

i~1
p

a1{1

i1 � � � pak{1

ik , ð2Þ

where the a parameter is decomposed into two elements that

describe the mean expected values, q, a vector for which all

elements share the same scaler parameter (w) that describes the

variance. Thus, it enables the estimation of the mean and variance

of the Dirichlet distribution separately. For the parameter vector q,

we assume an uninformative Dirichlet prior (i.e., Dirichlet (1,1, .,1)),

and for w we assign a uniform prior (i.e.,
1

c
, where c is the upper

bounds of the uniform distribution). However, alternate prior

distributions may be assigned if deemed appropriate based upon

knowledge of the experimental system of interest. Thus, our

conditional prior for individual preference is

P(pjq,w)~
1

B(qw)
P
j

i~1
p

q1w{1

i1 � � � pqkw{1

ik : ð3Þ

This specification yields the following hierarchical Bayesian model,

P(p,q,wjx)!P(xjp,n)P(pjq,w)P(q)P(w), ð4Þ

or rewritten after substituting mathematical equations for the

probability statements,

P(p,q,wjx)! P
j

i~1

ni !
xi1 !���xik ! p

xi1
i1 � � � p

xik
ik

� �
1

B(qw)
P
j

i~1
p

q1w{1

i1 � � � pqkw{1

ik

� �

1

B(1, � � � ,1)
P
k

i~1
q1{1

1 � � � q1{1
k

� �
1

c

� �
:

ð5Þ

The posterior probability of the individual preferences is propor-

tional to the likelihood function describing the probability of the

count data, multiplied by the conditional prior probability of

individual preferences, multiplied by the prior probability of the

mean of individual preferences and the prior probability of the

variance in individual preferences. The likelihood function is used to

calculate the probability of the multinomial distribution of eggs laid

on each plant (x) given the vector of probabilities for each individual

laying an egg on each plant (p) and the vector of counts for each

individual (n). This is multiplied by three prior probabilities: The

conditional prior describes the probability of each individual laying

an egg on each plant (pik) given the vector of expected values (q) and

scaler parameter (w). The second prior is the probability of the

vector of expected values (q), and the last term is the prior

probability of the scaler parameter (w).

Parameters are estimated using a Markov chain Monte Carlo

(MCMC) where, at each step in the chain, individual preferences

(based on the multinomial distribution for each individual) inform

the population-level preference. In turn, the population-level

preference (based on the parameters of the Dirichlet distribution),

inform the probability of each individual’s multinomial parameters

(Figure 1). Thus, the analysis simultaneously estimates individual-

level preferences and the population-level preference. Individual-

level preference can be examined based upon the posteriors for

each individual’s preference parameters, or by examination of the

variance term from the Dirichlet distribution (w, which is inversely

proportional to the variance). For experimental designs where

there are two possible choices, the model simplifies to a special

case of multinomial and Dirichlet distributions where individual-

level preferences are modeled as binomial distributions with

Hierarchical Bayesian Model for Count Data
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parameter p drawn from a common, population-level, beta

distribution. At the completion of the MCMC run, we are

provided with posterior probability distributions for the prefer-

ence of each individual, as well as the posterior probability

distribution for the population preference as a whole. Analogous

to a traditional post-hoc test, we can examine the ‘‘significance’’ of

differences in preference among the choices by examining the

proportion of times a given pairwise comparison is greater or less

than the other choice at each step in the post-burnin MCMC.

That is, for example, if item A has a higher ranked estimated

population-level parameter value (aA; a measure of the strength

of preference for item A compared to the estimated preference for

item B (aB)) across 99% of the post-burnin MCMC steps, we can

conclude that the probability that the preference for item B is

equal to, or greater than the preference for item A is p = 0.01.

Although not required for interpreting the results of the

hierarchical Bayesian model presented here, this pairwise

probability method provides a familiar framework for inter-

preting significant differences among choices offered to the

population.

Model Selection and Performance
Deviance information Criterion (DIC) can be used to compare

models with alternate population groupings [13]. Here, we used

DIC to examine whether groups of populations could be modeled

as drawing preferences from a common, population-level distri-

bution, where all preferences were equal compared to a

population-level distribution where preference differed among

possible choices. Simply, whether preference is the same among

possible choices, or whether it differs. DIC is analogous to Akaike

information criterion (AIC) [14] and is well suited for model

comparison in a Bayesian framework when posterior distribu-

tions are approximated via MCMC [13]. The deviance of a model

is,

D(h)!{2log(p(yjh)), ð6Þ

where y are the data, h are the model parameters, and p(yjh) is the

product of the likelihood and conditional prior (Eqns. 1 and 3).

DIC is calculated as,

DIC~DzpD, ð7Þ

where D is the posterior expectation of the deviance and pD is the

effective number of parameters calculated as,

pD~D{D(h), ð8Þ

or the expected deviance minus the deviance examined at each

posterior expectation. For an in depth discussion of DIC, see

Spiegelhalter etal. [13]. Similar to AIC, models with lower DIC

values have greater support [14]. There is no general consensus on

how large the difference in DIC values (DDIC) among models

needs to be before a model, or models, should be excluded for

consideration as those that best fit the data; however, Spiegelhalter

etal. [13] suggested that important differences can be interpreted

as with AIC as suggested by Burnham and Anderson [14], where

Figure 1. Schematic of hierarchical Bayesian model for count data. Individual count data inform the parameters for each individual’s
multinomial parameters. The multinomial parameters for all individuals inform the population level preference modeled as a Dirichlet. This
population-level preference is shown as a ternary diagram (a triangle plot). The population-level preference, in turn, informs the most likely individual
multinomial parameters given the population preference. Thus, at each MCMC step information is passed from the individual preferences to the
population preference, and vice versa. Note that the a’s and Pxij are not fixed for the analysis. The role of the hyperpriors on w and q are not depicted
in the figure.
doi:10.1371/journal.pone.0026785.g001

Hierarchical Bayesian Model for Count Data
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models within 2 units of the ‘best’ model deserve consideration,

whereas others have suggested up to 10 DIC units.

To examine whether this approach might be prone to favoring

an over-parameterized model, we compared the performance of

the hierarchical Bayesian modeling approach proposed here to

three commonly used conventional approaches; the Friedman test

and the Quade test (both commonly used non-parametric methods

[10]), and ANOVA on arcsin square root transformation of

proportions, using simulated data. Each simulated data set consisted

of 20 replicates with 3 choices each, where each replicate might be

considered an individual female in a choice arena with 3 possible

host plants. The total number of choices made for each replicate, or

the number of eggs laid by each female, was randomly drawn from a

uniform distribution bounded at 5 and 40 rounded to the nearest

integer. Individual choices for each replicate were random draws

from a multinomial distribution with parameter values drawn from

a population-level Dirichlet distribution with a parameters equal to

1. That is, we simulated choices made by individuals drawn from a

population with no preference, the null expectation if there is no

preference among each of the possible choices. In total, 1000

simulated data sets were examined.

Study system and oviposition preference experiments
Lycaeides is a holarctic genus with at least five nominally

recognized species in North America: L. anna, L. idas, L. melissa, L.

samuelis [15], and a recently described homoploid hybrid species

that occupies alpine habitats in the Sierra Nevada [16]. The group

has received considerable attention as a model system for studies

on local adaptation, ecological speciation, and hybridization

[1,16,17,18,19,20,21,6,22,23,24,25]. One important factor for

the maintenance of variation among populations is host plant

preference and fidelity (sensu Feder [26]). Previous studies have

shown that the strength of preference for various host plant species

varies among populations [3,16,6]. We examine host plant

preference variation among Lycaeides populations using the

hierarchical Bayesian model on experimental oviposition prefer-

ence data that was originally analyzed as the proportion of eggs

laid on the natal host in Gompert et al. [16]. These populations,

hereafter referred to as focal populations, include seven localities. All

of these populations use perennial legumes as larval host plants.

Gardnerville, NV and Verdi, NV are nominally L. melissa and use

agricultural and feral alfalfa (Medicago sativa) as their primary host

plant [3,16]. Leek Springs, CA, Trap Creek, CA, and Yuba Gap,

CA are nominally L. anna. Both the Trap Creek and Yuba Gap

populations occupy boggy habitats and use Lotus nevadensis. Leek

Springs uses Lupinus polyphyllus as a host plant. Populations at

Carson Pass, CA and Mt. Rose, NV occur above tree line in the

Sierra Nevada and use Astragalus whitneyi as a host plant. These

alpine populations have previously been shown to be a distinct

species of hybrid origin [16].

Oviposition preference was examined by confining single, wild

caught females in an oviposition arena that included four possible

plant species to choose among; A. whitneyi, L. nevadensis, L.

polyphyllus, and M. sativa. Each oviposition arena was a plastic

container (diameter = 11.5 cm, height = 13 cm) containing the

four host plant choices with spun polyester mesh covering the

top. Four small holes at the bottom of each cup allowed for the

stem of each plant to extend into a water reservoir secured to the

bottom of each arena. After 48 hours of confinement in the arena,

the number of eggs laid on each host plant species was recorded as

a measure of each female’s preference among host plant choices

provided (see Gompert et al. [16] for more details on experimental

design). We used DIC to determine if a given population’s

preference is best modeled as an equal preference for all host

plants provided (i.e., no preference among choices), or if a model

that has separate preference parameters for each host plant best

fits the data (i.e., variation in preference among choices). The

strength of preference for each host plant species in each

population was assessed by examining the posterior distributions

for each of the parameter estimates, and by examining the pair-

wise proportion of times that a given host plant had a preference

parameter of greater value compared to another plant species at

each step of the MCMC. Further, we examined various

population grouping schemes to determine which populations

might best be modeled as sharing the same preference parameters

across these possible host plant species.

We similarly examined variation in preference for four other

populations of Lycaeides (Big Pine, CA, Cave Lake, CA, Eagle Peak,

CA, and White Mountains, CA), with special attention paid to the

strength of preference for A. whitneyi. The experimental approach

here was similar to that described above, except here three females

were confined simultaneously to each oviposition arena. Assuming

that the combined preference of the three females in each cage is a

sample of the population-level preference overall, we are still able

to estimate the population-level preference in this statistical

modeling framework. Here, individual-level preference cannot

be estimated because the lowest hierarchical level of preference is

at the level of arena; however, the population-level parameters

describing preference can be estimated based upon the arena-level

preference estimates.

Results and Discussion

As would be predicted, the distribution of p-values obtained

from the Friedman test, Quade test, and ANOVA on the

simulated data sets were largely uniform, with the 0.05 quantile

of p-values near 0.05 (Figure 2Ai–iii). Under these simulations, the

Figure 2. Simulations examining performance. A) Performance of
conventional methods for analyzing count/preference data. Red
hatched line indicates the 0.05 quantile of p-values for 1000 data sets
simulated under the null model of no preference. Numbers are the p-
values of 0.05 quantile. Methods examined were the (i) Friedman test,
(ii) the Quade test, and (iii) ANOVA on arcsin square root transformed
proportions. B) Distribution of DDIC values for models with equal
preference versus models with different preferences for each item. Red
hatched line indicates the 0.95 quantile of DDIC values.
doi:10.1371/journal.pone.0026785.g002

Hierarchical Bayesian Model for Count Data
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0.05 quantile of DDIC was near 8 (Figure 2B), indicating that

blindly accepting a DDIC of 2 or greater for model selection as

recommended by Spiegelhalter etal. [13] might favor an over-

parameterized model. As with all model selection tools, DIC

should be treated as a subjective method for comparing the

performance of competing models.

The median number of eggs laid by females in the oviposition

arenas was 9.5 eggs, with a range of 1 to 40. There was evidence

for varying degrees of strength of host plant preference among

populations (Figure 3). The preference for the natal host plant

varied among populations, with most populations showing a

higher preference for A. whitneyi compared to the other host plants

offered. With the possible exception of the L. melissa population

from Gardnerville, NV, an unconstrained model was favored over

a constrained model based on DIC scores for each population

(Table 1). Figure 4 illustrates both the estimated population

preferences, as well as the estimates of all individual preferences in

the sample, for the populations at Carson Pass, CA and

Gardnerville, NV. Thus, there is evidence that a preference

hierarchy exists for most, if not all, of the populations examined

here. As observed for these populations previously [3,16], the

strongest preference was detected for the alpine, hybrid species at

Carson Pass and Mt. Rose, which showed extremely high

preference for their natal host plant, A. whitneyi (pairwise post-

burnin comparisons; pvv0.01 for all comparisons between A.

whitneyi and the other three test plant species). The L. anna

populations showed less preference for each of their respective

natal host plants. The L. polyphyllus-feeding population at Leek

Springs showed low preference for their natal host plant, with their

strongest preference for A. whitneyi. The L. nevadensis-feeding

Figure 3. Host plant preferences for focal populations. Colored
curves indicate posterior density for population-level preference for
four host plant species. Posterior densities estimated from 40000 MCMC
steps following a burnin of 10000 generations.
doi:10.1371/journal.pone.0026785.g003

Table 1. Populations and DIC values for constrained and
unconstrained preference.

Population
Natal host
plant N

Constrained
DIC

Unconstrained
DIC

Carson Pass, CA A. whitneyi 12 2240.85 25162.92

Mt. Rose, NV A. whitneyi 13 2218.15 2929.68

Gardnerville, NV M. sativa 15 67.71 63.03

Verdi, NV M. sativa 14 97.06 79.01

Leek Springs, CA L. polyphyllus 8 107.74 93.15

Trap Creek, CA L. nevadensis 14 6.65 217.59

Yuba Gap, CA L. nevadensis 13 101.83 87.41

Constrained refers to models where preference for each plant is equal.
Unconstrained refers to models where preferences are permitted to vary among
host plants. N is the number of replicates for each population.
doi:10.1371/journal.pone.0026785.t001

Figure 4. Population and individual preferences. Population-level
preferences (solid lines) and individual-level preferences (dotted lines)
for each of the four host plants. Colors for each plant as in figure 3.
Populations presented are A) Carson Pass and B) Gardnerville. Posterior
densities estimated from 40000 MCMC steps following a burnin of
10000 generations.
doi:10.1371/journal.pone.0026785.g004

Hierarchical Bayesian Model for Count Data
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populations at Yuba Gap and Trap Creek showed mixed degrees

of strength in preference. Yuba Gap showed an overall preference

for A. whitneyi and L. nevadensis, whereas Trap Creek showed less

variation in preference for the host plants presented. Though it

should be noted that the ability to detect differences in preference

might be a consequence of insufficient replication to adequately

estimate the population-level preference for Trap Creek. The

strength of preference also varied between the two L. melissa

populations using M. sativa. The population at Verdi showed

stronger preference for both M. sativa and A. whitneyi compared to

the other two plant species offered, whereas the population at

Gardnerville showed little evidence of preference for any of the

four plants offered. Comparisons among models where population

preferences were contrained among groups indicated that, for this

data, the best fit model for preference is one that fits well along

taxonomic boundaries (Table 2). More important, it is clear that a

model constraining the preference parameters to be the same

across all populations is inappropriate.

Overall, there was a general trend for most populations to

favor A. whitneyi in the experiments. This preference for A. whitneyi

over other host plant species was also detected in other

populations of Lycaeides, including populations where the natal

host plant is not Astragalus (Table 3). The population at Big Pine,

CA, nominally called L. melissa inyoensis, is associated with marsh

habitat in the Owens Valley and feeds on Glycyrrhiza lepidota as

larvae. However, females from this population preferred A.

letiginosus over their natal host plant. Similarly, the Cave Lake, CA

population, nominally L. idas ricei, showed strong preference for A.

whitneyi over M. sativa and Vicia americana. This population is found

in wet habitats and is associated with V. americana, though they

might also use L. polyphyllus as a larval host plant (pers. obs.). Two

other populations at Eagle Peak, CA and White Mountains, CA

occupy alpine habitat and, similar to the populations at Carson

Pass and Mt. Rose, showed strong preference for A. whitneyi. The

populations at Eagle Peak and White Mountains are also likely of

hybrid origin [21] and share many traits with Carson Pass and

Mt. Rose, including intermediate egg [19] and genitalic mor-

phology [20] and low egg adhesion to the host plant [17]. These

alpine populations consistently showed strong preference for their

natal Astragalus host plant. In fact, in an experiment where

females from Carson Pass were introduced to an arena where

only L. polyphyllus, L. nevadensis, and M. sativa were available, they

laid 77% fewer eggs compared to females in arenas where A.

whitneyi was present (unpaired t-test, t = 2.815, d.f. = 18, p = 0.01).

Interestingly, the females in arenas with A. whitneyi absent

overwhelmingly favored L. nevadensis (preference and 95%

credible interval: 0.66 (0.40, 0.84)) over the other plants offered,

suggesting that a preference hierarchy does exist even in these

populations with extremely high natal host plant preference.

Despite having egg and genitalic morphology that is intermediate

between the putative parental species, L. melissa and L. anna, and a

genome that is a mosaic of the parental genomes, the alpine

associated homoploid hybrid species showed extremly high

preference for A. whitneyi. These populations also have the unique

trait of lack of egg adhesion (i.e., the eggs fall of the plant shortly

after they are laid) which likely serves as an adaptation to seasonal

above ground senescence of A. whitneyi and strong winds in the

alpine habitat [17]. The strength of host plant preference and

lack of egg adhesion have been suggested as a possible

transgressive trait for this hybrid species [16].

The hierarchical Bayesian approach described herein is a

flexible tool for count data. It provides parameter estimates that

directly address the biological hypotheses; in the present case, the

strength of host plant preference across ecologically varied

populations of Lycaeides. These estimates include not only

population-level preferences, but also individual-level preferences.

Variation in individual-level preference can be examined directly

from the posteriors for each individual or by interpreting the

variance term associated with the Dirichlet distribution. The

ability to obtain this information is unique to this analytical

approach compared to traditional methods. For example, if two

choices are available and the population-level preference for an

item is 0.5, the approach presented here will allow investigators to

determine whether this population-level preference is the result of

no preference for all individuals (high values for w, where most

Table 2. DIC comparisons among grouping schemes for host
plant preferences.

Grouping DIC

(CP,MR,GV,VE,LS,TC,YG) 137.61

(CP)(MR)(GV)(VE)(LS)(TC)(YG) 23382.07

(CP,MR)(GV,VE)(LS)(TC)(YG) 25416.32

(CP,MR)(GV)(VE)(LS)(TC)(YG) 25530.88

(CP,MR)(GV,VE)(TC)(LS,YG) 25597.75

(CP,MR)(GV,VE)(LS,TC,YG) 26085.99

Parenthetical groups constrained to have same preference parameters in the
model. DIC values based on 40000 MCMC steps following a burnin of 10000
generations. Abbreviations are as follows: CP, Carson Pass; GV, Gardnerville; LS,
Leek Springs; MR, Mt. Rose; TC, Trap Creek; VE, Verdi; YG, Yuba Gap.
doi:10.1371/journal.pone.0026785.t002

Table 3. Non-focal population summary of preference for Astragalus and natal host plant, and DIC scores for constrained and non-
constrained models.

Population Test plants N Preference: Astragalus Preference: Natal Constrained DIC Unconstrained DIC

Big Pine, CA A.l., G.l.*, M.s. 11 0.57 (0.37, 0.73) 0.17 (0.07, 0.32) 24.04 211.60

Cave Lake, CA A.w., M.s., V.a. 6 0.62 (0.44, 0.78) 5.34 244.36

Eagle Peak, CA A.w*.,M.s,V.a. 10 0.72 (0.56, 0.87) 222.31 2100.63

White Mts., CA A.w*.,M.s,G.l 15 0.64 (0.44, 0.78) 213.06 253.16

Host plant abbreviations are as follows: A.l., Astragalus letiginosus; A.w., A. whitneyi; G.l., Glycyrrhiza lepidota; M.s., Medicago sativa; V.a.,Vicia americana. Natal plant for
Cave Lake population is not definitively known, however, it is not A. whitneyi and is most likely L. polyphyllus. Constrained model is one where preference for all plants is
equal, whereas the unconstrained is one where preference is permitted to vary across host plants. DIC scores based on 40000 MCMC generations following a 10000
generation burnin.
doi:10.1371/journal.pone.0026785.t003
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individual preferences are near 0.5) or, alternatively, if individuals

have clear preference for either of the two choices (low values for w

where most individual preferences for a given item are near 0 or 1).

This approach also permits one to compare among various models.

For Lycaeides, this included comparing models with a single

preference parameter value for all host plants against a model

where preference was permitted to vary among host plants. Further,

it allowed for comparisons among various population grouping

schemes, indicating which populations show similar preferences; or,

more precisely, which populations are best modeled as sharing the

same preference parameters. This approach is not restricted to

preference data and should be broadly applicable to data recorded

as counts. Implementation of this approach can be accomplished in

the R statistical computing language environment [27] using the

package bayespref (see Supporting Information S1).

Supporting Information

Supporting Information S1 An introduction to bayespref:
a tutorial.
(PDF)
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