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Bifurcations for semilinear elliptic equations with

convex nonlinearity ∗

J. Karátson & P. L. Simon

Abstract

We investigate the exact number of positive solutions of the semilinear
Dirichlet boundary value problem ∆u+ f(u) = 0 on a ball in Rn where f
is a strictly convex C2 function on [0,∞). For the one-dimensional case
we classify all strictly convex C2 functions according to the shape of the
bifurcation diagram. The exact number of positive solutions may be 2, 1,
or 0, depending on the radius. This full classification is due to our main
lemma, which implies that the time-map cannot have a minimum. For
the case n > 1 we prove that for sublinear functions there exists a unique
solution for all R. For other convex functions estimates are given for the
number of positive solutions depending on R. The proof of our results
relies on the characterization of the shape of the time-map.

1 Introduction

We investigate the exact number of positive solutions of the semilinear boundary
value problem

∆u+ f(u) = 0 (1)

u|∂BR = 0

where BR ⊂ Rn is the ball centered at the origin with radius R and f is a strictly
convex C2 function on [0,∞) (i.e. f ′′ ≥ 0 and f ′′ does not vanish identically on
any interval). According to the well-known result of Gidas, Ni and Nirenberg
[9] every positive solution of (1) is radially symmetric, hence it satisfies

ru′′(r) + (n− 1)u′(r) + rf(u(r)) = 0 (2)

u′(0) = 0, u(R) = 0;

further, there holds
u′(r) < 0 (0 < r < R). (3)

Our aim is to determine the bifurcation diagram of positive solutions versus the
radius R for every strictly convex C2 function, and to classify these functions
according to the shape of the bifurcation diagram.
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A brief survey of some known results

The number of positive solutions of (1) has been widely studied for different
types of f on a general bounded domain using variational and topological meth-
ods, see e.g. [2, 3, 18, 24]. In the general case, even for convex functions f [1, 3],
the exact number of positive solutions is hard to determine and is only possible
under restrictive assumptions on the function f .

If the domain is a ball, then ODE techniques can be applied to get more
information on the number of solutions [5, 22]. The essence of the frequently
used shooting method is the investigaton of the initial value problem

ru′′(r, p) + (n− 1)u′(r, p) + rf(u(r, p)) = 0 (4)

u(0, p) = p, u′(0, p) = 0.

It has a unique C2 solution u(·, p) for any p > 0 [21]. The time-map, associating
the first zero of u(·, p) to p, determines the number of positive solutions of (2).

There are several results concerning the number of positive solutions of (2)
for special convex functions f , but the problem is far from being solved for a
general convex function. Joseph and Lundgren [10] determined the number of
solutions in the case f(u) = eu and f(u) = (1 + αu)β for α, β > 0. They
used Emden’s transformation, because for these special functions (2) can be
transformed to a two-dimensional autonomous system and phase plane tech-
niques can be applied. It can be shown by Pohozaev’s formula [18] that for
f(u) = up there exists a positive solution (on a star-shaped domain) if and only
if p < (n+2)/(n− 2), and by Emden’s transformation or Sturm’s theorem that
it is unique (on the ball). Several authors studied the case f(u) = up + λuq,
especially when p is near to the critical value (n+2)/(n− 2) [4, 6, 7, 8, 17]. Mc
Leod’s result [16] on the uniqueness of positive solutions is valid for a certain
class of convex functions, typically for f(u) = up−u ( if 1 < p < (n+2)/(n−2)),
see also [11].

A more detailed description of the exact number of positive solutions is
available in the case n = 1, because then (2) is a Hamiltonian system on the
phase plane. However, according to our knowledge, the whole classification of
the possible bifurcation diagrams for the convex functions f is not known even
in the one-dimensional case. Schaaf’s book [19] is an excellent summary of the
results on the time-map for large function classes for n = 1. Certain convex
functions (e.g. polynomials with not purely imaginary complex roots) are not
contained in these classes. In [20] and [25] the monotonicity of the time-map is
investigated for cubic-like functions f . For convex positive functions f Laetsch
[12, 13] gave a detailed description, also for the boundary condition of the third
type. In these works the specialities of the case n = 1, i.e. the phase plane and
the integral formula for the time-map, are applied, hence neither the results nor
the methods can be applied for the case n > 1.
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The main results and the method

For the one-dimensional case we classify all strictly convex C2 functions accord-
ing to the shape of the bifurcation diagram and thus determine the exact num-
ber of positive solutions. We prove that for asymptotically linear or superlinear
functions (at infinity) the bifurcation diagram is determined by the behaviour
of f at infinity and at 0, further, by the sign changes of f . We essentially prove

that there exist numbers 0 ≤ R∞ < Rsup ≤ ∞, depending on lim
u→∞

f(u)
u
and the

number of zeros of f , respectively, which divide the interval (0,∞) according
to the number of positive solutions of (1). As it is sketched in Table 1, these
numbers are influenced by the sign of f(0). (The exact formulation of these
results is given in Theorems 1 and 2.)

R ≤ R∞ R∞ < R < Rsup Rsup < R

f(0) > 0 1 2 0
f(0) ≤ 0 0 1 0

Table 1. Number of positive solutions

The above table shows the number of positive solutions of (1) in the super-
linear and asymptotically linear case for n = 1. In the superlinear case R∞ = 0.
If f has two zeros or a double zero, then Rsup =∞.

For sublinear functions there exists a unique solution for all R; this result is
considered in the general case n > 1. This full classification in one dimension
is due to our main lemma (Lemma 1), which implies that the time-map cannot
have a minimum. Otherwise, where it is possible, we prove our results for any
dimension n ≥ 1. Especially, we avoid the application of the integral formula
for the time-map, except for determining the limit of the time map at infinity,
where the result is indeed not true for all n (see e.g. [10]).
For the case n > 1 we prove that for sublinear functions there exists a unique

solution for all R (Theorem 3). For other convex functions estimates are given
for the number of positive solutions (Theorem 4).
The proof of our results relies on the characterization of the shape of the

time-map. The following three characteristic properties determine the exact
number of positive solutions of (2):

• the domain of the time-map

• the limit of the time-map at the boundary points of its domain

• the monotonicity of the time-map on the maximal subintervals of its do-
main.

The main tools during our studies are Sturm’s theorems, Pohozaev’s formula and
the application of auxiliary functions, e.g. the Hamiltonian of the 1-dimensional
case as a Liapunov function for the case n > 1.
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Definition 1 The time-map associated to the above initial value problem is
the following function T :

T (p) = min{r > 0 : u(r, p) = 0} ; D(T ) = {p > 0 : ∃r > 0 u(r, p) = 0}.

The function T is determined by the implicit equation

u(T (p), p) ≡ 0 (5)

and the assumption u(r, p) > 0 if r ∈ [0, T (p)).
Differentiating (5) one gets the following equations for the derivatives of T :

∂ru(T (p), p)T
′(p) + ∂pu(T (p), p) ≡ 0, (6)

∂2ru(T (p), p)T
′(p)2+2∂rpu(T (p), p)T

′(p)+∂ru(T (p), p)T
′′(p)+∂2pu(T (p), p) ≡ 0.

(7)

Differentiating (4) with respect to p and introducing the notations h(r, p) =
∂pu(r, p) and z(r, p) = ∂

2
pu(r, p) we get

rh′′(r, p) + (n− 1)h′(r, p) + rf ′(u(r, p))h(r, p) = 0 (8)

h(0, p) = 1, h′(0, p) = 0;

rz′′(r, p) + (n− 1)z′(r, p) + rf ′(u(r, p))z(r, p) + rf ′′(u(r, p))h2(r, p) = 0 (9)

z(0, p) = 0, z′(0, p) = 0.

Differentiating (4) with respect to r and introducing the notation v(r, p) =
∂ru(r, p) we get

v′′(r, p) + n−1
r
v′(r, p) + (f ′(u(r, p))− n−1

r2
)v(r, p) = 0 (10)

v(0, p) = 0, v′(0, p) = − f(p)n .

Using the above notations, (6) is written as

v(T (p), p)T ′(p) + h(T (p), p) ≡ 0 . (11)

2 General results on the shape of the time-map

In this section we formulate results on the domain D(T ) of the time-map , the
limit of the time-map at the boundary points of D(T ) and the monotonicity of
the time-map. These will enable us to cover the possible cases of the shape of
the time-map for strictly convex f .

The results are proved for all dimensions n where it is possible. Most of the
one-dimensional results exploit the first main result (Lemma 1). This is given
in the first subsection.
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Main lemma in one dimension

Lemma 1 Let n = 1, f ∈ C2 be strictly convex. If T ′(p) = 0, then T ′′(p) < 0.

Proof. Let T ′(p) = 0. Then (11) implies h(T (p), p) = 0. This means that
h > 0 in the interval [0, T (p)). Otherwise, using Sturm comparison, v should
have a root between the previous root of h and T (p) since v and h are two
solutions of the same equation (8). This cannot occur by (3).
From this we obtain z(T (p), p) < 0 for the solution of (9). Namely, assume

first that f ′′(p) > 0. Then z′′(0) = −f ′′(p) < 0 implies z < 0 in some right
neighbourhoodof 0. Assume that z(r1) = 0 for some r1 ∈ (0, T (p)]. Then
comparison of the equations

h′′ + f ′(u)h = 0 and z′′ +

(
f ′(u) +

f ′′(u)h2

z

)
z = 0

shows that h should have a root in (0, r1). I.e. z < 0 in (0, T (p)].
If f ′′(p) = 0 then we can use the above argument for all other values p̃ where

f ′′(p̃) > 0 holds to show that z(r, p̃) < 0 until the first root of h(r, p̃). Then by
continuity this extends to p.
Finally, z(T (p), p) < 0 yields T ′′(p) < 0, using (7) (and v(T (p), p) ≤ 0). ♦

Corollary 1 If n = 1 and f ∈ C2 is strictly convex then T may have at most
one local extremum in any subinterval of D(T ), namely, a local maximum.

The domain D(T ) of the time-map

In this subsection we do not assume first that f is convex. Necessary conditions
for p ∈ D(T ) can be obtained using the Hamiltonian of the 1-dimensional case

H(r) :=
u′(r)2

2
+ F (u(r)) (12)

(where F (u) :=
∫ u
0 f) as a Liapunov function, because H

′(r) = −n−1
r
u′2(r) is

negative (see (3)). Namely:

Proposition 1 1. If p ∈ D(T ), then f(p) > 0.

2. D(T ) ⊂ {p > 0 : F (p) > F (s) ∀ s ∈ Ip and f(p) 6= 0} =: Pf where
Ip := (0, p) if both n = 1 and f(0) < 0 and Ip := [0, p) otherwise.

Proof. 1. If f(p) = 0, then u(r) ≡ p. In case f(p) < 0 we have u′′(0) > 0,
hence u initially increases. This implies u(r) ≥ u(0) for all r > 0, because
u(r0) = u(0) would imply H(r0) ≥ H(0). This is impossible for n > 1, and in
the case n = 1 there holds u′′(r0) > 0. (We note that the end of the proof also
follows from (3).)
2. Let p ∈ D(T ). According to 1. we have f(p) > 0. Let s ∈ (0, p), then

there exists r ∈ (0, T (p)) with u(r) = s. Then

F (s) = F (u(r)) = H(r) −
u′(r)2

2
< H(r) ≤ H(0) = F (p).
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It is easy to see that if n > 1 or f(0) ≥ 0, then the above inequality also holds
for s = 0 (i.e. r = T (p)). ♦

The sufficient condition may be a difficult question (cf. e.g. Pohozaev’s
identity [18]). The characterization of D(T ) can only be given for n = 1.
Besides this, we mention special cases for n > 1.

Proposition 2 If n = 1 then D(T ) = Pf .

Proof. Let p ∈ Pf , u(r) = u(r, p). We argue by contradiction, so assume
that u(r) > 0 for all r > 0. Using that H is constant and p ∈ Pf , (12) shows
that u′(r) < 0 (r > 0). Hence there exists lim∞ u =: c ∈ [0, p], and (12) implies
F (c) = F (p). In case f(0) ≥ 0 this contradicts F (s) < F (p) (s < p). In case
f(0) < 0 F (s) < F (p) implies c = 0. From (4) lim∞ u

′′ > 0, which contradicts
lim∞ u = 0. ♦

If f is strictly convex, then Pf clearly consists of at most two intervals
(around 0 and∞). First we consider the unbounded component. (The bounded
one can be studied for any n.)

Corollary 2 Let n = 1 and α > 0. Let f be strictly convex, f(α) = 0, f > 0 on
(α,+∞). Then there exists β ≥ α such that (β,+∞) or [β,+∞) is a connected
component of D(T ) (in the cases f(0) ≥ 0 and f(0) < 0, respectively). Further,
β is the solution of F (β) = F (α1) in [α,∞), where α1 is the first root of f in
[0, α] if f(0) ≥ 0 and α1 = 0 otherwise. Therefore, if f ′(α) = 0 (f ′(α) > 0),
then β = α (β > α), resp.

Proposition 3 Let n ≤ 2. If f(u) > 0 (u ∈ (0,+∞)), then D(T ) = (0,+∞).

Proof. It is a consequence of the integral form of (4)

−rn−1u′(r) =

∫ r
0

ρn−1f(u(ρ))dρ (13)

since this implies u′(r) ≤ − K
rn−1 (r > r1) for some r1 > 0 and K > 0, hence u

attains 0 if n ≤ 2. ♦

Remark 1 We obtain similarly that for n ≤ 2 and for nonnegative f we have
D(T ) = Pf .

Remark 2 Propositions 2 and 3 cannot be extended for all n ≥ 1. An im-
portant restriction is imposed by Pohozaev’s formula [18] on the growth of f
depending on n.

Proposition 4 Let n ≥ 1, α ∈ (0,+∞]. If f > 0 in (0, α) and lim inf
u→0

f(u)
u >

0, then (0, α) ⊂ D(T ). Consequently, if f(α) = 0 then (0, α) is a maximal
subinterval of D(T ).

Proof.



EJDE–1999/43 J. Karátson & P. L. Simon 7

(i) In case f(0) > 0 the statement is an easy consequence of (13). Namely,
let p ∈ (0, α) and letM := min f |[0,p]. Then (13) yields u(r, p) ≤ p−

M
2nr

2,
hence u(·, p) has a root, i.e. p ∈ D(T ).

(ii) In case f(0) = 0 we use a linear lower estimate for f , namely, we choose
δ > 0 and m > 0 such that f(u) ≥ mu for u ∈ [0, δ). Let p ∈ (0, α). If
p > δ, then let M := min f |[δ,p] > 0. Then applying (13) again we get
that there exists r1 > 0 such that u(r1) = δ. In case p ≤ δ let r1 := 0.
Comparison of

u′′ +
n− 1

r
u′ +

f(u)

u
u = 0 and w′′ +

n− 1

r
w′ +mw = 0

with w(r1) = δ, w
′(r1) = 0 shows that u attains 0 before the first root of

w which exists since the equation for w is linear and m > 0.

♦

Corollary 3 Let n ≥ 1. Let f(u) ≥ mu (u ∈ [0,+∞)) for some m > 0. Then
D(T ) = (0,+∞), and T is bounded.

2.1 The limit of the time-map at the boundary points of
D(T )

Proposition 5 Let n ≥ 1. Let 0 ∈ ∂D(T ).

(a) If f(0) > 0, then lim
0
T = 0.

(b) If f(0) = 0 and f ′(0) > 0, then lim
0
T ∈ (0,+∞).

(c) If f(0) = 0 and f ′(0) = 0, then lim
0
T = +∞.

Proof.

(a) The proof of Proposition 4 (i) is used: with suitable M > 0 for small
enough p we have f(u(r)) ≥ M in [0, T (p)], hence u attains 0 before
w(r) = p− M

2nr
2 does. The root of the latter tends to 0 as p→ 0.

(b) Similarly, for any ε > 0 comparison to u′′± +
n−1
r
u′± + (f

′(0) ± ε)u± = 0
shows that for small enough p the first root of u lies between those of u±,
hence lim

0
T coincides with the root of the linearized equation at 0.

(c) Similarly, for any δ > 0 comparison to w′′δ +
n−1
r
w′δ + δwδ = 0 shows that

for small enough p the first root of u lies after that of wδ which tends to
+∞ as δ → 0.

♦
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Proposition 6 Let n ≥ 1. Let c > 0 belong to ∂D(T ) \D(T ). Then lim
c
T =

+∞.

Proof. Let R > 0. Let ε > 0 such that u(r, c) ≥ ε (r ∈ [0, R]). The
continuous dependence of u(r, p) on p is uniform on compact intervals, hence
for small enough δ > 0 we have u(r, p) > 0 (r ∈ [0, R]) for all |p− c| < δ. ♦

Proposition 7 Let n = 1. Let +∞ ∈ ∂D(T ).

(a) If lim
u→+∞

f(u)
u
= +∞ then lim

+∞
T = 0.

(b) If lim
u→+∞

f(u)
u = L ∈ (0,+∞) then lim+∞

T = π

2
√
L
.

(c) If lim
u→+∞

f(u)
u = 0 then lim+∞

T = +∞.

Proof.

(a) Let k(u) = inf{ f(s)
s
: s ≥ u} (u > 0) and K(u) =

∫ u
0
k(s)s ds. Then k

increases to +∞ and f(u) ≥ k(u)u. For large enough p we have

T (p) =
1
√
2

∫ p
0

1√
F (p)− F (s)

ds

≤
1
√
2

∫ p
0

1√
K(p)−K(s)

ds (14)

=
p√
2K(p)

∫ 1
0

1√
1− K(pt)

K(p)

dt .

Here K(pt) = t2
∫ p
0 k(vt)v dv ≤ t

2K(p), hence the integral is bounded by∫ 1
0

1√
1−t2
dt = π

2 . Thus

T (p) ≤
p√
2K(p)

·
π

2
. (15)

Further, K(p) ≥
∫ p
p/2
k(s)s ds ≥ k(p/2)3p

2

8 , hence we have

T (p) ≤ const. ·
1√
k(p/2)

→ 0 (p→ +∞) .

(b) Let ε, δ > 0 be fixed. Then for sufficiently large p

K(p) ≥

∫ p
δp

k(s)s ds ≥ k(δp)
p2

2
(1− δ2).
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Here lim
p→+∞

k(δp) = L, hence for sufficiently large p we have

p√
2K(p)

≤
1√

L(1− δ2)
+ ε. (16)

In order to obtain a lower estimate for T (p), we also introduce g(u) =

sup{ f(s)s : s ≥ u} (u > 0) and G(u) =
∫ u
0 g(s)s ds. Then g decreases to

L. Exchanging K to G in (14), the estimate is reversed, and similarly we
obtain

T (p) ≥
p√
2G(p)

·
π

2
. (17)

Let pδ > 0 such that there holds g(p) < L+ δ (p > pδ). Then

G(p) =

∫ pδ
0

g(s)s ds+

∫ p
pδ

g(s)s ds ≤ g(0)
pδ
2

2
+ (L+ δ)

p2

2
.

Hence for sufficiently large p we have

p√
2G(p)

≥
1

√
L+ δ

− ε. (18)

Summarizing (15)–(18), we obtain for sufficiently large p

(
1

√
L+ δ

− ε

)
π

2
≤ T (p) ≤

(
1√

L(1− δ2)
+ ε

)
π

2
.

(c) Similar to (b), now using g and G only to get the suitable lower estimate
for T (p). ♦

Remark 3 (a) Proposition 7 is proved for f > 0 in [12].

(b) The whole proposition cannot be extended to all n ≥ 1 as the examples
f(u) = eu or (1 + αu)β show (see [10]). It is possible for last part.

Proposition 8 Part (c) of Proposition 7 holds for all n ≥ 1.

Proof. The integral formula (13) implies u(r, p) ≥ p − Mp
2n r

2 where Mp =

max f|[0,p]. Then T (p) ≥
√
2np
Mp
→ +∞ since limp→+∞

Mp
p
= 0. ♦

2.2 The monotonicity of the time-map

Proposition 9 Let n ≥ 1. Let α ∈ (0,+∞], f ∈ C2 be convex and positive on
(0, α). Then for any p ∈ (0, α) T ′(p) = 0 implies f ′(p) ≥ 0.
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Proof. (8), (3) and the convexity of f imply that the function

H(r) = f ′(u(r))
h2(r)

2
+
h′2(r)

2

is strictly decreasing (here h = ∂pu). According to (11) T
′(p) = 0 implies

h(T (p)) = 0. Hence

0 ≤
h′2(T (p))

2
= H(T (p)) ≤ H(0) =

f ′(p)

2
.

♦

Corollary 4 Let n ≥ 1. Let α ∈ (0,+∞], f ∈ C2 be convex and positive on
(0, α). If limα f = 0 then T is strictly increasing on (0, α).

Proposition 10 Let n = 1 and f ∈ C2 be strictly convex. If f(0) ≤ 0 then T
is strictly decreasing.

Proof. Let l(u) = uf ′(u) − f(u) (u > 0). The strict convexity of f
implies that l is strictly increasing, thus, owing to l(0) = −f(0) ≥ 0, we have

l(u) > 0 (u > 0), i.e. f(u)u < f ′(u). Thus comparison of u′′ + f(u)
u u = 0 and

h′′ + f ′(u)h = 0 shows that h has a root in (0, T (p)), and comparison of h and
v (as in Lemma 1) shows that h has no other roots, i.e. h(T (p), p) < 0, hence
T ′(p) < 0. ♦

Remark 4 This property is open for n > 1. Under a certain set of assumptions
it follows from [16] in the case when f has a positive root and f(0) = 0.

Proposition 11 Let n = 1 and f ∈ C2 be strictly convex. If one of the end-
points of a maximal subinterval of D(T ) does not belong to D(T ), then T is
strictly monotonic on this subinterval.

Proof. It is the consequence of Lemma 1 and Proposition 6 ♦

3 Classification of the number of positive solu-
tions in one dimension

The results of Section 2 enable us to give a complete classification of strictly
convex C2 functions according to the number of positive solutions. Thus we
obtain the extension of the results in [12] concerning the case f(u) > 0 (u > 0).

It is easy to see that for u large enough the function f(u)
u
is monotone, therefore

the limit lim
u→+∞

f(u)
u exists. The value of this limit serves as the first level of

our classification. The superlinear ( lim
u→+∞

f(u)
u
= +∞), aymptotically linear

( lim
u→+∞

f(u)
u
∈ (0,+∞)) and sublinear ( lim

u→+∞

f(u)
u
≤ 0) cases are considered in

Theorems 1, 2, 3, respectively.



EJDE–1999/43 J. Karátson & P. L. Simon 11

Theorem 1 Let n = 1, f : [0,∞)→ R, f ∈ C2 be strictly convex, lim
u→+∞

f(u)
u =

+∞.

(i) If f(u) > 0 (u ∈ [0,∞)) then there exists Rsup > 0 such that (1) has two
solutions for R < Rsup, one solution for R = Rsup, and no solution for
R > Rsup.

(ii) If f(0) > 0 and f has a root in (0,∞) then (1) has two solutions for all
R > 0.

(iii) If f(0) = 0 and f ′(0) > 0 then there exists Rsup > 0 such that (1) has one
solution for R < Rsup and no solution for R ≥ Rsup.

(iv) If f(0) = 0 and f ′(0) ≤ 0 then (1) has one solution for all R > 0.

(v) If f(0) < 0 then there exists Rsup > 0 such that (1) has one solution for
R ≤ Rsup and no solution for R > Rsup.

Proof.

(i) Propositions 5 and 7 imply that lim0 T = lim+∞ T = 0. The maximum
of T is a unique extremum owing to Corollary 1, hence T increases from
0 to some Rsup > 0, then it decreases again to 0.

(ii) Proposition 4 and Corollary 2 imply that D(T ) consists of two maxi-
mal subintervals (0, α) and (β,∞) where the endpoint(s) α and β are
not in D(T ). Using Propositions 5, 6, and 7 we conclude that lim0 T =
lim+∞ T = 0 and limα− T = limβ+ T = +∞. From Proposition 11 T is
strictly monotonic on both subintervals, hence T attains each value twice.

(iii) Corollary 3 and Propositions 7 and 5 yield D(T ) = (0,∞), further, that
lim+∞ T = 0 and lim0 T = Rsup where Rsup > 0 is the first root of the
linearized equation u′′ + f ′(0)u = 0. Proposition 10 implies that T is
strictly decreasing, hence it attains each value R ∈ (0, Rsup) once.

(iv) If f ′(0) = 0, then propositions 3 and 5 yield that D(T ) = (0,∞) and
lim0 T = +∞. In the case f ′(0) < 0 Corollary 2 and Proposition 6 yield
that for some β > 0 we have D(T ) = (β,∞) and limβ+ T = +∞. In
both cases we have lim+∞ T = 0. Proposition 10 implies that T strictly
decreases to 0.

(v) Corollary 2 yields that D(T ) = [β,∞) for some β > 0. Proposition 10
and lim+∞ T = 0 imply again that T strictly decreases to 0.

♦

Theorem 2 Let n = 1, f : [0,∞)→ R, f ∈ C2 be strictly convex, lim
u→+∞

f(u)
u
=

L ∈ (0,+∞) and R∞ :=
π

2
√
L
.
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(i) If f(u) > 0 (u ∈ [0,∞)) then there exists Rsup > R∞ such that (1) has one
solution for R ≤ R∞ and R = Rsup, two solutions for R∞ < R < Rsup
and no solution for R > Rsup.

(ii) If f(0) > 0 and f has a root in (0,∞) then (1) has one solution for
R ≤ R∞ and two solutions for R > R∞.

(iii) If f(0) = 0 and f ′(0) > 0 then there exists Rsup > R∞ such that (1)
has no solution for R ≤ R∞, one solution for R∞ < R < Rsup and no
solution for R ≥ Rsup.

(iv) If f(0) = 0 and f ′(0) ≤ 0 then (1) has no solution for R ≤ R∞ and one
solution for R > R∞.

(v) If f(0) < 0 then there exists Rsup > R∞ such that (1) has no solution for
R ≤ R∞, one solution for R∞ < R ≤ Rsup and no solution for R > Rsup.

Proof. The proof proceeds just in the same way as in Theorem 1, now
using lim+∞ T = R∞ from Proposition 7. (The existence of the maximum of T
in case (i) can be found in [12]).) ♦

In the sublinear case the result is independent of n, therefore it is dealt with
in the next section.

4 The n-dimensional case

For the general case (n ≥ 1) the whole classification of bifurcation diagrams
cannot be extended from the case n = 1. In the sublinear case the next theorem
gives the answer.

Theorem 3 Let n ≥ 1, f : [0,∞) → R, f ∈ C2 be strictly convex, and

lim
u→+∞

f(u)
u ≤ 0. If f has a positive value then for any R > 0 (1) has a unique

solution. (If f ≤ 0 then (1) has obviously no positive solution for any R > 0.)

Proof. Due to its convexity, f is strictly decreasing. In the nontrivial case
f(0) > 0 there are two possibilities: either f has a single positive root α > 0
(and then u > 0 on (0, α) and u < 0 on (α,∞)) or f > 0 on (0,∞) (in which
case we define α := ∞). Proposition 4 implies D(T ) = (0, α). Propositions 5,
6 and 8 imply that lim0 T = 0 and limα T = +∞, and from Corollary 4 T is
strictly increasing, hence it attains each value once. ♦

Remark 5 This result can be extended to general bounded domains using
monotone operator theory, because f is strictly decreasing.

In the superlinear and asymptotically linear case ( lim
u→∞

f(u)
u > 0) the prob-

lem is much more complicated. The known results thus usually concern given
special functions, as described in the Introduction. First, we briefly list some
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of the reasons for the difficulties concerning the domain, the limits and the
monotonicity of the time-map.
The domain of the time-map depends sensitively on the dimension n, as is

shown by example f(u) = uk: according to the Pohozaev identity [18] D(T ) = ∅
if k ≥ n+2

n−2 , and using variational methods [24] or Emden’s transformation [10]

one can prove that D(T ) = (0,∞) if k < n+2
n−2 . The limit of the time map at

infinity may also change as the dimension n increases: in [10] it is shown for
the example f(u) = eu that for n ≥ 3 lim∞ T 6= 0. We note that in case n ≤ 2,

limu→∞
f(u)
u = ∞ implies lim∞ T = 0. The monotonicity properties of the

time-map also change for higher dimensions. Our main lemma (Lemma 1) is
not true generally, since e.g. for f(u) = eu and for 3 ≤ n ≤ 10 the time-map has
infinitely many maxima and minima, see [10]. For the case f(0) ≤ 0 McLeod
proved a uniqueness result for a sophisticatedly chosen function class with main
typical member f(u) = up − u. Unfortunately, many convex functions are not
contained in this class, e.g. f(u) = u2 + au − b for a, b > 0. In the class
f(0) = 0, f ′(0) > 0 Srikanth [23] and Zhang [26] have proved uniqueness for
f(u) = up + u for n ≥ 3. The difficulties concerning the monotonicity of the
time-map generally arise from the fact that in case n > 1 the Sturm comparison
of h and v is not possible; from equations (8) and (10) one can see that v
oscillates more slowly than h.
Now we summarize the bifurcation results that follow from our investiga-

tions on the domain, limits and monotonicity of the time-map. Of course, this
theorem for a general convex function f does not contain the strong results
concerning the special functions mentioned above.

Theorem 4 Let n ≥ 1, f : [0,∞)→ R, f ∈ C2 be strictly convex, lim
u→+∞

f(u)
u
>

0.

(i) If f(u) > 0 (u ∈ [0,∞)) then there exists Rsup > 0 such that (1) has at
least one solution for R ≤ Rsup and no solution for R > Rsup.

(ii) If f(0) > 0 and f has a root in (0,∞) then (1) has at least one solution
for all R > 0.

(iii) If f(0) = 0 and f ′(0) > 0 then there exist Rsup > 0 and Rinf ∈ [0, Rsup]
such that (1) has no solution for R > Rsup or R < Rinf and it has at
least one solution for Rinf < R < Rsup.

Proof.

(i), (iii) Corollary 3 yields that T is bounded, hence we can set Rsup = maxT . In
case (i) Proposition 5 implies that lim0 T = 0, hence T attains all values
between 0 and Rsup. In case (iii) the proofs of Propositions 4 and 5 imply
that Rsup coincides with the root of the linearized equation, i.e. with
lim0 T .

(ii) Let us denote by α the first root of f . Proposition 4 implies that D(T )
contains the interval (0, α) and α /∈ D(T ). Proposition 5 yields that
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lim0 T = 0 and Proposition 6 yields that limα− T = +∞, hence T attains
all positive values. We note that from Corollary 4 T is strictly monotonic
on (0, α), hence the solution is unique under the restriction u(r) < α.

♦

Finally, we list some open problems and conjectures concerning the time-
map.

Conjectures

1. If 1 ≤ n ≤ 2 then D(T ) = Pf .

2. Let 1 ≤ n ≤ 2, f ∈ C2 be strictly convex. If T ′(p) = 0, then T ′′(p) < 0,
i.e. Lemma 1 holds for 1 ≤ n ≤ 2.

3. Let n > 1, f ∈ C2 be strictly convex. If f(0) ≤ 0, then (1) has at most
one solution for any R > 0.

Open Problems

1. Let n > 2 and f ≥ 0. Determine the domain D(T ).

2. Let n > 2, f(0) ≤ 0. Assume that f has at most one positive root and

f is positive after this root, and lim
u→∞

f(u)
up
= 0 for some p < n+2

n−2 . Prove

that there exists b such that D(T ) = (b,∞).

3. Let n > 2, f(0) ≤ 0. Determine the limit lim
∞
T .
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